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Abstract. We study the degree profile of random hierarchical lattice net-
works. At every step, each edge is either serialized (with probability p) or
parallelized (with probability 1 − p). We establish an asymptotic Gaussian
law for the number of nodes of outdegree 1, and show how to extend the
derivations to encompass asymptotic limit laws for higher outdegrees. The
asymptotic joint distribution of the number of nodes of outdegree 1 and 2
is shown to be bivariate normal. No phase transition with p is detected in
these asymptotic laws.

For the limit laws, we use ideas from the contraction method. The recur-
sive equations which we get involves coefficients and toll terms depending on
the recursion variable and thus are not in the standard form of the contrac-
tion method. Yet, an adaptation of the contraction method goes through,
showing that the method has promise for a wider range of random structures
and algorithms.
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1 Introduction

Today we witness proliferation of all kinds of networks (social, hardwired,
roadmaps, big organizations, etc.). There is a need to propose and analyze
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associated models. The class of series-parallel (SP) graphs is of particular
relevance to bipolar networks, where there is a flow (of commodities like, say,
commercial merchandise) from a source (producer) to a sink (market).

At the core of several SP definitions is the notion of a complete graph. We
use the common notation Kn for the complete graph on n vertices. There are
a few definitions of families of SP graphs. In one definition, an SP graph is
an undirected connected graph that does not contain K4 as a minor. By this
definition, typical SP graphs start out from very small complete graphs, and
as they grow, they forbid the existence of large complete graphs. Note that
this definition does not distinguish two vertices as a source and a sink. One
other popular recursive definition builds SP graphs inductively from smaller
members of the family. In this variation, the smallest SP graph is K2. The
two vertices are called Poles (one North and one South). Larger SP graphs
are built from smaller ones by one of two compositions: a series composition,
which identifies the South Pole of a graph with the North Pole of the other,
or a parallel composition, which identifies the two North Poles together, and
the two South Poles together.

For the network flow application we have in mind, we take the second
definition of SP graphs. Moreover, we think of SP graphs as directed, with
orientation assigned to the edges to allow the flow to move from the North
Pole to the South Pole. The size of an SP graph is the number of edges in
it.

Several models of randomness have been proposed for SP graphs. They
include the uniform model, where all SP networks of a certain size are equally
likely [1, 4], the hierarchical lattice model [7], where at each stage of the
growth every edge is either serialized or parallelized, and the incremental
model introduced in [9], in which one randomly chosen edge at a time is
serialized or parallelized. The reference [10] presents a variation with a binary
degree restriction on the nodes of the SP graph.

Our aim in this article is to study the profile of node degrees in the
hierarchical lattice model introduced in [7]. In this model, at each discrete
time step, every directed edge in the graph experiences an evolution. At a
stage, an edge is serialized with probability p, or parallelized with probability
q := 1 − p. The graph evolves in the following manner. Suppose uv is a
directed edge from vertex u to vertex v that exists at time step n − 1. To
serialize uv (with probability p), we replace the edge with two directed edges
ux (directed from u to x), and xv (directed from x to v). Thus, a new
vertex, x, appears. To parallelize uv (with probability q), we create a new
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edge, also directed from u to v. We shall call p the index of the hierarchical
lattice. It is also natural to think of the number of steps of evolution as the
age of the network.
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Figure 1: The eight hierarchical lattice graphs of size 4, and their probabili-
ties.

Figure 1 shows all eight hierarchical lattice SP graphs that can arise in
two steps of evolution and their probabilities. Note that orientation in the
plane is part of the definition of a hierarchical lattice SP graph (network):
A vertex with outdegree k has k children, distinguished as leftmost, second
from the left, third from the left, and so on till the kth from the left (i.e., the
rightmost). For instance, the second and third SP graphs in the second row
of Figure 1 are isomorphic graphs, but are considered as different hierarchical
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lattice networks.
The hierarchical lattice graph model is quite interesting, as it may depend

critically on p. If p is too small, most of the operations of edge evolution tend
to parallelize, and one would expect a short fat graph extending between N
and S. At the other end of the spectrum, if p is too large, most of the
operations of edge evolution tend to serialize, and one would expect a long
scrawny graph between N and S. Are there interesting phase transitions in
between? The authors of [7] report that the effective resistance across the
graphs, first-passage percolation on the graphs and the Cheeger constant of
the graphs all exhibit a drastic change of behavior at p = 1

2
. An instance of

these phase transitions is manifested in the effective resistance, Rn, between
the poles. It converges to 0 almost surely, for p < 1

2
, and diverges to ∞

almost surely, for p > 1
2
. Whereas at p = 1

2
, 1

n
lnRn converges to 0, but the

scale 1
n

is not enough to bring lnRn down to 0, when p > 1
2
. By contrast,

some phenomena, such as the order (number of nodes) do not exhibit a phase
change.

2 Scope

We study the distribution of the number of nodes of a given outdegree by
the contraction method. We shall see Gaussian limits adding to the list of
properties that do not exhibit phase transition. A motivation for studying the
outdegrees of nodes is that they are an important factor in the functionality
of the network. The failure of a node with high outdegree can paralyze large
components in the network and disrupt the flow along many paths.

The structure of the rest of the manuscript is in sections. Section 3 is
on the notation used throughout. In Section 4, we set up a hierarchical
recurrence system among the number of nodes of various outdegrees. At the
bottom of this inductive construction is the number of nodes of outdegree 1
(the smallest outdegree that can appear in the network), and we need to
analyze this separately. This is taken up thoroughly in Section 5, which is
divided into two subsections dealing with two main themes: concentration
laws in Subsection 5.1 and Gaussian laws in Subsection 5.2. The method
used for the asymptotic distribution in Subsection 5.2 is an adaptation of
the contraction method. The same methods are extended in Section 6 to
nodes of higher outdegrees. In Section 7, we conclude with some remarks.
Some technical details are relegated to two appendices.
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3 Notation

We use the notation X
(k)
n for the number of nodes of outdegree k in a hierar-

chical lattice graph at age n. In what follows, Bin(m, p) denotes a binomial
random variable that counts the number of successes in m independent iden-
tically distributed experiments, with rate of success p per experiment. The
notation Uniform (0, 1) will be used for a random variable that is uniformly
distributed on the interval (0,1). Also, N (0, σ2) will stand for a centered
normally distributed random variable with variance σ2. The notation IE will
be used for the indicator of the event E , that is, a function that assumes the
value 1, if E occurs, and assumes the value 0, otherwise.

We shall have need for the compounded random variable Bin(S, p), where
S is random (the distribution of such random variable is sometimes called a
hierarchical model or a mixture model, and the associated measure is some-
times called a random measure). Such a random variable is generated by first
obtaining a value for S from a prior distribution, then using this value as
the number of experiments in the binomial distribution. These hierarchical
models are core in Bayesian statistics.

In particular, we shall need the compounded binomial random variables
Bin(X

(k)
n , p). Technically speaking, such a binomial random variable should

be represented as a sum of X
(k)
n independent identically distributed random

variables (indicators), where each indicator is described by a Uniform (0, 1)
random variable U , and for each experiment the U is independent of all
else. The uniform variable is defined on the same probability space as all the
variables of the network.We shall succinctly write Bin(X

(k)
n , p) to actually

mean
∑X

(k)
n

i=1 I{Ui<p}, for Ui’s being X
(k)
n independent identically distributed

Uniform (0,1) random variables.We shall alternate in our choice of notation—

the notation Bin(X
(k)
n , p) is more compact than the summation form, and will

be used when adequate for simpler computations, like those for mean values.
However, the need arises in variance and higher moments computations for
a notation that captures subtle dependencies, and in these situations we use
the full summation form.We can take the space on which sequences of random
variables and their limits are defined to be Skorohod’s.

