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Abstract: We consider a completely specified factor model for a risk vector 𝑋 = (𝑋1, . . . , 𝑋𝑑) , where the
joint distributions of the components of 𝑋 with a risk factor 𝑍 and the conditional distributions of 𝑋 given
𝑍 are specified. We extend the notion of *-product of 𝑑-copulas as introduced for 𝑑 = 2 and continuous
factor distribution in Durante et al. [7] to the multivariate and discontinuous case. We give a Sklar-type
representation theorem for factor models showing that these *-products determine the copula of a completely
specified factor model. We investigate in detail approximation, transformation, and ordering properties of
*-products and, based on them, derive general orthant ordering results for completely specified factor models
in dependence on their specifications. The paper generalizes previously known ordering results for the worst
case partially specified risk factor models to some general classes of positive or negative dependent risk factor
models. In particular, it develops some tools to derive sharp worst case dependence bounds in subclasses of
completely specified factor models.

Keywords: componentwise convex copulas, concordance order, upper product of bivariate copulas, factor model,
conditional independence, conditionally increasing in sequence

1 Introduction

A relevant class of distributions for modeling dependencies are factor models where the components of the
underlying random vector 𝑋 = (𝑋1, . . . , 𝑋𝑑) are supposed to depend on some common random factor 𝑍
through

𝑋𝑖 = 𝑓𝑖(𝑍, 𝜀𝑖) , 1 ≤ 𝑖 ≤ 𝑑

for some functions 𝑓𝑖 and a random vector (𝜀1, . . . , 𝜀𝑑) that is independent of 𝑍 . In this paper, we consider
the case where 𝑍 is a real-valued random variable. If the bivariate distribution of (𝑋𝑖, 𝑍) is specified and the
distribution of 𝑋|𝑍 = 𝑧 is known for all 𝑖 and 𝑧 , then the distribution of 𝑋 is fully specified. We denote this
setting a completely specified factor model (CSFM).

For applications to risk modeling, partially specified factor models (PSFMs) are introduced in Bernard
et al. [4]. In these models, the distributions of (𝑋𝑖, 𝑍) are specified. The joint distribution of (𝜀1, . . . , 𝜀𝑑) is, how-
ever, not prescribed. This means, that only the distributions of 𝑋𝑖 and 𝑍 as well as the copula 𝐷𝑖 = 𝐶𝑋𝑖,𝑍 of
(𝑋𝑖, 𝑍) are given. Then, the worst case distribution in the PSFM is determined by the conditionally comono-
tonic random vector 𝑋𝑐

𝑍 = 𝐹−1
𝑋1|𝑍(𝑈), . . . , 𝐹−1

𝑋𝑑|𝑍(𝑈)) , where 𝑈 ∼ 𝑈(0, 1) is independent of 𝑍 , assuming
generally a non-atomic underlying probability space (Ω,𝒜, 𝑃 ) . If 𝑍 has a continuous distribution, the copula
of 𝑋𝑐

𝑍 is given by the upper product of the bivariate copulas 𝐷𝑖 , see [2].
In standard factor models, the individual factors 𝜀1, . . . , 𝜀𝑑 are assumed to be independent. Then, the

distribution of 𝑋 is completely specified and the components of 𝑋 are conditionally independent given 𝑍 = 𝑧

for all 𝑧 . Further, the copula of 𝑋 is then given by the conditional independence product of the bivariate
specifications 𝐷𝑖 , which is an extension of the bivariate copula product introduced in Darsow et al. [5] to
arbitrary dimension, see [16].
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Fig. 1 On the left: A partially specified factor model with dependence specifications 𝐷1, . . . , 𝐷𝑑 and risk factor dis-
tribution function 𝐺 . On the right: A completely specified factor model with dependence specifications 𝐸1, . . . , 𝐸𝑑 ,

conditional copula family C and factor distribution function 𝐺′ .

In this paper, we introduce and study the *-product of copulas as an extension of the bivariate copula
product considered in Durante et al. [7] to the multivariate case and to general factor distribution functions in
order to model the copula of 𝑋 = (𝑓𝑖(𝑍, 𝜀𝑖))𝑖 for general dependence structures among (𝜀1, . . . , 𝜀𝑑) and also
discontinuous 𝑍 . We derive a Sklar-type theorem implying that the dependence structure of 𝑋 is determined
by the *-product of the dependence specifications in the CSFM. Further, we establish a general continuity
result for the *-product in dependence on all its arguments which is useful for corresponding approximation
results. We study transformation properties of the *-product and introduce, as a counterpart of the upper
product, the lower product of bivariate copulas in the two- and three-dimensional case.

In Section 3, we derive general lower and upper orthant ordering results for the*-product in dependence on
the copula specifications. This requires the consideration of integral inequalities like the rearrangement results
of Lorentz [17] and Fan and Lorentz [11]. We extend and strengthen several recent results on the lower and
upper orthant ordering of upper products to general *-products. In particular, we show that componentwise
convexity of the conditional copulas plays an important role for the ordering of the *-products. We introduce
the ≤𝜕2𝑆-ordering on the set of bivariate copulas based on the Schur-ordering of copula derivatives allowing to
derive a meaningful comparison criterion. We show that many well-known copula families satisfy this ordering.

Finally, in Section 4, we combine the *-product ordering results with the ordering of marginal distributions
and obtain several general ordering results in CSFMs. As a consequence, this yields maximum elements and,
thus, sharp bounds w.r.t. the lower and upper orthant ordering for classes of PSFMs as well as for classes of
CSFMs with the conditional independence assumption.

2 The *-product of copulas in CSFMs

A 𝑑-copula is a distribution function 𝐶 : [0, 1]𝑑 → [0, 1] with uniform univariate marginal distribution functions.
Due to Sklar’s theorem, every 𝑑-dimensional distribution function 𝐹 can be decomposed into a composition
of a 𝑑-copula 𝐶 and the univariate marginal distribution functions 𝐹1, . . . , 𝐹𝑑 of 𝐹 , i.e.

𝐹 (𝑥) = 𝐶 (𝐹1(𝑥1), . . . , 𝐹𝑑(𝑥𝑑)) (1)

for all 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 . The copula 𝐶 is uniquely determined on the Cartesian product×𝑑

𝑖=1
Ran(𝐹𝑖)

of the ranges of 𝐹𝑖 , 1 ≤ 𝑖 ≤ 𝑑 . Further, for every 𝑑-copula and for all distribution functions 𝐹1, . . . , 𝐹𝑑 ,

the right-hand side in (1) defines a 𝑑-variate distribution function, see the original papers of Sklar [30] and
Schweizer and Sklar [28], see also Nelsen [23], Rüschendorf [26], and Durante and Sempi [10]. Denote by 𝒞𝑑
the set of all 𝑑-copulas and by ℱ𝑑 (ℱ𝑑𝑐 ) the set of (continuous) 𝑑-dimensional distribution functions.
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In the setting of a completely specified factor model, the distribution function 𝐹 of 𝑋 = (𝑋1, . . . , 𝑋𝑑)

can be decomposed into

𝐹 (𝑥1, . . . , 𝑥𝑑) =

∞∫︁
−∞

𝐹𝑧(𝑥1, . . . , 𝑥𝑑) d𝐺(𝑧) =

∞∫︁
−∞

𝐶𝑧
(︀
𝐹1|𝑧(𝑥1), . . . , 𝐹𝑑|𝑧(𝑥𝑑)

)︀
d𝐺(𝑧) ,

where 𝐹𝑧 is the conditional distribution function of (𝑋1, . . . , 𝑋𝑑)|𝑍 = 𝑧 with univariate marginal conditional
distribution functions 𝐹𝑖|𝑧 and conditional copula 𝐶𝑧 ∈ 𝒞𝑑 . Each 𝐹𝑖|𝑧 depends via

𝐷𝑖 (𝐹𝑖(𝑥), 𝐺(𝑧)) = 𝐹𝑋𝑖,𝑍(𝑥, 𝑧) =

𝑧∫︁
−∞

𝐹𝑖|𝑠(𝑥) d𝐺(𝑠)

only on the dependence specification 𝐷𝑖 = 𝐶𝑋𝑖,𝑍 and the marginal distribution functions 𝐹𝑖 and 𝐺 , where
𝐺 = 𝐹𝑍 denotes the distribution function of 𝑍 .

Altogether, this motivates to introduce the *-product of copulas as a product of the specifications
𝐷1, . . . , 𝐷𝑑 ∈ 𝒞2 , of the conditional copulas (𝐶𝑧)𝑧 , 𝐶𝑧 ∈ 𝒞𝑑 , and of the risk factor distribution function
𝐺 ∈ ℱ1 . In a Sklar-type theorem, we show that the *-product is a copula that describes the dependence
structure of the risk vector 𝑋 in the CSFM. We give the basic properties of the *-products that are used in
the following sections to develop several ordering results for *-products and, thus, ordering results for CSFMs.

Our results extend the bivariate *-product considered in Durante et al. [7] and the bivariate conditional
independence product introduced in Darsow et al. [5]. A discussion of some properties of bivariate *-products
is given in Durante and Sempi [10, Section 5.5]. An important particular case of the *-product in the present
paper is the multivariate conditional independence product which describes the dependence structure of the
commonly used factor models with conditional independence assumption, cf. Krupskii and Joe [16]. The
particular case of upper products that corresponds to upper risk bounds in partially specified factor models
has been investigated in Ansari and Rüschendorf [2]. As a counterpart of upper products, we introduce the
lower product of bivariate copulas that describes best case bounds in the two-, respectively, three-dimensional
PSFM.

2.1 Definition of *-products

The consideration of general factor distributions needs the following notion of generalized differentiation. For
𝐺 ∈ ℱ1 denote by

𝜄𝐺 : [0, 1] → Ran(𝐺) , 𝑡 ↦→ 𝐺 ∘𝐺−1(𝑡) ,

𝜄−𝐺 : [0, 1] → Ran(𝐺−) , 𝑡 ↦→ 𝐺− ∘𝐺−1(𝑡)

the transformation of the identity w.r.t. to 𝐺 , resp. 𝐺− , where 𝐺−1 : [0, 1] → R∪{±∞} given by 𝐺−1(𝑢) :=

inf{𝑥 |𝐺(𝑥) ≥ 𝑢} , inf ∅ = ∞ , is the generalized inverse of 𝐺 , and 𝐺− is the left-side continuous version of 𝐺 .
Several properties of the transformations 𝜄𝐺 and 𝜄−𝐺 are given in Lemma A.1 in the appendix, see also Figure
2.

Define for a left-continuous function 𝑓 : [0, 1] → R the generalized differential operator 𝜕𝐺 by the left-hand
limit

𝜕𝐺𝑓(𝑡0) := lim
𝑡↗𝑡0

𝑓(𝜄𝐺(𝑡0))− 𝑓(𝜄−𝐺(𝑡))

𝜄𝐺(𝑡0)− 𝜄−𝐺(𝑡)
, (2)

𝑡0 ∈ (0, 1] , if the limit exists. As usual, denote by 𝜕𝐺𝑖 the operator 𝜕𝐺 which is applied to the 𝑖-th coordinate
of a function of several arguments.

Remark 2.1. (a) The denominator in (2) is positive for all 0 ≤ 𝑡 < 𝑡0 ≤ 1 because 𝜄𝐺(𝑡0) ≥ 𝑡0 > 𝑡 ≥ 𝜄−𝐺(𝑡)

by Lemma A.1(iv).
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Fig. 2 On the left: a distribution function 𝐺 ; on the right: its corresponding transformations 𝜄𝐺 (dashed and solid
line) and 𝜄−𝐺 (dotted and solid line) which both coincide with the identity function on the interior of the range of 𝐺 .

Note that 𝜄−𝐺 is left-continuous, and 𝜄𝐺 is neither left- nor right-continuous.

(b) If 𝑓 is left-continuous and if the (ordinary) left-hand derivative 𝑓 ′−(𝑡0) := lim𝑡↗𝑡0
𝑓(𝑡0)−𝑓(𝑡)

𝑡0−𝑡 exists, then
𝜕𝐺𝑓(𝑡0) exists for all 𝐺 ∈ ℱ1 . To see this, we know by (a) that 𝜄𝐺(𝑡0) ≥ 𝑡0 ≥ lim𝑡↗𝑡0 𝜄

−
𝐺(𝑡) . Hence,

if 𝜄𝐺(𝑡0) = lim𝑡↗𝑡0 𝜄
−
𝐺(𝑡) = 𝑡0 , then 𝜕𝐺𝑓(𝑡0) = 𝑓 ′−(𝑡0) . If 𝜄𝐺(𝑡0) > lim𝑡↗𝑡0 𝜄

−
𝐺(𝑡) , then 𝜕𝐺𝑓(𝑡0) exists

since 𝑓 and 𝜄𝐺 are left-continuous, see Lemma A.1(vi).
(c) A useful transformation property of 𝜕𝐺 is that

𝜕𝐺𝑓(𝑡) = 𝜕𝐺𝑓(𝜄𝐺(𝑡)) = 𝜕𝐺𝑓(𝐺(𝑥)) for all 𝐺 ∈ ℱ1 , for 𝐺-almost all 𝑡 , and 𝑥 = 𝐺−1(𝑡) . (3)

This is a consequence of Lemma A.1(v) considering the cases where 𝐺 is continuous at 𝑥 or has a jump
discontinuity at 𝑥 , compare equations (38) and (39) in the proof of Proposition 2.2.

The following result gives the representation of a conditional distribution function by the univariate marginals
and the generalized partial derivative of the corresponding copula.

Proposition 2.2 (Representation of conditional distribution functions).
For 𝐹,𝐺 ∈ ℱ1 , let 𝑋 ∼ 𝐹 and 𝑍 ∼ 𝐺 be real random variables with copula 𝐶 ∈ 𝒞2 , i.e., 𝐶 = 𝐶𝑋,𝑍 . Then,
the following statements hold true:

(i) For all 𝑥 ∈ R , there exists a 𝐺-null set 𝑁𝑥 such that the conditional distribution function of 𝑋 given
𝑍 = 𝑧 evaluated at 𝑥 is represented by

𝐹𝑋|𝑍=𝑧(𝑥) = lim
ℎ↘0

𝐶(𝐹 (𝑥), 𝐺(𝑧))− 𝐶(𝐹 (𝑥), 𝐺(𝑧 − ℎ))

𝐺(𝑧)−𝐺(𝑧 − ℎ)
= 𝜕𝐺2 𝐶(𝐹 (𝑥), 𝐺(𝑧)) (4)

for all 𝑧 ∈ 𝑁𝑐
𝑥 .

(ii) There exists a 𝐺-null set 𝑁 such that

𝐹𝑋|𝑍=𝑧(𝑥) = lim
𝑤↓𝑥

𝜕𝐺2 𝐶(𝐹 (𝑤), 𝐺(𝑧)) (5)

for all 𝑥 ∈ R and for all 𝑧 ∈ 𝑁𝑐 .

The proof is given in the appendix.

Remark 2.3. (a) For the representation of the conditional distribution function in (4) and (5), we make
use of the left-hand limit in the definition of the generalized differential operator given by (2). If 𝐺 has a
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discontinuity at 𝑧 , then the operator 𝜕𝐺2 is the difference quotient operator w.r.t. the second component of
𝐶 between 𝐺(𝑧) and 𝐺−(𝑧) . If 𝐺 is continuous at 𝑧 , the operator 𝜕𝐺2 reduces to the 𝜕−2 -operator denoting
the left-hand partial derivative with respect to the second variable. Hence, if 𝐺 is continuous for all 𝑧 ,
then it holds that 𝜕𝐺2 = 𝜕−2 . Denote by 𝜕2 the operator which takes the partial derivative w.r.t. the second
component of a multivariate function. Since copulas are almost surely partially differentiable, see Nelsen
[23, Theorem 2.2.7], it holds for all 𝑢 , that 𝜕−2 𝐶(𝑢, 𝑣) = 𝜕2𝐶(𝑢, 𝑣) for almost all 𝑣 .

(b) We point out that the right-hand expression in (4) is not necessarily right-continuous in 𝑥 , and, thus,
it does not generally define a distribution function in 𝑥 . However, in the following definition of the *-
product as well as in most results of the paper, we integrate over the conditioning variable and, then, this
representation of the conditional distribution function is appropriate.

In the following definition, we extend the *-product introduced by Darsow et al. [5] for Markov structures,
and, for arbitrary conditional dependencies, by Durante et al. [7] (for 𝑑 = 2) and Ansari and Rüschendorf [2]
(for 𝑑 ≥ 2) to 𝐺 ∈ ℱ1 allowing also discontinuous factor distribution functions.

We need a measurability assumption which is implicitly assumed in the above mentioned literature by
the definition of the corresponding integrals. We call a family B = (𝐵𝑡)𝑡∈[0,1] of 𝑑-copulas measurable if the
mapping (𝑡, 𝑢) ↦→ 𝐵𝑡(𝑢) , (𝑡, 𝑢) ∈ [0, 1]× [0, 1]𝑑 , is measurable.

The *-product of bivariate copulas is defined in dependence on a measurable family B = (𝐵𝑡)𝑡∈[0,1] of
𝑑-dimensional copulas and on a distribution function 𝐺 ∈ ℱ1 .

Definition 2.4 (*-product of copulas).

(i) Let B := (𝐵𝑡)𝑡∈[0,1] be measurable, 𝐵𝑡 ∈ 𝒞𝑑 , 0 ≤ 𝑡 ≤ 1 , and 𝐺 ∈ ℱ1 . For bivariate copulas 𝐷1, . . . , 𝐷𝑑 ∈
𝒞2 , the (𝑑-dimensional) *-product of 𝐷1, . . . , 𝐷𝑑 w.r.t. B and 𝐺 is defined by

*1≤𝑖≤𝑑
B,𝐺 𝐷𝑖 (𝑢) :=

1∫︁
0

𝐵𝐺𝑡

(︁
𝜕𝐺2 𝐷

1(𝑢1, 𝑡), . . . , 𝜕
𝐺
2 𝐷

𝑑(𝑢𝑑, 𝑡)
)︁
d𝑡 (6)

for 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 where 𝐵𝐺𝑡 is defined by

𝐵𝐺𝑡 :=

⎧⎨⎩𝐵𝑡 , if 𝜄−𝐺(𝑡) = 𝜄𝐺(𝑡) ,

1
𝜄𝐺(𝑡)−𝜄−𝐺(𝑡)

∫︀ 𝜄𝐺(𝑡)

𝜄−𝐺(𝑡)
𝐵𝑠 d𝑠 , if 𝜄−𝐺(𝑡) ̸= 𝜄𝐺(𝑡) .

(7)

(ii) If there exists a copula 𝐵 ∈ 𝒞𝑑 such that 𝐵𝐺𝑡 = 𝐵 for almost all 𝑡 , then we use the notion *1≤𝑖≤𝑑
𝐵,𝐺 𝐷𝑖 :=

*1≤𝑖≤𝑑
B,𝐺 𝐷𝑖 and call it simplified *-product of 𝐷1, . . . , 𝐷𝑑 w.r.t. 𝐵 and 𝐺 .

(iii) If 𝐺 is continuous, then the (simplified) *-product is abbreviated by *1≤𝑖≤𝑑
B 𝐷𝑖 := *1≤𝑖≤𝑑

B,𝐺 𝐷𝑖 and

*1≤𝑖≤𝑑
𝐵 𝐷𝑖 := *1≤𝑖≤𝑑

𝐵,𝐺 𝐷𝑖 , respectively.

We will often omit the upper indices and write *B,𝐺𝐷
𝑖 or *𝑖B,𝐺𝐷𝑖 instead of *1≤𝑖≤𝑑

B,𝐺 𝐷𝑖 , similarly
for the simplified *-product and the version for continuous 𝐺 .̧ We also sometimes use the notation
𝐷1*B,𝐺 · · · *B,𝐺𝐷

𝑑 := *B,𝐺𝐷
𝑖 for the *-product of 𝑑 bivariate copulas 𝐷1 . . . , 𝐷𝑑 w.r.t. to B and

𝐺 .

Note that for fixed 𝑢1, . . . , 𝑢𝑑 ∈ [0, 1] the integrand in (6) is well-defined as a consequence of Remark
2.1(b) because copulas are Lipschitz-continuous. The justification for the simplified notation in (iii) of the
above definition is due to Proposition 2.14.

As usual, we denote by Π𝑑 , 𝑀𝑑 , and 𝑊 𝑑 , defined by

Π𝑑(𝑢) := 𝑢1 · · ·𝑢𝑑 , 𝑀𝑑(𝑢) := min
1≤𝑖≤𝑑

{𝑢𝑖} , 𝑊 𝑑(𝑢) := max
1≤𝑖≤𝑑

{︃
𝑑∑︁
𝑖=1

𝑢𝑖 − 𝑑+ 1 , 0

}︃
,

the product copula, the upper Fréchet copula, and the lower Fréchet bound, respectively, where 𝑊 𝑑 is a copula
only for 𝑑 ≤ 2 . As special *-products, we consider the following simplified products of bivariate copulas.
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Definition 2.5 (Some specific simplified *-products).
(i) The conditional independence product is defined as Π𝐺𝐷

𝑖 := *Π𝑑,𝐺𝐷
𝑖 .

(ii) The upper product is defined as
⋁︀
𝐺𝐷

𝑖 := 𝐷1 ∨𝐺 · · · ∨𝐺 𝐷𝑑 := *𝑀𝑑,𝐺𝐷
𝑖 .

(iii) The lower product is defined as
⋀︀
𝐺𝐷

𝑖 := 𝐷1 ∧𝐺 · · · ∧𝐺 𝐷𝑑 := *𝑊𝑑,𝐺𝐷
𝑖 .

If 𝐺 is continuous, we abbreviate the independence product by Π𝐷𝑖 = Π𝑑𝑖=1𝐷
𝑖 , the upper product by

⋁︀
𝐷𝑖 =⋁︀𝑑

𝑖=1𝐷
𝑖 = 𝐷1 ∨ · · · ∨𝐷𝑑 , and the lower product by

⋀︀
𝐷𝑖 = 𝐷1 ∧ · · · ∧𝐷𝑑 .

Since 𝑊 𝑑 is a copula only if 𝑑 ≤ 2 , we clarify that for 𝑑 ≥ 3 , the lower product is defined in the sense of (6).

The following result shows that the *-product is a copula. It extends [2, Proposition 2.1] from continuous
to general factor distribution functions.

Proposition 2.6. For all measurable B = (𝐵𝑡)𝑡∈[0,1] , 𝐵𝑡 ∈ 𝒞𝑑 for all 𝑡 , for all 𝐺 ∈ ℱ1 , and for all
𝐷1, . . . , 𝐷𝑑 ∈ 𝒞2 , the *-product *B,𝐺𝐷

𝑖 is a 𝑑-copula.

Proof. Due to Proposition 2.2, the functions 𝐻𝑖
𝑧 , 1 ≤ 𝑖 ≤ 𝑑 , defined by 𝐻𝑖

𝑧(𝑢) := lim𝑣↓𝑢 𝜕
𝐺
2 𝐷

𝑖(𝑣,𝐺(𝑧)) for
𝑢 ∈ [0, 1) and 𝐻𝑖

𝑧(1) := 𝜕𝐺2 𝐷
𝑖(1, 𝐺(𝑧)) = 1 are univariate distribution functions for 𝐺-almost all 𝑧 ∈ R . Then,

by Sklar’s Theorem, 𝐹𝑧 defined by

𝐹𝑧(𝑢1, . . . , 𝑢𝑑) := 𝐵𝐺𝐺(𝑧)(𝐻
1
𝑧 (𝑢1), . . . , 𝐻

𝑑
𝑧 (𝑢𝑑)) , (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 ,

is a 𝑑-dimensional distribution function on [0, 1]𝑑 , where (𝐵𝐺𝑡 ) is defined by (7). It follows that

*B,𝐺𝐷
𝑖 (𝑢1, . . . , 𝑢𝑑) =

1∫︁
0

𝐵𝐺𝑡

(︁
𝜕𝐺2 𝐷

1(𝑢1, 𝑡), . . . , 𝜕
𝐺
2 𝐷

𝑑(𝑢𝑑, 𝑡)
)︁
d𝑡

=

1∫︁
0

𝐵𝐺𝜄𝐺(𝑡)

(︁
𝜕𝐺2 𝐷

1(𝑢1, 𝜄𝐺(𝑡)), . . . , 𝜕
𝐺
2 𝐷

𝑑(𝑢𝑑, 𝜄𝐺(𝑡))
)︁
d𝑡

=

∫︁
R

𝐵𝐺𝐺(𝑧)

(︁
𝜕𝐺2 𝐷

1(𝑢1, 𝐺(𝑧)), . . . , 𝜕𝐺2 𝐷
𝑑(𝑢𝑑, 𝐺(𝑧))

)︁
d𝐺(𝑧)

=

∫︁
R

𝐵𝐺𝐺(𝑧)

(︁
𝐻1
𝑧 (𝑢1), . . . , 𝐻

𝑑
𝑧 (𝑢𝑑)

)︁
d𝐺(𝑧) =

∫︁
R

𝐹𝑧(𝑢1, . . . , 𝑢𝑑) d𝐺(𝑧) . (8)

For the second equality, we apply (3) and use that 𝐵𝐺𝑡 = 𝐵𝐺𝜄𝐺(𝑡) which follows from Lemma A.1(v). The third
equality follows from the transformation formula, see, e.g., [33, Theorem 2]. For the fourth equality, we use
for fixed (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1] that 𝐻𝑖

𝑧(𝑢𝑖) = 𝜕𝐺2 𝐷
𝑖(𝑢𝑖, 𝐺(𝑧)) , 1 ≤ 𝑖 ≤ 𝑑 , for 𝑃𝐺-almost all 𝑧 , see Proposition

2.2. Since the last integral is a mixture of distribution functions, the product *B,𝐺𝐷
𝑖 is a distribution

function. The measurability of 𝐹𝑧(𝑢1, . . . , 𝑢𝑑) in 𝑧 is a consequence of the measurability of B and, by (4), of
𝑡 ↦→ 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡) for all 𝑢𝑖 ∈ [0, 1] , 1 ≤ 𝑖 ≤ 𝑑 .

