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Abstract

The study of worst case scenarios for risk measures (e.g. the Value at Risk)
when the underlying risk vector (or portfolio of risks) is not completely specified is
a central topic in the literature on robust risk measurement. In this paper we discuss
partially specified factor models as introduced in Bernard, Rüschendorf, Vanduffel
and Wang (2017) in more detail for the class of additive factor models which admit
more explicit results. These results allow to describe in more detail the reduction
of risk bounds obtainable by this method in dependence on the degree of positive
resp. negative dependence induced by the systematic risk factors. The insight may
help in applications of this reduction method to get a better qualitative impression
on the range of influence of the partially specified factor structure.
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1 Introduction

There is a rich literature on finding bounds for the Value at Risk (VaR) or other risk mea-
sures of a portfolio under the assumption that all marginal distributions are known, but
the dependence of the portfolio is either unknown or only partially known. Moment bounds
for VaR (which are intimately connected with distributional bounds) or for the Tail Value
at Risk (TVaR) based on some moment informations on the distribution have been studied
intensively in the insurance literature by various authors as Kaas and Goovaerts (1986),
Denuit et al. (1999), de Schepper and Heijnen (2010), Hürlimann (2002, 2008), Goovaerts
et al. (2011), Bernard, Rüschendorf and Vanduffel (2017), Bernard et al. (2018), Tian
(2008), Cornilly et al. (2018). Specifically Hürlimann (2002) derived analytical bounds
for VaR and TVaR under knowledge of the mean, variance, skewness and kurtosis. Risk
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bounds with pure marginal information were found to be often too wide in order to be
useful for applications (see Embrechts and Puccetti (2006a) and Embrechts et al. (2013,
2014)). Related aggregation-robustness and model uncertainty for risk measures are also
investigated in Embrechts et al. (2015). Several approaches to add to marginal informa-
tion some dependence information have been discussed in ample literature (see Puccetti
and Rüschendorf (2012a,b, 2013), Bernard and Vanduffel (2015), Bernard, Rüschendorf
and Vanduffel (2017), Bernard, Rüschendorf, Vanduffel and Wang (2017), Bignozzi et al.
(2015), Rüschendorf and Witting (2017), Puccetti et al. (2017)). For some surveys on
these developments see Rüschendorf (2017a,b).

Partially specified factor models are introduced in Bernard, Rüschendorf, Vanduffel
and Wang (2017). The aim of that paper is to introduce for a risk model additionally to
the marginals of a risk vector structural information given by a systematic risk factor,
which allows to reduce the wide dependence uncertainty (DU) as in pure marginal models.

Partially specified risk factor models (PSFM) are of the form

Xi “ fipZ, εiq, 1 ď i ď n, (1.1)

where Z is a real systematic risk factor and pεiq are idiosyncratic risk factors. The dis-
tributions of pZ, εiq are assumed to be known but in contrast to the usual factor models
the joint distribution of pεiq given Z is not specified; in particular conditional given Z the
pεiq are not assumed to be independent. By construction the marginals Fi of Xi are deter-
mined. In the paper of Bernard, Rüschendorf, Vanduffel and Wang (2017) it is shown that
PSFM are a particularly flexible and effective class of models to reduce risk bounds com-
pared to those in the marginal model FpF1, . . . , Fnq, using only marginal information.
Further, that paper develops techniques how to compute the risk bounds numerically.
Several examples in the paper give an impression of the kind and of the magnitude of
reduction of risk bounds resulting from the additional structural information.

The present paper considers a special but informative class of PSFM, the class of
partially specified additive factor models (PSAFM), which allows to determine analytically
the risk bounds of interest and to describe the magnitude of reduction compared to the
marginal models in explicit form. As a result it becomes evident that in PSFM, where the
risk factor Z induces positive dependence essentially the lower risk bounds are improved
compared to the marginal model, while in the case that Z induces negative dependence,
the upper risk bounds improve essentially, while there is only a minor effect to the lower
risk bounds. All intermediate types of reduction are possible within this class of models.
As a result the considered additive models allow to get a better understanding of this
behaviour of PSFM which was observed and described in Bernard, Rüschendorf, Vanduffel
and Wang (2017) in some specific examples.

2 Partially specified additive factor models

Partially specified risk factor models (PSFM) as defined in (1.1) are determined in func-
tional form by functions of the systematic risk factor Z and the idiosyncratic risk factors
εi. Motivated by the simple form of standard additive factor models we consider in this
paper as model class partially specified additive factor models (PSAFM) (in case n “ 2)
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given by

X1 “ Z1 ‘ ε1, X2 “ Z2 ‘ ε2. (2.1)

Here Zi are systematic risk factors. εi are idiosyncratic risk factors independent of pZ1, Z2q

and ‘ denotes an independent sum. For the (PSAFM) in (2.1) it is generally assumed
that the joint distribution of pZ1, Z2q and also the marginal distributions of ε1, ε2 are
know. It is further assumed that εi is independent of pZ1, Z2q. On the other hand the
joint distribution of pε1, ε2q is unknown and it is not assumed that pε1, ε2q is independent
of pZ1, Z2q. We comment in Section 5 on extensions to the case n ě 2.