From probability theory we use standard convergence notation: The sym-

bols
a.s.−→,

P−→, and
D−→ are respectively for convergence almost surely, in

probability and in distribution, whereas
D
= is for exact equality in distribu-

tion.
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4 A hierarchical recurrence system for the

node degrees

We develop in this section a system of stochastic recurrence equations forX
(k)
n ,

for k = 1, 2, . . . . It will turn out that X
(k)
n is related to X

(j)
n−1, for all j ≤ k.

Thus, we are creating a hierarchical recurrence system in which X
(k)
n de-

pends on the number of nodes of the same outdegree or smaller, and the
entire history of the evolution. At the basis of this inductive system, we need
a representation for X

(1)
n . We set up this hierarchical recurrence system in

two technical lemmata.

Lemma 1. Let X
(1)
n be the number of nodes of outdegree 1 in a hierarchical

lattice network with index p at age n. We then have

X(1)
n

D
= 2Bin∗

(
X

(1)
n−1, p) + Bin∗∗

(
2n−1 −X(1)

n−1, p), (1)

with boundary conditions X
(1)
0 = 1. Here Bin∗

(
X

(1)
n−1, p) and Bin∗∗

(
2n−1 −

X
(1)
n−1, p) are conditionally independent given X

(1)
n−1.

Proof. Let us use the notation E (≥2)n to mean the number of edges emanating
out of nodes of outdegree at least 2 when the network is at age n. Note that
the number of edges doubles after each step of evolution—there are 2n edges,
when the network is at age n. Thus, we have

E (≥2)n = 2n −X(1)
n . (2)

At age n, a node of outdegree 1 could appear in two ways. The first
way is when the edge out of a node of outdegree 1 in the previous step is
serialized, it adds a new edge with a northern node of outdegree 1. Since the
original node of outdegree 1 is preserved as well, there are 2Bin∗(X

(1)
n−1, p)

contributions to nodes of outdegree 1. The second way is when an edge out
of a node of outdegree higher than 2 is serialized, it also adds a new node
of outdegree 1. We have Bin∗∗(E (≥2)n , p) contributions in this way. Using (2),
we get the desired result.

Lemma 2. Let X
(k)
n be the number of nodes of outdegree k ≥ 2 in a hierar-

chical lattice network with index p at age n. We then have

X(k)
n

D
= Bink

(
X

(k)
n−1, p

k
)

+
k−1∑

i=d k
2
e

Bini

(
X

(i)
n−1,

(
i

k − i

)
p2i−kqk−i

)
,
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with boundary conditions X
(k)
n = 0. Here, for i 6= j, the random variables

Bini

(
X

(i)
n−1, p) and Binj

(
X

(j)
n−1, p) are conditionally independent given X

(i)
n−1

and X
(j)
n−1.

Proof. At age n, a node of outdegree k could appear in two ways. The first
way is when every edge out of a node of outdgree k in the previous step
is serialized (an event that occurs with probability pk); the original node of

outdegree k is preserved. There are a total of Bink

(
X

(k)
n−1, p

k
)

contributions.

There can be contributions to X
(k)
n from edges out of nodes of outdegree

i < k, too. If a proper number of such edges is parallelized, they can increase
the outdegree at their common northern vertex to k. More precisely, suppose
we have a node of outdegre i at age n− 1. None, some or all of these edges
can be parallelized. If i < dk

2
e, no matter how the edges out of this node

evolve, they will not induce a change in the number of nodes of outdgree
k—even if all of them get parallelized, the outdegree of the northern vertex
of these edges doubles to 2i < k. Only edges out of nodes of outdegree
i = dk

2
e, . . . , k− 1 can evolve in proper combinations to increase the number

of nodes of outdegree k at age n. If a node has outdegree i, for dk
2
e ≤ i ≤ k−1,

2i−k among these edges can be serialized and k− i can be parallelized. The
occurrence of this event increases the number of nodes of outdegree k by 1.
The k − i edges to be parallelized can be chosen in

(
i

k−i

)
ways.

5 Probabilistic analysis of the number of nodes

of outdegree 1

The hierarchical system of stochastic recurrences in Lemmata 1 and 2 is
instrumental in conducting a probabilistic analysis, giving averages and be-
yond. We start from the bottom of the hierarchy, i.e., from nodes of outde-
gree 1.

Proposition 1. The average and variance of X
(1)
n , the number of nodes of

outdegree 1 in a hierarchical lattice network with index p at age n, are given
by

E[X(1)
n ] =

p

2− p
2n − pn+1

2− p
+ pn ∼ p

2− p
2n,
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and

Var[X(1)
n ] =

2pq(p+ 1)2n

(2− p)(2− p2)
+

6pnq

(2− p)
− 2(2p+ 3)qp2n

(2− p2)

∼ 2pq(p+ 1)

(2− p)(2− p2)
2n.

Proof. Conditioning the stochastic recurrence in Lemma 1 on X
(1)
n−1, then

taking a double expectation, we obtain

E
[
X(1)

n

]
= pE

[
X

(1)
n−1
]

+ 2n−1p.

This recurrence is amenable to direct iteration, and with the boundary con-
dition in Lemma 1, the stated result follows.

The variance follows from a similar recursive formulation, so we only out-
line it. Square both sides of the stochastic recurrence in Lemma 1, condition
on X

(1)
n−1, and take expectation, to get

E
[
(X(1)

n )2 |X(1)
n−1
]

= 4E
[(

Bin∗
(
X

(1)
n−1, p)

)2 |X(1)
n−1
]

+ E
[(

Bin∗∗
(
2n−1 −X(1)

n−1, p)
)2 |X(1)

n−1
]

+ 4E
[
Bin∗

(
X

(1)
n−1, p) |X

(1)
n−1
]

× E
[
Bin∗∗

(
2n−1 −X(1)

n−1, p) |X
(1)
n−1
]
.

Note that in the cross-product term we use conditional independence. Us-
ing well known facts about the binomial random variable, then taking a
double expectation, we get a recurrence for the unconditional expectation
E
[
(X

(1)
n )2

]
, the solution of which (under the boundary condition given in

Lemma 1) is obtained. The variance follows by subtracting off the square of
established mean.

5.1 Concentration laws

The relatively small variance gives us concentration laws.

Theorem 1. Let X
(1)
n be the number of nodes of outdegree 1 in a hierarchical

lattice network at age n. Then, we have

X
(1)
n

2n

a.s.−→ p

2− p
=: c(1)p , (3)
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and further,
E
∣∣X(1)

n − 2nc(1)p

∣∣ = O
(
2n/2

)
.

Proof. By Chebyshev’s inequality, for any fixed ε > 0, we write

P
(∣∣X(1)

n − E
[
X(1)

n

]∣∣ > ε
)
≤ Var[X

(1)
n ]

ε2
.

Replace ε by εE
[
X

(1)
n

]
to get

P

(∣∣∣∣∣ X
(1)
n

E
[
X

(1)
n

] − 1

∣∣∣∣∣ > ε

)
≤

2pq(p+ 1)2n

(2− p)(2− p2)
+

6pnq

(2− p)
− 2(2p+ 3)qp2n

(2− p2)

ε2
( 2np

2− p
− pn+1

p− 2
+ pn

)2
= O

( 1

2n

)
.

