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Abstract

The problem of the fair allocation of indivisible items is a relevant and challenging economic
problem with several applications. For small dimensional frameworks, the problem can be solved
exactly by full enumeration of all the possible allocations of the items. For higher dimensional
scenarios, a numerical algorithm is called for.

In this paper, we compare two state-of-the-art algorithms for the fair allocation of a number
of indivisible goods amongst several agents: the Spliddit and MinCovTarget algorithms. In
particular, we investigate MinCovTarget with respect to the possible choices of the target value
and we propose based on our experiments two versions of the algorithm: MinCovTarget+ and
MinCovTarget*.

MinCovTarget+ uses different target values and selects, amongst all the minimal envy allo-
cations found, the ones providing maximum social welfare. Our numerical analysis shows that,
in case one aims to minimize envy, MinCovTarget+ is at least as good as Spliddit and, in larger
dimensional frameworks, MinCovTarget+ provides no-envy allocations with an higher value of
social welfare than Spliddit and at a fraction of the computation time. Moreover, MinCovTar-
get+ is able to rapidly obtain envy-free allocations also in the high dimensional scenarios for
which Spliddit cannot be used.

MinCovTarget* is an even faster version of the algorithm that uses a single target value
set equal to the total value of goods. MinCovTarget* can handle huge dimensional scenarios
(hundreds of agents and goods) within seconds, finding allocations with negligible envy that
approximate maximum social welfare.

Our numerical experiments have been run with a random uniform integral valuation of the
goods to be allocated and with a novel design of the value matrix which takes into account
dependent valuations.

All the numerical estimates in this paper have been obtained on a Mac mini (3,2 GHz 6-Core
Intel Core i7, 16 GB RAM). The corresponding MATLAB code is available at:

https://github.com/giovannipuccetti/MinCovTarget
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1 Introduction and motivation

The problem of the fair allocation of indivisible items is a relevant and challenging economic problem
which has several applications in everyday life. In fact, our social interactions often call for a method
to allocate a number of indivisible goods or resources amongst a number of agents in an optimal
way. The head of a firm might be in the need of allocating a limited number of tablets, computers,
and private offices amongst the firm’s employees. A group of designated heirs needs a fair way to
divide the real estates and the jewellery coming from a inheritance, or a couple might need to settle
these goods for a divorce. A group of friends needs to compute the rent shares for the different
rooms in a flat. These are all practical situations calling for a fair allocation of goods/resources
which are indivisible in nature: they lose their value when broken, divided into pieces or shared
with someone else. What rule should one follow to allocate them?

A most intuitive and from a global perspective arguably fair allocation rule consists in the
maximization of social welfare: one maximizes the sum of the values received by each of the
agents involved. However, the grander scope of maximizing social utility leaves room for individual
unhappiness. If some individuals value some items a lot, they will probably have it at the cost of
leaving some other people envying them (see the example given in Section 5). One would rather
prefer an allocation that makes everyone happy, that is under which each agent believes to have
received the best bundle, with no need of envying the other players. Such an allocation is called
envy-free, and even if envy-freeness is not always achievable in practice (a single diamond will not
make everyone smile), one can always try to reach the minimum level of envy amongst the agents.
Finding a minimum envy allocation is a mathematically and computationally difficult task, where
even long negotiated solutions cannot compare to efficient allocations found by rigorous and robust
algorithms.

The majority of disputes amongst friends, heirs or couples can be rapidly solved by the Spliddit
algorithm, introduced in [3]. The Spliddit algorithm was originally designed to maximize so-called
Nash welfare, the sum of the logarithmic-utilities gained by each agent, but has been claimed
to provide provably fair solution with no-envy, making everybody happy [10]. At the website
spliddit.org private individuals could find a ready-to-use, cool tool to successfully fix their dis-
putes. At the time of writing the Spliddit website has been discontinued, and we could not find
any detailed numerical study showing the performance of the algorithm and proving its efficiency.