(2.1) includes the PSFM in (1.1) in the case where Xi “ fipZq ` εi by choosing
Zi “ fipZq. This model assumption in (2.1) allows to consider two general dependent
systematic risk factors Z1, Z2 and also allows an easy extension to multiplicative models
of the form Xi “ Ziεi.

Let εi „ Gi, Zi „ Hi, then as consequence of the specification of the (PSAFM) the
marginal distribution Fi is given by the convolution of Hi and Gi, i.e.

Fi “ Hi ˚Gi.

In the particular case when Z1 “ Z2 “ Z „ G this amounts to the partially specified
additive factor model

X1 “ Z ‘ ε1, X2 “ Z ‘ ε2 (2.2)

with a systematic risk factor Z inducing positive dependence.

In order to demonstrate the effects of the risk factors on the additive model we consider
in the following in typical examples the case of equal distribution where Z1 „ Z2 and
ε1 „ ε2. When determining risk bounds for tails, we consider the case of asymptotically
equivalent tails, i.e. P pZ1 ą tq „ P pZ2 ą tq, P pε1 ą tq „ P pε2 ą tq. In particular
we investigate the risk bounds for X1 ` X2 in the case when the systematic risk part is
dominating and the case when both risk parts are of similar order.

Define the tail risk bounds in the partially specified additive factor model (PSAFM)
(2.1) by

M f
psq “ suptP pX1 `X2 ě sq; pX1, X2q satisfy (2.1)u

mf
psq “ inftP pX1 `X2 ě sq; pX1, X2q satisfy (2.1)u.

(2.3)

Let

Mpsq “ suptP pX1 `X2 ě sq; Xi „ Fi, i “ 1, 2u

mpsq “ inftP pX1 `X2 ě sq; Xi „ Fi, i “ 1, 2u
(2.4)

be the corresponding marginal tail risk bounds. The associated dependence uncertainty
spreads are given by

DU f
psq “M f

psq ´mf
psq resp. DUpsq “Mpsq ´mpsq. (2.5)

Besides the tail risk we also consider risk bounds for law invariant convex risk measures
% like TVaR (expected shortfall) and the related convex ordering results.
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For a random variable X with distribution function F define the Value at Risk at level
α by the right continuous inverse of F , i.e.

VaRαpXq “ inftγ;P pX ď γq ě αu “ F´1pαq.

Then VaRαpXq “ inftγ;P pX ě γq ă 1 ´ αu “ F
´1
p1 ´ αq is identical to the right

continuous inverse of the survival function F pγq “ P pX ě γq at level 1´ α.

For the marginal (unconstrained) case the tail-risk bounds and the corresponding
Value at Risk (VaR) bounds are given in the following proposition (see Makarov (1981)
and Rüschendorf (1982)). Let for marginal distribution functions F1, F2,

VaRα “ suptVaRαpX1 `X2q;Xi „ Fiu and VaRα “ inftVaRαpX1 `X2q;Xi „ Fiu

denote the VaR bounds in the marginal model.

Proposition 2.1. For fixed marginals F1, F2 it holds that:

a) Mpsq “ inf
x
pF 1px`q ` F 2ps´ xqq (2.6)

mpsq “ sup
x
pF 1px`q ` F 2ps´ xqq ´ 1, (2.7)

where F ipxq “ P pXi ě xq and F ipx`q “ P pXi ą xq.

b) For α P p0, 1q holds

VaRα “ inf
αďuď1

pF´11 puq ` F´12 p1` α ´ uqq (2.8)

and VaRα “ sup
0ďuďα

pF´11 puq ` F´12 pα ´ uqq.

Remark 2.2. a) The upper tail risk bound Mpsq is attained for

X1 “ F´11 pUq, X2 “ F´12 pUq1tUďαu ` F
´1
2 p1` α ´ Uq1tUěαu (2.9)

which are negatively dependent (antimonotonic) in the upper α-part, where α “ 1 ´
Mpsq. The lower bound is attained for X1 “ F´11 pUq, X2 “ F´12 pα ´ Uq1tUďαu `
F´12 p1` α ´ Uq1tUěαu (see Rüschendorf (1982)).

b) The upper VaR bound VaRα can be represented as the right continuous inverse of the
tail risk bound M at level 1´ α, i.e.