This fast rate of decline in the probabilities renders the series of the
probabilities summable:

∞∑
n=1

P

(∣∣∣∣∣ X
(1)
n

E
[
X

(1)
n

] − 1

∣∣∣∣∣ ≥ ε

)
<∞.

According to the Borel-Cantelli Lemma, we have

X
(1)
n

E[X
(1)
n ]

a.s.−→ 1.

Applying Proposition 1, we get the first result.
From the asymptotics of the mean and variance, as given in Proposition 1,

we have

E
[(
X(1)

n − 2nc(1)p

)2]
= E

[((
X(1)

n − E
[
X(1)

n

])
+
(
E
[
X(1)

n

]
− 2nc(1)p

))2]
= Var

[
X(1)

n

]
+
(
E
[
X(1)

n

]
− 2nc(1)p

)2
= O(2n).

By Jensen’s inequality we have

E|X(1)
n − 2nc(1)p | ≤

√
E
[(
X

(1)
n − 2nc

(1)
p

)2]
= O

(
2n/2

)
.
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5.2 An asymptotic Gaussian distribution

Higher moments are hard to compute by direct recurrence. Each one is more
complex and is given by longer formulæ than the one before. We need a
shortcut for the computation of all asymptotic moments, i.e., the asymptotic
distribution. A tool suitable for this task is the contraction method. For
basics of the method and several useful variations see [3, 11, 12, 13, 14, 15].

Consider random variables obtained by suitable normalization (shifting
and scaling) of the variables in Lemma 1. It is natural to normalize by exact
centering and use the exact standard deviation as a scale factor. Thanks
to Slutsky’s theorem [8]; Pages 146–147, we get the same results, if we use
an asymptotic equivalent of the mean to shift, and the correct order of the
standard deviation to scale; let us introduce the normalized random variable

Y (1)
n :=

X
(1)
n − 2nc

(1)
p√

2n
.

We normalize the representation in Lemma 1 by writing it in the form

Y (1)
n =

X
(1)
n − 2nc

(1)
p√

2n

D
= 2

Bin∗
(
X

(1)
n−1, p

)
− pX(1)

n−1√
pqX

(1)
n−1

×

√
pqX

(1)
n−1

2n

+
Bin∗∗

(
2n−1 −X(1)

n−1, p
)
− p
(
2n−1 −X(1)

n−1
)√

pq
(
2n−1 −X(1)

n−1
)

×

√
pq
(
2n−1 −X(1)

n−1
)

2n

+
2pX

(1)
n−1 + p

(
2n−1 −X(1)

n−1
)
− 2nc

(1)
p√

2n

D
= : 2ZnRn + Z̃nR̃n +

pY
(1)
n−1√
2
, (4)
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where

Zn =
Bin∗

(
X

(1)
n−1, p

)
− pX(1)

n−1√
pqX

(1)
n−1

,

Z̃n =
Bin∗∗

(
2n−1 −X(1)

n−1, p
)
− p
(
2n−1 −X(1)

n−1
)√

pq
(
2n−1 −X(1)

n−1
) ,

Rn =

√
pqX

(1)
n−1

2n
, R̃n =

√
pq
(
2n−1 −X(1)

n−1
)

2n
.

Note that Zn and Z̃n are conditionally independent given X
(1)
n−1.

The distributional equation (4) does not fit in the usual framework con-
sidered in the literature on the contraction method, as it is not in the form
of iterative subproblems and a toll function that does not depend on any of
the parts. If we consider Y

(1)
n−1 to be the iterative part, the remaining vari-

ables are a toll dependent on Y
(1)
n−1. Nonetheless, the equation has the general

spirit of the distributional equations in the contraction method for recursive
algorithms, and can be handled by similar ideas, as it is asymptotically of
the usual form of the contraction method.

We shall prove that Y
(1)
n converges to a normal limit Y (1) in distribution.

We shall do this in four steps:

Step 1: We guess the distributional equation satisfied by the limit Y (1).
Step 2: We prove that the distributional limiting equation satisfied by Y (1)

has a unique solution.

Step 3: We prove that Y
(1)
n converges to Y (1).

Step 4: The unique solution is shown to be the normal distribution.

Step 1

By Theorem 1, we have the convergence relations

Rn
a.s.−→

√
pqc

(1)
p

2
=: R, R̃n

a.s.−→

√
pq(1− c(1)p )

2
=: R̃.
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We also have the two normalized binomial random variables converging to
normal limits:

Zn =
Bin∗(X

(1)
n−1, p)− pX

(1)
n−1√

pqX
(1)
n−1

D−→ Z,

Z̃n =
Bin∗∗(2n−1 −X(1)

n−1, p)− p(2n−1 −Xn−1)√
pq(2n−1 −X(1)

n−1)

D−→ Z̃,

where Z and Z̃ are standard normal random variates. It is plausible to
surmise that representation (4) induces the following limiting distributional
equation

Y (1) D
=

p√
2
Y (1) + 2ZR + Z̃R̃, (5)

where Z, Z̃, and Y (1) are mutually indepdendent. The presumed indepen-
dence comes from the fact that Zn and Z̃n are conditionally independent.
Moreover, one sees, by the central limit theorem and using that X

(1)
n−1

a.s.−→∞:
that

P
(
Zn ≤ z, Z̃n ≤ z̃ |Y (1)

n−1
)

= P
(
Zn ≤ z, Z̃n ≤ z̃ |X(1)

n−1
)

= P
(
Zn ≤ z |X(1)

n−1
)
P
(
Z̃n ≤ z̃ |X(1)

n−1
)

a.s.−→ P
(
Z ≤ z)P(Z̃ ≤ z̃

)
= P

(
Z ≤ z, Z̃ ≤ z̃ |Y (1)

)
.

Consequently, we would have (Zn, Z̃n, Y
(1)
n )

D−→ (Z, Z̃, Y (1)), if we established

Y
(1)
n

D−→ Y (1) .
The methodology in the steps that follow is based on establishing conver-

gence w.r.t. the Wasserstein distance. The Wasserstein distance of order p
(also called the minimal `p distance) between two distribution functions F
and G is defined by

`p(F,G) = inf ||W − Z||p,
where the infimum is taken over all random variables W and Z having the
respective distribution functions F and G (with || . ||p being the usual Lp

norm). If Fn is a sequence of distribution functions, it is known [2] that
convergence in the first-order Wasserstein distance implies, and in fact is
equivalent to, weak convergence, as well as convergence of the first moment.

12



Step 2

In what follows we denote p/
√

2 by h and let F1 be the space of all distribu-
tion functions with finite first moment. View the right-hand side of (5) as a
mapping from F1 into itself.

Let Y and Y ′ be two random variables with distribution functions FY ∈
F1, and FY ′ ∈ F1, such that (Y, Y ′) is independent of ((Z,R), (Z̃, R̃)). Define
the transformation T : F1 → F1 by T (FY ) being the law of hY+2ZR+Z̃R̃ =:
hY + S. We then have

`1
(
T (FY ), T (FY ′)

)
≤ E

[∣∣(hY + S)−
(
hY ′ + S

)∣∣] = hE
[
|Y − Y ′|

]
.

Taking the infimum over (Y, Y ′) that is a coupling of (FY , FY ′), we find that

`1
(
T (FY ), T (FY ′)

)
≤ h `1(FY , FY ′) < `1(FY , FY ′).