Besides some minor implicit assumptions, no major drawback of the Spliddit algorithm is visible
unless one tackles a high-dimensional allocation problem, where, say, 300 goods are be allocated to
30 agents. For this case, Spliddit was able to provide an allocation within 10 minutes only 7 times
over 50 simulations of the goods valuations provided by the agents. The competitor algorithm that
we propose below, MinCovTarget+, handles the same scenario always finding a no-envy allocation
in about 16 seconds.

Real life examples where high dimensional instances arise include for instance the cases when
a number of medical supplies or vaccines are to be distributed among hospitals in a given country,
or when a union of nations is willing to distribute resources amongst its country members, or a
large firm is going to distribute goods/indivisible bonuses amongst its employees. High dimensional
instances might also include the fair allocation of a mix of indivisible and divisible goods, as for
instance the case in which an inheritance includes some cash.

Motivated by the lack of a numerical study of Spliddit in the literature, in this paper we provide
a detailed comparison between the Spliddit and MinCovTarget algorithms. Based on our analysis,
we propose the MinCovTarget+ and MinCovTarget* algorithms as new standard solutions for the
fair allocation problem.
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The MinCovTarget algorithm originates from the MinCov algorithm which was introduced in
[4] to minimize social inequality, that is to find allocations under which each agent believes to have
received (more or less) the same value as everybody else. Via the introduction of a target parameter,
the MinCovTarget algorithm makes it possible to also deal with various other fair allocation criteria
such as maximum social welfare and minimum envy. The MinCovTarget+ algorithm uses different
target values and selects, amongst all the minimal envy allocations found, (the) one that provides
maximum social welfare.

Our numerical analysis shows that the MinCovTarget+ performance in finding allocation with
no envy is at least as good as Spliddit (but at a fraction of Spliddit time cost) in all scenarios, and
strictly improves Spliddit in low-dimensional scenarios. Moreover, in large dimensional frameworks,
the allocations found by MinCovTarget+ have an higher value of social welfare. Finally, MinCov-
Target+ is able to rapidly obtain envy-free allocations also in the high dimensional scenarios for
which Spliddit cannot be readily implemented.

The MinCovTarget* algorithm is a version of MinCovTarget that uses a single target value set
equal to the total value of goods. MinCovTarget* is extremely fast and can handle huge dimensional
problems within seconds. It is able to provide allocations approximating maximum social welfare
and with levels of envy that are fairly close to zero.

The aim of this paper is to compare the performance of Spliddit and MinCovTarget against
the four fairness criteria introduced above and formally defined below: maximum social welfare
(1), minimum envy (2), maximum Nash welfare (3), and minimum social inequality (4). It is
important to stress that, for all these criteria, the problem of fair allocation of indivisible goods
is computationally NP-hard (see [2], [7], [9], and references therein). Roughly speaking, this
means that, unless one is able for very small dimensional instances to solve the problem exactly
by full enumeration of the finitely possible allocations or by linear programming, finding the global
optimum is computationally intractable. As a result, algorithms for fair allocation (including the
two studied here) are typically approximate, in the sense that they approximate the problem (as
done by Spliddit) or they do not find the global solution, but rather a local one (as done by
MinCovTarget).

In [4], a preliminary comparison between these algorithms against Nash welfare, social inequal-
ity, and envy has been carried out, but using MinCovTarget without proper consideration for the
selection of target values as we do in this paper. Moreover, the Spliddit algorithm was not used
there, whereas in this paper we provide a full numerical investigation (which we could not find in
the literature) of the original algorithm. To broaden the scope of applications of our study, we also
introduce a novel way of designing agents’ valuations, taking into account dependence. Finally, we
note that there exists a variety of practical methods for allocating indivisible goods amongst two
agents [6]. These methods are not considered in this study.

2 Mathematical framework, social welfare and envy

The purpose of fair allocation is to allocate a finite set of d > 1 indivisible goods to a finite number
of n > 2 agents so that the final allocation satisfies an a-priori fixed fairness criterion. We refer
to [1], [3], [4], and references therein, for a full background on the classic economic problem of fair
allocation and the many fairness criteria existing in the literature.