VaRα “ inftγ;Mpγq ă 1´ αu “M´1
p1´ αq.

c) If Fi have densities gi, decreasing on rx0,8q then for s ě s0 the infimum in (2.6) is
attained at the unique solution u˚ of

g1pu
˚
q “ g2ps´ u

˚
q, (2.10)

as results from a first order condition (see Embrechts and Puccetti (2006b) and Puccetti
et al. (2016)). This gives an easy recipe to calculate the tail risk bound in (2.6).
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For real random variables X, Y the convex order X ďcx Y is defined by EfpXq ď
EfpY q for all convex real functions F such that fpXq and fpY q are integrable. The
ordering results for convex, law invariant risk measures % are consequences of the following
well-known convex ordering result in the unconstrained case (see Meilijson and Nadas
(1979)).

Proposition 2.3 (Convex ordering in marginal models). For Xi „ Fi, i “ 1, 2 holds

F´11 pUq ` F´12 p1´ Uq ďcx X1 `X2 ďcx F
´1
1 pUq ` F´12 pUq (2.11)

where U „ Up0, 1q.

The upper bound in (2.11) is given by the comonotonic pair

pX1, X
c
2q “ pF

´1
1 pUq, F´12 pUqq. (2.12)

The lower bound is given by the antimonotonic (countermonotonic) pair

pX1, X
cm
2 q “ pF´11 pUq, F´12 p1´ Uqq. (2.13)

Generally for Z1, Z2 the comonotonic resp. countermonotonic version of Z2 w.r.t. Z1

are denoted by Zc
2 Z

cm
2 .

As consequence of Proposition 2.3 one obtains in the PSAFM (2.1):

Theorem 2.4 (Convex ordering of unconstrained and constrained PSAFM).

a) For a PSAFM model Xi “ Zi ‘ εi, i “ 1, 2 holds:

pZ1 ` Z2q ‘ pε1 ` ε
cm
2 q ďcx X1 `X2 ďcx pZ1 ` Z2q ‘ pε1 ` ε

c
2q (2.14)

b) For the unconstrained factor model Xi “ Zi ‘ εi, i “ 1, 2 holds

pZ1 ‘ ε1q ` pZ2 ` ε2q
cm
ďcx X1 `X2 ďcx pZ1 ‘ ε1q ` pZ2 ‘ ε2q

c. (2.15)

c) The upper and lower bounds in a) and b) are sharp.

Proof. a) By assumption εi is independent of Z “ pZ1, Z2q and thus εi | Z “ z „ Gi,
i “ 1, 2 for all z. Thus the conditional distribution of pε1, ε2q | Z “ z is in the Fréchet
class FpG1, G2q for all z. This implies by Proposition 2.3

ε1 ` ε
cm
2 ďcx pε1 ` ε2 | Z “ zq ďcx ε1 ` ε

c
2 (2.16)

and using that pZ1 ` Z2 ` ε1 ` ε2 | Z “ zq
d
“ pz1 ` z2 ` ε1 ` ε2 | Z “ zq this yields

z1 ` z2 ` ε1 ` ε
cm
2 ďcx pz1 ` z2 ` ε1 ` ε2 | Z “ zq ďcx z1 ` z2 ` ε1 ` ε

c
2. (2.17)

Since convex ordering is stable under mixing this implies that

pZ1 ` Z2q ‘ pε1 ` ε
cm
2 q ďcx Z1 ` Z2 ` ε1 ` ε2 ďcx pZ1 ` Z2q ‘ pε1 ` ε

c
2q. (2.18)

b) and c) follow directly from Proposition 2.3. l
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Remark 2.5. a) For a general PSFM as in (1.1) it has been shown in Bernard, Rü-
schendorf, Vanduffel and Wang (2017) that the worst case distribution is given by
the conditional comonotonic random vector (given Z). This coincides in the partially
specified additive factor model with the upper bound in (2.14).

The simple argument also extends to the lower bound in (2.14). It is remarkable that
w.r.t. convex ordering the best and the worst cases are attained in the case where
the sum of the idiosyncratic risks ε1 ` ε2 is independent of the systematic risk factor
pZ1, Z2q while by assumption only independence of εi, pZ1, Z2q for i “ 1, 2 holds.

b) The distribution function of the worst case pair w.r.t. convex ordering in the uncon-
strained case in (2.15) is given by

pF uc
px1, x2q “ mintH1 ˚G1px1q, H2 ˚G2px2qu; (2.19)

that of the best case (lower bound) by

qF uc
px1, x2q “ pH1 ˚G1px1q `H2 ˚G2px2q ´ 1q`.