It remains to show that *B,𝐺𝐷
𝑖 has uniform marginals. For 𝑖 ∈ {1, . . . , 𝑑} , let 𝑣 = (𝑣1, . . . , 𝑣𝑑) ∈ [0, 1]𝑑

with 𝑣𝑖 ∈ [0, 1] and 𝑣𝑗 = 1 for all 𝑗 ̸= 𝑖 . Since 𝜕𝐺2 𝐷
𝑗(𝑣𝑗 , 𝑡) = 1 for all 𝑡 and 𝑗 ̸= 𝑖 , it follows that

*B,𝐺𝐷
𝑗 (𝑣1, . . . , 𝑣𝑑) =

1∫︁
0

𝜕𝐺2 𝐷
𝑖(𝑣𝑖, 𝑡) d𝑡 =

∫︁
R

𝜕𝐺2 𝐷
𝑖(𝑣𝑖, 𝐺(𝑧)) d𝐺(𝑧) = 𝑣𝑖 ,

where the first equality holds due to the uniform marginals of the copula 𝐵𝐺𝑡 , the second one is a consequence
of the transformation formula and (3), and the last equality is given by Proposition 2.2 and the disintegration
theorem.
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2.2 Sklar-type theorem for factor models

The following theorem describes the meaning of the notion of *-products. It is a version of Sklar’s Theorem
for completely specified factor models and states that the dependence structure of a random vector (𝑋𝑖)1≤𝑖≤𝑑
that follows a completely specified factor model, 𝑋𝑖 = 𝑓𝑖(𝑍, 𝜀𝑖) , is given by a *-product of the specifications
𝐺 = 𝐹𝑍 , 𝐶

𝑖 = 𝐶𝑋𝑖,𝑍 , and 𝐵𝐺𝑡 = 𝐶𝑋1,...,𝑋𝑑|𝑍=𝐺−1(𝑡) , 𝑡 ∈ [0, 1] .

Theorem 2.7 (Sklar’s Theorem for completely specified factor models).
Let 𝐹1,...,𝑑+1 ∈ ℱ𝑑+1 be a (𝑑 + 1)-dimensional distribution function with univariate marginal distribution
functions 𝐹1, . . . , 𝐹𝑑+1 . Denote by 𝐹𝑖,𝑑+1 the bivariate marginal distribution function of the (𝑖, 𝑑+1)-marginal,
by 𝐹1,...,𝑑 the distribution function of the first 𝑑 components, and by 𝐹1,...,𝑑|𝐹−1

𝑑+1(𝑡)
the conditional distribution

function of the first 𝑑 components given that the (𝑑+1)-st component equals 𝐹−1
𝑑+1(𝑡). Then, there exist bivariate

copulas 𝐶1, . . . , 𝐶𝑑 ∈ 𝒞2 and a measurable family B = (𝐵𝑡)𝑡∈[0,1] of 𝑑-copulas such that

𝐹𝑖,𝑑+1(𝑥𝑖, 𝑥𝑑+1) = 𝐶𝑖(𝐹𝑖(𝑥𝑖), 𝐹𝑑+1(𝑥𝑑+1)) for 𝑖 = 1, . . . , 𝑑 , (9)

𝐹1,...,𝑑|𝐹−1
𝑑+1(𝑡)

(𝑥1, . . . , 𝑥𝑑) = 𝐵
𝐹𝑑+1

𝑡

(︃(︂
lim
𝑤𝑖↓𝑥𝑖

𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑤𝑖), 𝑡)

)︂
1≤𝑖≤𝑑

)︃
for almost all 𝑡 ∈ [0, 1] , (10)

𝐹1,...,𝑑 (𝑥1, . . . , 𝑥𝑑) = *B,𝐹𝑑+1
𝐶𝑖 (𝐹1(𝑥1), . . . , 𝐹𝑑(𝑥𝑑)) (11)

for all (𝑥1, . . . , 𝑥𝑑+1) ∈ R𝑑+1 .

Conversely, for distribution functions 𝐹1, . . . , 𝐹𝑑+1 ∈ ℱ1 , bivariate copulas 𝐶1, . . . , 𝐶𝑑 ∈ 𝒞2 and a measurable

family B = (𝐵𝑡)𝑡∈[0,1] of 𝑑-copulas, the family
(︁
𝐹1,...,𝑑|𝐹−1

𝑑+1(𝑡)

)︁
𝑡∈[0,1]

in (10) defines a (𝑑 + 1)-dimensional

distribution function 𝐹1,...,𝑑+1 with bivariate marginal distribution functions 𝐹𝑖,𝑑+1 given by (9) and 𝑑-variate
distribution function 𝐹1,...,𝑑 given by (11).

Further, for 1 ≤ 𝑖 ≤ 𝑑 , the copula 𝐶𝑖 is uniquely determined on Ran(𝐹𝑖) × Ran(𝐹𝑑+1) , and 𝐵
𝐹𝑑+1

𝑡 is

uniquely determined on×𝑑

𝑖=1
Ran

(︁
lim𝑤𝑖↓· 𝜕

𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑤𝑖), 𝑡)
)︁

for almost all 𝑡 ∈ [0, 1] .

Proof. Due to Sklar’s Theorem in the bivariate case, there exist 𝐶1, . . . , 𝐶𝑑 ∈ 𝒞2 such that (9) holds for all
(𝑥1, . . . , 𝑥𝑑+1) ∈ R𝑑+1 . The univariate marginal distribution functions of 𝐹1,...,𝑑|𝐹−1

𝑑+1(𝑡)
are given by

𝐹𝑖|𝐹−1
𝑑+1(𝑡)

(𝑥) = lim
𝑤↓𝑥

𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑤), 𝑡) , for all 𝑥 ∈ R and for almost all 𝑡 ∈ [0, 1] , (12)

1 ≤ 𝑖 ≤ 𝑑 , see Proposition 2.2(ii). Due to Sklar’s Theorem in the 𝑑-variate case, 𝐵𝑡 ∈ 𝒞𝑑 , 𝑡 ∈ [0, 1] , with

𝐵𝑡(𝑢) = 𝐹1...𝑑|𝐹−1
𝑑+1(𝑡)

(︂
𝐹−1

1|𝐹−1
𝑑+1(𝑡)

(𝑢1), . . . , 𝐹
−1

𝑑|𝐹−1
𝑑+1(𝑡)

(𝑢𝑑)

)︂
, 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 ,

for almost all 𝑡 defines a family B = (𝐵𝑡)𝑡∈[0,1] of 𝑑-copulas such that (10) holds true. Note that B is measur-
able because the mappings [0, 1]× R𝑑 ∋ (𝑡, 𝑥) ↦→ 𝐹1...𝑑|𝐹−1

𝑑+1(𝑡)
(𝑥) and [0, 1]× [0, 1] ∋ (𝑡, 𝑢𝑖) ↦→ 𝐹−1

𝑖|𝐹−1
𝑑+1(𝑡)

(𝑢𝑖) ,

1 ≤ 𝑖 ≤ 𝑑 , are measurable.
To show (11), we apply the disintegration theorem and obtain for all 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 that

𝐹1,...,𝑑(𝑥) =

1∫︁
0

𝐹1,...,𝑑|𝐹−1
𝑑+1(𝑡)

(𝑥) d𝑡 =

1∫︁
0

𝐵
𝐹𝑑+1

𝑡

(︂(︁
𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑥𝑖), 𝑡)
)︁
1≤𝑖≤𝑑

)︂
d𝑡 = *B,𝐹𝑑+1

𝐶𝑖 (𝐹𝑖(𝑥𝑖)) ,

where for the second equality we use the representation in (10) and that lim𝑤𝑖↓𝑥𝑖
𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑤𝑖), 𝑡) =

𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑥𝑖), 𝑡) for all 𝑡 outside a Lebesgue-null set 𝑁𝑥 ⊂ [0, 1] , see Proposition 2.2.
For the converse direction, let 𝐹1, . . . , 𝐹𝑑+1 ∈ ℱ1 , 𝐶

1, . . . , 𝐶𝑑 ∈ 𝒞2 and B = (𝐵𝑡)𝑡∈[0,1] be measurable,
𝐵𝑡 ∈ 𝒞𝑑 for all 𝑡 . Then, by Proposition 2.2 and Sklar’s Theorem, 𝐹1,...,𝑑|𝐹−1

𝑑+1(𝑡)
given by (10) defines a 𝑑-

variate distribution function for almost all 𝑡 ∈ [0, 1] . As a consequence of the measurability of B , the mapping
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𝑡 ↦→ 𝐹1,...,𝑑|𝐹−1
𝑑+1(𝑡)

(𝑥) is measurable for all 𝑥 ∈ R𝑑 , cf. (8). Hence, 𝐹1,...,𝑑+1 defined by

𝐹1,...,𝑑+1(𝑥, 𝑧) =

𝐹𝑑+1(𝑧)∫︁
0

𝐹1,...,𝑑|𝐹−1
𝑑+1(𝑡)

(𝑥1, . . . , 𝑥𝑑) d𝑡 ,

𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 , 𝑧 ∈ R , is a (𝑑 + 1)-dimensional distribution function with marginal distribution
function of the first 𝑑 components given by

𝐹1,...,𝑑(𝑥) = 𝐹1,...,𝑑+1(𝑥,∞) =

1∫︁
0

𝐵
𝐹𝑑+1

𝑡

(︂(︁
𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑥𝑖), 𝑡)
)︁
1≤𝑖≤𝑑

)︂
d𝑡

=

1∫︁
0

𝐵
𝐹𝑑+1

𝑡

(︃(︂
lim
𝑤𝑖↓𝑥𝑖

𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑤𝑖), 𝑡)

)︂
1≤𝑖≤𝑑

)︃
d𝑡 = *B,𝐹𝑑+1

𝐶𝑖 (𝐹1(𝑥1), . . . , 𝐹𝑑(𝑥𝑑))

and bivariate marginal distribution functions w.r.t. to the 𝑖-th and (𝑑+ 1)-st component given by

𝐹𝑖,𝑑+1(𝑥𝑖, 𝑧) = 𝐹1,...,𝑑+1(∞, . . . ,∞, 𝑥𝑖,∞, . . . ,∞, 𝑧) =

𝐹𝑑+1(𝑧)∫︁
0

𝜕
𝐹𝑑+1

2 𝐶𝑖 (𝐹𝑖(𝑥𝑖), 𝑡)) d𝑡 = 𝐶𝑖(𝐹𝑖(𝑥𝑖), 𝐹𝑑+1(𝑧)) .

The uniqueness properties follow directly from the uniqueness properties in Sklar’s Theorem.

Remark 2.8. (a) For 𝐹1, . . . , 𝐹𝑑, 𝐺 ∈ ℱ1 , let (𝑋1, . . . , 𝑋𝑑, 𝑍) be a (𝑑+ 1)-dimensional random vector with
𝑋𝑖 ∼ 𝐹𝑖 , 1 ≤ 𝑖 ≤ 𝑑 and 𝑍 ∼ 𝐺 . Then, from Theorem 2.7 it follows that

(𝑋1, . . . , 𝑋𝑑) ∼ *B,𝐺𝐷
𝑖(𝐹1, . . . , 𝐹𝑑) ,

for 𝐷𝑖 = 𝐶𝑋𝑖,𝑍 and B = (𝐵𝑡)𝑡∈[0,1] measurable such that 𝐵𝐺𝑡 = 𝐶𝑋1,...,𝑋𝑑|𝑍=𝐺−1(𝑡) is the conditional
copula of (𝑋1, . . . , 𝑋𝑑) given 𝑍 = 𝐺−1(𝑡) .

(b) As a weakening of (10), there exists for all 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 a Lebesgue-null set 𝑁𝑥 such that

𝐹1,...,𝑑|𝐹−1
𝑑+1(𝑡)

(𝑥) = 𝐵
𝐹𝑑+1

𝑡

(︂(︁
𝜕
𝐹𝑑+1

2 𝐶𝑖(𝐹𝑖(𝑥𝑖), 𝑡)
)︁
1≤𝑖≤𝑑

)︂
for all 𝑡 ∈ 𝑁𝑐

𝑥 ,

cf. Proposition 2.2.

As a consequence of Sklar’s theorem 2.7 for factor models, the conditional independence product, the upper
product, and the lower product is characterized by conditional independence, conditional comonotonicity, and
conditional countermonotonicity, respectively.

Corollary 2.9. For 1 ≤ 𝑖 ≤ 𝑑 and 𝐹𝑖 ∈ ℱ1 , let 𝑋𝑖 ∼ 𝐹𝑖 be random variables on a non-atomic probability
space. Then, for 𝐺 ∈ ℱ1 and 𝐷1, . . . , 𝐷𝑑 ∈ 𝒞2 , the following statements hold true.

(i) (𝑋1, . . . , 𝑋𝑑) ∼ Π𝐺𝐷
𝑖 (𝐹1, . . . , 𝐹𝑑) if and only if there exists a random variable 𝑍 ∼ 𝐺 such that

(𝑋1, . . . , 𝑋𝑑)|𝑍 = 𝑧 is independent for 𝐺-almost all 𝑧 .
(ii) (𝑋1, . . . , 𝑋𝑑) ∼

⋁︀
𝐺𝐷

𝑖 (𝐹1, . . . , 𝐹𝑑) if and only if there exists a random variable 𝑍 ∼ 𝐺 such that
(𝑋1, . . . , 𝑋𝑑)|𝑍 = 𝑧 is comonotonic for 𝐺-almost all 𝑧 .

(iii) (𝑋1, 𝑋2) ∼ 𝐷1∧𝐺𝐷2 (𝐹1, 𝐹2) if and only if there exists a random variable 𝑍 ∼ 𝐺 such that (𝑋1, 𝑋2)|𝑍 =

𝑧 is countermonotonic for 𝐺-almost all 𝑧 .

Throughout the following sections, the copula families B and C are assumed to be measurable.
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2.3 Basic properties of *-products

For a 𝑑-copula 𝐶 , denote by 𝐶 the corresponding survival function and by 𝐶 its survival copula. Then, the
survival function and the survival copula of the *-product are determined as follows.

Proposition 2.10 (Survival function and survival copula).
The survival function *B,𝐺𝐷𝑖 and the survival copula ̂*B,𝐺𝐷𝑖 of the *-product *B,𝐺𝐷

𝑖 are given by

*B,𝐺𝐷𝑖(𝑢) =

1∫︁
0

�̂�𝐺𝑡

(︁
1− 𝜕𝐺2 𝐷

1(𝑢1, 𝑡), . . . , 1− 𝜕𝐺2 𝐷
𝑑(𝑢𝑖, 𝑡)

)︁
d𝑡 , (13)

̂*B,𝐺𝐷𝑖(𝑢) =

1∫︁
0

�̂�𝐺𝑡

(︁
1− 𝜕𝐺2 𝐷

1(1− 𝑢1, 𝑡), . . . , 1− 𝜕𝐺2 𝐷
𝑑(1− 𝑢𝑖, 𝑡)

)︁
d𝑡 ,

for 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , where �̂�𝐺𝑡 is the survival copula of 𝐵𝐺𝑡 .

Proof. Let (𝑈1, . . . , 𝑈𝑑, 𝑍) be a random vector such that 𝑈𝑖 is uniformly distributed on (0, 1) , 𝑍 ∼ 𝐺 , and

(𝑈1, . . . , 𝑈𝑑)|𝑍 = 𝐺−1(𝑡) ∼ 𝐵𝑡

(︂
lim
𝑤1↓·

𝜕𝐺2 𝐷
1(𝑤1, 𝑡), . . . , lim

𝑤𝑑↓·
𝜕𝐺2 𝐷

𝑑(𝑤𝑑, 𝑡)

)︂
for almost all 𝑡 ∈ (0, 1) and 𝐶𝑈𝑖,𝑍 = 𝐷𝑖 for all 1 ≤ 𝑖 ≤ 𝑑 , cf. Remark 2.8(a). Then, it holds by (11) that
*B,𝐺𝐷

𝑖(𝑢) = 𝑃 (𝑈𝑖 ≤ 𝑢𝑖 , 1 ≤ 𝑖 ≤ 𝑑) . Further, we obtain

*B,𝐺𝐷𝑖 (𝑢) = 𝑃 (𝑈𝑖 > 𝑢𝑖 ∀𝑖) =
1∫︁

0

𝑃
(︁
𝑈𝑖 > 𝑢𝑖 ∀𝑖 |𝑍 = 𝐺−1(𝑡)

)︁
d𝑡

=

1∫︁
0

�̂�𝐺𝑡

(︂
1− lim

𝑤1↓𝑢1

𝜕𝐺2 𝐷
1(𝑤1, 𝑡), . . . , 1− lim

𝑤𝑑↓𝑢𝑑

𝜕𝐺2 𝐷
𝑑(𝑤𝑑, 𝑡)

)︂
d𝑡

=

1∫︁
0

�̂�𝐺𝑡

(︁
1− 𝜕𝐺2 𝐷

1(𝑢1, 𝑡), . . . , 1− 𝜕𝐺2 𝐷
𝑑(𝑢𝑖, 𝑡)

)︁
d𝑡 ,

where the third equality follows by the application of Sklar’s Theorem for survival functions to the conditional
survival function in the integrand, see, e.g., Georges et al. [12, Theorems 1 and 2] using that the 𝑖-th conditional
marginal survival function is given by 𝐹𝑈𝑖|𝑍=𝐺−1(𝑡)(𝑢𝑖) = 1− 𝐹𝑈𝑖|𝑍=𝐺−1(𝑡)(𝑢𝑖) = 1− lim𝑤𝑖↓𝑢𝑖

𝜕𝐺2 𝐷
𝑖(𝑤𝑖, 𝑡) .

The fourth equality is a consequence of Proposition 2.2.
The second statement follows from the relationship 𝐶(𝑢1, . . . , 𝑢𝑑) = 𝐶(1 − 𝑢1, . . . , 1 − 𝑢𝑑) , (𝑢1, . . . , 𝑢𝑑) ∈
[0, 1]𝑑 , between the survival copula 𝐶 and the survival function 𝐶 of a copula 𝐶 ∈ 𝒞𝑑 .

For some particular specifications, the *-products simplify as follows.

Proposition 2.11 (Particular specifications).
For the *-product, the following statements hold true.

(i) If 𝐷𝑗 =𝑀2 for all 𝑗 ̸= 𝑖 , then *B𝐷𝑘(𝑢) = 𝐷𝑖(𝑢𝑖,min𝑗 ̸=𝑖{𝑢𝑗}) .
(ii) If 𝐷𝑗 =𝑊 2 for all 𝑗 ̸= 𝑖 , then *B𝐷𝑘(𝑢) = 𝐷𝑖*(𝑢𝑖,min𝑗 ̸=𝑖{𝑢𝑗}) , where 𝐷*(𝑣1, 𝑣2) := 𝑣1−𝐷(𝑣1, 1−𝑣2) .
(iii) If 𝐷𝑖 = Π2 for all 𝑖 , then *B,𝐺𝐷

𝑖(𝑢) =
∫︀ 1
0
𝐵𝐺𝑡 (𝑢) d𝑡 .

(iv) Marginalization property: For 𝐽 ⊂ {1, . . . , 𝑑} , the 𝐽-marginal of *B,𝐺𝐷
𝑖 is given by *B′,𝐺𝐷

𝑗 with
bivariate copulas (𝐷𝑗)𝑗∈𝐽 and conditional copulas B′ = (𝐵′

𝑡)𝑡 ∈ 𝒞|𝐽| where 𝐵′
𝑡 is the 𝐽-marginal of 𝐵𝑡 .

(v) Identifiability property: If 𝐷𝑗 =𝑀2 , then the (𝑖, 𝑗)-marginal of *B𝐷𝑘 is given by 𝐷𝑖 .
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Proof. To show statement (i), observe that 𝜕2𝑀2(𝑣, 𝑡) = 1{𝑡<𝑣} for almost all 𝑡 . This yields

*B𝐷𝑘 (𝑢) =

1∫︁
0

𝐵𝑡

(︁
1{𝑡<𝑢1}, . . . ,1{𝑡<𝑢𝑖−1}, 𝜕2𝐷

𝑖(𝑢𝑖, 𝑡),1{𝑡<𝑢𝑖+1}, . . . ,1{𝑡<𝑢𝑑}

)︁
d𝑡

=

min𝑗 ̸=𝑖{𝑢𝑗}∫︁
0

𝜕2𝐷
𝑖(𝑢𝑖, 𝑡) d𝑡 = 𝐷𝑖(𝑢𝑖,min

𝑗 ̸=𝑖
{𝑢𝑗})

for 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , where the second equality follows because all 𝐵𝑡 have uniform univariate
marginals and are grounded.
Statement (ii) follows similarly with 𝜕2𝑊 2(𝑣, 𝑡) = 1{𝑡>1−𝑣} for almost all 𝑡 , and statement (iii) follows from
𝜕𝐺2 Π2(𝑣, 𝑡) = 𝑣 .

(iv): For 𝑢 = (𝑢1, . . . , 𝑢𝑑) with 𝑢𝑖 = 1 for 𝑖 /∈ 𝐽 , it follows that *B,𝐺𝐷
𝑖(𝑢) = *B′,𝐺𝐷

𝑗(𝑢𝐽 ) , where
𝑢𝐽 = (𝑢𝑗)𝑗∈𝐽 .

Statement (v) is a consequence of (i) setting 𝑢𝑘 = 1 for all 𝑘 ∈ {1, . . . , 𝑑} ∖ {𝑖, 𝑗} .

Note that statements (i), (ii), and (v) in the above result are formulated w.r.t. continuous risk factor distri-
bution functions and cannot be generalized to arbitrary 𝐺 ∈ ℱ1 . A counterexample can be constructed from
the following example.

Example 2.12. Let 𝐷𝑖 =𝑀2 for all 𝑖 and 𝐺 = 1[0,∞) be the distribution function of the Dirac distribution
in 0 . Then, it holds that Π𝐺𝐷

𝑖 = Π𝑑 ̸=𝑀𝑑 using that 𝜄𝐺(𝑡) = 1 and 𝜄−𝐺(𝑡) = 0 for all 𝑡 ∈ (0, 1) . In fact, for
𝑍 ∼ 𝐺 , it holds that 𝑃 (𝑍 = 0) = 1 , and, thus, the dependence specifications 𝐶𝑋𝑖,𝑍 = 𝐷𝑖 = 𝑀2 do not yield
any information on the 𝑋𝑖 and cannot force comonotonicity of (𝑋1, . . . , 𝑋𝑑) .

Next, we study the product *B,𝐺𝐷
𝑖 in the case where 𝐷𝑖 = 𝑀2 for all 𝑖 . We make use of ordinal sums

defined as follows.
Let 𝐽 ⊂ N be a finite or countable subset of the natural numbers. Let (𝑎𝑘, 𝑏𝑘)𝑘∈𝐽 be a family of pair-

wise disjoint, open subinterval of [0, 1] and let (𝐶𝑘)𝑘∈𝐽 be a family of 𝑑-copulas. Then, the ordinal sum
(⟨𝑎𝑘, 𝑏𝑘, 𝐶𝑘⟩)𝑘∈𝐽 of (𝐶𝑘)𝑘∈𝐽 w.r.t. (𝑎𝑘, 𝑏𝑘)𝑘∈𝐽 is defined by

(⟨𝑎𝑘, 𝑏𝑘, 𝐶𝑘⟩)𝑘∈𝐽 (𝑢) =

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑘 + (𝑏𝑘 − 𝑎𝑘)𝐶𝑘

(︁
min{𝑢1,𝑏𝑘}−𝑎𝑘

𝑏𝑘−𝑎𝑘 , . . . ,
min{𝑢𝑑,𝑏𝑘}−𝑎𝑘

𝑏𝑘−𝑎𝑘

)︁
,

if min{𝑢1, . . . , 𝑢𝑑} ∈ (𝑎𝑘, 𝑏𝑘) for some 𝑘 ∈ 𝐽

min{𝑢1, . . . , 𝑢𝑑} else ,

where 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , see, e.g., Mesiar and Sempi [18].
The following proposition characterizes ordinal sums by *-products.