The starting point of any fair division problem is the so called value matrix V = (vij), collecting
the values vij > 0 given by agent i to item j, for i ∈ N := {1, . . . , n} and j ∈ D := {1, . . . , d}.
Examples of value matrices are illustrated in Figures 1–3. The binary matrix X = (xij) represents
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an allocation amongst the players, with xij = 1 if agent i receives item j, xij = 0 otherwise. We
impose that ∑

i∈N
xij = 1, j ∈ D,

that is each item is allocated to exactly one agent (and nothing is thrown away). Under an allocation
X, the total value gained by agent i is therefore given by

Ui(X) =
∑
j∈D

xijvij .

The maximization of the sum of the utilities gained by each agent is called maximum social welfare,
that is

max
X∈A

∑
i∈N

Ui(X), (1)

where A is the set of all possible allocations of d objects to n agents. Notice that, being A finite
(there are nd possible allocations), the maximum in (1) is attained (there always exists at least one
maximum social welfare allocation).

As anticipated in the introduction, the gold standard of fairness [3] is the search for minimum
envy. An allocation X is said to be envy-free if no agent prefers the bundle of goods received by
any other agent to the own one. Since an envy-free allocation might not exist (if only one item is
to be allocated, someone is going to be unhappy), it makes sense to minimize the maximal envy
among any pair of agents. Following [7], we define the envy e(X) of an allocation X as the maximal
envy among any pair of agents, i.e.,

e(X) = max{eik(X); i, k ∈ N}, where eik(X) = max{0, Uki (X)− U ii (X)}.

If eik(X) = 0, then agent i does not envy agent k. We say that X is a minimum envy allocation if
it solves

min
X∈A

e(X). (2)

Similarly to social welfare, a minimum envy allocation always exists.

3 Spliddit algorithm and Nash welfare

The Spliddit algorithm pursues maximum Nash welfare (MNW), i.e. it aims at maximizing the
product (rather than the sum) of the total values gained by each agent. By applying a logarithm,
this problem is equivalent to

max
X∈A

∑
i∈N

logUi(X), (3)

i.e. to the maximization the sum of the log-utilities of each agent. Again notice that the maximum
in (3) is attained. Spliddit does not solve directly (3), but an approximation which is given by the
following mixed integer linear programming (MILP). WithM = {1, 3, . . . ,M − 1}, Spliddit solves:
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max
∑
i∈N

Wi, s.t.



Wi 6 log(k) + (log(k + 1)− log(k))(
∑

j∈D xijvij − k), i ∈ N , k ∈M (utility proxi);

∑
j∈D xijvij > 1, i ∈ N (at least 1-utility to each agent);

∑
j∈N xij = 1, j ∈ D (all goods are allocated to exactly one agent);

xij ∈ {0, 1}, i ∈ N , j ∈ D (xij = 1 iff agent i receives item j).

(MILP)

There are a few assumptions under which the above MILP turns out to be a good approximation
of the maximization of Nash welfare (3).

First, the logarithm is approximated by the minimum of a finite family of affine functions (this
is the first constraint), which is equal to the logarithm at integral points. We notice that this can
be done if the log function is replaced by any concave utility function f , and in general works by
replacing the term (f(k+1)−f(k)) by f ′(k). Here, it is worth remarking that maximizing the sum
of logarithmic utilities implicitly assumes that the agents are strictly risk averse. Agents should be
aware of this when declaring their values to a regulator running the algorithm.

The utility approximation described above is possible since Spliddit requires integral valuations
of the goods, that is each agent is asked to distribute M points (with M = 1000 in the original
version) amongst the d items. This means that each row of the value matrix V adds up exactly to
M , i.e. ∑

j∈D
vij = M, i ∈ N .

The fact that agents’ utilities are integral and can at most attain the value M is an essential feature
of Spliddit, which is necessary to make it work. The value of M gives an implicit upper bound
on the dimensionality of the problems that Spliddit can handle: valuations provided by agents for
more than M = 1000 items cease to be fully meaningful, and the value of M cannot be increased
without heavily affecting the cost of computation of the final solution.

The second constraint of the above MILP forces a solution where each agent receives at least
1-utility, i.e. at least one object. This prevents each agent from receiving nothing and hence the
corresponding logarithm from being minus infinity. In the original version, a preprocessing steps
finds the largest set of players for which this is feasible. In any case, the fulfilment of this constraint
implies that Spliddit can only be run when d > n.