Thus, the mapping T is contracting. As the mapping is a contraction in a
complete metric space, there is a unique fixed-point in F1 satisfying (5), by
Banach’s fixed-point theorem [5].

An alternative proof of the uniqueness of the solution to the limiting
distributional equation (5) can be found in [16], Theorem 1.5 and 1.6.

Step 3

We need some work to formally justify the limit equation guessed in Step
1. This is done by “coupling” the random variables on the same probability
space, and showing that the first-order Wasserstein distance between the
distributions of Y

(1)
n and Y (1) converges to 0. Let Fn be the distribution

function of Y
(1)
n , and F be the distribution function of Y (1).

Lemma 3. (The coupling lemma). There exists a coupling (Yn, Y ) of (Fn, F ),

such that b
(1)
n := `1(Fn, F ) = E|Yn − Y | → 0. In particular, this implies

Y (1)
n

D−→ Y (1).

Proof. We shall show that the first-order Wasserstein distance between Fn

and F converges to 0. Let (Yn, Y ) be an optimal coupling of (Fn, F ), for all
n ≥ 0. Define

X̂(1)
n =

√
2n Yn + 2nc(1)p .
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Then, X̂
(1)
n is defined on the space of the coupling and has the distribution

of X
(1)
n , and Yn is a normalized binomial in the form

Yn =
X̂

(1)
n − 2nc

(1)
p√

2n
.

We can then define the associated random variables

Ẑn =
Bin∗

(
X̂

(1)
n−1, p

)
− pX̂(1)

n−1√
pqX̂

(1)
n−1

,

ˆ̃Zn =
Bin∗∗

(
2n−1 − X̂(1)

n−1, p
)
− p
(
2n−1 − X̂(1)

n−1
)√

pq
(
2n−1 − X̂(1)

n−1
) ,

R̂n =

√
pqX̂

(1)
n−1

2n
, ˆ̃Rn =

√
pq
(
2n−1 − X̂(1)

n−1
)

2n
.

We call the limits of these variables Ẑ, ˆ̃Z, R̂, and ˆ̃R respectively. As shown in

Step 1, (Ẑn,
ˆ̃Zn)

D−→ (Ẑ, ˆ̃Z), where Ẑ and ˆ̃Z are independent standard normal

random variates. Furthermore, R̂n
D−→ R̂ and ˆ̃Rn

D−→ ˆ̃R (the hatted limits
are the same as R and R̃, which are actually constants and these convergence
relations take place in probability, as well).

By this construction, hYn−1 + 2ẐnR̂n + ˆ̃Zn
ˆ̃Rn has the same distribution

as Yn, and hY + 2ẐR̂ + ˆ̃Z ˆ̃R has the same distribution as Y . Thus, they are
a coupling of (Fn, F ) and as a consequence we get:

b(1)n = `1(Fn, F ) ≤ E
∣∣(hYn−1 + 2ẐnR̂n + ˆ̃Zn

ˆ̃Rn)− (hY + 2ẐR̂ + ˆ̃Z ˆ̃R)
∣∣.

We shall show that b
(1)
n → 0; subsequently, we have Yn

D−→ Y .
Recall that h = p/

√
2. Note that 0 < h < 1. By the triangle inequality,

we get

b(1)n ≤ hE|Yn−1 − Y |+ 2E|ẐnR̂n − ẐR̂|+ E| ˆ̃Zn
ˆ̃Rn − ˆ̃Z ˆ̃R|

= hE|Yn−1 − Y |+ 2E|ẐnR̂n + R̂nẐ − R̂nẐ − ẐR̂|

+ E| ˆ̃Zn
ˆ̃Rn + ˆ̃Rn

ˆ̃Z − ˆ̃Rn
ˆ̃Z − ˆ̃Z ˆ̃R|

≤ h b
(1)
n−1 + 2E|R̂n(Ẑn − Ẑ)|+ 2E|Ẑ(R̂n − R̂)|+ E| ˆ̃Rn( ˆ̃Zn − ˆ̃Z)|

+ E| ˆ̃Z( ˆ̃Rn − ˆ̃R)|.
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We can bound all the four nonrecursive terms by the Cauchy-Schwarz
inequality in the following way:

E|Ẑ(R̂n − R̂)| ≤
√

E[Ẑ2]E[(R̂n − R̂)2]

=

√
E[(R̂n − R̂)2]

=

(
E

[(√
pqX̂

(1)
n−1

2n
−

√
pqc

(1)
p

2

)2])1/2

=

(
E

[(
pqX̂

(1)
n−1

2n
+
pqc

(1)
p

2
− 2pq

√
c
(1)
p X̂

(1)
n−1

2n+1

)])1/2

.

Recall that X̂
(1)
n /2n ≤ 1. By the continuous mapping theorem, dominated

convergence and Theorem 1, the limit of the latter is

lim
n→∞

E|Ẑ(R̂n − R̂)| ≤

(
E

[
lim
n→∞

(
pqX̂

(1)
n−1

2n
+
pqc

(1)
p

2
− 2pq

√
c
(1)
p X̂

(1)
n−1

2n+1

)])1/2

=

(
E

[(
pqc

(1)
p

2
+
pqc

(1)
p

2
− 2pq

√
c
(1)
p × c(1)p

4

)])1/2

= 0,

i.e. limn→∞ E|Ẑ(R̂n − R̂)| = 0. We also have

lim
n→∞

E| ˆ̃Z( ˆ̃Rn − ˆ̃R)| = 0.

We similarly have

E|R̂n(Ẑn − Ẑ)| ≤ E|Ẑn − Ẑ| = o(1),

E| ˆ̃Rn( ˆ̃Zn − ˆ̃Z)| ≤ E| ˆ̃Zn − ˆ̃Z| = o(1).

Combining the bounds, we see that

b(1)n ≤ hb
(1)
n−1 + o(1).
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It follows that, for any fixed ε > 0, there exists a positive index n0(ε), such
that

b(1)n ≤ hb
(1)
n−1 + ε, for n ≥ n0(ε).

For large n, we can proceed iteratively:

b(1)n ≤ ε+ hb
(1)
n−1

≤ ε+ εh+ h2b
(1)
n−2

...

≤ ε(1 + h+ h2 + · · ·+ hn−n0−1) + hn−n0b(1)n0

≤ ε(1 + h+ h2 + · · · ) + hn−n0b(1)n0

=
ε

1− h
+ hn−n0b(1)n0

→ ε

1− h
, as n→∞.

As ε > 0 is arbitrary to start with, we have b
(1)
n → 0. This convergence

asserts that Yn
D−→ Y .

Step 4

Lastly, we want to determine the unique solution to (5). This leads us to a
main result of this investigation.

Theorem 2. Let X
(1)
n be the number of nodes of outdegree 1 in a hierarchical

lattice network with index p at age n. Then, we have

X
(1)
n − p

2−p 2n

2n/2

D−→ N
(

0,
2pq(p+ 1)

(2− p)(2− p2)

)
.

Proof. The normally distributed random variate N (0, σ2) solves (5), for an
appropriate choice of the variance σ2. It is not hard to check that

N (0, σ2)
D
=

p√
2
N1(0, σ

2) + 2N2(0, 1)

√
pqc

(1)
p

2
+N3(0, 1)

√
pq(1− c(1)p )

2
,

where the three normally distributed random variates on the right-hand side
are independent, is a solution of (5), if

N (0, σ2)
D
= N

(
0,

1

2
p2σ2 + 2pqc(1)p +

1

2
pq(1− c(1)p )

)
,
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that is, if σ2 is a solution to the algebraic equation

σ2 =
1

2
p2σ2 + 2pqc(1)p +

1

2
pq(1− c(1)p ).