Proposition 2.13 (Ordinal sums).
For 𝐺 ∈ ℱ1 , for a measurable family B = (𝐵𝑡)𝑡∈[0,1] and a sequence (𝐶𝑘)𝑘∈𝐽 of 𝑑-copulas, and for pairwise
disjoint open subintervals (𝑎𝑘, 𝑏𝑘)𝑘∈𝐽 of (0, 1) , the following statements are equivalent:

(i) *B,𝐺𝑀
2 = (⟨𝑎𝑘, 𝑏𝑘, 𝐶𝑘⟩)𝑘∈𝐽

(ii) (𝑎𝑘, 𝑏𝑘)𝑘∈𝐽 = {(𝜄−𝐺(𝑡), 𝜄𝐺(𝑡)) | 𝜄
−
𝐺(𝑡) ̸= 𝜄𝐺(𝑡) , 𝑡 ∈ (0, 1)} and 𝐶𝑘 = 𝐵𝐺𝑡 for 𝑡 ∈ (𝑎𝑘, 𝑏𝑘) = (𝜄−𝐺(𝑡), 𝜄𝐺(𝑡)) .
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Proof. For 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , let 𝑣 := min{𝑢𝑖} . Then, we have that

*B,𝐺𝑀
2 (𝑢) =

1∫︁
0

𝐵𝐺𝑡
(︀
(𝜕21{𝑡≤𝑢𝑖})1≤𝑖≤𝑑

)︀
d𝑡

=

⎧⎪⎨⎪⎩
𝑣 if 𝜄−𝐺(𝑣) = 𝜄𝐺(𝑣)

𝜄−𝐺(𝑣) + (𝜄𝐺(𝑣)− 𝜄−𝐺(𝑣))𝐵
𝐺
𝑣

(︃(︂
min{𝑢𝑖,𝜄𝐺(𝑣)}−𝜄−𝐺(𝑣)

𝜄𝐺(𝑣)−𝜄−𝐺(𝑣)

)︂
1≤𝑖≤𝑑

)︃
if 𝜄−𝐺(𝑣) ̸= 𝜄𝐺(𝑣) ,

which implies the assertion. Note that 𝐵𝐺𝑡 is constant for 𝑡 ∈ (𝜄−𝐺(𝑡), 𝜄𝐺(𝑡)) .

The following result justifies the simplified notation for the *-products where the argument 𝐺 is omitted in
the case that 𝐺 is continuous, see Definition 2.4(iii). The proof is given in the appendix.

Proposition 2.14.
Let 𝑑 ≥ 2 . Then, the following statements are equivalent:

(i) *B,𝐺1
𝐷𝑖 = *B,𝐺2

𝐷𝑖 for all measurable families B = (𝐵𝑡)0≤𝑡≤1 of 𝑑-copulas and for all 𝐷𝑖 ∈ 𝒞2 ,
1 ≤ 𝑖 ≤ 𝑑 ,

(ii) Ran(𝐺1) = Ran(𝐺2) .

(iii) 𝜄𝐺1
= 𝜄𝐺2

.

As a consequence of the above result, the *-product depends only on the range of the risk factor distribution
𝐺 . Thus, the copula of a completely specified factor model is invariant under strictly increasing transforma-
tions of the factor variable.

The following result shows in which relevant cases the *-product attains the upper Fréchet copula.

Proposition 2.15 (Maximality).
For the *-product, the following statements hold true.

(i) If 𝐷𝑖 =𝑀2 for all 𝑖 , then *B𝐷𝑖 =𝑀𝑑 .

(ii) If 𝐷𝑖 =𝑊 2 for all 𝑖 , then *B𝐷𝑖 =𝑀𝑑 .

(iii)
⋁︀
𝐺𝐷

𝑖 =𝑀𝑑 if and only if 𝐷𝑗 = 𝐷𝑘 on [0, 1]× Ran(𝐺) for all 𝑗 ̸= 𝑘 .

Proof. Statements (i) and (ii) follow from Proposition 2.11(i) and (ii).
Statement (iii) is an extension of Ansari and Rüschendorf [2, Proposition 2.4(v)] to arbitrary 𝐺 ∈ ℱ1 . We
give the proof in the appendix.

The definition of the *-product also yields an invariance property under Lebesgue-measure preserving trans-
formations.

Let 𝜆 be the Lebesgue measure on ℬ([0, 1]) . Denote by 𝒯 the set of measurable transformations
𝑇 : ([0, 1],ℬ([0, 1]), 𝜆) → ([0, 1],ℬ([0, 1]), 𝜆) that are measure preserving, i.e. 𝜆𝑇 = 𝜆 , where 𝜆𝑇 (𝐴) :=

𝜆(𝑇−1(𝐴)) for all 𝐴 ∈ ℬ([0, 1]) denotes the distribution of 𝑇 w.r.t. 𝜆 . Let 𝒯𝑃 be the set of all 𝑇 ∈ 𝒯 such
that 𝑇 is bijective and its inverse 𝑇−1 is measure preserving. Then, elements of 𝒯𝑃 are called shuffles, see [8].

The following statement shows that simplified *-products are invariant under joint shuffles of the factor
variable 𝑍 assuming a continuous distribution function.
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Proposition 2.16 (Invariance under shuffles). For all 𝑇 ∈ 𝒯𝑃 and 𝐶 ∈ 𝒞2 , the function 𝒮𝑇 (𝐶) : [0, 1]2 →
[0, 1] given through

𝒮𝑇 (𝐶)(𝑢, 𝑣) :=

𝑣∫︁
0

𝜕2𝐶(𝑢, 𝑇 (𝑡)) d𝑡

is a bivariate copula. Furthermore, for simplified *-products with continuous factor distribution function and
𝐵 ∈ 𝒞𝑑 holds

*𝐵 𝐶𝑖 = *𝐵 𝒮𝑇 (𝐶𝑖) .

The proof is given in the appendix.

2.4 Continuity results for *-products

For the approximation of *-products w.r.t. the factor distribution, we need the following lemma. The proof
is given in the appendix.

Lemma 2.17. For 𝐺𝑛, 𝐺 ∈ ℱ1 , 𝑛 ∈ N , the following statements hold true.

(i) 𝜄𝐺 determines 𝜄−𝐺 uniquely by 𝜄−𝐺(𝑡) = inf{𝑠 | 𝜄𝐺(𝑠) ≥ 𝑡} .
(ii) If 𝜄𝐺𝑛

→ 𝜄𝐺 , then 𝜄−𝐺𝑛
→ 𝜄−𝐺 , where each convergence is almost surely pointwise.

In the following example, we consider some typical approximations of distribution functions for which the
corresponding transformations 𝜄 converge almost surely pointwise.

Example 2.18. (a) Denote by ℱ1
0 the set of distribution functions with compact support. For 𝐺 ∈ ℱ1

0 ,

consider the discretization (𝐺𝑛)𝑛 given by 𝐺𝑛(𝑥) := ⌈𝑛𝐺(𝑥)⌉
𝑛 . Then, 𝐺𝑛 is a distribution function for all

𝑛 with Ran(𝐺𝑛) ⊆ {0, 1𝑛 ,
2
𝑛 , . . . , 1} . For 𝑡 ∈ (0, 1) such that 𝐺−1 is continuous at 𝑡 , it can be verified that

𝜄𝐺𝑛
(𝑡) → 𝜄𝐺(𝑡) . Thus, 𝜄𝐺𝑛

converges to 𝜄𝐺 almost surely pointwise.
(b) For 𝐺 ∈ ℱ1 , consider the discretization (𝐺𝑛)𝑛 ∈ ℱ1 given by

𝐺𝑛(𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
sup{ 𝑘𝑛 |𝐺(𝑥) ≥ 𝑘

𝑛 , 𝑘 ∈ N0} , if 𝐺(𝑥) < 1
2 ,

1
2 if 𝐺(𝑥) = 1

2 ,

inf{ 𝑘𝑛 |𝐺(𝑥) ≤ 𝑘
𝑛 , 𝑘 ∈ N0} , if 𝐺(𝑥) > 1

2 .

Similarly to the above example, it holds that Ran(𝐺𝑛) ⊆ {0, 1𝑛 ,
2
𝑛 , . . . , 1} and 𝜄𝐺𝑛

→ 𝜄𝐺 almost surely
pointwise.

The following two counterexamples show that, in general, neither convergence in distribution (denoted by
𝒟−→) implies almost surely pointwise convergence of the corresponding transformations 𝜄 nor that the converse
holds true.

Example 2.19 (𝐺𝑛
𝒟−→ 𝐺 ̸=⇒ 𝜄𝐺𝑛

→ 𝜄𝐺).
Let 𝐺𝑛 = 𝐹𝑁(0,1/𝑛) be the distribution function of the normal distribution with mean 0 and variance 1

𝑛 .

Then, 𝐺𝑛
𝒟−→ 𝐺 = 1[0,∞) . But 𝜄𝐺𝑛

̸→ 𝜄𝐺 almost surely pointwise because for all 𝑡 ∈ (0, 1) it holds that
𝜄𝐺𝑛

(𝑡) = 𝑡 ̸= 1(0,1)(𝑡) = 𝜄𝐺(𝑡) for all 𝑛 ∈ N .

Example 2.20 (𝜄𝐺𝑛
→ 𝜄𝐺 ̸=⇒ 𝐺𝑛

𝒟−→ 𝐺).
Let 𝐺,𝐺′ ∈ ℱ1

𝑐 be continuous distribution functions with 𝐺 ̸= 𝐺′ . Let (𝐺𝑛)𝑛 be the approximation of 𝐺 given
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by Example 2.18(b). Then, 𝜄𝐺𝑛
→ 𝜄𝐺′ almost surely pointwise because 𝜄𝐺𝑛

(𝑡) → 𝜄𝐺(𝑡) = 𝑡 = 𝜄𝐺′(𝑡) for all

𝑡 ∈ (0, 1) . But 𝐺𝑛 ̸ 𝒟−→ 𝐺′ because 𝐺𝑛
𝒟−→ 𝐺 and 𝐺′ ̸= 𝐺 .

For a continuity result of the *-product *B,𝐺𝐷
𝑖 w.r.t. the bivariate dependence specifications𝐷𝑖 , we consider

as slightly generalized version of the 𝜕-convergence for bivariate copulas in Mikusiński and Taylor [19].

Definition 2.21 (𝜕2-convergence).

Let 𝐷𝑛, 𝐷 ∈ 𝒞2 be bivariate copulas for all 𝑛 ∈ N . Then, the 𝜕2-convergence 𝐷𝑛
𝜕2−−→ 𝐷 is defined by

1∫︁
0

|𝜕2𝐷𝑛(𝑥, 𝑡)− 𝜕2𝐷(𝑥, 𝑡)|d𝑡 𝑛→∞−−−−→ 0 for all 𝑥 ∈ [0, 1] .

Remark 2.22. a) Some typical approximations of copulas are the checkerboard, the checkmin and the Bern-
stein approximation, respectively. All these approximations are w.r.t. the 𝜕-convergence, see Mikusiński and
Taylor [19], and, thus, also w.r.t. the 𝜕2-convergence. In contrast, the 𝜕2-convergence does not generally
hold for the shuffle-of-min approximation, see Mikusiński and Taylor [19, Example 4].

b) For a bivariate copula 𝐷 , denote by 𝐷𝑇 with 𝐷𝑇 (𝑢, 𝑣) := 𝐷(𝑣, 𝑢) , (𝑢, 𝑣) ∈ [0, 1]2 , the transposed copula
w.r.t. 𝐷 , and by 𝐾𝐷 the associated Markov kernel defined by 𝐾𝐷(𝑡, [0, 𝑣]) := lim𝑢↓𝑣 𝜕1𝐷(𝑡, 𝑢) for all
𝑢 ∈ [0, 1] and for Lebesgue-almost all 𝑡 ∈ [0, 1] . Then, the 𝜕2-convergence is metrizable with a metric 𝑟
given by 𝑟(𝐴,𝐵) = D1(𝐴

𝑇 , 𝐵𝑇 ) , where D1 denotes the metric defined by

D1(𝐴,𝐵) :=

1∫︁
0

1∫︁
0

|𝐾𝐴(𝑡, [0, 𝑣])−𝐾𝐵(𝑡, [0, 𝑣])| d𝑡 d𝑣 (14)

for 𝐴,𝐵 ∈ 𝒞2 , see [31]. Note that for all 𝑣 ∈ [0, 1] , there exists a Lebesgue-null set 𝑁𝑣 such that 𝜕1𝐴(𝑡, 𝑣) =
𝐾𝐴(𝑡, [0, 𝑣]) and 𝜕1𝐵(𝑡, 𝑣) = 𝐾𝐵(𝑡, [0, 𝑣]) for all 𝑡 ∈ 𝑁𝑐

𝑣 , see, e.g., Proposition 2.2(i).

As a main result, we give sufficient conditions for the continuity of the *-product w.r.t. all its arguments.

Theorem 2.23 (Continuity of *-products).
Let 𝐷𝑖𝑛, 𝐷𝑖 ∈ 𝒞2 be bivariate copulas, 1 ≤ 𝑖 ≤ 𝑑 , Bn = (𝐵𝑛𝑡 )𝑡∈[0,1],B = (𝐵𝑡)𝑡∈[0,1] be measurable families of
𝑑-copulas, and 𝐺𝑛, 𝐺 ∈ ℱ1 be distribution functions for all 𝑛 ∈ N . If

(i) 𝐷𝑖𝑛
𝜕2−−→ 𝐷𝑖 for all 1 ≤ 𝑖 ≤ 𝑑 ,

(ii) 𝐵𝑛𝑡
𝒟−→ 𝐵𝑡 for almost all 𝑡 ∈ [0, 1] , and

(iii) 𝜄𝐺𝑛
(𝑡) → 𝜄𝐺(𝑡) for almost all 𝑡 ∈ [0, 1] ,

then it holds true that

*Bn,𝐺𝑛
𝐷𝑖𝑛 → *B,𝐺𝐷

𝑖 uniformly .

Proof. We show for 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 that

*Bm,𝐺𝑘
𝐷𝑖𝑛 (𝑢)

𝑛→∞−−−−→ *Bm,𝐺𝑘
𝐷𝑖 (𝑢) for all 𝑘,𝑚 ∈ N , (15)

*Bm,𝐺𝑘
𝐷𝑖𝑛 (𝑢)

𝑚→∞−−−−→ *B,𝐺𝑘
𝐷𝑖𝑛 (𝑢) for all 𝑘, 𝑛 ∈ N , (16)

*Bm,𝐺𝑘
𝐷𝑖𝑛 (𝑢)

𝑘→∞−−−−→ *Bm,𝐺𝐷
𝑖
𝑛 (𝑢) for all 𝑛,𝑚 ∈ N . (17)

Due to the equicontinuity of copulas, the above *-products converge uniformly using Arzelà-Ascoli’s theorem.
Thus, the statement follows from the exchangeability of applying the limits and, again, from Arzelà-Ascoli’s
theorem.



14 Jonathan Ansari and Ludger Rüschendorf, Products of copulas in factor models

First, we show (17). Assume w.l.g. that 𝐷𝑖𝑛 = 𝐷𝑖 and Bm = B for all 𝑛,𝑚 ∈ N . From Lemma 2.17(ii)
we obtain that 𝜄𝐺𝑘

→ 𝜄𝐺 a.s. implies that 𝜄−𝐺𝑘
(𝑡) → 𝜄−𝐺(𝑡) for all 𝑡 ∈ 𝑁𝑐

0 ∩ [0, 1] outside a Lebesgue-null set
𝑁0 . Fix 𝑡 ∈ 𝑁𝑐

0 ∩ [0, 1] .

If 𝜄−𝐺(𝑡) < 𝜄𝐺(𝑡) , then there exists 𝑅 ∈ N such that for all 𝑘 ≥ 𝑅 it holds that 𝜄−𝐺𝑘
(𝑡) < 𝜄𝐺𝑘

(𝑡) and, thus,

𝐵𝐺𝑘
𝑡 (𝑢) =

1

𝜄𝐺𝑘
(𝑡)− 𝜄−𝐺𝑘

(𝑡)

𝜄𝐺𝑘(𝑡)∫︁
𝜄−𝐺𝑘

(𝑡)

𝐵𝑠(𝑢) d𝑠
𝑘→∞−−−−→ 1

𝜄𝐺(𝑡)− 𝜄−𝐺(𝑡)

𝜄𝐺(𝑡)∫︁
𝜄−𝐺(𝑡)

𝐵𝑠(𝑢) d𝑠 = 𝐵𝐺𝑡 (𝑢)

and

𝜕𝐺𝑘
2 𝐷𝑖(𝑢𝑖, 𝑡) =

𝐷𝑖(𝑢𝑖, 𝜄𝐺𝑘
(𝑡))−𝐷𝑖(𝑢𝑖, 𝜄

−
𝐺𝑘

(𝑡))

𝜄𝐺𝑘
(𝑡)− 𝜄−𝐺𝑘

(𝑡)

𝑘→∞−−−−→
𝐷𝑖(𝑢𝑖, 𝜄𝐺(𝑡))−𝐷𝑖(𝑢𝑖, 𝜄

−
𝐺(𝑡))

𝜄𝐺(𝑡)− 𝜄−𝐺(𝑡)
= 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡)

for 𝑖 = 1, . . . , 𝑑 .

If 𝜄−𝐺(𝑡) = 𝜄𝐺(𝑡) and 𝜄−𝐺𝑘
(𝑡) = 𝜄𝐺𝑘

(𝑡) for all 𝑘 , then it follows that

𝐵𝐺𝑘
𝑡 (𝑢) = 𝐵𝑡(𝑢) = 𝐵𝐺𝑡 (𝑢) and 𝜕𝐺𝑘

2 𝐷𝑖(𝑢𝑖, 𝑡) = 𝜕2𝐷
𝑖(𝑢𝑖, 𝑡) = 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡) for all 𝑘 .

If 𝜄−𝐺(𝑡) = 𝜄𝐺(𝑡) and 𝜄−𝐺𝑘𝑙
(𝑡) < 𝜄𝐺𝑘𝑙

(𝑡) for a subsequence (𝑘𝑙)𝑙∈N , then it follows from Lebesgue’s differential
theorem that

𝐵
𝐺𝑘𝑙
𝑡 =

1

𝜄𝐺𝑘𝑙
(𝑡)− 𝜄−𝐺𝑘𝑙

(𝑡)

𝜄𝐺𝑘𝑙
(𝑡)∫︁

𝜄−𝐺𝑘𝑙
(𝑡)

𝐵𝑠(𝑢) d𝑠
𝑙→∞−−−−→ 𝐵𝑡(𝑢) = 𝐵𝐺𝑡 (𝑢)

and, since the partial derivative of a copula exists almost surely, that

𝜕
𝐺𝑘𝑙
2 𝐷𝑖(𝑢𝑖, 𝑡) =

𝐷𝑖(𝑢𝑖, 𝜄𝐺𝑘𝑙
(𝑡))−𝐷𝑖(𝑢𝑖, 𝜄

−
𝐺𝑘𝑙

(𝑡))

𝜄𝐺𝑘𝑙
(𝑡)− 𝜄−𝐺𝑘𝑙

(𝑡)

𝑙→∞−−−−→ 𝜕2𝐷
𝑖(𝑢𝑖, 𝑡) = 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡)

if 𝑡 ∈ 𝑁𝑐
1 ∩ [0, 1] is outside of a Lebesgue-null set 𝑁1 ⊇ 𝑁0 .

Altogether, this yields

𝐵𝐺𝑘
𝑠

(︂(︁
𝜕𝐺𝑘
2 𝐷𝑖(𝑢𝑖, 𝑠)

)︁
1≤𝑖≤𝑑

)︂
𝑘→∞−−−−→ 𝐵𝐺𝑠

(︂(︁
𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑠)
)︁
1≤𝑖≤𝑑

)︂
for all 𝑠 ∈ 𝑁𝑐

1 ∩ [0, 1] using that 𝐵𝐺𝑘
𝑠 ∈ 𝒞𝑑 is equicontinuous for all 𝑠 . This implies

*B,𝐺𝑘
𝐷𝑖 (𝑢) =

1∫︁
0

𝐵𝐺𝑘
𝑠

(︂(︁
𝜕𝐺𝑘
2 𝐷𝑖(𝑢𝑖, 𝑠)

)︁
1≤𝑖≤𝑑

)︂
d𝑠

𝑘→∞−−−−→
1∫︁

0

𝐵𝐺𝑠

(︂(︁
𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑠)
)︁
1≤𝑖≤𝑑

)︂
d𝑠 = *B,𝐺𝐷

𝑖 (𝑢) ,

where we apply the dominated convergence theorem.
To show (15), let 𝑗 ∈ {1, . . . , 𝑑} and choose w.l.g. 𝐺𝑘 = 𝐺 , Bm = B , and 𝐷𝑖𝑛 = 𝐷𝑛 for all 𝑘,𝑚, 𝑛 ∈ N

and 𝑖 ̸= 𝑗 . Let (𝐺𝑙)𝑙∈N be the discrete approximation of 𝐺 given in Example 2.18(b). Then, the family (𝐵𝐺
𝑙

𝑡 )𝑡

is constant in 𝑡 on the intervals (𝜅−1
𝑙 , 𝜅𝑙 ) , 1 ≤ 𝜅 ≤ 𝑙 , and each 𝐵𝐺

𝑙

𝑡 is Lipschitz continuous with Lipschitz
constant 1 .

Thus, for the Lebesgue measure 𝜆 on [0, 1] , it holds that

𝜆
(︁
{𝑡 : |𝐵𝐺

𝑙

𝑡 ((𝜕𝐺2 𝐷
𝑖
𝑛(𝑢𝑖, 𝑡))1≤𝑖≤𝑑)−𝐵𝐺

𝑙

𝑡 ((𝜕𝐺
𝑙

2 𝐷𝑖𝑛(𝑢𝑖, 𝑡))1≤𝑖≤𝑑)| > 𝜀} ∩ (𝜅−1
𝑙 , 𝜅𝑙 )

)︁
≤ 𝜆

(︁
{𝑡 : |𝜕𝐺

𝑙

2 𝐷𝑗𝑛(𝑢𝑗 , 𝑡)− 𝜕𝐺
𝑙

2 𝐷𝑗𝑛(𝑢𝑗 , 𝑡)| > 𝜀} ∩ (𝜅−1
𝑙 , 𝜅𝑙 )

)︁
𝑛→∞−−−−→ 0
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for all 𝜀 > 0 and 1 ≤ 𝜅 ≤ 𝑙 , where the convergence follows from the assumption that 𝐷𝑗𝑛
𝜕2−−→ 𝐷𝑗 . Then

1∫︁
0

|𝐵𝐺
𝑙

𝑡 ((𝜕𝐺
𝑙

2 𝐷𝑖𝑛(𝑢𝑖, 𝑡))1≤𝑖≤𝑑)−𝐵𝐺
𝑙

𝑡 (𝜕𝐺
𝑙

2 (𝐷𝑖(𝑢𝑖, 𝑡))1≤𝑖≤𝑑)|d𝑡

=

𝑙∑︁
𝜅=1

𝜅
𝑙∫︁

𝜅−1
𝑙

|𝐵𝐺
𝑙

𝑡 ((𝜕𝐺
𝑙

2 𝐷𝑖𝑛(𝑢𝑖, 𝑡))𝑖)−𝐵𝐺
𝑙

𝑡 ((𝜕𝐺
𝑙

2 𝐷𝑖(𝑢𝑖, 𝑡))1≤𝑖≤𝑑)|d𝑡
𝑛→∞−−−−→ 0 ,

which implies that *B,𝐺𝑙 𝐷𝑖𝑛(𝑢) → *B,𝐺𝑙 𝐷𝑖(𝑢) as 𝑛 → ∞ for all 𝑙 . Thus, the statement follows from

*B,𝐺𝑙 𝐷𝑖𝑛
𝑙→∞−−−−→ *B,𝐺𝐷

𝑖
𝑛 uniformly, see (17).

Statement (16) follows with the dominated convergence theorem.

In the following remark, we note that a weak approximation of the bivariate dependence specifications or
a weak approximation of the factor distribution does not guarantee the convergence of the corresponding
*-products.

Remark 2.24. (a) In general, the *-product *B,𝐺𝐷
𝑖 is not continuous in 𝐷𝑖 w.r.t. weak convergence. A

counterexample is given for the upper product and 𝐺 ∈ ℱ1
𝑐 in Ansari and Rüschendorf [2, Example 2.7].

(b) In general, the *-product is not continuous in the factor distribution w.r.t. weak convergence, i.e. 𝐺𝑛
𝒟−→

𝐺 ̸=⇒ *B,𝐺𝑛
𝐷𝑖

𝒟−→ *B,𝐺𝐷
𝑖 .