The third and fourth constraints in the MILP represent the standard requirements in the fair
allocation of indivisible items.

These assumptions appear to be reasonable and make it possible to obtain in principle alloca-
tions that exhibit maximum Nash welfare. Spliddit has its Achilles’ heel, however, in the limited
dimensionality of the instances it can handle. On our machine, Spliddit can generally handle up
to a few dozens of agents within a minute, thus is able to deal with most requests coming from
private customers (e.g. for inheritance or divorce disputes). However, already with d > 100 goods
to be allocated to n = 30 agents, the above MILP becomes intractable.
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4 MinCovTarget algorithm and social inequality

The MinCovTarget+ algorithm that we propose below is an efficient version of the so-called Min-
CovTarget and MinCov algorithms. The MinCov algorithm aims to obtain an allocation with
minimum social inequality, i.e. under which the utilities gained by each agent are made as similar
as possible, and this under each agent’s valuation. Formally, denoting by

Uki (X) =
∑
j∈D

xkjvij

the utility gained by agent k under agent i valuations (note that U ii (X) = Ui(X)), the MinCov
algorithm tries to minimize the social inequality I(X) of the system defined by

I(X) =

∑
i∈N

∑
k∈N

(
Uki (X)−M/n

)2
n2

.

The MinCovTarget algorithm introduces a malus τi > 0 (called the target value) for agent i in
order to prioritize the own utility with respect to that of the others. The MinCovTarget algorithm
aims at solving

min
X∈A

Iτ (X), (4)

where

Iτ (X) =

∑
i∈N

∑
k∈N

(
Uki (X)− 1{k=i}τi − (M − τi)/n

)2
n2

.

Since Spliddit forces the total value of the goods to be the same for each agent, in the following
we assume that the target value is homogeneous, i.e. τi = τ, i ∈ N . The target allows one to
interpolate between the search for social equality (for τ = 0, leading to MinCov) and the rule of
maximum social welfare (for τ →∞).

The MinCovTarget algorithm is based on a series of efficient local swaps: starting from a trivial
allocation in which the first agent is given all goods, it reallocates one item at the time so that Iτ (X)
is maximally reduced on the single swap. MinCovTarget does not rely an any particular assumption
besides the fact all the components of V have to be positive, something that can always be reached
by adding a (small) constant to all vij . Actually, this assumption can be weakened to require that
at least one agent – say agent 1 – gives positive utilities to all objects. Agents’ utilities are evaluated
linearly and the initial value matrix does not need to be standardized.

The MinCovTarget+ algorithm uses an entire set T of different target values, and hence finds an
allocation for each target value used. Amongst all the allocations found, it selects the ones having
minimal envy, and, amongst the ones with minimal envy, it outputs the one(s) with maximal social
welfare.
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MinCovTarget+ algorithm

Let T be a non-empty set of target values. For all τ ∈ T , repeat the following procedure:

1. give all items to the first agent;

2. choose one item at random and, if possible, re-allocate it to another agent so that the
inequality Iτ (X) of the new allocation is maximally reduced;

3. repeat 2. until the inequality of the allocation found has not been reduced for d iterations
of 2., and denote by Xτ the final allocation found.

Amongst all the allocations Xτ , τ ∈ T , having minimal envy, output the one(s) with maximal
social welfare.

The exact way to choose the agent to which to reallocate the item chosen in 2. is described in [4]
and is based on a matrix reformulation of the problem. In practice, step 2. prescribes to reallocate
the chosen item to the poorest agent, where wealth is evaluated through a particular weighted
average of the remaining goods. This allows, at each step, to obtain the maximal reduction of the
inequality in the economic system.

Notice that the MinCovTarget+ is an heuristic algorithm that compares local solution, i.e.
allocations with an inequality Iτ (X) that cannot be reduced by performing further local swaps. The
final allocation found, however, is not guaranteed to be the global solution, that is the allocation
with maximal social welfare amongst all the ones having minimal envy.