In comparison for the constrained case in (2.14) holds

pF cs
px1, x2q “

ż

mintG1px1 ´ zq, G2px2 ´ zqudGpzq (2.20)

and

qF cs
px1, x2q “

ż

pG1px1 ´ zq `G2px2 ´ zq ´ 1q`dGpzq, where G „ Z1 ` Z2.

It follows that

qF uc
px1, x2q ě qF cs

px1, x2q, pF cs
px1, x2q ď pF uc

px1, x2q. (2.21)

c) The argument for the proof of Theorem 2.4 reveals an even stronger ordering result.
In the PSAFM holds:

pZ1 ‘ ε1, Z2 ‘ ε
cm
2 q ďsm pX1, X2q ďsm pZ1 ‘ ε1, Z2 ‘ ε

c
2q, (2.22)

where ďsm denotes the supermodular ordering.

If Z2 “ Zc
2 is comonotonic to Z1 then the systematic risk factors induce positive de-

pendence and from (2.22) it follows that in particular the lower risk bound is improved
since

pZ1 ‘ ε1, Z2 ‘ ε
cm
2 q ďsm pZ1 ‘ ε1, Z

c
2 ‘ ε

cm
2 q.

Similarly, if Z2 “ Zcm
2 , then the upper risk bound is improved.

In the unconstrained case holds:

pX1, X
cm
2 q ďsm pX1, X2q ďsm pX1, X

c
2q. (2.23)

d) It is obvious that the upper and lower bounds (2.14) in the PSFM case improve upon
the bounds (2.15) in the unconstrained case in convex ordering.
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Next we determine the worst and best case tail risk bounds under the structural
assumption given by the PSAFM model. Let pεz1, ε

z,c
2 q and pεz1, ε

z,cm
2 q be a worst case pair

respectively a best case pair in the Fréchet class FpG1, G2q satisfying

P pε1 ` ε2 ě s´ pz1 ` z2qq “ max respectively “ min, z “ pz1, z2q.

By Proposition 2.1 holds

Mεps´ pz1 ` z2qq “ suptP pε1 ` ε2 ě s´ pz1 ` z2qq; εi „ Giu

“ P pεz1 ` ε
z,cm
2 ě s´ pz1 ` z2qq

“ inf
x
tG1px`q `G2ps´ pz1 ` z2q ´ xqu ´ 1.

(2.24)

Let Z “ pZ1, Z2q be independent of εz1, ε
z,c
2 and define

ε˚1 :“ εZ1 ; ε˚,c2 :“ εZ,c2 , ε˚,cmi “ εZ,cmi ; X˚,c
i “ Zi ` ε

˚,c
i ; X˚,cm

i “ Zi ` ε
˚,cm
i , i “ 1, 2.

(2.25)

Theorem 2.6 (Tail risk bounds in PSAFM). For a partially specified additive factor
model Xi “ Zi ‘ εi, i “ 1, 2 holds:

F cs
psq :“ P pZ1 ` Z2 ` ε

˚
1 ` ε

˚,cm
2 ě sq ď P pX1 `X2 ě sq

ď P pZ1 ` Z2 ` ε
˚
1 ` ε

˚,c
2 ě sq :“ F

cs
psq.

(2.26)

Proof. As shown in the proof of Theorem 2.4 the conditional distributions of pε1, ε2q | Z “
z, Z “ pZ1, Z2q belong to the Fréchet class FpG1, G2q. As consequence this implies by
conditioning

P pX1 `X2 ě sq “ P pZ1 ` Z2 ` ε1 ` ε2 ě sq

“

ż

P pε1 ` ε2 ě s´ z | pZ1, Z2q “ zqdGpzq

ď

ż

P pεz,c1 ` εz,c2 ě s´ z | pZ1, Z2q “ zqdGpzq

“ P pZ1 ` Z2 ` ε
˚,c
1 ` ε˚,c2 ě sq “ F

cs
psq, G „ pZ1, Z2q.

(2.27)

For the inequality in (2.27) the Fréchet bounds for the conditional distributions are used.

Similarly we get for the lower bounds

P pX1 `X2 ě sq “

ż

P pε1 ` ε2 ě s´ pz1 ` z2q | Z “ zqdGpzq, G „ pZ1, Z2q

ě

ż

P pεz,cm1 ` εz,cm2 ě s´ pz1 ` z2q | Z “ zqdGpzq (2.28)

“ P pZ1 ` Z2 ` ε
˚,cm
1 ` ε˚,cm2 ě sq “: F cs

psq. l

Note that ε˚,ci and ε˚,cmi depend on s and, therefore, also the best case pair

pX1, X2q “ pZ1 ` ε
˚
1 , Z2 ` ε

˚,cm
2 q (2.29)
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and the worst case pair

pX1, X2q “ pZ1 ` ε
˚
1 , Z2 ` ε

˚
2q (2.30)

depend on s.