For a counterexample, let (𝐺𝑛)𝑛 be the approximation of 𝐺 given by Example 2.19. Then, 𝐺𝑛
𝒟−→ 𝐺 =

1[0,∞) . If the 𝐷𝑖 do not coincide for all 𝑖 , then the *-products do not necessarily converge because, e.g.,
for the upper products, it holds that ⋁︁

𝐺𝑛

𝐷𝑖 =
⋁︁

𝐷𝑖 ̸=𝑀𝑑 =
⋁︁
𝐺

𝐷𝑖 ,

where the first equality holds due to the continuity of 𝐺𝑛 for all 𝑛 , and the inequality is true because of
the maximality property of the upper product, see Proposition 2.15(iii). The last equality follows from

min{𝑢1, . . . , 𝑢𝑑} =

1∫︁
0

min
{︁
𝜕𝐺2 𝐷

1(𝑢1, 𝑡), . . . , 𝜕
𝐺
2 𝐷

𝑑(𝑢𝑑, 𝑡)
}︁

d𝑡

since

𝜕𝐺2 𝐷
𝑖(𝑢𝑖, 𝑡) =

𝐷𝑖 (𝑢𝑖, 𝜄𝐺(𝑡))−𝐷𝑖
(︀
𝑢𝑖, 𝜄

−
𝐺(𝑡)

)︀
𝜄𝐺(𝑡)− 𝜄−𝐺(𝑡)

= 𝑢𝑖

for all 𝑢𝑖 ∈ [0, 1] and 1 ≤ 𝑖 ≤ 𝑑 because 𝜄𝐺(𝑡) = 1 and 𝜄−𝐺(𝑡) = 0 for all 𝑡 ∈ (0, 1) .

2.5 The lower product of bivariate copulas

In the following proposition, we provide basic properties for the lower product of bivariate copulas which are
parallel to some results in [2] for the upper product.

For a bivariate copula 𝐷 ∈ 𝒞2 , define the reflected copulas 𝐷* and 𝐷* as well as the transposed copula
𝐷𝑇 by

𝐷*(𝑢, 𝑣) := 𝑣 −𝐷(1− 𝑢, 𝑣) , and 𝐷*(𝑢, 𝑣) := 𝑢−𝐷(𝑢, 1− 𝑣) , (18)

respectively, for all (𝑢, 𝑣) ∈ [0, 1]2 . Remember that the transposed copula 𝐷𝑇 is defined by 𝐷𝑇 (𝑢, 𝑣) :=

𝐷(𝑣, 𝑢) , (𝑢, 𝑣) ∈ [0, 1]2 .
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Proposition 2.25. For 𝐷,𝐸 ∈ 𝒞2 and for a random vector (𝑈1, 𝑈2, 𝑈3) the following statements hold true:

(i) Minimality property: 𝐷 ∧𝐺 𝐸 =𝑊 2 if and only if 𝐷 = 𝐸* on [0, 1]× Ran(𝐺) .

(ii) 𝑀2 ∧𝐺 𝐷 ∧𝐺 𝐸 is a 3-copula if and only if 𝐺 ∈ ℱ1
𝑐 .

(iii) (𝑈1, 𝑈2, 𝑈3) ∼𝑀2∧𝐷∧𝐸 ⇐⇒ 𝐶𝑈1,𝑈2
= 𝐷* , 𝐶𝑈1,𝑈3

= 𝐸* and (𝑈2, 𝑈3)|𝑈1 = 𝑡 is countermonotonic
for almost all 𝑡 .

(iv) 𝐷 ∧𝐺𝑀2 = 𝐷 on [0, 1]× Ran(𝐺) and 𝑀2 ∧𝐺 𝐷 = 𝐷𝑇 on Ran(𝐺)× [0, 1] .

(v) 𝐷 ∧𝐺𝑊 2 = 𝐷* on [0, 1]× Ran(𝐺) and 𝑊 2 ∧𝐺 𝐷 = (𝐷*)𝑇 on Ran(𝐺)× [0, 1] .

(vi) In general, the lower product is neither commutative nor associative.

The proof is given in the appendix.

3 Ordering results for *-products

In this section, we establish lower and upper orthant ordering results for the *-product *B,𝐺𝐷
𝑖 w.r.t. the

conditional copulas B and the bivariate specifications 𝐷𝑖 . By the Sklar-representation theorem (Theorem
2.7) these results imply corresponding dependence ordering results for CSFM w.r.t. their specifications.

Definition 3.1 (Stochastic orderings).
Let 𝜉, 𝜉′ be 𝑑-dimensional random vectors. Then, define the

(i) lower orthant ordering 𝜉 ≤𝑙𝑜 𝜉′ if for the corresponding distributions holds that 𝐹𝜉(𝑥) ≤ 𝐹𝜉′(𝑥) for all
𝑥 ∈ R𝑑 ,

(ii) upper orthant ordering 𝜉 ≤𝑢𝑜 𝜉′ if for the corresponding survival functions holds that 𝐹 𝜉(𝑥) ≤ 𝐹 𝜉′(𝑥)

for all 𝑥 ∈ R𝑑 ,
(iii) concordance ordering 𝜉 ≤𝑐 𝜉′ if it holds that 𝜉 ≤𝑙𝑜 𝜉′ and 𝜉 ≤𝑢𝑜 𝜉′ ,

Note that all these orderings depend only on the distributions and, thus, are also defined for the corresponding
distribution functions. A comparison w.r.t. the concordance ordering requires that the corresponding univari-
ate marginal distributions are equal, i.e., (𝜉1, . . . , 𝜉𝑑) ≤𝑐 (𝜉1, . . . , 𝜉𝑑) implies 𝜉𝑖

d
= 𝜉′𝑖 for all 𝑖 . Further, if 𝑑 = 2

and 𝜉𝑖
d
= 𝜉′𝑖 , the orderings ≤𝑙𝑜 , ≤𝑢𝑜 , and ≤𝑐 are equivalent and we denote them as the standard bivariate

dependence orderings.
For an overview of stochastic orderings, see Müller and Stoyan [22], Shaked and Shanthikumar [29] and

Rüschendorf [27].

In comparison to the ordering of *B,𝐺𝐷
𝑖 w.r.t. the specifications 𝐷𝑖 , an ordering w.r.t. the copula family

B is a simple task and given by the following proposition which extends Durante et al. [7, Proposition 3].

Proposition 3.2 (Ordering w.r.t. conditional copulas).
Let B = (𝐵𝑡)0≤𝑡≤1,C = (𝐶𝑡)0≤𝑡≤1 be measurable families of 𝑑-copulas. If 𝐵𝑡 ≺ 𝐶𝑡 for almost all 𝑡 , where ≺
is one of the orders ≤𝑙𝑜 , ≤𝑢𝑜 , and ≤𝑐 , respectively, then it holds true that

*B,𝐺𝐷
𝑖 ≺ *C,𝐺𝐷

𝑖

for all 𝐺 ∈ ℱ1 and for all copulas 𝐷𝑖 ∈ 𝒞2 , 1 ≤ 𝑖 ≤ 𝑑 .

Proof. The statement follows from the closure of these orders under mixtures (see Shaked and Shanthikumar
[29, Theorems 6.G.3.(d)]).
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In the sequel, we are interested in ordering conditions for *B,𝐺𝐷
𝑖 w.r.t. the specifications 𝐷𝑖 .

Intuitively, if the 𝐷𝑖 increase in the standard bivariate dependence orderings, then the product *B,𝐺𝐷
𝑖

should increase due to the following reason: If all the 𝐷𝑖 get closer to the upper Fréchet bound 𝑀2 , then each
𝑋𝑖 = 𝑓𝑖(𝑍, 𝜀𝑖) depends more strongly positively on 𝑍 . Thus, the copula 𝐶𝑋1,...,𝑋𝑑

of (𝑋1, . . . , 𝑋𝑑) should be
closer to the upper Fréchet bound𝑀𝑑 . But it turns out that ordering criteria on𝐷𝑖 are more complicated. One
can also couple each 𝑋𝑖 more strongly negatively with 𝑍 which also leads to a stronger positive dependence
among the 𝑋𝑖 . Further, as we see in Theorem 3.7, general ordering conditions for *B,𝐺𝐷

𝑖 in 𝐷𝑖 for fixed
𝐷𝑗 , 𝑗 ̸= 𝑖 , restrict the choice of the conditional copula family B .

Another difficulty is that ordering results for *B,𝐺𝐷
𝑖 w.r.t.𝐷𝑖 always involve integral inequalities because

*B,𝐺𝐷
𝑖 (𝑢) =

1∫︁
0

𝐵𝐺𝑡

(︁
(𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡))1≤𝑖≤𝑑

)︁
d𝑡

depends on 𝐷𝑖 through the (generalized) partial derivative 𝜕𝐺2 𝐷
𝑖 of 𝐷𝑖 . More precisely, a pointwise order-

ing of the integrands w.r.t. 𝐷𝑖 and 𝐸𝑖 , i.e., 𝐵𝐺𝑡
(︁
(𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡))1≤𝑖≤𝑑

)︁
≤ 𝐵𝐺𝑡

(︁
(𝜕𝐺2 𝐸

𝑖(𝑢𝑖, 𝑡))1≤𝑖≤𝑑

)︁
for all

(𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 and 𝑡 ∈ (0, 1) , is not possible: If we set 𝑢𝑖 = 1 for all 𝑖 ̸= 𝑗 , then

𝜕𝐺2 𝐷
𝑗(𝑢𝑗 , 𝑡) = 𝐵𝐺𝑡

(︁
(𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡))1≤𝑖≤𝑑

)︁
≤ 𝐵𝐺𝑡

(︁
(𝜕𝐺2 𝐸

𝑖(𝑢𝑖, 𝑡))1≤𝑖≤𝑑

)︁
= 𝜕𝐺2 𝐸

𝑗(𝑢𝑗 , 𝑡))

for all 𝑡 implies 𝐷𝑗 = 𝐸𝑗 on [0, 1]× Ran(𝐺) and, thus, *B,𝐺𝐷
𝑖 = *B,𝐺𝐸

𝑖 .

In the remaining part of this section, we derive several lower and upper orthant ordering results for
*B,𝐺𝐷

𝑖 w.r.t. the 𝐷𝑖 verifying integral inequalities based on the Schur-ordering, the sign-change ordering,
and the lower orthant ordering, respectively.

3.1 Ordering results for componentwise convex conditional copulas

Denote by ≺𝑆 the Schur-ordering for functions, i.e. for integrable functions 𝑓, 𝑔 : [0, 1] → R , the relation
𝑓 ≺𝑆 𝑔 is defined by

∫︀ 𝑥
0
𝑓*(𝑡) d𝑡 ≤

∫︀ 𝑥
0
𝑔*(𝑡) d𝑡 for all 𝑥 ∈ (0, 1) and

∫︀ 1
0
𝑓(𝑡) d𝑡 =

∫︀ 1
0
𝑔(𝑡) d𝑡 . Here ℎ* denotes

the decreasing rearrangement of an integrable function ℎ , i.e., the (essentially w.r.t. the Lebesgue measure
𝜆) uniquely determined decreasing function ℎ* such that 𝜆(ℎ* ≤ 𝑡) = 𝜆(ℎ ≤ 𝑡) for all 𝑡 ∈ R .

We say that a family (Φ𝑡)𝑡∈[0,1] of functions Φ𝑡 : Θ → R is continuous, Θ = R𝑑 or Θ = [0, 1]𝑑 , if the
mapping (𝑡, 𝑥) ↦→ Φ𝑡(𝑥) is continuous for all (𝑡, 𝑥) ∈ [0, 1]×Θ . As a basic integral inequality result, we make
use of the following theorem on rearrangements from Fan and Lorentz [11, Theorem 1].

Theorem 3.3 (Ky Fan–Lorentz Theorem).
Let Φ𝑡 : R𝑑 → R , 𝑡 ∈ [0, 1] , be a family of continuous functions. Then, the following statements are equivalent:

(i) For all bounded and decreasing functions 𝑓𝑖, 𝑔𝑖 on [0, 1] with 𝑓𝑖 ≺𝑆 𝑔𝑖 holds

1∫︁
0

Φ𝑡(𝑓1, . . . , 𝑓𝑑) d𝑡 ≤
1∫︁

0

Φ𝑡(𝑔1, . . . , 𝑔𝑑) d𝑡 . (19)

(ii) Φ with Φ(𝑡, ·) := Φ𝑡(·) satisfies the following conditions for all 0 ≤ 𝑡 ≤ 1 , 0 ≤ 𝑎 ≤ 1−2𝛿 , 𝛿 > 0 , 𝑢𝑘 ≥ 0 ,

𝑘 = 1, . . . , 𝑑 , ℎ ≥ 0 and 𝑖 ̸= 𝑗 where those arguments are omitted which are the same in each expression:

Φ(𝑢𝑖 + ℎ, 𝑢𝑗 + ℎ)− Φ(𝑢𝑖 + ℎ, 𝑢𝑗)− Φ(𝑢𝑖, 𝑢𝑗 + ℎ) + Φ(𝑢𝑖, 𝑢𝑗) ≥ 0 , (20)

Φ(𝑢𝑖 + ℎ)− 2Φ(𝑢𝑖) + Φ(𝑢𝑖 − ℎ) ≥ 0 , (21)
𝛿∫︁

0

(Φ𝑎+𝛿+𝑠(𝑢𝑖)− Φ𝑎+𝛿+𝑠(𝑢𝑖 + ℎ) + Φ𝑎+𝑠(𝑢𝑖 + ℎ)− Φ𝑎+𝑠(𝑢𝑖)) d𝑠 ≥ 0 . (22)
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For a function 𝑓 : R𝑑 → R , let △𝜀
𝑖 𝑓(𝑥) := 𝑓(𝑥+ 𝜀𝑒𝑖)− 𝑓(𝑥) be the difference operator where 𝜀 > 0 and where

𝑒𝑖 denotes the 𝑖-th unit vector w.r.t. the canonical base in R𝑑 . Then, 𝑓 is said to be supermodular, respectively,
directionally convex if △𝜀𝑖

𝑖 △𝜀𝑗
𝑗 𝑓(𝑥) ≥ 0 for all 𝑥 ∈ R𝑑 , for all 𝜀𝑖, 𝜀𝑗 > 0 , and for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 , respectively,

1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑑 . Note that in the literature, directionally convex functions are also called ultramodular or Wright
convex.

Here, Condition (20) is supermodularity of Φ𝑡 for all 𝑡 , condition (21) is convexity of Φ𝑡 in each component
for all 𝑡 . Functions that fulfill both conditions (20) and (21) are directionally convex. Motivated by Theorem
3.3, we consider the class 𝒞𝑐𝑐𝑥𝑑 of componentwise convex 𝑑-copulas which is identical to the class of directionally
convex copulas since copulas are by definition supermodular.

Remark 3.4. (a) As a consequence of the transformation formula, Theorem 3.3 also holds true if “decreasing”
in (i) is substituted by “increasing” and the inequality in (22) is reversed, i.e.,

𝛿∫︁
0

(Φ𝑎+𝛿+𝑠(𝑢𝑖)− Φ𝑎+𝛿+𝑠(𝑢𝑖 + ℎ) + Φ𝑎+𝑠(𝑢𝑖 + ℎ)− Φ𝑎+𝑠(𝑢𝑖)) d𝑠 ≤ 0 . (23)

for all 0 ≤ 𝑎 ≤ 1− 2𝛿 , 𝛿 > 0 , 𝑢𝑘 ≥ 0 , 𝑘 = 1, . . . , 𝑑 , ℎ ≥ 0 .

(b) If Φ has continuous second partial derivatives w.r.t. all variables, then conditions (20), (21), (22), and
(23), respectively, are equivalent to

𝜕2Φ

𝜕𝑢𝑖𝜕𝑢𝑗
≥ 0 ∀𝑖 ̸= 𝑗 ,

𝜕2Φ

𝜕𝑢2𝑖
≥ 0 ∀𝑖 , 𝜕2Φ

𝜕𝑡𝜕𝑢𝑖
≤ 0 ∀𝑖 , and

𝜕2Φ

𝜕𝑡𝜕𝑢𝑖
≥ 0 ∀𝑖 ,

respectively, see Lorentz [17].

In order to apply the Ky Fan–Lorentz Theorem to *-products, we consider an important class of bivariate
copulas which are convex or concave in the second variable.

Definition 3.5 (CI/CIS/CDS copula). A bivariate copula 𝐷 ∈ 𝒞2 is said to be conditionally increasing in
sequence (CIS), respectively, conditionally decreasing in sequence (CDS) if 𝜕2𝐷(𝑢, 𝑡) is decreasing, respec-
tively, increasing in 𝑡 for all 𝑢 ∈ [0, 1] .

Further, 𝐷 is conditionally increasing (CI) if 𝐷 and 𝐷𝑇 are CIS, i.e., 𝐷 is concave in both components.

In the literature, the CIS property is often defined by the partial derivative w.r.t. the first component. However,
we define it in this way because the *-product depends on the derivatives of the bivariate copulas w.r.t. the
second component.

Note that for a random vector (𝑈1, 𝑈2) ∼ 𝐷 with 𝐷 ∈ 𝒞2 CIS, the conditional distribution 𝑈1 | 𝑈2 = 𝑣

is stochastically increasing in 𝑣 . This explains the denomination of conditional increasingness.

For the next theorem, we need the following lemma. The proof is given in the appendix.

Lemma 3.6. For 𝐺 ∈ ℱ1 , conditions (21), (22), and (23), respectively, transfer from measurable B =

(𝐵𝑡)𝑡∈[0,1] , 𝐵𝑡 ∈ 𝒞𝑑 , to the mixtures B𝐺 = (𝐵𝐺𝑡 )𝑡∈[0,1] .

As a consequence of the Ky Fan–Lorentz Theorem 3.3, we obtain that general ≤𝑙𝑜-ordering results for *B,𝐺𝐷
𝑖

w.r.t. 𝐷𝑖 require convexity of 𝐵𝑡 in each component for all 𝑡 .

Theorem 3.7 (≤lo-ordering of componentwise convex *-products).
Assume that B = (𝐵𝑡)𝑡∈[0,1] is a continuous family of 𝑑-copulas. Then, the following statements are equivalent:

(i) For all 𝐺 ∈ ℱ1 and for all CIS copulas 𝐷𝑖, 𝐸𝑖 ∈ 𝒞2 with 𝐷𝑖 ≤𝑙𝑜 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑑 , it holds

*B,𝐺𝐷
𝑖 ≤𝑙𝑜 *B,𝐺𝐸

𝑖 .
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(ii) B fulfills conditions (21) and (22).

Proof. Assume (ii). Let 𝐺 ∈ ℱ1 and 𝐷𝑖, 𝐸𝑖 ∈ 𝒞2 be CIS. For (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , define 𝑓𝑖(𝑡) := 𝜕𝐺2 𝐷
𝑖(𝑢𝑖, 𝑡)

and 𝑔𝑖(𝑡) := 𝜕𝐺2 𝐸
𝑖(𝑢𝑖, 𝑡) , for almost all 𝑡 ∈ (0, 1) . For 𝑣 ∈ (0, 1] , we obtain from 𝐷𝑖 ≤𝑙𝑜 𝐸𝑖 that

𝑣∫︁
0

𝑓𝑖(𝑡) d𝑡 = 𝐷𝑖(𝑢𝑖, 𝜄
−
𝐺(𝑣)) + (𝑣 − 𝜄−𝐺(𝑣)) 𝜕

𝐺
2 𝐷

𝑖(𝑢𝑖, 𝑣)

≤ 𝐸𝑖(𝑢𝑖, 𝜄
−
𝐺(𝑣)) + (𝑣 − 𝜄−𝐺(𝑣)) 𝜕

𝐺
2 𝐸

𝑖(𝑢𝑖, 𝑣) =

𝑣∫︁
0

𝑔𝑖(𝑡) d𝑡

with equality if 𝑣 = 1 . Since 𝐷𝑖 and 𝐸𝑖 are CIS, the functions 𝑓𝑖 and 𝑔𝑖 are decreasing; this yields 𝑓𝑖 ≺𝑆 𝑔𝑖 .
Together with the boundedness of 𝑓𝑖 and 𝑔𝑖 it follows from the Ky Fan–Lorentz Theorem 3.3 that

*B,𝐺𝐷
𝑖 (𝑢) =

1∫︁
0

𝐵𝐺𝑡 (𝑓1(𝑡), . . . , 𝑓𝑑(𝑡)) d𝑡 ≤
1∫︁

0

𝐵𝐺𝑡 (𝑔1(𝑡), . . . , 𝑔𝑑(𝑡)) d𝑡 = *B,𝐺𝐸
𝑖 (𝑢) ,

because (𝐵𝐺𝑡 )𝑡 fulfills conditions (21) and (22), see Lemma 3.6. This proves (i).
The reverse direction follows in the same way as in the proof of the Ky Fan–Lorentz Theorem 3.3 (see

Fan and Lorentz [11, Theorem 1]) because for all decreasing functions 𝑓𝑖, 𝑔𝑖 : [0, 1] → [0, 1] with 𝑓𝑖 ≺𝑆 𝑔𝑖 ,

there exist (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 and copulas 𝐷𝑖, 𝐸𝑖 ∈ 𝒞2 with 𝐷𝑖 ≤𝑙𝑜 𝐸𝑖 such that 𝑓𝑖(𝑡) = 𝜕2𝐷
𝑖(𝑢𝑖, 𝑡) and

𝑔𝑖(𝑡) = 𝜕2𝐸
𝑖(𝑢𝑖, 𝑡) holds.

A similar result holds true w.r.t. the upper orthant ordering as follows.

Theorem 3.8 (≤uo-ordering of componentwise convex *-products).
Assume that B = (𝐵𝑡)𝑡∈[0,1] is a continuous family of 𝑑-copulas. Then, the following statements are equivalent:

(i) For all 𝐺 ∈ ℱ1 and for all CIS copulas 𝐷𝑖, 𝐸𝑖 ∈ 𝒞2 with 𝐷𝑖 ≤𝑙𝑜 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑑 , holds

*B,𝐺𝐷
𝑖 ≤𝑢𝑜 *B,𝐺𝐸

𝑖 .

(ii) The survival copulas B̂ = (�̂�𝑡)𝑡∈(0,1) fulfill conditions (21) and (23).

Proof. The proof is similar to the proof of Theorem 3.7 applying the Ky Fan–Lorentz Theorem to the survival
functions of the *-products given by (13). Since 1−𝜕𝐺2 𝐷𝑖(𝑢𝑖, 𝑡) is increasing in 𝑡 for all 𝑢𝑖 and 𝑖 , the survival
copulas B̂ have to fulfill condition (23), see Remark 3.4(a).

Remark 3.9. (a) If B and the associated survival copulas B̂ fulfill the convexity condition (21) as well as
condition (22) and (23), respectively, then it holds *B,𝐺𝐷

𝑖 ≤𝑐 *B,𝐺𝐸
𝑖 for all CIS copulas 𝐷𝑖, 𝐸𝑖 with

𝐷𝑖 ≤𝑙𝑜 𝐸𝑖 , 1 ≤ 𝑖 ≤ 𝑑 . For simplified *-products, condition (22) and (23) are trivially fulfilled. If 𝑑 = 2 ,

then 𝐵𝑡 is componentwise convex if and only if �̂�𝑡 is componentwise convex.
(b) The componentwise convexity condition (21) for each 𝐵𝑡 implies negative lower orthant dependence for

all the bivariate marginals of 𝐵𝑡 . To see this, let 𝑖 ̸= 𝑗 and 𝑢 = (𝑢1, . . . , 𝑢𝑑) with 𝑢𝑘 = 1 for all 𝑘 ̸= 𝑖, 𝑗 .

Then, it holds true that

𝐵𝑡(𝑢) =

𝑢𝑖∫︁
0

𝜕𝑖𝐵𝑡(𝑢1, . . . , 𝑢𝑖−1, 𝑠, 𝑢𝑖+1, . . . , 𝑢𝑑) d𝑠 ≤
𝑢𝑖∫︁
0

𝑢𝑗 d𝑡 = Π𝑑(𝑢)

using the uniform marginal condition
∫︀ 1
0
𝜕𝑖𝐵𝑡(𝑢) d𝑢𝑖 = 𝑢𝑗 and that 𝜕𝑖𝐵𝑡(𝑢) is increasing in 𝑢𝑖 . For a

discussion of componentwise convex copulas, see, e.g., Klement et al. [13] and Klement et al. [14].
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If 𝐵𝑡 is not componentwise convex for some 𝑡 outside a null set, then general lower orthant ordering
results for *B𝐷𝑘 w.r.t. 𝐷𝑖 depend on 𝐷𝑗 , 𝑗 ̸= 𝑖 .

For example, the conditional copula 𝑀𝑑 corresponding to the upper product
⋁︀

= *𝑀𝑑 is component-wise
concave (and not convex). Due to the maximality property of the upper product, general ordering conditions
for
⋁︀
𝐷𝑘 w.r.t. 𝐷𝑖 depend on 𝐷𝑗 , see Proposition 2.15(iii).

(c) The ordering results for comonotonic random vectors in Rüschendorf [25, Corollary 3(b)] and for random
vectors with common CI copula in Müller and Scarsini [20, Theorem 4.5], respectively, are based on the
application of the Ky Fan–Lorentz Theorem 3.3 to (conditional) quantile functions. In contrast, Theorem
3.7 follows from the Ky Fan–Lorentz Theorem 3.3 comparing conditional distribution functions w.r.t. the
conditioning variable.

We make use of another integral inequality due to Lorentz [17] as follows.

Theorem 3.10 (Lorentz). Let Φ: [0, 1]×R𝑑 → R be continuous. The following statements are equivalent:

(i) For all positive bounded measurable functions 𝑓𝑘 on [0, 1] , 1 ≤ 𝑘 ≤ 𝑑 , holds

1∫︁
0

Φ(𝑡, 𝑓1(𝑡), . . . , 𝑓𝑑(𝑡)) d𝑡 ≤
1∫︁

0

Φ(𝑡, 𝑓*1 (𝑡), . . . , 𝑓
*
𝑑 (𝑡)) d𝑡 .