5 An illustrative example

We give a pedagogical example which illustrates a typical low-dimensional framework of the fair
allocation problem. We choose a setting with d = 10 items to be allocated to n = 4 agents. For
these small dimensions, it is possible to perform a brute force search and solve the fair allocation
problem exactly by full enumeration of all the possible allocations, which are roughly one million
(nd = 410 = 1048576).

Suppose that a regulator asks each agent to privately disclose the own valuations of each item
to be allocated, and that all such valuations are collected in the matrix V given in Figure 1.

In Table 1 we compare the allocations found by performing a Brute Force (A) search for maxi-
mum social welfare, and by running the Spliddit (B), MinCovTarget+ (C) and MinCov (D) algo-
rithms. In the table we report the items received by each agent under the allocations found by the
algorithms, and a matrix representing each agent’s valuations of the own bundle (in bold) and of
the bundles received by the others.

From Table 1A it is evident why the search for maximum social welfare is not a good fairness
rule to be prioritized in general. The (only) maximum social welfare allocation gives nothing to
agent 1, who envies all the other agents. In particular agent 1 envies most the bundle received by
agent 2, which evaluates at 426. So this allocation, though maximizing the sum of utilities of all
agents (the sum of the diagonal elements in the matrix shown) produces an envy which is almost
half of the total value of the goods. We notice that this allocation can be more rapidly found by
using Spliddit with a linear function f in the MILP.

Spliddit (1B) works perfectly as it finds the unique allocation maximizing Nash welfare. How-
ever, this allocation has a level of envy of 21 (the fourth player gets 305 and is envying the second
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agent’s bundle which evaluates 326) and a relatively good level of social welfare (1506).

MinCovTarget+ (1C) is run with a set of 51 different target values T = {0, 40, . . . , 1960, 2000}.
The advantage of using MinCovTarget+ is that, even if the average level of envy (85.3) of the 51
allocations found is larger than the envy of the allocation found by Spliddit (21), the algorithm
selects the two target levels attaining the minimum (zero) level of envy. Between the two no-envy
allocations, MinCovTarget+ outputs the one having the largest level of social welfare. In the end,
MinCovTarget+ finds a no-envy allocation with a relatively small reduction of social welfare (1482)
as compared to Spliddit.

In Table 1D we also report the final allocation found by MinCov. Even if MinCov gives the
best result for social inequality, it fails to find the global solution, and by far misses good results for
the other rules. We remark here that there are 24 best allocations for inequality (found by Brute
Force) and the minimal envy one has an envy of 8 and a social welfare of 1228. From these figures,
the rule of minimal inequality does not appear to produce good allocations.

In a framework where a full enumeration of all possible allocations is feasible in a reasonable
time, one should prefer a solution with no envy (everybody is happy), maximizing a secondary
objective function amongst all possible no-envy allocations. As a secondary rule to choose amongst
no-envy allocations, we select social welfare (but one can set whatever fairness rule at this point).
Following this methodology, in this example one should select the allocation with an envy of 0 and
a social welfare of 1498 (these are the bundles received by the agents: a1 = {2, 3, 4}, a2 = {5, 7},
a3 = {8, 10}, a4 = {1, 6, 9}). We notice that the level of social welfare of this allocation (1498) is
very close to the one (1482) of the no-envy allocation found by MinCovTarget+ (at a fraction of
the time spent by Spliddit and Brute Force).

We remark that the maximum level of social welfare is not attained by a no-envy allocation, or,
equivalently, that there does not exist in general a no-envy solution maximizing social welfare. This
shows how the various fairness rules introduced here and in the literature are in general conflicting:
prioritising a no-envy solution might imply a reduction of social welfare.

A brute force search in principle provides the optimal solution for any fairness rule, but enu-
merating the possible nd allocations quickly becomes intractable with increasing dimensions. For
d = 100 goods to be allocated to n = 10 agents, one of the scenarios treated in Section 7, there likely
are more possible allocations (10100) than atoms in our universe. Higher dimensional scenarios then
call for an algorithm to allocate goods.