The solution to the latter is

σ2 =
2pq(p+ 1)

(2− p)(2− p2)
. (6)

Indeed, N
(

0, 2pq(p+1)
(2−p)(2−p2)

)
is a solution to (5); Step 2 guarantees that it is a

unique solution, and Step 3 establishes the convergence.

6 Probabilistic analysis of the number of nodes

of higher outdegree

We first use Lemma 2 to inductively produce the expectations of the number
of nodes of higher degrees. It is easy to show from a simple recurrence that
the order of the graph (number of vertices in it) is O(2n), with asymptotic

2np average. This is also noted in [7]. So, E[X
(k)
n ], for each fixed k, is of the

asymptotic form ck2n + o(2n), as n→∞ (some of the ck’s might be 0). But
then, we have

∑∞
k=1 ck = p. Taking expectations of the recurrence (2), then

scaling by 2n and passing to the limits (guaranteed to exit), as n → ∞, we
find a recurrence relating the coefficients:

ck =
1

2
pck +

1

2

k−1∑
i=d k

2
e

(
i

k − i

)
p2i−kqk−ici.

The following table gives the first few values of ck, for the unbiased case
p = q; each value is approximated to four decimal places. Note that nodes
of the first seven smallest degrees constitute a proportion of more than 97%
of the nodes in the network.

k 1 2 3 4 5 6 7
ck 0.3333 0.0952 0.0254 0.0172 0.0070 0.0054 0.0035

In principle, the hierarchical system of recurrences in Lemma 2 can be
used to inductively develop limit distributional equations for the (normalized)
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number of nodes of higher degrees. We analyze X
(2)
n as an illustration. First,

we obtain the following stochastic recurrence for X
(2)
n by letting k = 2 in

Lemma 2:
X(2)

n
D
= Bin2

(
X

(2)
n−1, p

2
)

+ Bin1

(
X

(1)
n−1, q

)
. (7)

Using the same approach as that in the proof of Proposition 1, we find the
first moment of X

(2)
n , which is

E
[
X(2)

n

]
=

pq

(2− p)(2− p2)
2n +

p2 + p− 2

p(2− p2)
p2n +

2q

p(2− p)
pn (8)

∼ pq

(2− p)(2− p2)
2n.

We square (7) toward second moment calculation of X
(2)
n . Upon taking

averages, we get the term E
[
X

(1)
n−1X

(2)
n−1
]
. Therefore, we need to develop

E
[
X

(1)
n X

(2)
n

]
first. The two variables in the expectation are dependent, hence

the expectation cannot be obtained by taking the product of E
[
X

(1)
n

]
and

E
[
X

(2)
n

]
. Our strategy is to develop a recurrence for E

[
X

(1)
n X

(2)
n

]
and solve

it.
To clearly determine the dependency between the binomial random vari-

ables in (1) and (7), we need to first refine our recurrence for X
(1)
n . In (2),

2n −X(1)
n is used to represent the total number of edges out of nodes of out-

degree at least 2. Separating out edges emanating out of nodes of outdegree
2, we get an alternative representation for (2), namely

2n −X(1)
n = 2X(2)

n +
(
2n −X(1)

n − 2X(2)
n

)
,

where 2X
(2)
n is the total number of edges out of nodes of outdegree 2, and

2n − X
(1)
n − 2X

(2)
n =: E (≥3)n is the total number of edges out of nodes of

outdegree at least 3. Therefore, (1) can be rewritten as

X(1)
n = 2Bin∗

(
X

(1)
n−1, p

)
+ Bin

′(
2X

(2)
n−1, p

)
+ Bin

′′(E (≥3)n , p
)
. (9)

Here Bin∗
(
X

(1)
n−1, p

)
, Bin

′(
2X

(2)
n−1, p

)
and Bin

′′(E (≥3)n , p
)

are conditionally in-

dependent (given X
(1)
n−1 and X

(2)
n−1).
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Multiplying (7) by (9) yields a recurrence for X
(1)
n X

(2)
n ,

X(1)
n X(2)

n
D
= 2Bin∗

(
X

(1)
n−1, p

)
Bin2

(
X

(2)
n−1, p

2
)

+ 2Bin∗
(
X

(1)
n−1, p

)
Bin1

(
X

(1)
n−1, q

)
+ Bin

′(
2X

(2)
n−1, p

)
Bin2

(
X

(2)
n−1, p

2
)

+ Bin
′(

2X
(2)
n−1
)

Bin1

(
X

(1)
n−1, q

)
+ Bin

′′(E (≥3)n , p
)

Bin2

(
X

(2)
n−1, p

2
)

+ Bin
′′(E (≥3)n , p

)
Bin1

(
X

(1)
n−1, q

)
. (10)

Taking double expectations on both sides, we get a recurrence for E
[
X

(1)
n X

(2)
n

]
.

For simplicity, we shall denote the averages of the six terms on the right hand
side in (10) by (a), (b), (c), (d), (e) and (f), respectively, and find their ex-
pectations one by one.

Note that the two binomial random variables in each of (a), (d), (e) and (f)
are conditionally independent, therefore their expectations can be calculated

in a manner like what we did for E
[(
X

(1)
n

)2]
. Also, observe that (b) can

be rewritten as 2Bin∗
(
X

(1)
n−1, p

)(
X

(1)
n−1 − Bin∗

(
X

(1)
n−1, p

))
, the expectation of

which can be calculated similarly.
Unfortunately, the above approach could not be applied to get the ex-

pectation of (c), because the two Binomial random variables in (c) are con-
ditionally dependent. Here the need arises for use of the more refined repre-
sentation of the binomial random variable as a sum of indicators, as alluded
to in Section 3. We write

Bin
′(

2X
(2)
n−1, p

)
=

X
(2)
n−1∑
i=1

(
I{ULi

<p} + I{URi
<p}

)
,

Bin2(X
(2)
n−1, p

2
)

=

X
(2)
n−1∑
j=1

I{ULj
<p}I{URj

<p}.

Here, the subscript Li(Ri) represents the left (right) edge out of the ith node
of outdegree 2, respectively, and the product I{ULi

<p}I{URi
<p} indicates the

event that the left and right edges out of the ith node of outdegree 2 are
being serialized simultaneously. By construction, I{ULi

<p} is independent of
I{ULj

<p}, for any i 6= j, and I{ULi
<p} is independent of I{URj

<p}, for any i

and j.
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Using this new representation, (c) can be rewritten as

Bin
′(

2X
(2)
n−1, p

)
Bin2

(
X

(2)
n−1, p

2
)

=

X
(2)
n−1∑
i=1

(
I{ULi

<p} + I{URi
<p}

)X
(2)
n−1∑
j=1

(
I{ULj

<p}I{URj
<p}

)

=

X
(2)
n−1∑
i=1

X
(2)
n−1∑
j=1

I{ULi
<p}I{ULj

<p}I{URj
<p} +

X
(2)
n−1∑
i=1

X
(2)
n−1∑
j=1

I{URi
<p}I{ULj

<p}I{URj
<p}.