For concrete classes of distributions the best and worst case tail risks can be calculated
explicitly.

Example 2.7 (PSAFM with Pareto tails). Let ε1 „ ε2 be Pareto(2) with tail risk G1psq
“ G2psq “ P pε1 ě sq “ 1

s2
, s ě 1. Then with z “ z1 ` z2

Aps, zq :“ P pεz1 ` ε
z,c
2 ě s´ zq “ inf

x
tG1px`q `G2ps´ z ´ xqu

and similarly for the lower bound Bps, zq. With G1pxq “

#

1
x2
, x ě 1

1, x ă 1
holds

Apsq :“ inf
x
pG1px`q `G2ps´ xqq “

#

8
s2

if 1 ď x ď s´ 1

1` 1
ps´1q2

if x ą s´ 1 or x ă 1

“ min

"

8

s2
, 1

*

,

taking the minima over 1 ď x ď s´ 1 etc. Similarly,

Bpsq “ sup
x
pG1px`q `G2ps´ xqq ´ 1 “ min

"

2

ps´ 1q2
, 1

*

.

For s ě
?

8 holds Apsq “ 8
s2

and for s ě
?

2` 1 holds Bpsq “ 2
ps´1q2

.

This implies that

Aps, zq “

#

8
ps´zq2

for z ď 1
2
ps´

?
8q

1 else
(2.31)

and

Bps, zq “

#

2
ps´z´1q2

for z ď 1
2
ps´

?
2´ 1q

1 else.

As a consequence this implies with G „ Z1 ` Z2

F
cs
psq “

ż 1
2
ps´

?
8q

´8

8

ps´ 2zq2
dGpzq `G

ˆ

1

2
ps´

?
8q

˙

(2.32)

and

F cs
psq “

ż 1
2
ps´

?
2´1q

´8

2

ps´ z ´ 1q2
dGpzq `G

ˆ

1

2
ps´

?
2´ 1q

˙

(2.33)

which can be calculated explicitly or numerically for concrete distributions G. l
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As a result the formulas in (2.26) and (2.28) imply that

F uc
psq ď F cs

psq ď F
cs
psq ď F

uc
psq (2.34)

and thus also

VaRuc
α ď VaRcs

ď VaR
cs
ď VaR

uc

α . (2.35)

The formulas in (2.26) and in (2.32), (2.33) give a clear and almost explicit expression
for the influence of the positive and of the negative dependence of the systematic risk
factors Z1, Z2 on the worst case tail risk bounds as well as on the best case tail risk
bounds. The results depend only on the distribution G of the sum Z “ Z1 ` Z2 of the
systematic risks.

For convex risk measures the influence of positive and negative dependence of Z1, Z2

is more directly to describe by corresponding convex ordering results. This is the subject
of the following Sections 3 and 4.

3 Comparison of PSAFM and marginal model in pos-

itive dependent factor case

Based on the determination of best and worst case distributions for the convex ordering
in Theorem 2.4 we compare in this section the tail behaviour of the best and worst cases
between the marginal model and the PSAFM model Xi “ Z ` εi, i “ 1, 2, i.e. in the
positive dependent factor case.

3.1 Dominant systematic risk

We consider first the case where the effect of the systematic risk factor is dominating the
effect of the idiosyncratic risk.

Example 3.1 (Normal risks). In this example the case where the systematic risks and
the idiosyncratic risks are normal and the systematic risks are dominating is considered.
As example let Z1 “ Z2 “ Z „ Npa, σ2

1q and εi „ Npb, σ2
2q where a ą b. This implies for

the constrained case the worst case pair

W cs
“ 2Z ‘ pε1 ` ε

c
2q “ Np2a, 4σ2

1q ‘Np2b, 4σ
2
2q

“ Np2a` 2b, 4σ2
q, σ2

“ σ2
1 ` σ

2
2.

(3.1)

The best case pair is given by

Bcs
“ 2Z ‘ pε1 ` ε

cm
2 q “ 2Z ` 2b “ Np2a` 2b, 4σ2

1q. (3.2)

For the unconstrained case the worst case sum is given by

W uc
“ pZ ‘ ε1q ` pZ ‘ ε2q

c
„ 2Npa` b, 4σ2

q „ Np2pa` bq, 4σ2
q (3.3)
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and the best case sum is constant,

Buc
“ 2pa` bq. (3.4)

As a result the lower bounds improve strongly in convex order, while the upper bounds
remain unchanged. Similarly one gets for the corresponding tail risks

FBucpsq ď FBcspsq ď FW cspsq ď FWucpsq. (3.5)

l

Typical distributions in insurance applications are Pareto type distributions. The fol-
lowing proposition describes the worst and the best case risks in the case of positive
dependent dominating systematic Paretian risk factor with Xi “ Z ` εi, i “ 1, 2. As in
(3.1), (3.2) worst and best case pairs are given by

W cs
“ 2Z ‘ pε1 ` ε

c
2q, Bcs

“ 2Z ‘ pε1 ` ε
cm
2 q.