(ii) Φ satisfies conditions (20) and (22).

Note that the above result also holds true if we replace the decreasing rearrangements 𝑓*𝑖 by the increasing
rearrangements 𝑓𝑖* of 𝑓𝑖 and condition (22) by (23).

As a consequence of the Lorentz Theorem 3.10, we obtain for continuous factor distribution functions
𝐺 ∈ ℱ1

𝑐 the following result concerning shuffles.

Proposition 3.11. Let 𝐷1, . . . , 𝐷𝑑 ∈ 𝒞2 be CIS copulas.

(i) If B = (𝐵𝑡)𝑡∈[0,1] is a continuous family of 𝑑-copulas that fulfills condition (22), then it holds true that

*B 𝒮𝑇𝑖
(𝐷𝑖) ≤𝑙𝑜 *B𝐷𝑖

for all shuffles 𝑇𝑖 ∈ 𝒯𝑃 of 𝐷𝑖 .
(ii) For 𝐵 ∈ 𝒞𝑑 , the simplified products satisfy

*𝐵 𝒮𝑇𝑖
(𝐷𝑖) ≤𝑙𝑜 *𝐵 𝒮𝑇 (𝐷𝑖) (24)

for all shuffles 𝑇𝑖, 𝑇 ∈ 𝒯𝑃 .

Proof. For 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , define 𝑔𝑖,𝑢𝑖
(𝑡) := 𝜕2𝒮𝑇𝑖

(𝐷𝑖)(𝑢𝑖, 𝑡) . Since 𝐷𝑖 is conditionally increasing,
the decreasing rearrangement is given by 𝑔*𝑖,𝑢𝑖

(𝑡) = 𝜕2𝐷
𝑖(𝑢𝑖, 𝑡) for almost all 𝑡 . Hence, Theorem 3.10 implies

*B 𝒮𝑇𝑖
(𝐷𝑖)(𝑢) =

1∫︁
0

𝐵𝑡
(︀
(𝑔𝑖,𝑢𝑖

(𝑡))1≤𝑖≤𝑑
)︀
d𝑡 ≤

1∫︁
0

𝐵𝑡
(︀
(𝑔*𝑖,𝑢𝑖

(𝑡))1≤𝑖≤𝑑
)︀
d𝑡 = *B𝐷𝑖(𝑢) .

The second statement follows from the first one with Proposition 2.16.

Remark 3.12. (a) Note that the specifications on the right side of (24) are jointly shuffled.
(b) A similar result to Proposition 3.11 holds true w.r.t. the upper orthant ordering. A generalization to arbi-

trary factor distribution functions 𝐺 ∈ ℱ1 is not possible because, in general, 𝑔𝑖,𝑢𝑖
= 𝜕𝐺2 𝒮𝑇𝑖

(𝐷𝑖)(𝑢𝑖, ·) ̸≺𝑆
𝜕𝐺2 𝐷

𝑖(𝑢𝑖, ·) and, thus, 𝑔*𝑖,𝑢𝑖
̸= 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, ·) , see also Example 3.15.
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To apply Lorentz’s Theorem 3.10 to the ordering of *B,𝐺𝐷
𝑘 w.r.t. 𝐷𝑖 , we introduce and study the orderings

≤𝜕2𝑆,𝐺 and ≤𝜕2𝑆 on the set 𝒞2 of bivariate copulas.

Definition 3.13 (≤𝜕2𝑆 , Schur order for copula derivatives).
For 𝐺 ∈ ℱ1 and 𝐷,𝐸 ∈ 𝒞2 , define the Schur order for the partial copula derivative (w.r.t. the second variable)
by

𝐷 ≤𝜕2𝑆,𝐺 𝐸 if 𝜕𝐺2 𝐷(𝑣, ·) ≺𝑆 𝜕𝐺2 𝐸(𝑣, ·) for all 𝑣 ∈ [0, 1] .

For 𝐺 ∈ ℱ1
𝑐 , we abbreviate ≤𝜕2𝑆,𝐺 by ≤𝜕2𝑆 .

The least element in 𝒞2 w.r.t to the ≤𝜕2𝑆-order is given by the independence copula Π2 , i.e. it holds that
Π2 ≤𝜕2𝑆 𝐶 for all 𝐶 ∈ 𝒞2 . In contrast, a greatest element does not exist. However, 𝑀2 and 𝑊 2 as well as
every shuffle of these copulas are maximal elements.

Let 𝜁1 : 𝒞2 → [0, 1] be the dependence measure defined by

𝜁1(𝐴) := 3D1(𝐴,Π
2) ,

see [32]. By the following result, 𝜁1 is increasing w.r.t. the ≤𝜕2𝑆-ordering, cf. Figure 4.

Proposition 3.14. Let 𝐷 and 𝐸 be bivariate copulas. Then 𝐷 ≤𝜕2𝑆 𝐸 implies 𝜁1(𝐷𝑇 ) ≤ 𝜁1(𝐸
𝑇 ) .

Proof. By definition of the D1-metric in (14) and by the transpose of a copula, we have that

𝜁1(𝐷
𝑇 ) = D1(𝐷

𝑇 , (Π2)𝑇 ) =

1∫︁
0

1∫︁
0

⃒⃒
𝐾𝐷𝑇 (𝑡, [0, 𝑣])−𝐾(Π2)𝑇 (𝑡, [0, 𝑣])

⃒⃒
d𝑡 d𝑣

=

1∫︁
0

1∫︁
0

⃒⃒⃒
𝜕1𝐷

𝑇 (𝑡, 𝑣)− 𝜕1(Π
2)𝑇 (𝑡, 𝑣)

⃒⃒⃒
d𝑡 d𝑣 =

1∫︁
0

1∫︁
0

|𝜕2𝐷(𝑣, 𝑡)− 𝑣| d𝑡d𝑣

≤
1∫︁

0

1∫︁
0

|𝜕2𝐸(𝑣, 𝑡)− 𝑣| d𝑡 d𝑣 = · · · = 𝜁1(𝐸
𝑇 ) ,

where the inequality follows from the Hardy-Littlewood-Polya theorem which states that 𝑓 ≤𝑆 𝑔 is equivalent
to
∫︀ 1
0
𝜙(𝑓(𝑡)) d𝑡 ≤

∫︀ 1
0
𝜙(𝑔(𝑡)) d𝑡 for all convex functions 𝜙 : R → R such that the expectations exist, see, e.g.,

[27, Theorem 3.21].

In general, 𝐷 ≤𝜕2𝑆 𝐸 does not imply 𝐷 ≤𝜕2𝑆,𝐺 𝐸 even if 𝐸 is a CIS copula, which is shown by the following
counterexample.

Example 3.15 (≤𝜕2𝑆 ̸⇒ ≤𝜕2𝑆,𝐺).
Let 𝐷 = (⟨𝑎𝑘, 𝑏𝑘, 𝐶𝑘⟩)𝑘∈{1,2,3} be the ordinal sum of 𝐶1 = 𝐶2 = Π2 and 𝐶3 = 𝑀2 w.r.t. the intervals
(𝑎1, 𝑏1) = (0, 14 ) , (𝑎2, 𝑏2) = (14 ,

1
2 ) , and 𝑎3, 𝑏3) = (12 , 1) . Consider the symmetric copula 𝐷* of 𝐷 defined

by (18). It can easily be seen that 𝐷* ≤𝜕2𝑆 𝑀2 and 𝐷* ̸=𝜕2𝑆 𝑀2 . Let 𝐺 ∈ ℱ1 be given by 𝐺(𝑥) =
1
2 (1 + (𝑥 ∧ 1))1{𝑥≥0} . Then, it holds that Ran(𝐺) = {0} ∪ [12 , 1] , 𝜄𝐺(𝑡) = 1

21(0,1/2](𝑡) + 𝑡 · 1(1/2,1](𝑡) , and
𝜄−𝐺(𝑡) = 𝑡 · 1(1/2,1](𝑡) .

For 𝑢 ≤ 1
4 , it holds that

𝜕𝐺2 𝑀
2(𝑢, 𝑡) =

⎧⎨⎩
min{𝑢,𝜄𝐺(𝑡)}−min{𝑢,𝜄−𝐺(𝑡)}

𝜄𝐺(𝑡)−𝜄−𝐺(𝑡)
= 𝑢−0

1
2−0

= 2𝑢 , if 𝑡 ∈ (0, 12 ] ,

lim𝑠↑𝑡
min{𝑢,𝑡}−min{𝑢,𝑠}

𝑡−𝑠 = 0 , if 𝑡 ∈ (12 , 1] ,

= 2𝑢 · 1[0,1/2](𝑡) , and

𝜕𝐺2 𝐷
*(𝑢, 𝑡) = 4𝑢 · 1(3/4,1](𝑡) .
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Hence, we obtain for 𝑢 ∈ (0, 14 ] that 𝜕𝐺2 𝐷
*(𝑢, ·) ≻𝑆 𝜕𝐺2 𝑀2(𝑢, ·) and 𝜕𝐺2 𝐷

*(𝑢, ·) ̸= 𝜕𝐺2 𝑀
2(𝑢, ·) . But this means

that 𝐷* ̸≤𝜕2𝑆,𝐺 𝑀2 .

However, if both 𝐷 and 𝐸 are CIS (or CDS), then it can easily be verified that 𝐷 ≤𝜕2𝑆 𝐸 yields 𝐷 ≤𝜕2𝑆,𝐺 𝐸 .

A relation of the ≤𝜕2𝑆-ordering to the lower orthant ordering is given as follows. Note that we obtain
from the definition of the reflected copula 𝐸* of 𝐸 in (18) that 𝐸* =𝜕2𝑆 𝐸 , where, as usual, =𝜕2𝑆 holds if
≤𝜕2𝑆 and ≥𝜕2𝑆 is fulfilled.

Lemma 3.16. For 𝐷,𝐸 ∈ 𝒞2 , the following statements hold true.

(i) If 𝐸 is CIS, then 𝐷 ≤𝜕2𝑆 𝐸 implies 𝐸* ≤𝑙𝑜 𝐷 ≤𝑙𝑜 𝐸 .
(ii) If 𝐷 and 𝐸 are CIS, then 𝐷 ≤𝜕2𝑆 𝐸 and 𝐷 ≤𝑙𝑜 𝐸 are equivalent.

Proof. (i): Let (𝑢, 𝑣) ∈ [0, 1]𝑑 . For the decreasing rearrangement 𝑔*𝑢 of 𝜕2𝐷(𝑢, ·) , it follows that

𝐷(𝑢, 𝑣) =

𝑣∫︁
0

𝜕2𝐷(𝑢, 𝑡) d𝑡 ≤
𝑣∫︁

0

𝑔*𝑢(𝑡) d𝑡 ≤
𝑣∫︁

0

𝜕2𝐸(𝑢, 𝑡) d𝑡 = 𝐸(𝑢, 𝑣) .

For the increasing rearrangement 𝑔𝑢* of 𝜕2𝐷(𝑢, 𝑡) , it similarly holds that

𝐸*(𝑢, 𝑣) =

𝑣∫︁
0

𝜕2𝐸
*(𝑢, 𝑡) d𝑡 =

𝑣∫︁
0

𝜕2𝐸(𝑢, 1− 𝑡) d𝑡 ≤
𝑣∫︁

0

𝑔𝑢* (𝑡) d𝑡 ≤
𝑣∫︁

0

𝜕2𝐷(𝑢, 𝑡) d𝑡 = 𝐷(𝑢, 𝑣) .

(ii): If 𝐷 ≤𝑙𝑜 𝐸 , then 𝐷 ≤𝜕2𝑆 𝐸 follows from

𝑣∫︁
0

𝜕2𝐷(𝑢, 𝑡) d𝑡 = 𝐷(𝑢, 𝑣) ≤ 𝐸(𝑢, 𝑣) =

𝑣∫︁
0

𝜕2𝐸(𝑢, 𝑡) d𝑡

for all 𝑢, 𝑣 ∈ [0, 1] , using that 𝐷 and 𝐸 are CIS. The reverse direction is given by (i).

Consider the class

𝒞𝐸2 =
{︀
𝐷 ∈ 𝒞2 |𝐷 ≤𝜕2𝑆 𝐸

}︀
,

of bivariate copulas that are closer than 𝐸 to the independence copula or equal to 𝐸 w.r.t. the ≤𝜕2𝑆-ordering.
Due to the following result, the class 𝒞𝐸2 has a least and a greatest element w.r.t. the lower orthant ordering
given by a CDS and a CIS copula.

Proposition 3.17. There exist a unique CDS copula 𝐸↓ ∈ 𝒞𝐸2 and a unique CIS copula 𝐸↑ ∈ 𝒞𝐸2 such that

𝐸↓ =𝜕2𝑆 𝐸 =𝜕2𝑆 𝐸↑ . (25)

It holds that 𝐸↓ = 𝐸*
↑ , where 𝐸*

↑ is defined by (18), and

𝐸↓ ≤𝑙𝑜 𝐷 ≤𝑙𝑜 𝐸↑ for all 𝐷 ∈ 𝒞𝐸2 . (26)

Proof. To show (25), let 𝑢 ∈ [0, 1] and denote by 𝑓𝑢 : (0, 1) → [0, 1] the essentially (w.r.t. the Lebesgue
measure) unique decreasing rearrangement of 𝜕2𝐸(𝑢, ·) . For (𝑢, 𝑣) ∈ [0, 1]2 , define

𝐸↑(𝑢, 𝑣) :=

𝑣∫︁
0

𝑓𝑢(𝑡) d𝑡 .
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Then, 𝐸↑ is a bivariate copula, where the property of 2-increasingness follows for (𝑢1, 𝑣1) ≤ (𝑢2, 𝑣2) from

𝐸↑(𝑢1, 𝑣1) + 𝐸↑(𝑢2, 𝑣2)− 𝐸↑(𝑢1, 𝑣2)− 𝐸↑(𝑢2, 𝑣1) =

𝑣2∫︁
𝑣1

𝑓𝑢2(𝑡)− 𝑓𝑢1(𝑡)⏟  ⏞  
≥0

d𝑡 ≥ 0

because 𝜕2𝐸(𝑢2, 𝑡) ≥ 𝜕2𝐸(𝑢1, 𝑡) for all 𝑡 .
Since 𝜕2𝐸↑(𝑢, ·) is a rearrangement of 𝜕2𝐸(𝑢, ·) , it holds that 𝐸 =𝜕2𝑆 𝐸↑ . Since 𝜕2𝐸↑(𝑢, 𝑡) = 𝑓𝑢(𝑡) for almost
all 𝑡 and 𝑓𝑢 is the essentially uniquely determined decreasing rearrangement of 𝜕2𝐸(𝑢, ·) , it follows that 𝐸↑
is the uniquely determined CIS copula with 𝐸 =𝜕2𝑆 𝐸↑ .

For the lower bound 𝐸↓ , given by 𝐸↓(𝑢, 𝑣) :=
∫︀ 1
1−𝑣 𝑓𝑢(𝑡) d𝑡 , (𝑢, 𝑣) ∈ [0, 1]2 , the statement follows

similarly, so (25) is proved. Since
∫︀ 1
0
𝑓𝑢(𝑡) d𝑡 = 𝑢 for all 𝑢 ∈ [0, 1] , it follows that

𝐸↓(𝑢, 𝑣) = 𝑢−
1−𝑣∫︁
0

𝑓𝑢(𝑡) d𝑡 = 𝑢− 𝐸↑(𝑢, 1− 𝑣) = 𝐸*
↑(𝑢, 𝑣)

for all (𝑢, 𝑣) ∈ [0, 1]2 . Statement (26) follows with Lemma 3.16 (i).

In the following, we give some examples of ≤𝜕2𝑆-ordered copula families.

Example 3.18 (Elliptical copulas).
Let (𝐷𝜌)𝜌∈[−1,1] be a family of bivariate elliptical copulas with correlation parameter 𝜌 . If 𝐷|𝜌1| and 𝐷|𝜌2|

are CI, then

|𝜌1| ≤ |𝜌2| =⇒ 𝐷𝜌1 ≤𝜕2𝑆 𝐷
𝜌2 . (27)

A sufficient condition for 𝐷|𝜌1| to be CI is given by Abdous et al. [1, Proposition 1.2]. Then also 𝐷|𝜌2| is CI.
Note that only in the Gaussian case, 𝐷0 is CI, cf. Rüschendorf [24, Theorem 2].

To show (27), let 0 ≤ 𝜌1 ≤ 𝜌2 . Since elliptical distributions are increasing w.r.t. the lower orthant ordering
in the (generalized) correlation parameter, see Das Gupta et al. [6, Theorem 5.1], it follows that 𝐷𝜌1 ≤𝑙𝑜 𝐷𝜌2 .
Then, Lemma 3.16(ii) implies 𝐷𝜌1 ≤𝜕2𝑆 𝐷

𝜌2 using that 𝐷𝜌1 and 𝐷𝜌2 are CI. The general case follows from
the symmetry (𝐷𝜌)* = 𝐷−𝜌 of elliptical copulas.

Example 3.19 (Archimedean copulas).
Let 𝐶𝜓 defined by 𝐶𝜓(𝑢, 𝑣) = 𝜓(𝜓−1(𝑢)+𝜓−1(𝑣)) be the bivariate Archimedean copula with (strict) generator
𝜓 : R+ → [0, 1] . The CI-property of 𝐶𝜓 is characterized by the log-convexity of −𝜓′ , see Müller and Scarsini
[21, Theorem 2.8]. Further, it holds that 𝐶𝜓1

≤𝑙𝑜 𝐶𝜓2
if and only if 𝜓−1

1 ∘ 𝜓2 is subadditive, see Nelsen [23,
Theorem 4.4.2]. Thus, we obtain from Lemma 3.16(ii) the following ≤𝜕2𝑆-criterion for Archimedean copulas:
If −𝜓′

𝑖 is log-convex for 𝑖 = 1, 2 , then it holds that 𝐶𝜓1
≤𝜕2𝑆 𝐶𝜓2

if and only if 𝜓−1
1 ∘ 𝜓2 is subadditive.

Sufficient conditions for the subadditivity are given in [23, Section 4.4]. We give some illustrating examples
of ≤𝜕2𝑆-increasing Archimedean copula families. The log-convexity of −𝜓′ can be verified straightforwardly.

(a) The Clayton family (𝐶𝜓𝜃
)𝜃∈[−1,∞) with (inverse) generator 𝜙𝜃(𝑡) = 𝜓−1

𝜃 (𝑡) = 1
𝜃

(︁
𝑡−𝜃 − 1

)︁
for 𝜃 ̸= 0 and

𝜙0(𝑡) = 𝜓−1
0 (𝑡) = − ln(𝑡) is ≤𝑙𝑜-increasing, see Nelsen [23, Example 4.14]. Since −𝜓′

𝜃 is log-convex for
𝜃 ≥ 0 , it follows that (𝐶𝜓𝜃

)𝜃≥0 is ≤𝜕2𝑆-increasing in 𝜃 .

(b) The Gumbel-Hougaard family (𝐶𝜓𝜃
)𝜃∈[1,∞) with (inverse) generator 𝜙𝜃(𝑡) = 𝜓−1

𝜃 (𝑡) = (− ln(𝑡))𝜃 is ≤𝑙𝑜-
increasing, see Nelsen [23, Example 4.12]. Since −𝜓′

𝜃 is log-convex for all 𝜃 , it follows that (𝐶𝜓𝜃
)𝜃≥1 is

≤𝜕2𝑆-increasing in 𝜃 .

(c) The Frank family (𝐶𝜓𝜃
)𝜃∈R with (inverse) generator 𝜙𝜃(𝑡) = 𝜓−1

𝜃 (𝑡) = − ln
(︁
exp(−𝜃𝑡)−1
exp(−𝜃)−1

)︁
for 𝜃 ̸= 0 and

𝜙0(𝑡) = 𝜓−1
0 (𝑡) = − ln(𝑡) is ≤𝑙𝑜-increasing, see Nelsen [23, p. 150]. Since −𝜓′

𝜃 is log-convex for 𝜃 ≥ 0

and 𝐶*
𝜓𝜃

= 𝐶𝜓−𝜃
, see Nelsen [23, p. 133], it follows that |𝜃| ≤ |𝜃′| implies 𝐶𝜓𝜃

≤𝜕2𝑆 𝐶𝜓𝜃′
.

Combining the Ky Fan–Lorentz Theorem 3.3 and Lorentz’s Theorem 3.10, we get the following main result.
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Theorem 3.20 (≤𝜕2𝑆-ordering criterion).
Let 𝐺 ∈ ℱ1 and let 𝐷𝑖, 𝐸𝑖 ∈ 𝒞2 be bivariate copulas with 𝐸𝑖 CIS and 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 for all 1 ≤ 𝑖 ≤ 𝑑 . Assume
that B = (𝐵𝑡)𝑡∈[0,1] is continuous, 𝐵𝑡 ∈ 𝒞𝑑 for all 𝑡 .

(i) If B fulfills condition (22) and if 𝐵𝑡 ∈ 𝒞𝑐𝑐𝑥𝑑 for all 𝑡 , then

*B,𝐺𝐷
𝑖 ≤𝑙𝑜 *B,𝐺𝐸

𝑖 .

(ii) If B̂ = (�̂�𝑡)𝑡∈[0,1] fulfills condition (23) and if �̂�𝑡 ∈ 𝒞𝑐𝑐𝑥𝑑 for all 𝑡 , then

*B,𝐺𝐷
𝑖 ≤𝑢𝑜 *B,𝐺𝐸

𝑖 .

Proof. To show (i), define for 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 the function 𝑔𝑖,𝑢𝑖
(𝑡) := 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡) for almost all
𝑡 ∈ (0, 1) and for 𝑖 = 1, . . . , 𝑑 . Since 𝐸𝑖 is CIS, it holds that 𝜕𝐺2 𝐸

𝑖(𝑢𝑖, ·) is decreasing. From the assumption
that 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 , we obtain for the decreasing rearrangement 𝑔*𝑖,𝑢𝑖

of 𝑔𝑖,𝑢𝑖
that 𝑔*𝑖,𝑢𝑖

≺𝑆 𝜕𝐺2 𝐸𝑖(𝑢𝑖, ·) . This
yields the integral inequalities

*B,𝐺𝐷
𝑖 (𝑢) =

1∫︁
0

𝐵𝐺𝑡

(︁
𝜕𝐺2 𝐷

1(𝑢1, 𝑡), . . . , 𝜕
𝐺
2 𝐷

𝑑(𝑢𝑑, 𝑡)
)︁
d𝑡

≤
1∫︁

0

𝐵𝐺𝑡
(︀
𝑔*1,𝑢1

(𝑡), . . . , 𝑔*𝑑,𝑢𝑑
(𝑡)
)︀
d𝑡

≤
1∫︁

0

𝐵𝐺𝑡

(︁
𝜕𝐺2 𝐸

1(𝑢1, 𝑡), . . . , 𝜕
𝐺
2 𝐸

𝑑(𝑢𝑑, 𝑡)
)︁
d𝑡 = *B,𝐺𝐸

𝑖 (𝑢)

where we apply Theorems 3.10 and 3.3 using that also the copulas (𝐵𝐺𝑡 )𝑡 are componentwise convex and fulfill
condition (22), see Lemma 3.6.
Statement (ii) follows similarly to (i) applying formula (13) for the survival function of the *-product.

Since the independence copula coincides with its survival copula and is componentwise convex, we obtain the
following result as a consequence of Theorem 3.20.

Corollary 3.21 (Ordering the conditional independence product).
If 𝐺 ∈ ℱ1 and 𝐷𝑖, 𝐸𝑖 ∈ 𝒞2 such that 𝐸𝑖 is CIS and 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 for all 1 ≤ 𝑖 ≤ 𝑑 , then

Π𝐺𝐷
𝑖 ≤𝑐 Π𝐺𝐸

𝑖 .

Remark 3.22. (a) For simplified *-products, condition (22) of Proposition 3.11 and Theorem 3.20 are triv-
ially fulfilled. In Proposition 3.11 there is no convexity condition w.r.t. B and 𝐵 , respectively. The state-
ment in Theorem 3.20 also holds true if the 𝐸𝑖 are conditionally decreasing, i.e. if 𝜕2𝐸𝑖(𝑢𝑖, ·) is increasing
for all 𝑢𝑖 .

(b) Corollary 3.21 extends [16, Proposition 1] to arbitrary dimension and general factor distribution 𝐺 ∈ ℱ1

where the authors show that Π2
𝑖=1𝐸

𝑖 (𝑢, 𝑣) ≥ Π2(𝑢, 𝑣) = 𝑢𝑣 for 𝑢, 𝑣 ∈ [0, 1] and CIS copulas 𝐸1, 𝐸2 ∈ 𝒞2 .
(c) The intuition why Theorem 3.20 is true can be seen in the following explanation. The condition 𝐷𝑖 ≤𝜕2𝑆 𝐸

𝑖

indicates that 𝐷𝑖 is closer to the independence copula than 𝐸𝑖 . Since additionally 𝐸𝑖 is CIS, 𝐸𝑖 is closer
to the upper Fréchet bound than 𝐷𝑖 , and (𝐸𝑖)* is closer to the lower Fréchet bound than 𝐷𝑖 . This yields
a stronger positive dependence among the 𝑋𝑖 in the factor model with specifications 𝐸𝑖 . However, in
general, such a statement cannot be obtained if the conditional copulas are not componentwise convex.