The example shown in this section is pedagogical in nature and its results cannot be repre-
sentative of the performance of the algorithms in general (also because MinCovTarget+ contains
randomness in the selection of items to be subsequently re-allocated). To obtain a proper com-
parison, in what follows we will simulate 1000 value matrices and count the number of success of
the MinCovTarget+ and Spliddit algorithms. It seems senseful to compare the performance of the
algorithms against minimal envy, maximum Nash and maximum social welfare.
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Figure 1: Value matrix for d = 10 items to be allocated to n = 4 players.

1A. Brute force (maximum social welfare) allocation, 17 secs

items agent utilities fairness rule value optimum

1 2 3 4

– 1 0 426 342 232 envy 426 0
1, 3, 5, 7 2 0 754 207 39 social welfare 1600 1600
4, 8, 10 3 0 331 446 223 Nash welfare -Inf 10.2890
2, 6, 9 4 0 563 37 400 social inequality 50106 1972

1B. Spliddit (maximum Nash welfare) allocation, 1 sec

items agent utilities fairness rule value optimum

1 2 3 4

2, 3, 4 1 377 184 301 138 envy 21 0
1, 5 2 329 388 265 18 social welfare 1506 1600

7, 8, 10 3 225 167 436 172 Nash welfare 10.2890 10.2890
6, 9 4 289 326 80 305 social inequality 12649 1972

1C. MinCovTarget+ (minimal envy) allocation, 0.032 sec

items agent utilities fairness rule value optimum

1 2 3 4

3, 4 1 283 222 263 232 envy 0 0
1, 7 2 308 354 299 39 social welfare 1482 1600

5, 8, 10 3 174 158 445 223 Nash welfare 10.2512 10.2890
2, 6 ,9 4 194 227 179 400 social inequality 9229 1972

1D. MinCov (minimal inequality) allocation, 0.010 sec

items agent utilities fairness rule value optimum

1 2 3 4

2, 3 1 338 160 280 222 envy 151 0
5, 6 2 294 203 149 354 social welfare 1059 1600

4, 8, 9 3 253 298 291 158 Nash welfare 9.6563 10.2890
1, 7 4 270 329 174 227 social inequality 4256 1972

Table 1: Allocations found by various algorithms for the value matrix V in Figure 1. We give the
logarithm of Nash welfare.
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6 Design of the value matrix

In order to perform a numerical comparison of algorithms for fair allocation (against different
allocation rules), one needs a way of simulating random value matrices, to replicate different real
life situations.

In [3], random uniform valuations are used. In the case of Spliddit, this means that each agent
is assumed to randomly assign the M available points to the d objects in a uniform way. Following
this approach, the values xij are independently drawn from a uniform distribution between 0 and
M and hence standardized and rounded so that all valuations of a single agent are integral and add
to M . To run a comparison with MinCovTarget, we possibly adjust each generated matrix so that
the first agent gives positive utility to all objects (again notice that this can always be reached by
adding ε > 0 in the cases the Spliddit constraint on agents’ utilities is not binding). An example
of a simulated value matrix V for n = 4, d = 10, is shown in Figure 2.

Figure 2: An example of simulated value V matrix with random uniform valuations for n = 4, d =
10. According to Spliddit rules, each agent assign M = 1000 points amongst the different goods
(each row adds to 1000).

In this study we introduce a new, more general, design for the simulation of value matrices,
that we believe to be more realistic than random uniform valuations. In practice, valuations of the
same object by different agents should be dependent, in particular positively correlated. If, as part
of an inheritance, we have to allocate a gold and a plastic watch, it is more realistic to assume that
all agents will be likely to give higher valuations for the first and, conversely, lower valuations for
the latter.

Thus, we introduce a second way of generating value matrices, where we assume that the
valuations (uniformly distributed between 0 and M) of the same object are dependent with the
dependence modelled by a Gaussian copula (see for instance [8], [5]) having equicorrelation matrix
with correlation parameter equal to ρ ∈ [0, 1]. The correlation parameter ρ allows one to interpolate
between the previously introduced case of uniform independent valuations (ρ = 0) and the perfect
correlation case (ρ = 1) in which all agents give identical valuations of the same object. In the
simulations to follow, we find it suitable to assume ρ = 0.5. An example of simulated value matrix
V with the novel procedure, for n = 4, d = 10, and ρ = 0.5 is shown in Figure 3. The code for
matrix design and simulations can be downloaded from the link provided in the abstract and can
be of interest for other applications.
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Figure 3: An example of a simulated value V matrix with dependent valuations for n = 4, d = 10,
and ρ = 0.5.