Proposition 3.2 (Paretian tails, dominating systematic risks). Assume that the risks
have Paretian tails with dominating systematic risk, i.e.

FZpsq „ s´β, F εipsq „ s´γ, s ě 1, 1 ă β ă γ.

Then it holds:

a) The tail risks of the worst resp. best case distributions (in convex order) are

FW cspsq „ 2βs´β ` 2γs´γ „ 2βs´β „ F 2Zpsq, (3.6)

FWucpsq „ 2βs´β ` 2γs´γ „ 2βs´β, (3.7)

and FBcspsq „ 2βs´β ` 2s´γ, FBucpsq „ 2s´β ` 2s´γ. (3.8)

b) For the Value at Risk of the best and of the worst case pairs holds

VaRcs,ub
α „ VaRuc,ub

α „
2

p1´ αq
1
β

(3.9)

and

VaRcs,`b
α „

2

p1´ αq
1
β

, VaRuc,`b
α „

2
1
β

p1´ αq
1
β

. (3.10)

Proof. a) Using a well-known result for the tail of sums of independent subexponentially
distributed random variables it holds that

FW cspsq „ 2βs´β ` 2γs´γ „ 2βs´β „ F 2Zpsq. (3.11)

Similarly,

FWucpsq “ P p2pZ ‘ ε1q ě sq „ 2βs´β ` 2γs´γ „ 2βs´β.

Thus the difference FWucpsq´FW cspsq is of order Ops´γq, i.e. |FWucpsq´FW cs | ď Cs´γ

for some C ą 0.
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For the best case holds

FBcspsq “ P p2Z ‘ pε1 ` ε
cm
1 q ě sq „ 2βs´β ` 2s´γ (3.12)

and

FBucpsq “ P ppZ ‘ ε1q ` pZ ‘ ε1q
cm
ě sq „ 2FZ‘ε1psq „ 2s´β ` 2s´γ. (3.13)

In consequence the improvement of the tail risk is of order p2β ´ 2qs´β. So also in this
case an essential improvement of the lower bound is observed while the improvement
of the upper bound is of minor order.

b) For the Value at Risk of the best and the worst case pairs as consequence of (3.6)–(3.8)
the formulas in (3.9) and (3.10) are obtained. l

Remark 3.3. In the case of exactly Paretian models with FZpsq “ s´β F εipsq “ s´γ,
γ ą β ą 1 more precisely it holds that

F
uc,ub

psq ´ F
cs,ub

psq „ 2βs´β ` 2γs´γ ´ p2βs´β ` 2s´γq “ p2γ ´ 2qs´γ (3.14)

and

F
cs,`b
psq ´ F

uc,`b
psq „ 2βs´β ` 2s´γ ´ 2ps´β ` s´γq “ p2β ´ 2qs´β. (3.15)

The difference between the upper bounds is of smaller order. In these formulas expan-
sion terms of the independent sum of minor order are neglected.

As a result we obtain in the positive dependent case no improvement of the upper VaR
bounds (see (3.10)) and a strong improvement of the lower bound (see (3.11)) by includ-
ing dependence information by the systematic risk factor Z. The bounds are completely
explicit in terms of the tail risk parameter β and the level α and are easy to apply.

3.2 Systemic and idiosyncratic risks of similar magnitude

Next we consider the positive dependent factor case where the systematic risk factor Z
and the idiosyncratic risks εi are of similar magnitude. As in Section 3.1 Paretian tails
are assumed. More precisely, with tail risk FZpsq „ s´β, β ą 1 and F εipsq „ FZpsq the
following proposition holds:

Proposition 3.4 (Positive dependent risks of similar magnitude).

a) F
cs,ub

psq „ p2β ` 2qs´β, F
uc,ub

psq „ 2β`1s´β (3.16)

F
cs,`b
psq „

sβ ` 2

sβ
, F

uc.`b
psq „

4

sβ
(3.17)

b) For the Value at Risk of the best and the worst case pairs are given by

VaRcs,ub
α „

p2β ` 2q
1
β

p1´ αq
1
β

, VaRuc,ub
α „

21` 1
β

p1´ αq
1
β

, (3.18)

VaRcs,`b
α „

p2β ` 2q
1
β

p1´ αq
1
β

, VaRuc,`b
α „

4
1
β

p1´ αq
1
β

. (3.19)
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Proof. a) The arguments as in Section 3.1 imply the upper bounds

F
cs,ub

psq “ P p2Z ‘ pε1 ` ε
c
2q ě sq

„ P p2Z ě sq ` P pε1 ` ε
c
2 ě sq

„ 2βs´β ` 2s´β “ p2β ` 2qs´β.