The following counterexample shows that the assumption 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 in Theorem 3.20 cannot be simplified
to𝐷𝑖 ≤𝜕2𝑆 𝐸

𝑖 , and that, in general, *B𝐷𝑖 ≤𝑙𝑜 *B𝐸𝑖 does not imply *B,𝐺𝐷
𝑖 ≤𝑙𝑜 *B,𝐺𝐸

𝑖 for 𝐺 ∈ ℱ1∖ℱ1
𝑐 .
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Example 3.23. For 𝑑 ≥ 2 , let 𝐷𝑖 = 𝐷* and 𝐸𝑖 = 𝑀2 with 𝐷* and 𝐺 ∈ ℱ1 given by Example 3.15,
𝑖 = 1, . . . , 𝑑 . As shown there, it holds that 𝐷𝑖 ≤𝜕2𝑆 𝐸

𝑖 as well as 𝜕𝐺2 𝐷
𝑖(𝑢, ·) ≻𝑆 𝜕𝐺2 𝐸𝑖(𝑢, ·) for 𝑢 ≤ 1

4 . This
yields by Theorem 3.20 for all continuous B = (𝐵𝑡)𝑡∈[0,1] , 𝐵𝑡 ∈ 𝒞𝑐𝑐𝑥𝑑 , satisfying condition (22) that *B𝐷𝑖 ≤𝑙𝑜
*B𝐸𝑖 and, as a consequence of Theorems 3.3 and 3.10, that *B,𝐺𝐷

𝑖(𝑢, . . . , 𝑢) ≥ *B,𝐺𝐸
𝑖(𝑢, . . . , 𝑢) . So, for

general 𝐺 ∈ ℱ1 ∖ ℱ1
𝑐 and for a general continuous family B of componentwise convex 𝑑-copulas which fulfills

condition (22), we have the following diagram:

𝐷𝑖 ≤𝜕2𝑆 𝐸
𝑖 ̸=⇒ 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖⇓⃦ ̸=⇒ ⇓⃦

*B𝐷𝑖 ≤𝑙𝑜 *B𝐸𝑖 ̸=⇒ *B,𝐺𝐷
𝑖 ≤𝑙𝑜 *B,𝐺𝐸

𝑖 .

3.2 Upper product ordering results

To derive ordering results for upper and lower products of bivariate copulas, consider on 𝒞2 the sign change
ordering and the symmetric sign change ordering defined as follows.

For bivariate copulas 𝐷,𝐸 ∈ 𝒞2 , define the function 𝑓𝑢,𝑣 : [0, 1] → [−1, 1] by

𝑓𝑢,𝑣(𝑡) = 𝜕2𝐸(𝑢, 𝑡)− 𝜕2𝐷(𝑣, 𝑡)

for almost all 𝑡 ∈ (0, 1) as the difference of the partial derivatives of 𝐸 and 𝐷 w.r.t. the second variable for
fixed first components 𝑢, 𝑣 ∈ [0, 1] .

Definition 3.24 (Sign change orderings).
The sign change ordering 𝐷 ≤𝜕Δ 𝐸 , respectively, the symmetric sign change ordering 𝐷 ≤𝑠𝜕Δ 𝐸 is defined
via the property that for all 𝑢, 𝑣 , respectively, for all 𝑢 = 𝑣 , the function 𝑓𝑢,𝑣 has no (−,+)-sign change.

The sign change orderings strengthen the standard bivariate dependence orderings. It holds true that

𝐷 ≤𝜕Δ 𝐸 =⇒ 𝐷 ≤𝑠𝜕Δ 𝐸 =⇒ 𝐷 ≤𝑐 𝐸 ⇐⇒ 𝐷 ≤𝑙𝑜 𝐸 ,

see Ansari and Rüschendorf [2, Proposition 3.4]. Note that the lower and upper Fréchet copula are the least
and greatest element, respectively, w.r.t. the ≤𝜕Δ-ordering, i.e., it holds that 𝑊 2 ≤𝜕Δ 𝐷 ≤𝜕Δ 𝑀2 for all
𝐷 ∈ 𝒞2 . Examples of ≤𝜕Δ-ordered copula families are elliptical copulas and some families of Archimedean
copulas, see [2].

Each of both conditions

𝐷𝑗 = 𝐸𝑗 ≤𝜕Δ 𝐷𝑑, 𝐸𝑑 , 𝐷𝑑 ≤𝑠𝜕Δ 𝐸𝑑 , ∀ 1 ≤ 𝑗 ≤ 𝑑− 1 , (28)

and 𝐷𝑗 = 𝐸𝑗 ≥𝜕Δ 𝐷𝑑, 𝐸𝑑 , 𝐷𝑑 ≥𝑠𝜕Δ 𝐸𝑑 , ∀ 1 ≤ 𝑗 ≤ 𝑑− 1 , (29)

implies
⋁︀
𝐷𝑖 ≥𝑐

⋁︀
𝐸𝑖 , see Ansari and Rüschendorf [2, Proposition 3.6]. We generalize this result to arbitrary

factor distributions as follows.

Theorem 3.25 (Sign-change ordering criterion for upper products).
Let 𝐺 ∈ ℱ1 be a distribution function and let 𝐷𝑖, 𝐸𝑖 ∈ 𝒞2 , 1 ≤ 𝑖 ≤ 𝑑 , be bivariate copulas. If either (28) or
(29) holds, then it follows that ⋁︁

𝐺

𝐷𝑖 ≥𝑐
⋁︁
𝐺

𝐸𝑖 .

Proof. Assume (28). For 1 ≤ 𝑖 ≤ 𝑑− 1 and 𝑢𝑖, 𝑣 ∈ [0, 1] , the functions 𝑓𝑖, 𝑔𝑖, ℎ : (0, 1) → [−1, 1] given by

𝑓𝑖(𝑡) = 𝜕2𝐸
𝑑(𝑣, 𝑡)− 𝜕2𝐷

𝑖(𝑢𝑖, 𝑡) ,

𝑔𝑖(𝑡) = 𝜕2𝐷
𝑑(𝑣, 𝑡)− 𝜕2𝐷

𝑖(𝑢𝑖, 𝑡) , and

ℎ(𝑡) = 𝑓𝑖(𝑡)− 𝑔𝑖(𝑡) = 𝜕2𝐸
𝑑(𝑣, 𝑡)− 𝜕2𝐷

𝑑(𝑣, 𝑡)
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have a.s. no (−,+)-sign change. Then, also the piecewise averaged functions 𝑓𝐺𝑖 , 𝑔𝐺𝑖 , ℎ
𝐺 : (0, 1) → [−1, 1]

given by

𝑓𝐺𝑖 (𝑡) = 𝜕𝐺2 𝐸
𝑑(𝑣, 𝑡)− 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡) ,

𝑔𝐺𝑖 (𝑡) = 𝜕𝐺2 𝐷
𝑑(𝑣, 𝑡)− 𝜕𝐺2 𝐷

𝑖(𝑢𝑖, 𝑡) , and

ℎ𝐺(𝑡) = 𝑓𝐺𝑖 (𝑡)− 𝑔𝐺𝑖 (𝑡) = 𝜕𝐺2 𝐸
𝑑(𝑣, 𝑡)− 𝜕𝐺2 𝐷

𝑑(𝑣, 𝑡)

have a.s. no (−,+)-sign change. Thus, the assertion follows in the same way as the proof of Ansari and
Rüschendorf [2, Proposition 3.6].
Under the assumption of (29), the statement follows similarly with [2, Lemma 3.2], using that the functions
𝑓𝐺𝑖 , 𝑔

𝐺
𝑖 , and ℎ𝐺𝑖 have a.s. no (+,−)-sign change.

Since we make use of it later on, we cite another concordance ordering criterion for upper products, based on
the lower orthant ordering of the arguments.

Proposition 3.26 (≤𝑙𝑜-ordering criterion for upper products). For 𝐺 ∈ ℱ1 and 𝐷2, . . . , 𝐷𝑑, 𝐸 ∈ 𝒞2 , the
following statements are equivalent:

(i) 𝐷𝑖 ≤𝑙𝑜 𝐸 for all 1 ≤ 𝑖 ≤ 𝑑 ,

(ii) 𝑀2 ∨𝐷2 ∨ · · · ∨𝐷𝑑 ≤𝑐 𝑀2 ∨ 𝐸 ∨ · · · ∨ 𝐸⏟  ⏞  
(𝑑−1)-times

.

The result of Proposition 3.26 is given by [3, Theorem 1] even for the tighter supermodular ordering.

3.3 Lower product ordering results

An ordering criterion similar to the sign change criterion for upper products in Theorem 3.25 holds true for
lower products. Remember that, in general, the lower products 𝑀2 ∧𝐺 𝐷 ∧𝐺 𝐸 and 𝑊 2 ∧𝐺 𝐷 ∧𝐺 𝐸 are
3-copulas only for continuous 𝐺 . The symmetric copula 𝐷* associated with 𝐷 ∈ 𝒞2 is defined in (18).

Theorem 3.27 (Sign-change ordering criterion for lower products).
For bivariate copulas 𝐷1, 𝐷2, 𝐷3 ∈ 𝒞2 and 𝐺 ∈ ℱ1 , the following statements hold true:

(i) If 𝐷1
* ≤𝜕Δ 𝐷2, 𝐷3 and 𝐷2 ≤𝑠𝜕Δ 𝐷3 , then

𝑀2 ∧𝐷1 ∧𝐷2 ≤𝑙𝑜 𝑀2 ∧𝐷1 ∧𝐷3 and 𝐷1 ∧𝐺 𝐷2 ≤𝑙𝑜 𝐷1 ∧𝐺 𝐷3 .

(ii) If 𝐷1
* ≥𝜕Δ 𝐷2, 𝐷3 and 𝐷2 ≥𝑠𝜕Δ 𝐷3 , then

𝑊 2 ∧𝐷1 ∧𝐷2 ≤𝑙𝑜 𝑊 2 ∧𝐷1 ∧𝐷3 and 𝐷1 ∧𝐺 𝐷2 ≤𝑙𝑜 𝐷1 ∧𝐺 𝐷3 .

Proof. To show the lower orthant ordering in (i), let 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ [0, 1]3 . In the case that 𝐺 ∈ ℱ1 ∖ ℱ1
𝑐

is discontinuous, set 𝑢1 = 1 . Consider the functions 𝑓, 𝑔, ℎ : [0, 1] → [−1, 1] defined by

𝑓(𝑡) := 𝜕𝐺2 𝐷
2(1− 𝑢3, 𝑡)− 𝜕𝐺2 𝐷

1
*(𝑢2, 𝑡) ,

𝑔(𝑡) := 𝜕𝐺2 𝐷
3(1− 𝑢3, 𝑡)− 𝜕𝐺2 𝐷

1
*(𝑢2, 𝑡) ,

ℎ(𝑡) := 𝜕𝐺2 𝐷
3(1− 𝑢3, 𝑡)− 𝜕𝐺2 𝐷

2(1− 𝑢3, 𝑡) = 𝑔(𝑡)− 𝑓(𝑡) .

Then 𝑓, 𝑔, ℎ have no (−,+)-sign change and it holds that
∫︀
𝑓(𝑡) d𝑡 =

∫︀
𝑔(𝑡) d𝑡 . This yields the integral

inequality
𝑢1∫︁
0

max{𝑓(𝑡), 0} d𝑡 ≤
𝑢1∫︁
0

max{𝑔(𝑡), 0} d𝑡 ,
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cf. Ansari and Rüschendorf [2, Lemma 3.2]. Thus, we obtain

𝑀2 ∧𝐺 𝐷1 ∧𝐺 𝐷2(𝑢) =

𝑢1∫︁
0

max
{︁
𝜕𝐺2 𝐷

1(𝑢2, 𝑡) + 𝜕𝐺2 𝐷
2(1− 𝑢3, 𝑡)− 1 , 0

}︁
d𝑡

=

𝑢1∫︁
0

max
{︁
𝜕𝐺2 𝐷

2(1− 𝑢3, 𝑡)− 𝜕𝐺2 𝐷
1
*(𝑢2, 𝑡) , 0

}︁
d𝑡

=

𝑢1∫︁
0

max {𝑓(𝑡) , 0} d𝑡

≤
𝑢1∫︁
0

max {𝑔(𝑡) , 0} d𝑡 = · · · =𝑀2 ∧𝐺 𝐷1 ∧𝐺 𝐷3(𝑢) ,

where the first equality follows from 𝜕𝐺2 𝑀
2(𝑢1, 𝑡) = 1{𝑢1>𝑡} for almost all 𝑡 and for arbitrary 𝑢1 ∈ [0, 1] in

the case that 𝐺 is continuous, respectively, for 𝑢1 = 1 if 𝐺 is discontinuous. This yields 𝑀2 ∧𝐷1 ∧𝐷2 ≤𝑙𝑜
𝑀2 ∧𝐷1 ∧𝐷3 in the continuous case and 𝐷1 ∧𝐺 𝐷2 ≤𝑙𝑜 𝐷1 ∧𝐺 𝐷3 for arbitrary 𝐺 .
For the upper orthant ordering in (i), we obtain analogously that

𝑀2 ∧𝐺 𝐷1 ∧𝐺 𝐷2 (𝑢) =

1∫︁
𝑢1

max
{︁
1− 𝜕𝐺2 𝐷

1(𝑢2, 𝑡)− 𝜕𝐺2 𝐷
2(1− 𝑢3, 𝑡) , 0

}︁
d𝑡

≤
1∫︁

𝑢1

max
{︁
1− 𝜕𝐺2 𝐷

1(𝑢2, 𝑡)− 𝜕𝐺2 𝐷
3(1− 𝑢3, 𝑡) , 0

}︁
d𝑡 =𝑀2 ∧𝐺 𝐷1 ∧𝐺 𝐷3 (𝑢) .

Statement (ii) follows analogously.

Similarly to the ≤𝑙𝑜-ordering criterion for the concordance ordering of upper products in Proposition 3.26,
we obtain a concordance-ordering result for lower products based on a ≤𝑙𝑜-ordering criterion for the bivariate
dependence specifications.

Theorem 3.28 (≤𝑙𝑜-ordering criterion for lower products).
Let 𝐷,𝐸1, 𝐸2 ∈ 𝒞2 be bivariate copulas. Then, the following statements are equivalent:

(i) 𝐷 ≤𝑙𝑜 𝐸1 and 𝐷* ≤𝑙𝑜 𝐸2 ,

(ii) 𝑀2 ∧𝐷 ∧𝐷* ≤𝑐 𝑀2 ∧ 𝐸1 ∧ 𝐸2 .
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Proof. Assume (i). To show the lower orthant ordering, let 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ [0, 1]3 . Then, it holds that

𝑀2 ∧𝐷 ∧𝐷* (𝑢) =

𝑢1∫︁
0

max {𝜕2𝐷(𝑢2, 𝑡) + 𝜕2𝐷*(𝑢3, 𝑡)− 1 , 0} d𝑡

=

𝑢1∫︁
0

max {𝜕2𝐷(𝑢2, 𝑡)− 𝜕2𝐷(1− 𝑢3, 𝑡) , 0} d𝑡

=

𝑢1∫︁
0

max {𝜕2𝐷(𝑢2, 𝑡) , 𝜕2𝐷(1− 𝑢3, 𝑡)} d𝑡−𝐷(1− 𝑢3, 𝑢1)

= max {𝐷(𝑢2, 𝑢1) , 𝐷(1− 𝑢3, 𝑢1)} −𝐷(1− 𝑢3, 𝑢1)

≤ max
{︁
𝐸1(𝑢2, 𝑢1) , 𝐸

2
*(1− 𝑢3, 𝑢1)

}︁
− 𝐸2

*(1− 𝑢3, 𝑢1)

≤
𝑢1∫︁
0

max
{︁
𝜕2𝐸

1(𝑢2, 𝑡) , 𝜕2𝐸
2
*(1− 𝑢3, 𝑡)

}︁
d𝑡− 𝐸2

*(1− 𝑢3, 𝑢1)

=

𝑢1∫︁
0

max
{︁
𝜕2𝐸

1(𝑢2, 𝑡)− 𝜕2𝐸
2
*(1− 𝑢3, 𝑡) , 0

}︁
d𝑡 =𝑀2 ∧ 𝐸1 ∧ 𝐸2 (𝑢) ,

where the first inequality follows from the assumptions using that 𝐷* ≤𝑙𝑜 𝐸2 if and only if 𝐷 ≥𝑙𝑜 𝐸2
* . The

second inequality holds due to Jensen’s inequality.
For the upper orthant ordering, we similarly obtain

𝑀2 ∧𝐷 ∧𝐷* (𝑢) =

1∫︁
𝑢1

max {𝜕2𝐷(𝑢2, 𝑡)− 𝜕2𝐷*(𝑢3, 𝑡) , 0} d𝑡

≤
1∫︁

𝑢1

max
{︁
𝜕2𝐸

1(𝑢2, 𝑡)− 𝜕2𝐸
2(𝑢3, 𝑡) , 0

}︁
d𝑡 =𝑀2 ∧ 𝐸1 ∧ 𝐸2 (𝑢) .

Assume (ii). Then, (i) follows from the closure of the lower orthant ordering under marginalization and from
the marginalization property of *-products, see Proposition 2.11(iv).

3.4 Ordering results for convex combinations

In Section 3.1, we have established that general lower orthant ordering results for *B,𝐺𝐷
𝑖 in 𝐷𝑖 for fixed 𝐷𝑗 ,

𝑖 ̸= 𝑗 , are only possible if the conditional copulas B = (𝐵𝑡)𝑡 fulfill the convexity condition (21). Remember
that this convexity condition implies negative dependence of the bivariate marginals of 𝐵𝑡 .

Motivated by Theorem 3.20 for componentwise convex conditional copulas and by Proposition 3.26 con-
cerning a ≤𝑙𝑜-ordering criterion for the upper product, the question arises for which *-products ordering
results of the form

𝐷𝑖 ≺𝜕2𝑆 𝐸 , ∀𝑖 , 𝐸 CIS =⇒ *B𝐷𝑖 ≤𝑙𝑜 *B𝐸 (30)

hold true. Note that 𝐸 is assumed to be a joint upper bound for the 𝐷𝑖 .
To partly answer this question, we generalize the necessary integral ordering condition in the Ky Fan–

Lorentz Theorem 3.3 under an additional ordering assumption on the upper bound.

Proposition 3.29. If for all decreasing and bounded functions 𝑓𝑖, 𝑔𝑖 on [0, 1] with 𝑔𝑖1 ≤ . . . ≤ 𝑔𝑖𝑑 , 𝑖1, . . . , 𝑖𝑑 ∈
{1, . . . , 𝑑} , such that 𝑓𝑖 ≺𝑆 𝑔𝑖 the integral inequality (19) holds true, then Φ fulfills the milder convexity
condition

Φ(𝑢𝑖 + ℎ)− 2𝜑(𝑢𝑖) + Φ(𝑢𝑖 − ℎ) ≥ 0 for all 𝑖 , 𝑢𝑖 , 𝑢𝑗 ̸= 𝑢𝑖 , ℎ ≤ min
𝑗 ̸=𝑖

|𝑢𝑖 − 𝑢𝑗 | (31)
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where those components are omitted which are the same in each expression.

Proof. We modify the proof of Fan and Lorentz [11, Theorem 1]: Let 0 ≤ 𝑎 < 𝑎 + 2𝛿 ≤ 1 , and 𝑢1, . . . , 𝑢𝑑 ∈
[0, 1] . For some fixed 𝑖 , let ℎ ∈ [0,min𝑗 ̸=𝑖 |𝑢𝑗 − 𝑢𝑖|] . Assume w.l.g. that 𝑢𝑗 ̸= 𝑢𝑖 for all 𝑗 ̸= 𝑖 . Define

𝑓𝑖(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝑢𝑖 + ℎ , 0 ≤ 𝑡 ≤ 𝑎 ,

𝑢𝑖 , 𝑎 < 𝑡 ≤ 𝑎+ 2𝛿 ,

𝑢𝑖 − ℎ , 𝑎+ 2𝛿 < 𝑡 ≤ 1 ,

𝑔𝑖(𝑡) =

{︃
𝑢𝑖 + ℎ , 0 ≤ 𝑡 ≤ 𝑎+ 𝛿 ,

𝑢𝑖 − ℎ , 𝑎+ 𝛿 < 𝑡 ≤ 1 ,

𝑓𝑗(𝑡) = 𝑔𝑗(𝑡) = 𝑢𝑗 , 𝑗 ̸= 𝑖 .

Then, it holds true that 𝑓𝑘 ≺𝑆 𝑔𝑘 , 𝑘 = 1, . . . , 𝑑 . Further, there exist 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑑} pairwise different
such that 𝑔𝑖1(𝑡) ≤ . . . ≤ 𝑔𝑖𝑑(𝑡) for all 𝑡 . The inequality (19) reduces in this case to

𝛿∫︁
0

{Φ(𝑎+ 𝑡, 𝑢𝑖 + ℎ)− Φ(𝑎+ 𝑡, 𝑢𝑖) + Φ(𝑎+ 𝛿 + 𝑡, 𝑢𝑖 − ℎ𝑖)− Φ(𝑎+ 𝛿 + 𝑡, 𝑢𝑖)} d𝑡 ≥ 0 .

Dividing by 𝛿 and making 𝛿 → 0 , yields (31).

As a consequence, we obtain that lower orthant ordering results for *-products with a joint upper bound for
all copulas also restrict the choice of conditional copulas.

Corollary 3.30. If for all CIS copulas 𝐷𝑖, 𝐸 ∈ 𝒞2 with 𝐷𝑖 ≺𝜕2𝑆 𝐸 the inequality

*B𝐷𝑖 ≤𝑙𝑜 *B𝐸 (32)

holds true, then B fulfills the milder convexity condition (31).

Proof. Let 𝑓𝑖, 𝑔𝑖 be decreasing and bounded such that 𝑓𝑖 ≺𝑆 𝑔𝑖 and 𝑔𝑖1 ≤ . . . ≤ 𝑔𝑖𝑑 , 𝑖1, . . . , 𝑖𝑑 ∈ {1, . . . , 𝑑} .
Assume w.l.o.g. that 0 ≤ 𝑓𝑖, 𝑔𝑖 ≤ 1 . Then, there exist 𝑢1, . . . , 𝑢𝑑 ∈ [0, 1] and CIS copulas 𝐷𝑖, 𝐸 ∈ 𝒞2 with
𝐷𝑖 ≺𝜕2𝑆 𝐸 such that 𝑓𝑖(𝑡) = 𝜕2𝐷

𝑖(𝑢𝑖, 𝑡) and 𝑔𝑖(𝑡) = 𝜕2𝐸(𝑢𝑖, 𝑡) . Thus, the statement follows from Proposition
3.29.

Remark 3.31. (a) Due to Corollary 3.30, ordering results of the form (30) can not be obtained for all
continuous families B = (𝐵𝑡)𝑡∈[0,1] of 𝑑-copulas.

(b) The upper Fréchet copula 𝑀𝑑 fulfills the milder convexity condition (31). In this case, inequality (32)
is trivially fulfilled because

⋁︀
𝐸𝑖 = 𝑀𝑑 whenever 𝐸𝑖 = 𝐸 for all 𝑖 . Note that for the upper product the

non-trivial generalized inequality

𝑀2 ∨𝐷2 ∨ · · · ∨𝐷𝑑 ≤𝑐 𝑀2 ∨ 𝐸 ∨ · · · ∨ 𝐸⏟  ⏞  
(𝑑−1)-times

(33)

holds true whenever 𝐷𝑖 ≤𝑙𝑜 𝐸 (see Proposition 3.26).

Denote by 𝑐𝑜(𝑀𝑑, 𝒞𝑐𝑐𝑥𝑑 ) the set of convex combinations of 𝑀𝑑 with elements of 𝒞𝑐𝑐𝑥𝑑 . Then, we obtain the
following result.

Theorem 3.32. Let 𝐷1 = 𝐸1 =𝑀2 and 𝐷𝑖 ∈ 𝒞2 such that for a CIS copula 𝐸 ∈ 𝒞2 holds 𝐷𝑖 ≺𝜕2𝑆 𝐸 = 𝐸𝑖 ,

2 ≤ 𝑖 ≤ 𝑑 . Let 𝐵 ∈ 𝑐𝑜(𝑀𝑑, 𝒞𝑐𝑐𝑥𝑑 ) . Then, for the simplified *-products, it holds true that

*𝐵 𝐷𝑖 ≤𝑙𝑜 *𝐵 𝐸𝑖 .

Proof. The copula 𝐵 is of the form 𝐵 = 𝑎𝑀𝑑 + (1 − 𝑎)𝐶 , for some 𝑎 ∈ [0, 1] , where 𝐶 ∈ 𝒞𝑐𝑐𝑥𝑑 fulfills the
convexity condition (21). Thus, the statement follows from Theorem 3.20 and from (33) using that 𝐷𝑖 ≺𝜕2𝑆 𝐸
implies 𝐷𝑖 ≤𝑙𝑜 𝐸 , see Lemma 3.16.