The expectations of these two terms can be calculated easily by conditioning
on X

(2)
n−1 and using independence of the indicators. For instance, for i 6= j,

we have

E
[
I{URi

<p}I{ULj
<p}I{URj

<p}
]

= E
[
I{URi

<p}
]
E
[
I{ULj

<p}
]
E
[
I{URj

<p}
]

= p3,

whereas, for i = j, we have

E
[
I{URi

<p}I{ULi
<p}I{URi

<p}
]

= E
[
I{URi

<p}I{ULi
<p}
]

= p2.

Therefore, we can break up the sums into components where i = j, and
components where i 6= j, and use the expectations as discussed. So, now we
obtain a recurrence for E

[
X

(1)
n X

(2)
n

]
, namely

E
[
X(1)

n X(2)
n

]
= p3 E

[
X

(1)
n−1X

(2)
n−1
]

+ pq E
[
(X

(1)
n−1)

2
]

+ (p32n−1 + 2p2q)E
[
X

(2)
n−1
]

+ (pq2n−1 − 2pq)E
[
X

(1)
n−1
]
.

This linear recurrence can be explicitly solved, as all the nonrecursive
parts have been established in Proposition 1 and (8). With E

[
X

(1)
n X

(2)
n

]
in

our possession, we are able to get the exact variance of X
(2)
n , and the exact

covariance between X
(1)
n and X

(2)
n . As the formulæ are lengthy and less

relevant to future analysis, we will only report their leading terms here, and
relegate the exact expressions to Appendix A. Asymptotically, the variance
of X

(2)
n , and the covariance between X

(1)
n and X

(2)
n are

Var
[
X(2)

n

]
∼ p(4− 4p− 2p2 − 2p3 + 10p4 − 13p5 + 10p6 − 2p7 − p8)

(2− p)(2− p2)(2− p3)(2− p4)
2n

=: α222
n, (11)

Cov
[
X(1)

n , X(2)
n

]
∼ − 2p2(1− 2p+ 2p2 − p3)

(2− p)(2− p2)(2− p3)
2n =: α122

n. (12)
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Note that the coefficient −2p2(1− 2p+ 2p2− p3)/((2− p)(2− p2)(2− p3)) is
always negative for p ∈ (0, 1); the increase of nodes of outdegree 1 occurs at
the expense of nodes of outdegree 2, and vice versa.

In a way similar to the proof of Theorem 1, we get concentration laws for
X

(2)
n :

X
(2)
n

2n

a.s.−→ pq

(2− p)(2− p2)
=: c(2)p , (13)

E|X(2)
n − c(2)p 2n| = O(2

n
2 ).

Having established these concentration results, we are now ready to get
the asymptotic joint distribution of

(
X

(1)
n , X

(2)
n

)
by the contraction method,

adapting notation and the four steps mentioned above to be in the multivari-
ate setting. The steps are very similar to those in the proof of the asymptotic
distribution of X

(1)
n . Toward a bivariate form of Step 1 in succinct notation,

we rewrite (4) as

Y (1)
n = hY

(1)
n−1 + Sn, (14)

with Sn = 2ZnRn + Z̃nR̃n, and normalize X
(2)
n as

Y (2)
n :=

X
(2)
n − c(2)p 2n

√
2n

D
= W (2)

n V (2)
n +W (1)

n V (1)
n +

p2√
2
Y

(2)
n−1 +

q√
2
Y

(1)
n−1

=
p2√

2
Y

(2)
n−1 +

q√
2
Y

(1)
n−1 + S ′n, (15)

where S ′n := W
(2)
n V

(2)
n +W

(1)
n V

(1)
n ,

W (2)
n :=

Bin2

(
X

(2)
n−1, p

2
)
− p2X(2)

n−1√
p2(1− p2)X(2)

n−1

, W (1)
n :=

Bin1

(
X

(1)
n−1, q

)
− qX(1)

n−1√
pqX

(1)
n−1

,

V (2)
n :=

√
p2(1− p2)

2
×
X

(2)
n−1

2n−1 , V (1)
n :=

√
pq

2
×
X

(1)
n−1

2n−1 .

From (14) (15) we have a bivariate distributional recursion:

Yn :=

(
Y

(1)
n

Y
(2)
n

)
D
=

(
h 0
q√
2

√
2h2

)(
Y

(1)
n−1
Y

(2)
n−1

)
+

(
Sn

S ′n

)
=: AYn−1 + Bn. (16)
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Note that W
(1)
n and W

(2)
n are conditionally independent given X

(1)
n−1 and X

(2)
n−1

and both are asymptotically normal. Denote their limits by W (1),W (2) re-
spectively. Also note that

V (1)
n

a.s.−→

√
pqc

(1)
p

2
=: V (1), V (2)

n
a.s.−→

√
p2(1− p2)c(2)p

2
=: V (2).

An application of the multivariate central limit theorem shows that Bn
D−→

B, where

B :=

(
S
S ′

)
=

(
2ZR + Z̃R̃

W (2)V (2) +W (1)V (1)

)
is a normal vector with

Var[S] =
pq(1 + 3c

(1)
p )

2
, Var[S ′] =

p2(1− p2)c(2)p + pqc
(1)
p

2
,

and

Cov[S, S ′] =
p3q2 − p2q(2− p2)

(2− p)(2− p2)
.

A thorough explanation and the calculation of Cov[S, S ′] can be found in
Appendix B.

Under the assumption that Yn
D−→ Y we therefore get from (16) the

limiting equation:
Y = AY + B, (17)

with Y independent of B. Y has a distribution to be determined from
analysis of the fixed point equation (17) in further steps.

We next argue Step 2. We extend the notions and notations to bivariate
cases, and let Y and Ỹ be two bivariate random vectors with distribution
functions FY and FỸ in F1, which now means the space of bivariate distri-
butions with finite first moment. We can go through Step 2 for the bivariate
transformation

T (2) : F1 ×F1 → F1 ×F1,

defined by T (2)(FY) being the law of AY + B.
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The desired contracting property of T (2) follows from the calculation

`1

(
T (2)(Ỹ), T (2)(Y)

)
≤ E

∣∣(hỸ (1) + S)− (hY (1) + S)
∣∣

+ E
∣∣(√2h2Ỹ (2) +

q√
2
Ỹ (1) + S ′

)
−
(√

2h2Y (2) +
q√
2
Y (1) + S ′

)∣∣∣
= hE

∣∣Ỹ (1) − Y (1)
∣∣+
√

2h2E
∣∣Ỹ (2) − Y (2)|

+
q√
2
E
∣∣Ỹ (1) − Y (1)|

≤ max
(√

2h2, h+
q√
2

)
`1(FỸ, FY).

Note that max
(√

2h2, h+ q√
2

)
< 1, thus the transformation T (2) is contract-

ing. Uniqueness follows just as in the case of k = 1.
We now briefly sketch the distance computations required in Step 3. We

work with “hatted” counterparts defined on the space of an optimal coupling
(Yn,Y).

We compute the Wasserstein distance

b(2)n := `1(FYn , FY) ≤ E
∣∣(hY (1)

n−1 + Ŝn)− (hY (1) + Ŝ)
∣∣

+ E
∣∣(2h2Y (2)

n−1 +
q√
2
Y

(1)
n−1 + Ŝ ′n)

− (2h2Y (2) +
q√
2
Y (1) + Ŝ ′)

∣∣
≤ 2h2E|Y (2)

n−1 − Y (2)|+
(
h+

q√
2

)
E|Y (1)

n−1 − Y (1)|

+ E|Ŝn − Ŝ|+ E|Ŝ ′n − Ŝ ′|

≤ 2h2b
(2)
n−1 +

(
h+

q√
2
− 2h2

)
b(1)n

+ E|Ŝn − Ŝ|+ E|Ŝ ′n − Ŝ ′|.