(3.20)

Similarly, in the unconstrained case holds

F
uc,ub

psq “ F 2pZ‘ε1qpsq „ FZ

´s

2

¯

` F ε1

´s

2

¯

„ 2β`1s´β. (3.21)

Since for β ą 1, 2β`1 ą 2β ` 2 this implies that the upper risk bound is improved.

For the lower risk bound holds

F
cs,`b
psq “ P p2Z ‘ pε1 ` ε

cm
1 q ě sq

„ P p2Z ě sq ` 2P pε1 ě sq „
2β

sβ
`

2

sβ
“

2β ` 2

sβ

(3.22)

and

F
uc,`b

psq “ P pZ ‘ ε1 ` pZ ‘ ε1q
cm
ě sq

„ 2P pZ ‘ ε1 ě sq „
4

sβ
,

(3.23)

again a strong improvement of the lower bound.

b) The results in a) imply that the corresponding Value at Risk bounds are given by

VaRcs,ub
α „

p2β ` 2q
1
β

p1´ αq
1
β

, VaRuc,ub
α „

21` 1
β

p1´ αq
1
β

. (3.24)

Similarly, for the lower bounds it holds that

VaRcs,`b
α „

p2β ` 2q
1
β

p1´ αq
1
β

, VaRuc,`b
α „

4
1
β

p1´ αq
1
β

. (3.25)

l

In comparison to the dominant systematic risk case in Section 3.1 we find in the case of
risks of similar magnitude increased upper and lower risk bounds due to the non-negligible
influence of the idiosyncratic risk factor. Again as in Section 3.1 the improvement of the
lower bound by the positive dependence information is more significant.

4 General dependent additive factor models

In the case of negatively dependent additive factor models the opposite effect is observed.
The worst case upper bound decreases essentially in the constrained model while the lower
bounds remain essentially the same.
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We consider a class of additive factor models of the form

X1 “ Z ‘ ε1, X2 “ Zcm
‘ ε2, (4.1)

where Zcm, the systematic risk factor for X2, is the counter monotonic version of Z. Thus
in this class the systematic risk factors produce negative dependence. We consider again
the case where the systematic risk is dominating:

FZpsq “ FZcmpsq „ s´β and F εipsq „ s´γ, s ě 1, γ ą β ą 1. (4.2)

The unconstrained risk bounds in this model are the same as those in the positive
dependent version in Proposition 3.2. The following result holds:

Proposition 4.1 (Risks in negative dependent, dominant systematic risk case). For an
additive risk factor model X1 “ Z ‘ ε1, X2 “ Zcm ‘ ε2 with dominating negatively
dependent systematic risk factors as in (4.2) the worst case dependence is given by

W cs :“ pZ ` Zcm
q ‘ 2ε1 (4.3)

and the best case is given by

Bcs :“ pZ ` Zcm
q ‘ pε1 ` ε

cm
2 q. (4.4)

The corresponding constrained risk bounds are given by

F
cs,ub

psq „
2

sβ
`

2γ

sγ
„

2

sβ
and F

cs,`b
psq „

2

sβ
`

2

sγ
„

2

sβ
. (4.5)

The related Value at Risk bounds are given by

VaRcs,ub
α „

2
1
β

p1´ αq
1
β

and VaRcs,`b
α „

2
1
β

p1´ αq
1
β

. (4.6)

Proof. The worst and the best case dependence structures (in convex order) in the con-
straint model given by (4.1), (4.2) are obtained as in Sections 2 and 3. The corresponding
tail risk in (4.5) and the Value at Risk bounds in (4.6) are obtained similarly to the proof
of Proposition 3.2. l

As expected the constrained lower bound is a strong improvement of the unconstrained
lower bound while the upper bounds are of the same order. The domination of the sys-
tematic risk part implies by the negative dependence that upper and lower risk bounds
are of the same order.