Note that in the above result, 𝐸𝑖 = 𝐸 for 𝑖 ∈ {2, . . . , 𝑑} is a joint upper bound for the copulas 𝐷2, . . . , 𝐷𝑑 .
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𝑋1

𝑋2

...

𝑋𝑑

𝑍 ∼ 𝐺

𝐷1

𝐷2

𝐷𝑑

B

𝑌1

𝑌2

...

𝑌𝑑

𝑍′ ∼ 𝐺′

𝐸1

𝐸2

𝐸𝑑

C

Fig. 3 The setting in Section 4: Completely specified factor models with dependence specifications 𝐷𝑖 and B =

(𝐵𝑡)𝑡 , respectively, 𝐸𝑖 and C = (𝐶𝑡)𝑡 , 1 ≤ 𝑖 ≤ 𝑑 , and with factor distribution function 𝐺 and 𝐺′ , respectively,
such that Ran(𝐺) = Ran(𝐺′) .

4 Ordering results for completely specified factor models

In this section, we combine the ordering results on *-products in Section 3 with the ordering of the univariate
marginal distributions. This leads to lower and upper orthant as well as concordance ordering results for
CSFMs and, thus, to bounds w.r.t. these orderings in classes of CSFMs and PSFMs, respectively.

Suppose that 𝑋 = (𝑋1, . . . , 𝑋𝑑) with 𝑋𝑖 = 𝑓𝑖(𝑍, 𝜀𝑖) and 𝑌 = (𝑌1, . . . , 𝑌𝑑) with 𝑌𝑖 = 𝑔𝑖(𝑍
′, 𝜀′𝑖) are 𝑑-

dimensional random vectors that follow a completely specified factor model with factor distribution function
𝐺 = 𝐹𝑍 and 𝐺′ = 𝐹𝑍′ , respectively, such that Ran(𝐺) = Ran(𝐺′) . Then the corresponding copulas are given
by the *-products

𝐶𝑋 = *B,𝐺𝐷
𝑖 and 𝐶𝑌 = *C,𝐺′ 𝐸𝑖 ,

respectively, where 𝐷𝑖 = 𝐶𝑋𝑖,𝑍 , 𝐸
𝑖 = 𝐶𝑌𝑖,𝑍′ , 𝐵𝐺𝑡 = 𝐶𝑋|𝑍=𝐺−1(𝑡) , and 𝐶𝐺

′

𝑡 = 𝐶𝑌 |𝑍′=𝐺′−1(𝑡) , see Theorem
2.7. Further, by Sklar’s Theorem, the corresponding distribution functions are given by

𝐹𝑋 = *B,𝐺𝐷
𝑖 (𝐹𝑋1

, . . . , 𝐹𝑋𝑑
) and 𝐹𝑌 = *C,𝐺𝐸

𝑖 (𝐹𝑌1
, . . . , 𝐹𝑌𝑑

) ,

using that Ran(𝐺) = Ran(𝐺′) , see Proposition 2.14.
We establish conditions on the conditional copula families B and C assumed generally to be measurable,

on the dependence specifications 𝐷𝑖 and 𝐸𝑖 , and on the distributions of the components 𝑋𝑖 and 𝑌𝑖 to infer
lower orthant, upper orthant and concordance comparison results for 𝑋 and 𝑌 .

The following proposition compares CSFMs where the bivariate dependence specifications 𝐷𝑖 and 𝐸𝑖

coincide.

Proposition 4.1 (Ordering conditional copulas).
Assume that 𝐷𝑖 = 𝐸𝑖 for all 𝑖 . Then, the following statements hold true.

(i) If B ≤𝑙𝑜 C and 𝑋𝑖 ≤𝑙𝑜 𝑌𝑖 then 𝑋 ≤𝑙𝑜 𝑌 .
(ii) If B ≤𝑢𝑜 C and 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖 then 𝑋 ≤𝑢𝑜 𝑌 .
(iii) If B ≤𝑐 C and 𝑋𝑖

d
= 𝑌𝑖 then 𝑋 ≤𝑐 𝑌 .

Proof. The statements follow from Proposition 3.2 for fixed marginal distributions together with Sklar’s
Theorem (respectively, Sklar’s Theorem for survival functions) for fixed conditional copulas using that 𝑋𝑖 ≤𝑙𝑜
𝑌𝑖 (respectively, 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖) implies 𝐹𝑋𝑖

(𝑥) ≤ 𝐹𝑌𝑖
(𝑥) (respectively, 𝐹𝑋𝑖

(𝑥) ≥ 𝐹𝑌𝑖
(𝑥)) for all 𝑥 ∈ R and

1 ≤ 𝑖 ≤ 𝑑 .
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In the remaining part of this section, we also establish ordering conditions w.r.t. the dependence specifications
𝐷𝑖 and 𝐸𝑖 .

For the following theorem, we need a family of componentwise convex conditional (survival) copulas
that lies between B and C . Then, we obtain a general ordering condition in dependence on the bivariate
specifications, the conditional copulas and the marginal distributions.

Theorem 4.2. Let B′ = (𝐵′
𝑡)𝑡∈[0,1] ⊂ 𝒞𝑑 be continuous. Assume that all 𝐸𝑖 are CIS.

(i) If B′ satisfies condition (22) and if 𝐵′
𝑡 ∈ 𝒞𝑐𝑐𝑥𝑑 for all 𝑡 , then

B ≤𝑙𝑜 B′ ≤𝑙𝑜 C , 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 , and 𝑋𝑖 ≤𝑙𝑜 𝑌𝑖 for all 𝑖 =⇒ 𝑋 ≤𝑙𝑜 𝑌 .

(ii) If B̂′ satisfies condition (23) and if �̂�𝑡 ∈ 𝒞𝑐𝑐𝑥𝑑 for all 𝑡 , then

B ≤𝑢𝑜 B′ ≤𝑢𝑜 C , 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 , and 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖 for all 𝑖 =⇒ 𝑋 ≤𝑢𝑜 𝑌 .

(iii) If B′ and B̂′ satisfy condition (22) and (23), respectively, and if 𝐵𝑡, �̂�𝑡 ∈ 𝒞𝑐𝑐𝑥𝑑 for all 𝑡 , then

B ≤𝑐 B′ ≤𝑐 C , 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 , and 𝑋𝑖
d
= 𝑌𝑖 for all 𝑖 =⇒ 𝑋 ≤𝑐 𝑌 .

Proof. To show (i), we obtain from Proposition 3.2 and Theorem 3.20 that

*B,𝐺𝐷
𝑖 ≤𝑙𝑜 *B′,𝐺𝐷

𝑖 ≤𝑙𝑜 *B′,𝐺𝐸
𝑖 ≤𝑙𝑜 *C,𝐺𝐸

𝑖 .

Then, the statement follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously.

Since the independence copula and its associated survival copula are componentwise convex, we obtain as a
consequence of the above theorem ordering results for the standard factor model.

Corollary 4.3 (Ordering results for standard factor models).
Assume that B = C = Πd = (Π𝑑) . If 𝐷𝑖 ≤𝜕2𝑆,𝐺 𝐸𝑖 and if 𝐸𝑖 is CIS for all 𝑖 , then

(i) 𝑋𝑖 ≤𝑙𝑜 𝑌𝑖 for all 𝑖 imply 𝑋 ≤𝑙𝑜 𝑌 ,
(ii) 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖 for all 𝑖 imply 𝑋 ≤𝑢𝑜 𝑌 ,
(iii) 𝑋𝑖

d
= 𝑌𝑖 for all 𝑖 imply 𝑋 ≤𝑐 𝑌 .

In the following remark, we determine sharp bounds for some relevant classes of CSFMs including classes of
standard factor models with bounded bivariate specification sets.

Remark 4.4. Let 𝐹𝑖 ∈ ℱ1 for all 𝑖 . Denote by ≺ one of the orderings ≤𝑙𝑜 and ≤𝑢𝑜 . For 𝐸𝑖 ∈ 𝒞2 , denote
by 𝒞𝐸

𝑖

2 := {𝐶 ∈ 𝒞2 | 𝐶 ≤𝜕2𝑆 𝐸𝑖} the class of bivariate copulas that is upper bounded w.r.t. ≤𝜕2𝑆 by 𝐸𝑖 ,

1 ≤ 𝑖 ≤ 𝑑 . For a risk factor 𝑍 ∼ 𝐺 , 𝐺 ∈ ℱ1
𝑐 , consider the class

𝒳 𝑓 =
{︁
𝜉 = (𝜉1, . . . , 𝜉𝑑) | 𝐶𝜉𝑖,𝑍 ∈ 𝒞𝐸

𝑖

2 , 𝐹𝜉𝑖 ≺ 𝐹𝑖 for all 𝑖 , 𝐶𝜉|𝑍=𝑧 ≺ Π𝑑 for all 𝑧
}︁

of 𝑑-variate random vectors that are conditionally on 𝑍 = 𝑧 negative dependent w.r.t. ≺ , have marginal
distributions upper bounded by 𝐹𝑖 , and have dependence specifications 𝐶𝜉𝑖,𝑍 ∈ 𝒞𝐸

𝑖

2 , see Figure 4. Then, for
all 𝜉 ∈ 𝒳 𝑓 , it holds that

𝐹𝜉 ≺ Π
𝑑
𝑖=1𝐸

𝑖
↑ (𝐹1, . . . , 𝐹𝑑) , (34)

where 𝐸𝑖↑ is the uniquely determined CIS copula such that 𝐸𝑖↑ =𝜕2𝑆 𝐸
𝑖 , see Proposition 3.17. Further, a vector

𝜉 ∈ 𝒳 𝑓 such that 𝜉 ∼ Π𝑑𝑖=1𝐸
𝑖
↑ (𝐹1, . . . , 𝐹𝑑) can explicitly be determined which implies that the bound in (34)

is attained, cf. Corollary 2.9.
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≤𝑙𝑜
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𝐸1
↑
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↓

𝒞𝐸
1

2

𝐸1

Π2

𝑀2

𝑊 2

𝐸2
↑
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↓

𝒞𝐸
2

2

𝐸2

. . . Π2

𝑀2

𝑊 2

𝐸𝑑↑

𝐸𝑑↓

𝒞𝐸
𝑑

2𝐸𝑑

Fig. 4 Classes 𝒞𝐸𝑖

2 = {𝐶 ∈ 𝒞2 | 𝐶 ≤𝜕2𝑆 𝐸𝑖} of bivariate copulas generated by the copulas 𝐸𝑖 ∈ 𝒞2 , 𝑖 = 1, . . . , 𝑑 ,

via the ≤𝜕2𝑆-ordering. Note that 𝑀2,Π2, and 𝑊 2 denote the upper Fréchet copula, the independence copula, and
the lower Fréchet copula, respectively. The copulas 𝐸𝑖

↑ and 𝐸𝑖
↓ are the uniquely determined copulas that are CIS and

CDS, respectively, such that 𝐸𝑖
↑ =𝜕2𝑆 𝐸𝑖 =𝜕2𝑆 𝐸𝑖

↓ , see Proposition 3.17. As a consequence of Proposition 3.14, it

holds for all 𝐷 ∈ 𝒞𝐸𝑖

2 that 𝜁1(𝐷𝑇 ) ≤ 𝜁1((𝐸𝑖)𝑇 ) .

In PSFMs, the conditional copulas are not specified. For the comparison of upper bounds in classes of PSFMs,
we note that the worst case distribution in a PSFM w.r.t. the orthant orders is obtained when the conditional
copula specifications attain the upper Fréchet copula.

Theorem 4.5 (Upper bounds in classes of PSFMs).
Assume that C = Md = (𝑀𝑑) . If 𝐷𝑗 = 𝐸𝑗 ≤𝜕Δ 𝐷𝑑, 𝐸𝑑 for 𝑗 = 1, . . . , 𝑑− 1 and 𝐷𝑑 ≤𝑠𝜕Δ 𝐸𝑑 , then

(i) 𝑋𝑖 ≤𝑙𝑜 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑙𝑜 𝑌 ,
(ii) 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑢𝑜 𝑌 ,
(iii) 𝑋𝑖

d
= 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑐 𝑌 .

Proof. From Proposition 3.2 and Theorem 3.25 we obtain that

*B,𝐺𝐷
𝑖 ≤𝑙𝑜

⋁︁
𝐺

𝐷𝑖 ≤𝑙𝑜
⋁︁
𝐺

𝐸𝑖 = *C,𝐺𝐸
𝑖 .

Then (i) follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously.

Similarly, we obtain for lower bounds in the two- and three-dimensional case the following result.

Theorem 4.6 (Lower bounds in classes of PSFMs, 𝑑 = 3).
Assume that B = W3 = (𝑊 3) and 𝐷1 = 𝐸1 =𝑀2 . If 𝐷2

* = 𝐸2
* ≤𝜕Δ 𝐷3, 𝐸3 and 𝐷3 ≤𝑠𝜕Δ 𝐸3 , Then

(i) 𝑋𝑖 ≤𝑙𝑜 𝑌𝑖 implies (𝑋2, 𝑋3) ≤𝑙𝑜 (𝑌2, 𝑌3) , and if 𝐺 ∈ ℱ1
𝑐 then (𝑋1, 𝑋2, 𝑋3) ≤𝑙𝑜 (𝑌1, 𝑌2, 𝑌3) ,

(ii) 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖 implies (𝑋2, 𝑋3) ≤𝑢𝑜 (𝑌2, 𝑌3) , and if 𝐺 ∈ ℱ1
𝑐 then (𝑋1, 𝑋2, 𝑋3) ≤𝑢𝑜 (𝑌1, 𝑌2, 𝑌3) ,

(iii) 𝑋𝑖
d
= 𝑌𝑖 implies (𝑋2, 𝑋3) ≤𝑐 (𝑌2, 𝑌3) , and if 𝐺 ∈ ℱ1

𝑐 then (𝑋1, 𝑋2, 𝑋3) ≤𝑐 (𝑌1, 𝑌2, 𝑌3) ,

Proof. For 𝐺 ∈ ℱ1
𝑐 , we obtain from Theorem 3.27 and Proposition 3.2 that

*B𝐷𝑖 =𝑀2 ∧𝐷2 ∧𝐷3 ≤𝑙𝑜 𝑀2 ∧ 𝐸2 ∧ 𝐸3 ≤𝑙𝑜 *C𝐸𝑖 .

Then, (𝑋1, 𝑋2, 𝑋3) ≤𝑙𝑜 (𝑌1, 𝑌2, 𝑌3) follows with Sklar’s Theorem.
For general 𝐺 ∈ ℱ1 , denote by C23 = (𝐶23

𝑡 )𝑡∈[0,1] the bivariate (2, 3)-marginal copulas of C , i.e., 𝐶23
𝑡 (𝑢, 𝑣) =

𝐶𝑡(1, 𝑢, 𝑣) for all 𝑡, 𝑢, 𝑣 ∈ [0, 1] . Similarly, B23 = W2 = (𝑊 2) . Then, we obtain that

𝐷2*B23,𝐺𝐷
3 = 𝐷2 ∧𝐺 𝐷3 ≤𝑙𝑜 𝐸2 ∧𝐺 𝐸3 ≤𝑙𝑜 𝐸2*C23,𝐺𝐸

3 ,
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and, thus, (𝑋2, 𝑋3) ≤𝑙𝑜 (𝑌2, 𝑌3) . For the upper orthant and concordance ordering, the statements follow
analogously.

Note that the same results hold true if the inequality signs ≤𝜕Δ and ≤𝑠𝜕Δ in Theorem 4.5 and Theorem 4.6
(with 𝐷1 = 𝐸1 =𝑊 2) are reversed.

For classes of partially specified internal factor models (PSIFMs) where the first component of the risk
vector in the PSFM coincides with (an increasing function of) the factor variable, see [3], we obtain the
following results. Note that in this class, the first bivariate dependence specification is given by the upper
Fréchet copula 𝑀2 .

Theorem 4.7 (Upper bounds in classes of PSIFMs).
Assume that 𝐺 ∈ ℱ1

𝑐 and C = Md = (𝑀𝑑) . If 𝐷1 = 𝐸1 = 𝑀2 and 𝐷𝑗 ≤𝑙𝑜 𝐸𝑗 = 𝐸 for 𝑗 = 2, . . . , 𝑑 and
𝐸 ∈ 𝒞2 , then

(i) 𝑋𝑖 ≤𝑙𝑜 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑙𝑜 𝑌 ,
(ii) 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑢𝑜 𝑌 ,
(iii) 𝑋𝑖

d
= 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑐 𝑌 .

Proof. From Proposition 3.2 and Theorem 3.26, we obtain that

*B𝐷𝑖 ≤𝑙𝑜
⋁︁

𝐷𝑖 ≤𝑙𝑜
⋁︁

𝐸𝑖 = *C𝐸𝑖 .

Thus, the statement follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously.

For lower bounds in the three-dimensional case, we obtain the following result.

Theorem 4.8 (Lower bounds in classes of PSIFMs, 𝑑 = 3).
Assume that 𝐺 ∈ ℱ1

𝑐 and B = W3 = (𝑊 3) . If 𝐷1 = 𝐸1 =𝑀2 and 𝐷2 = 𝐷3
* ≤𝑙𝑜 𝐸𝑗 for 𝑗 = 2, 3 , then

(i) 𝑋𝑖 ≤𝑙𝑜 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑙𝑜 𝑌 ,
(ii) 𝑋𝑖 ≤𝑢𝑜 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑢𝑜 𝑌 ,
(iii) 𝑋𝑖

d
= 𝑌𝑖 for all 𝑖 implies 𝑋 ≤𝑐 𝑌 .

Proof. From Theorem 3.28 and Proposition 3.2, we obtain

*B𝐷𝑖 = 𝐷1 ∧𝐷2 ∧𝐷3 ≤𝑙𝑜 𝐸1 ∧ 𝐸2 ∧ 𝐸3 ≤𝑙𝑜 *C𝐸𝑖 .

Then, (𝑋1, 𝑋2, 𝑋3) ≤𝑙𝑜 (𝑌1, 𝑌2, 𝑌3) follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously.

Conclusion

In this paper, we obtain some general ordering results for factor models w.r.t. the specifications of the joint
distributions of the components with the risk factor variable. The results generalize the upper product ordering
results in [2, 3] to general conditional dependence structures and are based essentially on a version of Sklar‘s
theorem as well as on classical ordering results based on rearrangements. The results in this paper allow to
determine worst case distributions w.r.t. the orthant orderings for classes of CSFMs as well as in subclasses of
PSFMs for any 𝑑 ≥ 2 and, similarly, of best case distributions for 𝑑 = 2, 3 . Related ordering results w.r.t. the
stronger supermodular and the directionally convex ordering need different techniques and are the subject of
a subsequent study.
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A Appendix

Lemma A.1. For 𝐺 ∈ ℱ1 , the following statements hold true.

(i) 𝜄𝐺 and 𝜄−𝐺 are non-decreasing and Lebesgue-almost surely continuous.
(ii) 𝐺−1(𝜄𝐺(𝑡)) = 𝐺−1(𝑡) and 𝜄𝐺(𝐺(𝑥)) = 𝐺(𝑥) for all 𝑡 ∈ [0, 1] and 𝑥 ∈ R .
(iii) If 𝐺(𝑥− 𝜀) < 𝐺(𝑥) for all 𝜀 > 0 , then 𝜄−𝐺(𝐺(𝑥)) = 𝐺−(𝑥) .

(iv) 𝜄−𝐺(𝑡) ≤ 𝑡 ≤ 𝜄𝐺(𝑡) ∀𝑡 ∈ (0, 1) , 𝜄−𝐺(0) = 0 = 𝜄𝐺(0) and 𝜄−𝐺(1) ≤ 1 = 𝜄𝐺(1) .

(v) 𝜄𝐺 ∘ 𝜄𝐺 = 𝜄𝐺 and 𝜄−𝐺 ∘ 𝜄𝐺 = 𝜄−𝐺 .

(vi) 𝜄−𝐺 is left-continuous.
(vii) For all 𝑦 ∈ R , 𝜄𝐺 is left-continuous at 𝐺(𝑦) and 𝜄−𝐺 is continuous at 𝐺−(𝑦) .

(viii) In general, 𝜄𝐺 is neither left-continuous nor right-continuous.
(ix) 𝜄−𝐺(𝑡) = 𝑡 = 𝜄𝐺(𝑡) if and only if 𝐺 is continuous at 𝐺−1(𝑡) .

(x) 𝜄−𝐺(𝑡) = 𝑡 = 𝜄𝐺(𝑡) for all 𝑡 ∈ [0, 1] if and only if 𝐺 ∈ ℱ1
𝑐 .

(xi) If 𝜄𝐺(𝑡) > 𝑡 , then 𝜄𝐺(𝑡+ 𝜀) = 𝜄𝐺(𝑡) and 𝜄−𝐺(𝑡+ 𝜀) = 𝜄−𝐺(𝑡) for all 0 < 𝜀 ≤ 𝜄𝐺(𝑡)− 𝑡 .

(xii) If 𝜄−𝐺(𝑡) < 𝑡 , then 𝜄𝐺(𝑡− 𝜀) = 𝜄𝐺(𝑡) and 𝜄−𝐺(𝑡− 𝜀) = 𝜄−𝐺(𝑡) for all 0 < 𝜀 < 𝑡− 𝜄−𝐺(𝑡) .

Proof. (i): The non-decreasingness is clear. Since 𝜄𝐺 and 𝜄−𝐺 can only have an at most countable number of
jumps, the set of discontinuity points is a Lebesgue-null set.
(ii), (iii) and (iv) follow from the definition of 𝐺−1 and 𝐺− , respectively, considering the cases where 𝐺 is
discontinuous and constant around 𝑥 , respectively.
(v) is a consequence of (ii).
(vi): This follows from the left-continuity of 𝐺− and 𝐺−1 .

(vii): To show the left-continuity of 𝜄𝐺 at 𝐺(𝑦) , let (𝑡𝑛)𝑛∈N be strictly increasing in [0, 1] with limit 𝐺(𝑦) > 0 .

Then, we have

𝐺(𝑦) = 𝜄𝐺(𝐺(𝑦)) ≥ 𝜄𝐺(𝑡𝑛) ≥ 𝑡𝑛 → 𝐺(𝑦)

as 𝑛 → ∞ applying (ii), (i), and (iv). To show the right-continuity of 𝜄−𝐺 at 𝐺−(𝑦) , let (𝑡𝑛)𝑛∈N be strictly
decreasing in [0, 1] with limit 𝐺−(𝑦) < 1 . Then, we obtain similarly that

𝐺−(𝑦) = 𝜄−𝐺(𝐺
−(𝑦)) ≤ 𝜄−𝐺(𝑡𝑛) ≤ 𝑡𝑛 → 𝐺−(𝑦) .

(viii): Consider the distribution functions 𝐺 and 𝐻 defined by

𝐺(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑥 < 0 ,

2
3𝑥 if 𝑥 ∈ [0, 12 ) ,

2
3𝑥+ 1

3 if 𝑥 ∈ [12 , 1] ,

1 if 𝑥 > 1 .

𝐻(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑥 < 0 ,

𝑥 if 𝑥 ∈ [0, 12 ) ,

1
2 if 𝑥 ∈ [12 , 1) ,

1 if 𝑥 ≥ 1 .

(35)

Then 𝜄𝐺 and 𝜄𝐻 are given by

𝜄𝐺(𝑡) =

{︃
𝑡 if 𝑡 ∈ [0, 13 ) ∪ ( 23 , 1] ,

2
3 if 𝑡 ∈ [13 ,

2
3 ] ,

𝜄𝐻(𝑡) =

{︃
𝑡 if 𝑡 ∈ [0, 12 ] ,

1 if 𝑡 > 1
2 .
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So, 𝜄𝐺 is not left-continuous at 𝑡 = 1
3 and 𝜄𝐻 is not right-continuous at 𝑡 = 1

2 .

(ix): 𝜄𝐺(𝑡) = 𝑡 = 𝜄−𝐺(𝑡) holds if and only if 𝐺(𝐺−1(𝑡)) = 𝐺−(𝐺−1(𝑡)) , which is equivalent to the continuity of
𝐺 at 𝐺−1(𝑡) .

(x): If 𝐺 ∈ ℱ1
𝑐 , the statement follows from (ix). For the reverse direction, assume that 𝐺 ∈ ℱ1 ∖ ℱ1

𝑐 is
discontinuous. Then there exists 𝑥 such that 𝐺(𝑥) > 𝐺−(𝑥) . For 𝑡 ∈ [𝐺−(𝑥), 𝐺(𝑥)) , it follows that 𝜄𝐺(𝑡) =
𝐺(𝐺−1(𝑡)) = 𝐺(𝑥) > 𝑡 .

(xi): Let 𝜀 ∈ (0, 𝜄𝐺(𝑡)− 𝑡] . Then, the non-decreasingness of 𝜄𝐺 and (v) imply 𝜄𝐺(𝑡) ≤ 𝜄𝐺(𝑡+ 𝜀) ≤ 𝜄𝐺(𝜄𝐺(𝑡)) =

𝜄𝐺(𝑡) and 𝜄−𝐺(𝑡) ≤ 𝜄−𝐺(𝑡+ 𝜀) ≤ 𝜄−𝐺(𝜄𝐺(𝑡)) = 𝜄−𝐺(𝑡) .