7 Numerical results

In this section, we compare the MinCovTarget+ and the Spliddit algorithms under different scenar-
ios with increasing dimensionality of the fair allocation problem. For each choice of n and d (that
we call a scenario), we simulate a number of 1000 value matrices (with uniform and dependent
design) and evaluate the % of times one algorithm is no worse than the other (ties are counted
as success so cumulative percentages in the following figures exceed 100%) against the rules of
minimum envy, maximum Nash welfare, and maximum social welfare. For each simulated value
matrix we run MinCovTarget on 51 different target values T = {0, 40, . . . , 1960, 2000}.

When running our experiments we noted that Spliddit suffers from the curse of dimensionality
and cannot be really applied when the number n of agents or the number d of goods is relatively
large. Indeed, when selecting d = 300 goods to be allocated to n = 30 agents, our code was
able to compute a Spliddit solution within 10 minutes in only 7 cases over 50 simulations of the
value matrix. By contrast, MinCovTarget+ can handle the same case in about 16 seconds, always
finding a solution with no envy. Therefore, in order to have a meaningful comparison of the different
algorithms we first deal with low to medium dimensional set-ups.

7.1 Comparison in low to medium dimensions

In Figure 4 we show percentages of success of each algorithm in three different scenarios with
increasing dimensions, and uniform (left figures) and dependent (right figures) valuations of the
goods.

For mid-dimensional scenarios with n = 10 and n = 20, Spliddit and MinCovTarget+ always
find a no-envy solution. By the design of the two algorithms, the no-envy allocations found by
Spliddit guarantees a higher level of Nash welfare, whereas MinCovTarget+ produce better alloca-
tions with respect to social welfare. We notice that the MinCovTarget+ algorithm (even including
the selection of the optimal target value) is much faster than Spliddit, and always succeed in finding
a solution within seconds. On the contrary Spliddit, for n = 20, d = 200, is not able to find a so-
lution within 2 minutes for the 9.5% (10.9%) of the uniform (dependent) value matrices simulated
in the experiment.

In the low-dimensional scenario (n = 4, d = 10), MinCovTarget+ turns out to be much better
than Spliddit with respect to envy, as a result of the possibility of selecting the best target level.
However, as noticed in the illustrative example given above, the selection of no-envy allocations
comes at a slight reduction of social welfare, so in this low-dimensional scenarios Spliddit has higher
success rates with respect both Nash and social welfare.
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7.2 Performance of MinCovTarget+ in high dimensions

The MinCovTarget+ algorithm can also handle higher dimensional scenarios, with envy perfor-
mance increasing in the number of goods. In Figure 6, left, we show the computation time of
MinCovTarget+ for different number of agents with increasing number of objects. In these dimen-
sions we cannot compare the performance of MinCovTarget+ with any competitor. However, in
the right part of the figure, we show the level of envy attained as a percentage of M , the total
value of goods. The performance of MinCovTarget+ with respect to minimum envy is excellent
and the allocations found are expected to provide a very good approximation of maximum social
welfare. As an example, MinCovTarget+ finds a no-envy allocation for a fair allocation problem
with n = 50 agents and d = 250 goods in less than 20 seconds.

7.3 MinCovTarget*

The choice of the set of target values is pivotal to the MinCovTarget+ algorithm. Our choice of 51
target values (from a null target value to twice the total value of goods) provides a good trade off
between the search for no-envy and high social welfare allocations, and computation time. Even
if the MinCovTarget+ can also handle higher dimensional scenarios, for really huge framework
one could be willing to save computational time by reducing the set of target values used by the
algorithm.

A good option for huge dimensional scenarios is to use a single target level set equal to the total
value M of the goods to be allocated, that is to set T = {M}. In this case we call the algorithm
MinCovTarget*.