For the risks in the negatively dependent case with risks of similar magnitude of the
risks the following result is obtained:

Proposition 4.2 (Negatively dependent case with risks of similar magnitude). For the
negatively dependent additive factor model in (4.1) with risks of similar magnitude i.e.
FZpsq „ s´β, F εipsq „ s´β, β ě 1 it holds that

F
cs,ub

psq „
2β ` 2

sβ
and F

cs,`b
psq „

4

sβ
. (4.7)
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The corresponding Value at Risks are given by

VaRcs,ub
α „

p2β ` 2q
1
β

p1´ αq
1
β

, VaRcs,`b
α „

4
1
β

p1´ αq
1
β

. (4.8)

As a consequence of the previous results we find for positive dependent systematic
risk factors in the dominating and in the case of similar risk magnitude a considerable
improvement of the lower risk bounds while the upper risk bounds are of similar order as
in the unconstrained case. In the case of negatively dependent systematic risk factors the
upper bounds are strongly reduced but the lower bounds are of similar order as in the
unconstrained case. In all cases the results are in completely and simple explicit form and
are easy to apply.

In the general partially specified additive factor model

X1 “ Z1 ‘ ε1, X2 “ Z2 ‘ ε2

the dependence structure of the Zi can vary between these two extremes, i.e.

Z1 ` Z
cm
2 ďsm Z1 ` Z2 ďsm Z1 ` Z

c
2. (4.9)

By Theorem 2.6 the worst case and the best case (in convex order) are given by

W cs
“ pZ1 ` Z2q ‘ 2ε1 (4.10)

and

Bcs
“ pZ1 ` Z2q ‘ pε1 ` ε

cm
2 q. (4.11)

In consequence of (4.9) the tail of the systematic risk parts varies in the Paretian case
between the two extremes, the case of positive resp. of negative dependent systematic risk
factors, i.e.

2

sβ
À FZ1`Z2psq À

2β

sβ
. (4.12)

The tail risks and corresponding Value at Risks of the joint portfolio, therefore, also vary
between the two extremes

2

sβ
`

2

sγ
À FX1`X2psq À

2β

sβ
`

2γ

sγ
. (4.13)

Depending on β ă γ or β “ γ (4.13) implies corresponding bounds for the Value at Risk.
For an intermediate dependence structure we, therefore, have a reduction of both risk
bounds, whose degree depends on the degree of positive resp. negative dependence of the
systematic risk factors.
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5 Final remarks

In this paper the effect of partially specified additive risk factors on the reduction of risk
bounds compared to the risk bounds in unconstrained (marginal) models is analyzed. In
an additive class of models X1 “ Z1 ` ε1, X2 “ Z2 ` ε2, this can be done in an analytic
way. We consider the case where the systematic risk factors Zi dominate the idiosyncratic
risks εi as well as the case where both types of risk are of the same order of magnitude.
As a result an explanation of the mechanism of risk reduction in such partially specified
factor models is obtained.

Systemic risk factors which induce positive dependence help to reduce lower bounds
(but not upper bounds). If they induce negative dependence then upper bounds are re-
duced (but not lower bounds). In intermediate cases of dependence induced by the sys-
tematic risk factors one obtains a reduction of both risk bounds whose degree depends
on the degree of positive resp. negative dependence of the systematic risk factors. The
magnitude of the possible variation of the tail risk is described in formula (4.13). In com-
parison to the case where the systematic risk factor is dominant one obtains in the case
where the systematic and the idiosyncratic risk factors are of similar magnitude increased
upper and lower risk bounds due to the influence of the idiosyncratic risk factor.

The results in this paper are given in (nearly) explicit form. The insight obtained
in this paper gives for applications of this reduction method a clue to get a qualitative
and quantitative impression on the range and on the direction of reduction of the risk
bounds due to the incorporation of the dependence properties of the systematic risk factors
compared to the unconstrained models.

For general partially specified factor models some qualitative results for this type have
been given in Bernard, Rüschendorf, Vanduffel and Wang (2017) which confirm that the
behaviour described in this paper in explicit form can also be expected to hold in similar
form in general PSFM. The examples given in that paper also demonstrate the great range
of reduction of the risk bounds by including this kind of dependence information which
is in coincidence with the explicit results for the additive factor models in this paper.

The constrained upper bounds can be determined in a similar way for PSAFM in
the general case n ě 2 where Xi “ Zi ` εi, 1 ď i ď n. For the constrained lower
bounds analytic results are not available in full generality for n ě 3. As in Bernard,
Rüschendorf and Vanduffel (2017) numerical solutions can be given in this general case.
For the unconstrained case analytical results on lower convex order bounds for n ě 3 are
obtained in Bernard et al. (2014) for homogeneous models and in Jakobsons et al. (2016)
for inhomogeneous models. These bounds are shown to be sharp under some general
assumptions in particular, in the most relevant case of monotone densities (e.g. Pareto).
By the arguments as for the proof of Theorem 2.6 these results then lead to sharp convex
order lower bounds also in the case n ě 3. As a consequence the results in this paper for
n “ 2 concerning convex order hold under general conditions also for n ě 3.
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