In our discussion of the case k = 1, we have shown that both b
(1)
n and

E|Ŝn− Ŝ| converge to 0. By very similar considerations (triangle inequalities,
Cauchy-Schwarz inequalities, etc.), we can also show that E|Ŝ ′n−Ŝ ′| converges
to zero. This puts the latter distance calculation in the form

b(2)n ≤ 2h2b
(2)
n−1 + an,
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where an is o(1). We saw in the case k = 1 that an inequality of this type was

sufficient to prove that b
(1)
n → 0. Retracing these steps on the last inequality,

we can now easily produce a proof that b
(2)
n → 0, as n → ∞, completing

Step 3.
The next theorem essentially checks Step 4. We use N2(0,Σ) to mean

a bivariate normal distribution with mean

(
0
0

)
and covariance matrix Σ.

In the following, the symbols c
(1)
p , c

(2)
p , are those in (3) and (13), and the

symbols α12 and α22 are defined in (12) and (11). For consistency of bivariate
notation and æsthetics, we rename σ2 (which appeared in (6)) as α11.

Theorem 3. Let X
(1)
n and X

(2)
n be the number of nodes of outdegrees 1 and 2

in a hierarchical lattice network with index p at age n. Then, we have(
X

(1)
n

X
(2)
n

)
− 2n

(
c
(1)
p

c
(2)
p

)
2n/2

D−→ N2

(
0,

(
α11 α12

α12 α22

))
.

Proof. Let A =

(
h 0
q√
2

√
2h2

)
. We shall show that the bivariate normal

distribution solves (17), with covariance matrix satisfying(
α11 α12

α12 α22

)
= A

(
α11 α12

α12 α22

)
AT +

(
Var[S] Cov[S, S ′]

Cov[S, S ′] Var[S ′]

)
.

Solving for α11, α12, a22, we get

α11 =
2pq(p+ 1)

(2− p)(2− p2)
,

α12 = − 2p2(1− 2p+ 2p2 − p3)
(2− p)(2− p2)(2− p3)

,

and

α22 =
p(4− 4p− 2p2 − 2p3 + 10p4 − 13p5 + 10p6 − 2p7 − p8)

(2− p)(2− p2)(2− p3)(2− p4)
.

As a consequence of the previous steps we get the result.
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7 Concluding remarks

We investigated X
(k)
n , the number of nodes of outdegree k in a random hier-

archical lattice network at age n. We determined the exact first two moments
of X

(1)
n . The structure offers quite a bit of challenge when we get to exact

higher moments, requiring very intensive combinatorial computation. As a
general paradigm, most second moments in this investigation are obtained
with the help of a symbolic computation system (we used Maple c©). We

also obtained an asymptotic Gaussian law for X
(1)
n . Owing to a recursive

stochastic recurrence system relating X
(k)
n to the number of nodes of smaller

outdegrees, we can in principle go forward and develop similar limit laws
for X

(k)
n , for k ≥ 1. As an illustration, we showed how to extend the deriva-

tions for X
(1)
n to get a bivariate Gaussian law for (X

(1)
n , X

(2)
n ). The study

needed a variation of the contraction method including toll terms depending
on the recursion variable. Our success with the particular instance of hier-
archical lattice network leads us to expect tweaked forms of the contraction
method using some variant of the four steps we outlined in our approach,
will succeed and be important tools for random structures that tend to dou-
ble their size quickly (say in one step). These structures are in the vogue
[6, 17]. It remains to be seen if a general methodology and broad theorems
can be developed for this and similar types of recursions allowing to conclude
limiting results for further interesting functions of the network.
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[4] Drmota, M., Giménez, O. and Noy, M. (2010). Vertices of given degree
in series-parallel graphs. Random Structures & Algorithms, 36, 273–314.

[5] Farmakis, I., Moskowitz, M. (2013) . Fixed Point Theorems and Their
Applications. World Scientific, New Jersey.

[6] Feng, Q. (2014). Random fast growth models for treelike networks. Pri-
vate Communication.

[7] Hambly, B. and Jordan, J. (2004). A random hierarchical lattice: the
series-parallel graph and its properties. Advances in Applied Probability,
36, 824–838.

[8] Karr, A. (1993). Probability. Springer, New York.

[9] Mahmoud, H. (2013). Some node degree properties of series-parallel
graphs evolving under a stochastic growth model. Probability in the En-
gineering and Informational Sciences, 27, 297–307.

[10] Mahmoud, H. (2014). Some properties of binary series-parallel graphs.
Probability in the Engineering and Informational Sciences 28, 565–572.
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Appendix A

The exact covariance between X
(1)
n and X

2)
n is

Cov
[
X(1)

n X(2)
n

]
=

6− 6p

(p+ 1)(2− p)
pn +

2p2(p3 − 2p2 + 2p− 1)

(2− p)(2− p2)(2− p3)
2n

− (p2 + p− 2)

(2− p)(2− p2)
(2p)2n

+
(8p5 + 2p4 − 10p3 − 16p2 − 16p+ 32)

p(p+ 1)(2− p)(2− p2)(2− p3)
p3n

+
4p3 − 6p2 − 2p+ 4

(2− p)2(2− p2)
(2p)n

− (2p4 − 12p3 + 2p2 + 40p− 32)

p(2− p)2(2− p2)
p2n

− p2(1− p)
(2− p)2(2− p2)

4n

−
(
pn − pn+1

2− p
+

p

2− p
2n
)

×
( 2− 2p

p(2− p)
pn +

p2 + p− 2

p(2− p2)
p2

n

+
p(1− p)

(2− p)(2− p2)
2n
)
.
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The exact variance of X
(2)
n is

Var
[
X(2)

n

]
=
p4 + 10p3 + 9p2 − 14p− 6

p2(p+ 1)(2− p2)
p2n

+
−2p4 − 10p3 + 8p2 − 2p+ 6

p(p2 + p+ 1)(p+ 1)(2− p)
pn

+
−4p4 − 12p3 − 4p2 + 20

p2(p+ 1)(2− p3)
p3n

+
p7 + 4p6 + 7p5 + 9p4 + 2p3 − 3p2 − 6p− 14

p2(p+ 1)(p2 + p+ 1)(2− p4)
p4

n

+
p(4− 4p− 2p2 − 2p3 + 10p4 − 13p5 + 10p6 − 2p7 − p8)

(2− p)(2− p2)(2− p3)(2− p4)
2n.

Appendix B

We show that

(
Sn

S ′n

)
D−→N2(0,Σ) with Σ specified below. Note that

(
Sn

S ′n

)
can be written in the following way:

(
Sn

S ′n

)
=

(
2ZnRn + Z̃nR̃n

W
(1)
n V

(1)
n +W

(2)
n V

(2)
n

)
=

(
2ZnRn

W
(1)
n V

(1)
n

)
+

(
Z̃nR̃n

W
(2)
n V

(2)
n

)
=

(
2Rn 0

0 V
(1)
n

)(
Zn

W
(1)
n

)
+

(
R̃n 0

0 V
(2)
n

)(
Z̃n

W
(2)
n

)
.