The choice of this particular target level comes from observing Figure 5, which shows the
average values of envy, Nash welfare and social welfare attained by the MinCovTarget+ algorithm
with a single, fixed choice of the target. The figure shows how a target value equal to M is able
to approximate the Nash welfare and slightly improve the social welfare attained by Spliddit by
keeping the level of envy reasonably close to zero. Smaller values of the target would decrease Nash
and social welfare, higher values would increase envy.

The MinCovTarget* algorithm can handle huge scenarios within seconds, with envy perfor-
mance increasing in the number of goods. In Figure 7, left, we show the computation time of
MinCovTarget* for different number of agents with increasing number of objects. In the right part
of the figure, we show the level of envy attained as a percentage of M , the total value of goods.
The performance of MinCovTarget* with respect to minimum envy is excellent and the allocations
found are expected to provide a very good approximation of maximum social welfare. As an exam-
ple, MinCovTarget* is able to handle a fair allocation problem with n = 200 agents and d = 400
goods in about 26 seconds, keeping the level of envy under 0.5% of the total value of goods; see
Figure 7.
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Figure 4: For three different scenarios, we show the percentage of times that each algorithm performs best
(ties are counted as success) with respect to three different fairness criteria. Average computation times
are shown in the legend with the indication of the algorithm success rate, that is the % of times that an
algorithm was able to find a solution in less than 2 minutes (in case of failure, the simulated matrix is
not taken into account). Figures are computed over a total number of 1000 random uniform matrices (left
figures) and dependent matrices (right figures). We remark that for n > 10 both algorithms always find
no-envy solutions.
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n=20, d=200, uniform
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Figure 5: For d = 200 goods to be allocated amongst n = 20 agents, we show how the value of three
different objective functions vary against the choice of the fixed target value for MinCovTarget+ used with
a single target value. The red line indicates the value attained by Spliddit while the blue circle corresponds
to MinCov (τ = 0). For a fixed target value, MinCovTarget+ figures are averages over 1000 simulations of
the value matrix. Only simulations of the value matrix for which Spliddit was able to find a solution in less
than 2 minutes are taken into account. These corresponds to 90.5% of the cases for uniform value matrices
(top plot) and 89.1% of the cases for dependent value matrices (bottom plot).
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Figure 6: Computation time in seconds and minimum envy attained (as a % of the total value M of goods)
by the MinCovTarget+ algorithm. Figures are averages over 50 simulations of a uniform value matrix.

200 250 300 350 400

Number of goods

0

5

10

15

20

25

30

35

Computation Time (in sec.)

30 secs.

n=100
n=150
n=200

200 250 300 350 400

Number of goods

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Minimal Envy (as % of goods total value)

1%

n=100
n=150
n=200

Figure 7: Computation time in seconds and minimum envy attained (as a % of the total value M of goods)
by the MinCovTarget* algorithm. Figures are averages over 20 simulations of a uniform value matrix. To
allow for meaningful agents’ valuations, for these scenarios the value of all goods has been increased to
M = 10000.
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8 Conclusions

In this paper, we compare two state-of-the-art algorithms for the fair allocation of a number of
indivisible goods amongst several agents: the Spliddit and MinCovTarget algorithms. Based on
our numerical analysis, we propose two versions of the MinCovTarget algorithm, which we call
MinCovTarget+ and MinCovTarget*.

If one agrees that, in a fair allocation problem, no-envy allocations should be preferred and,
in the case many no-envy allocations exist, one should select the one attaining maximum social
welfare, MinCovTarget+ is shown to be a new solution for the fair allocation problem.

With respect to minimal envy, MinCovTarget+ is better than or compares to Spliddit in all
scenarios, but in larger dimensional frameworks provides allocations with a higher value of social
welfare and at a fraction of the computation time spent by Spliddit. Moreover, in high dimensions,
Spliddit cannot be readily implemented whereas MinCovTarget+ is able to rapidly obtain envy-free
allocations.

Finally, if one is willing to save computation time at the cost of a reasonable extra level of envy,
the so called MinCovTarget* algorithm, that is MinCovTarget+ used with a target value equal
to the total value of goods, is able to handle huge dimensional scenarios (hundreds of agents and
goods) within seconds. The interested reader is invited to contribute to this project by downloading
our code, replicating our experiments, and possibly suggesting extensions or further analytics.
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