Recall that

Z̃n =
Bin(2n−1 −X(1)

n−1, p)− p(2n−1 −X(1)
n−1)√

pq(2n−1 −X(1)
n−1)

,

where 2n−1 −X(1)
n−1 = 2X

(2)
n−1 + E (≥3)n . Let

Z̃(1)
n =

Bin(X
(2)
n−1, p)− pX

(2)
n−1√

pq(2n−1 −X(1)
n−1)

,
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Z̃(2)
n =

Bin(X
(2)
n−1 + E (≥3)n , p)− p(X(2)

n−1 +X
(≥3)
n−1 )√

pq(2n−1 −X(1)
n−1)

.

We can further write

(
Sn

S ′n

)
as

(
2Rn 0

0 V
(1)
n

)(
Zn

W
(1)
n

)
+

(
R̃n 0

0 V
(2)
n

)(
Z̃

(1)
n

W
(2)
n

)
+

(
R̃n 0
0 0

)(
Z̃

(2)
n

0

)
,

where

(
Zn

W
(1)
n

)
,

(
Z̃

(1)
n

W
(2)
n

)
and

(
Z̃

(2)
n

0

)
are mutually independent, and each of

them can be written as the sum of independent, zero-mean random vectors.
For example, we can write the first vector as(

Zn

W
(1)
n

)
=

1√
pqX

(1)
n−1

(
Bin(X

(1)
n−1, p)− pX

(1)
n−1

Bin(X
(1)
n−1, q)− qX

(1)
n−1

)

=
1√

pqX
(1)
n−1

X
(1)
n−1∑
i=1

(
I{Ui<p} − p
I{Ui<q} − q

)
,

where

(
I{Ui<p} − p
I{Ui<q} − q

)
and

(
I{Uj<p} − p
I{Uj<q} − q

)
are independent and have mean 0,

for i 6= j. Note also that they are (conditionally) identically distributed.

Therefore, the multivariate central limit theorem guarantees that

(
Zn

W
(1)
n

)
converges in distribution to a mean-zero bivariate normal random vector.

Similar arguments can show that

(
Z̃

(1)
n

W
(2)
n

)
and

(
Z̃

(2)
n

0

)
both converge in

distribution to bivariate normal random vectors in the limit. Note that the
three limit random vectors are mutually independent. Since(

2Rn 0

0 V
(1)
n

)
a.s.−→

(
2R 0
0 V (1)

)
,

(
R̃n 0

0 V
(2)
n

)
a.s.−→

(
R̃ 0
0 V (2)

)
,

and (
R̃n 0
0 0

)
a.s.−→

(
R̃ 0
0 0

)
,
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an application of Slutsky’s theorem proves that the limit of

(
Sn

S ′n

)
is a lin-

ear combination of three zero-mean, independent bivariate normal random
vectors, hence is itself a zero-mean bivariate normal random vector.

We next take up Cov[S, S ′], i.e. Σ. Note that Cov[S, S ′] = Cov[2ZR +
Z̃R̃,W (2)V (2)+W (1)V (1)]. We can find it by taking the limit of Cov[2ZnRn+

Z̃nR̃n,W
(2)
n V

(2)
n +W

(1)
n V

(1)
n ], which needs careful calculation due to the intri-

cate dependency structure between (Zn, Z̃n) and (W
(1)
n ,W

(2)
n ).

Recall that Zn and Z̃n, W
(1)
n and W

(2)
n are conditionally independent.

Furthermore, Zn and W
(2)
n , Z̃n and W

(1)
n are conditionally independent as

well, because they depend on different sets of edges in the network. For
example, Zn depends on edges coming out of nodes of outdegree 1, while
W

(2)
n is related to edges out of nodes of outdegree 2. On the other hand, Zn

and W
(2)
n , Z̃n and W

(2)
n are dependent. For example, Z̃n depends on edges out

of nodes of outdegree greater than or equal to 2, which includes outdegree 2,
thus is related to W

(2)
n .

In view of the above analysis, we have

Cov[2ZnRn + Z̃nR̃n,W
(2)
n V (2)

n +W (1)
n V (1)

n ]

= Cov[2ZnRn,W
(2)
n V (2)

n ] + Cov[2ZnRn,W
(1)
n V (1)

n ]

+ Cov[Z̃nR̃n,W
(2)
n V (2)

n ] + Cov[Z̃nR̃n,W
(1)
n V (1)

n ]

= Cov[2ZnRn,W
(1)
n V (1)

n ] + Cov[Z̃nR̃n,W
(2)
n V (2)

n ],

where both terms can be found in the same way as Cov[X
(1)
n , X

(2)
n ]. We have
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Cov[2ZnRn,W
(1)
n V (1)

n ] = E[2ZnRnW
(1)
n V (1)

n ]− E[2ZnRn]E[W (1)
n V (1)

n ]

= E[2ZnRnW
(1)
n V (1)

n ]

= E
[
2

Bin(X
(1)
n−1, p)− pX

(1)
n−1√

2n
×

Bin(X
(1)
n−1, q)− qX

(1)
n−1√

2n

]
= E

[
−2

(
pX

(1)
n−1 − Bin(X

(1)
n−1, p)

)2
2n

]

= −
E[E[

(
pX

(1)
n−1 − Bin(X

(1)
n−1, p)

)2|X(1)
n−1]]

2n−1

= −
pqE[X

(1)
n−1]

2n−1

= − p2q

2− p
,

Cov[Z̃nR̃n,W
(2)
n V (2)

n ] = E[Z̃nR̃nW
(2)
n V (2)

n ]− E[Z̃nR̃n]E[W (2)
n V (2)

n ]

= E[Z̃nR̃nW
(2)
n V (2)

n ]

= E

[
Bin(2n−1 −X(1)

n−1, p)− p(2n−1 −X(1)
n−1)√

2n

×
Bin(X

(2)
n−1, p

2)− p2X(2)
n−1√

2n

]

=
1

2n

(
E
[
Bin(2n−1 −X(1)

n−1, p)] Bin(X
(2)
n−1, p

2)
]

− E
[
p(2n−1 −X(1)

n−1) Bin(X
(2)
n−1, p

2)
]

− E
[
p2X

(2)
n−1 Bin(2n−1 −X(1)

n−1, p)
]

+ E
[
p(2n−1 −X(1)

n−1) p
2X

(2)
n−1

])
.

The last three terms can be calculated by taking double expectation. The
first one needs some work. Note that Bin(2n−1−X(1)

n−1, p) = Bin(2X
(2)
n−1, p) +
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Bin(E (≥3)n , p), and Bin(E (≥3)n , p) is conditionally independent of Bin(X
(2)
n−1, p

2).
Therefore, we have

E
[
Bin(2n−1 −X(1)

n−1, p)] Bin(X
(2)
n−1, p

2)
]

= E
[
Bin(2X

(2)
n−1, p) Bin(X

(2)
n−1, p

2)
]

+ E
[
Bin(E (≥3)n , p) Bin(X

(2)
n−1, p

2)
]
,

where the first expectation has been calculated in Section (6) to be E[2p3(X
(2)
n−1)

2+

2p2qX
(2)
n−1].

Combining all the terms yields

Cov[Z̃nR̃n,W
(2)
n V (2)

n ] =
p2qE[X

(2)
n−1]

2n−1 ∼ p3q2

(2− p)(2− p2)
.

Upon taking limits, we have

Cov[S, S ′] =
p3q2 − p2q(2− p2)

(2− p)(2− p2)
.
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