(xii): Let 𝑥 = 𝐺−1(𝑡) . Then, the statement follows from 𝐺−(𝑥) < 𝑡− 𝜀 ≤ 𝐺(𝑥) .

Proof of Proposition 2.2.
Consider the set ℐ𝑐 := {(𝑧0, 𝑧1) | 𝑧0 < 𝑧1 , 𝐺 is continuous on (𝑧0, 𝑧1)} of open intervals on which 𝐺 is con-
tinuous, and denote by ℐ𝑠 := {{𝑧} | 𝑧 ∈ R} the set of one-point sets. We show that∫︁

(𝑧0,𝑧1)

𝐹𝑋|𝑍=𝑧(𝑥) d𝐺(𝑧) =

∫︁
(𝑧0,𝑧1)

𝜕𝐺2 𝐶(𝐹 (𝑥), 𝐺(𝑧)) d𝐺(𝑧) , and (36)

∫︁
{𝑧}

𝐹𝑋|𝑍=𝑧(𝑥) d𝐺(𝑧) =

∫︁
{𝑧}

𝜕𝐺2 𝐶(𝐹 (𝑥), 𝐺(𝑧)) d𝐺(𝑧) (37)

for all (𝑧0, 𝑧1) ∈ ℐ𝑐 and {𝑧} ∈ ℐ𝑠 . Since 𝐺 has at most countably many jump discontinuities, every open
interval (𝑦0, 𝑦1) ⊂ R can be written as a disjoint union of at most countably many elements of ℐ𝑐 and ℐ𝑠 .
Then, (36) and (37) imply ∫︁

(𝑦0,𝑦1)

𝐹𝑋|𝑍=𝑧(𝑥) d𝐺(𝑧) =

∫︁
(𝑦0,𝑦1)

𝜕𝐺2 𝐶(𝐹 (𝑥), 𝐺(𝑧)) d𝐺(𝑧)

for all open intervals (𝑦0, 𝑦1) ⊂ R . Hence, the integrands coincide for 𝐺-almost all 𝑧 , which yields (i).
To show (36), let (𝑧0, 𝑧1) ∈ ℐ𝑐 . Assume w.l.o.g. that 𝑡0 := 𝐺(𝑧0) < 𝐺−(𝑧1) =: 𝑡1 . Then we obtain from

the disintegration theorem and Sklar’s Theorem that∫︁
(𝑧0,𝑧1)

𝐹𝑋|𝑍=𝑧(𝑥) d𝐺(𝑧) = lim
𝑧↑𝑧1

𝐹 (𝑥, 𝑧)− 𝐹 (𝑥, 𝑧0) = 𝐶(𝐹 (𝑥), 𝐺−(𝑧1))− 𝐶(𝐹 (𝑥), 𝐺(𝑧0))

=

∫︁
(𝑡0,𝑡1)

𝜕2𝐶(𝐹 (𝑥), 𝑠) d𝑠 =

∫︁
(𝑡0,𝑡1)

lim
𝜀↘0

𝐶(𝐹 (𝑥), 𝑠)− 𝐶(𝐹 (𝑥), 𝑠− 𝜀)

𝜀
d𝑠

=

∫︁
(𝑡0,𝑡1)

lim
𝜀↘0

𝐶(𝐹 (𝑥), 𝜄𝐺(𝜄𝐺(𝑠)))− 𝐶(𝐹 (𝑥), 𝜄−𝐺(𝜄𝐺(𝑠)− 𝜀))

𝜄𝐺(𝜄𝐺(𝑠))− 𝜄−𝐺(𝜄𝐺(𝑠)− 𝜀)
d𝑠 (38)

=

∫︁
(𝑡0,𝑡1)

𝜕𝐺2 𝐶(𝐹 (𝑥), 𝜄𝐺(𝑠)) d𝑠 =

∫︁
(𝑧0,𝑧1)

𝜕𝐺2 𝐶(𝐹 (𝑥), 𝐺(𝑧)) d𝐺(𝑧) ,

where the third equality follows from the disintegration theorem applied on copulas. For the fourth equality,
we use that the left-hand derivative and the derivative of the copula w.r.t. the second component coincide
for Lebesgue-almost all 𝑠 . The fifth equality follows from 𝜄𝐺(𝑠) = 𝑠 = 𝜄−𝐺(𝑠) and 𝜄−𝐺(𝑠 − 𝜀) = 𝑠 − 𝜀 for all
𝑠 ∈ (𝑡0, 𝑡1) and 𝜀 ∈ (0, 𝑠 − 𝑡0 because 𝐺 is continuous at 𝐺−1(𝑠) and 𝐺−1(𝑠 − 𝜀) , respectively, see Lemma
A.1(ix). The sixth equality holds by definition of the differential operator in (2), and the last equality is a
consequence of the transformation formula.
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To show (37), assume for 𝑧 ∈ R w.l.o.g. that 𝐺(𝑧) > 𝐺−(𝑧) . Then we obtain∫︁
{𝑧}

𝐹𝑋|𝑍=𝑦(𝑥) d𝐺(𝑦) = 𝐹 (𝑥, 𝑧)− lim
𝑤↑𝑧

𝐹 (𝑥,𝑤) = 𝐶(𝐹 (𝑥), 𝐺(𝑧))− 𝐶(𝐹 (𝑥), 𝐺−(𝑧))

=
𝐶(𝐹 (𝑥), 𝜄𝐺(𝐺(𝑧)))− 𝐶(𝐹 (𝑥), 𝜄−𝐺(𝐺(𝑧)))

𝜄𝐺(𝐺(𝑧))− 𝜄−𝐺(𝐺(𝑧))
· (𝐺(𝑧)−𝐺−(𝑧))

= lim
𝜀↘0

𝐶(𝐹 (𝑥), 𝜄𝐺(𝐺(𝑧)))− 𝐶(𝐹 (𝑥), 𝜄−𝐺(𝐺(𝑧)− 𝜀))

𝜄𝐺(𝐺(𝑧))− 𝜄−𝐺(𝐺(𝑧)− 𝜀)
· (𝐺(𝑧)−𝐺−(𝑧)) (39)

=

∫︁
{𝑧}

𝜕𝐺2 𝐶(𝐹 (𝑥), 𝐺(𝑧)) d𝐺(𝑧) ,

where we use 𝐺(𝑧) > 𝐺−(𝑧) and apply Lemma A.1(v) for the third equality. For the fourth equality, we use
the left-continuity of 𝜄−𝐺 , see Lemma A.1(vi). The last equality follows with the definition of the operator 𝜕𝐺2
in (2).

To show statement (ii) of Proposition 2.2, denote by Q the rational numbers. Due to part (i) it holds that

𝐹𝑋|𝑍=𝑧(𝑥) = 𝜕𝐺2 𝐶(𝐹 (𝑥), 𝐺(𝑧))

for all 𝑥 ∈ Q and for all 𝑧 outside the 𝐺-null set 𝑁 :=
⋃︀
𝑥∈Q𝑁𝑥 . Then we obtain for 𝑥 ∈ R that

𝐹𝑋|𝑍=𝑧(𝑥) = lim
𝑤↓𝑥
𝑤∈Q

𝐹𝑋|𝑍=𝑧(𝑤) = lim
𝑤↓𝑥
𝑤∈Q

𝜕𝐺2 𝐶(𝐹 (𝑤), 𝐺(𝑧)) =: 𝐻𝑧(𝑥)

for all 𝑧 ∈ 𝑁𝑐 . For 𝑧 ∈ 𝑁𝑐 , the function 𝐻𝑧 is by definition right-continuous. Since 𝐶 is a 2-copula
and thus 2-increasing, 𝐻𝑧 is non-decreasing. Further, 𝐻𝑧(−∞) = 0 and 𝐻𝑧(∞) = 1 . Hence, 𝐻𝑧(𝑥) =

lim𝑤↓𝑥 𝜕
𝐺
2 𝐶(𝐹 (𝑤), 𝐺(𝑧)) coincides with 𝐹𝑋|𝑍=𝑧(𝑥) for all 𝑥 ∈ R and for all 𝑧 ∈ 𝑁𝑐 . This proves the as-

sertion.

Proof of Proposition 2.14.
(i) =⇒ (ii): Assume that Ran(𝐺1) ̸= Ran(𝐺2) . As a consequence of Proposition 2.13, the 𝑑-variate products
Π𝐺1

𝑀2 and Π𝐺2
𝑀2 do not coincide because for 𝐺 ∈ ℱ1 , Π𝐺𝑀

2 defines an ordinal sum with intervals
{(𝜄−𝐺(𝑡), 𝜄𝐺(𝑡)) | 𝜄

−
𝐺(𝑡) ̸= 𝜄𝐺(𝑡) , 𝑡 ∈ (0, 1)} which are different for 𝐺 = 𝐺1 and 𝐺 = 𝐺2 unless Ran(𝐺1) =

Ran(𝐺2) .

(ii) =⇒ (iii): Let Ran(𝐺1) = Ran(𝐺2) . Then, for all 𝑡 ∈ (0, 1) , it holds that

𝜄𝐺1
(𝑡) = 𝐺1 (inf{𝑥 |𝐺1(𝑥) ≥ 𝑡}) = inf{𝑢 ∈ Ran(𝐺1)|𝑢 ≥ 𝑡}

= inf{𝑢 ∈ Ran(𝐺2)|𝑢 ≥ 𝑡} = 𝐺2 (inf{𝑥 |𝐺2(𝑥) ≥ 𝑡}) = 𝜄𝐺2
(𝑡) .

(iii) =⇒ (i): This follows from the definition of the *-product because *B,𝐺𝐷
𝑖 depends on 𝐺 only through

𝜄𝐺 .

Proof of Proposition 2.15(iii). Assume that 𝐷𝑖 = 𝐷𝑗 for all 𝑖 ̸= 𝑗 . Then, for 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , it
holds true that

⋁︁
𝐺

𝐷𝑖(𝑢) =

1∫︁
0

min
𝑖

{︁
𝜕𝐺2 𝐷

1(𝑢𝑖, 𝑡)
}︁

d𝑡 =

1∫︁
0

𝜕𝐺2 𝐷
1(min

𝑖
{𝑢𝑖}, 𝑡) d𝑡 =

1∫︁
0

𝜕𝐺2 𝐷
1(min

𝑖
{𝑢𝑖}, 𝐺(𝑦)) d𝐺(𝑦) = min

𝑖
{𝑢𝑖} ,

where the second equality holds because 𝜕𝐺2 𝐷
1(·, 𝑡) is increasing for all 𝑡 , the third equality follows from

(3) and the transformation formula, see, e.g., [33, Theorem 2], and the last equality is a consequence of
Proposition 2.2 and the disintegration theorem.

For the reverse direction, assume w.l.g. that 𝑑 = 2 and 𝐷1(𝑤1, 𝑤2) > 𝐷2(𝑤1, 𝑤2) for some (𝑤1, 𝑤2) ∈
[0, 1]× Ran(𝐺) . Then, there exist (𝑢, 𝑣) ∈ (0, 1)× Ran(𝐺) and an 𝜀-ball 𝐵𝜀(𝑢, 𝑣) ⊂ (0, 1)2 such that

𝜕𝐺2 𝐷
1(𝑥, 𝑡) > 𝜕𝐺2 𝐷

2(𝑥, 𝑡) for almost all (𝑥, 𝑡) ∈ 𝐵𝜀((𝑢, 𝑣)) , (40)
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because, otherwise, it would hold that

𝐷1(𝑤1, 𝑤2) =

𝑤2∫︁
0

𝜕𝐺2 𝐷
1(𝑤1, 𝑡) d𝑡 ≤

𝑤2∫︁
0

𝜕𝐺2 𝐷
2(𝑤1, 𝑡) d𝑡 = 𝐷2(𝑤1, 𝑤2) .

which is a contradiction to 𝐷1(𝑤1, 𝑤2) > 𝐷2(𝑤1, 𝑤2) . As a consequence of (40), we obtain that

𝑀2(𝑢, 𝑢) = 𝑢 =

1∫︁
0

𝜕𝐺2 𝐷
1(𝑢, 𝑡) d𝑡 >

1∫︁
0

min
{︁
𝜕𝐺2 𝐷

1(𝑢, 𝑡), 𝜕𝐺2 𝐷
2(𝑢, 𝑡)

}︁
d𝑡 = 𝐷1 ∨𝐺 𝐷2(𝑢, 𝑢) .

This yields 𝐷1 ∨𝐺 𝐷2 ̸=𝑀2 .

Proof of Proposition 2.16.
The first statement is a consequence of [32, Proposition 3].

Since 𝒮𝑇 (𝐶𝑖) ∈ 𝒞2 for all 𝑖 , the product *𝐵 𝒮𝑇 (𝐶𝑖) is well-defined. Hence, the second statement follows
from

*𝐵 𝒮𝑇 (𝐶𝑖) (𝑢1, . . . , 𝑢𝑑) =
1∫︁

0

𝐵
(︁
(𝜕2𝒮𝑇 (𝐶𝑖)(𝑢𝑖, 𝑡))1≤𝑖≤𝑑

)︁
d𝑡 =

1∫︁
0

𝐵
(︁
(𝜕2𝐶

𝑖(𝑢𝑖, 𝑇 (𝑡)))1≤𝑖≤𝑑

)︁
d𝑡

=

∫︁
[0,1]

𝐵
(︁
(𝜕2𝐶

𝑖(𝑢𝑖, 𝑠))1≤𝑖≤𝑑

)︁
d𝜆𝑇 (𝑠) =

∫︁
[0,1]

𝐵
(︁
(𝜕2𝐶

𝑖(𝑢𝑖, 𝑠))1≤𝑖≤𝑑

)︁
d𝜆(𝑠)

= *𝐵 𝐶𝑖 (𝑢1, . . . , 𝑢𝑑)
for all (𝑢1, . . . , 𝑢𝑑) ∈ [0, 1]𝑑 , using that 𝜕2𝒮𝑇 (𝐶)(𝑢, 𝑡) = 𝜕2𝐶(𝑢, 𝑇 (𝑡)) for 𝜆-almost all 𝑡 .

Proof of Lemma 2.17. (i): Let 𝑡 ∈ (0, 1) . Due to Lemma A.1, we consider three cases.
In the first case, assume that 𝜄𝐺(𝑡) = 𝑡 and 𝜄𝐺(𝑡− 𝜀) = 𝑡 for some 𝜀 > 0 . Define

𝑡0 := inf{𝑠 | 𝜄𝐺(𝑠) = 𝜄𝐺(𝑡)} . (41)

Then, Lemma A.1(xi) implies that 𝜄−𝐺 in constant on (𝑡0, 𝑡] .We show that 𝜄−𝐺(𝑡) = 𝑡0 . Suppose that 𝜄−𝐺(𝑡) > 𝑡0 .

Let 𝜂 = 𝜄−𝐺(𝑡) − 𝑡0 . Then, 𝜄−𝐺(𝑡0 + 𝛿) = 𝑡0 + 𝜂 for some 𝛿 ∈ (0, 𝜂) . But this is a contradiction to Lemma
A.1(iv). Suppose that 𝜄−𝐺(𝑡) < 𝑡0 . Then, Lemma A.1(xii) implies that 𝜄𝐺 is constant on (𝜄−𝐺(𝑡), 𝑡] . But this is
a contradiction to (41).
In the second case, assume that 𝜄𝐺(𝑡) = 𝑡 and 𝜄𝐺(𝑡 − 𝛿) = 𝑡 − 𝛿 for all 0 < 𝛿 < 𝜀 for some 𝜀 > 0 . Then,
Lemma A.1(xii) implies that 𝜄−𝐺(𝑡) = 𝑡 .

In the third case, assume that 𝜄𝐺(𝑡) ̸= 𝑡 . Then, Lemma A.1(iv) implies that 𝜄𝐺(𝑡) > 𝑡 . Lemma A.1(xi) implies
that 𝜄−𝐺 is constant on (𝑡0, 𝜄𝐺(𝑡)] for 𝑡0 defined by (41). We show that 𝜄−𝐺(𝑡0+ 𝛿) = 𝑡0 for all 0 < 𝛿 < 𝜄𝐺(𝑡)− 𝑡0
and, thus, 𝜄−𝐺(𝑡) = 𝑡0 . Suppose that 𝜄−𝐺(𝑡0+𝛿) > 𝑡0 for some 𝛿 ∈ (0, 𝜄𝐺(𝑡)− 𝑡0) . Then, there is a contradiction
to Lemma A.1(iv). Suppose that 𝜄−𝐺(𝑡0 + 𝛿) < 𝑡0 for some 𝛿 ∈ (0, 𝜄𝐺(𝑡)− 𝑡0) . Then, Lemma A.1(xii) yields a
contradiction to the minimality of 𝑡0 .
All of the three above considered cases imply that 𝜄−𝐺(𝑡) = inf{𝑠 | 𝜄𝐺(𝑠) ≥ 𝜄𝐺(𝑡)} . It remains to show that
𝜄𝐺(𝑠) ≥ 𝜄𝐺(𝑡) ⇐⇒ 𝜄𝐺(𝑠) ≥ 𝑡 . From Lemma A.1(iv), we obtain that 𝜄𝐺(𝑡) ≥ 𝑡 , which implies the direction
from left to right. For the reverse direction, we obtain from Lemma A.1(v) and (i) that 𝜄𝐺(𝑠) = 𝜄𝐺(𝜄𝐺(𝑠)) ≥
𝜄𝐺(𝑡) .

(ii): Consider the functions 𝐹𝑛, 𝐹 : R → [0, 1] , 𝑛 ∈ N , defined by

𝐹𝑛(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑡 < 0 ,

lim𝑠↓𝑡 𝜄𝐺𝑛
(𝑠) if 𝑡 ∈ [0, 1] ,

1 if 𝑡 > 1 ,

𝐹 (𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑡 < 0 ,

lim𝑠↓𝑡 𝜄𝐺(𝑠) if 𝑡 ∈ [0, 1] ,

1 if 𝑡 > 1 ,

𝐹−
𝑛 (𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑡 < 0 ,

lim𝑠↑𝑡 𝜄𝐺𝑛
(𝑠) if 𝑡 ∈ [0, 1] ,

1 if 𝑡 > 1 ,

𝐹−(𝑡) =

⎧⎪⎪⎨⎪⎪⎩
0 if 𝑡 < 0 ,

lim𝑠↑𝑡 𝜄𝐺(𝑠) if 𝑡 ∈ [0, 1] ,

1 if 𝑡 > 1 .
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Then, 𝐹𝑛 and 𝐹 are distribution functions with left-continuous version 𝐹−
𝑛 and 𝐹− , respectively. Since by

assumption 𝜄𝐺𝑛
→ 𝜄𝐺 almost surely pointwise, we obtain that 𝐹𝑛(𝑡) → 𝐹 (𝑡) for all 𝑡 at which 𝐹 is continuous.

This implies that the generalized inverse distribution functions converge almost surely, i.e.,

𝐹−1
𝑛 (𝑡) → 𝐹−1(𝑡) for almost all 𝑡 ∈ [0, 1] . (42)

Since 𝐹−1(𝑡) = inf{𝑠 |𝐹 (𝑠) ≥ 𝑡} = inf{𝑠 |𝐹−(𝑠) ≥ 𝑡} , it holds by construction of 𝐹 and 𝐹− and by (i) that
𝐹−1(𝑡) = inf{𝑠 | 𝜄𝐺(𝑠) ≥ 𝑡} = 𝜄−𝐺(𝑡) . Similarly, we obtain that 𝐹−1

𝑛 (𝑡) = 𝜄−𝐺𝑛
(𝑡) . Hence, (42) implies that

𝜄−𝐺𝑛
(𝑡) → 𝜄−𝐺(𝑡) for almost all 𝑡 ∈ [0, 1] .

Proof of Proposition 2.25. (i): Let 𝐷 = 𝐸* on [0, 1]× Ran(𝐺) . Then, for (𝑢, 𝑣) ∈ [0, 1]2 , it holds that

𝐷 ∧𝐺 𝐸(𝑢, 𝑣) =

1∫︁
0

max
{︁
𝜕𝐺2 𝐷(𝑢, 𝑡) + 𝜕𝐺2 𝐸(𝑣, 𝑡)− 1, 0

}︁
=

1∫︁
0

max
{︁
𝜕𝐺2 𝐷(𝑢, 𝑡)− 𝜕𝐺2 𝐸*(1− 𝑣, 𝑡), 0

}︁
d𝑡

=

1∫︁
0

max
{︁
𝜕𝐺2 𝐷(𝑢, 𝑡), 𝜕𝐺2 𝐷(1− 𝑣, 𝑡)

}︁
d𝑡− 1 + 𝑣 =

1∫︁
0

𝜕𝐺2 𝐷(max{𝑢, 1− 𝑣}, 𝑡) d𝑡− 1 + 𝑣

= max{𝑢, 1− 𝑣} − 1 + 𝑣 =𝑊 2(𝑢, 𝑣) .

For the reverse direction, assume w.l.g. that 𝐷(𝑤1, 𝑤2) < 𝐸*(𝑤1, 𝑤2) for some (𝑤1, 𝑤2) ∈ [0, 1]×Ran(𝐺) .

Then, there exist (𝑢, 𝑣) ∈ (0, 1)× Ran(𝐺) and an 𝜀-ball 𝐵𝜀(𝑢, 𝑣) ⊂ (0, 1)2 such that

𝜕𝐺2 𝐷(𝑥, 𝑡) < 𝜕𝐺2 𝐸*(𝑥, 𝑡) for almost all (𝑥, 𝑡) ∈ 𝐵𝜀((𝑢, 𝑣)) , (43)

because, otherwise, it would hold that

𝐷(𝑤1, 𝑤2) =

𝑤2∫︁
0

𝜕𝐺2 𝐷(𝑤1, 𝑡) d𝑡 ≥
𝑤2∫︁
0

𝜕𝐺2 𝐸*(𝑤1, 𝑡) d𝑡 = 𝐸*(𝑤1, 𝑤2) ,

which is a contradiction to 𝐷1(𝑤1, 𝑤2) < 𝐸*(𝑤1, 𝑤2) . As a consequence of (43), we obtain that

𝑊 2(𝑢, 1− 𝑢) = 0 =

1∫︁
0

𝜕𝐺2 𝐷(𝑢, 𝑡) d𝑡− 𝑢

<

1∫︁
0

max
{︁
𝜕𝐺2 𝐷(𝑢, 𝑡), 𝜕𝐺2 𝐸*(𝑢, 𝑡)

}︁
d𝑡− 𝑢 =

1∫︁
0

max
{︁
𝜕𝐺2 𝐷(𝑢, 𝑡), 1− 𝜕𝐺2 𝐸(1− 𝑢, 𝑡)

}︁
d𝑡− 𝑢

=

1∫︁
0

max
{︁
𝜕𝐺2 𝐷(𝑢, 𝑡) + 𝜕𝐺2 𝐸(1− 𝑢, 𝑡)− 1, 0

}︁
d𝑡 = 𝐷 ∧𝐺 𝐸 (𝑢, 1− 𝑢) .

This yields 𝐷 ∧𝐺 𝐸 ̸=𝑊 2 .

(ii): If 𝐺 ∈ ℱ1
𝑐 is continuous, then it holds that

𝑀2 ∧𝐺 𝐷 ∧𝐺 𝐸(𝑢) =

1∫︁
0

max
{︀
1{𝑢1≥𝑡} + 𝜕2𝐷(𝑢2, 𝑡) + 𝜕2𝐸(𝑢3, 𝑡)− 2 , 0

}︀
d𝑡

=

𝑢1∫︁
0

max {𝜕2𝐷(𝑢2, 𝑡) + 𝜕2𝐸(𝑢3, 𝑡)− 1 , 0} d𝑡

for 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ [0, 1]3 . This defines a 3-copula, cf. Durante et al. [7, Proposition 2].
For the reverse direction, assume that 𝐺 ∈ ℱ1∖ℱ1

𝑐 is discontinuous and that𝑀2∧𝐺𝐷∧𝐺𝐸 is a 3-copula. Then,
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Theorem 2.7 implies that there exists a random vector (𝑈1, 𝑈2, 𝑈3, 𝑍) (under an extension of the probability
space if necessary) such that 𝑍 ∼ 𝐺 , 𝐶𝑈1,𝑍 =𝑀2 , 𝐶𝑈2,𝑍 = 𝐷 , and 𝐶𝑈3,𝑍 = 𝐸 as well as

𝑃 ((𝑈1, 𝑈2, 𝑈3) ≤ 𝑢 |𝑍 = 𝑧) =𝑊 3
(︁
𝜕𝐺2 𝑀

2(𝑢1, 𝑡), 𝜕
𝐺
2 𝐷(𝑢2, 𝑡), 𝜕

𝐺
2 𝐸(𝑢3, 𝑡)

)︁
for all 𝑧 = 𝐺−1(𝑡) , 𝑡 ∈ (0, 1) , and for all 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ [0, 1]3 . Since 𝐺 is discontinuous, there exists
𝑡0 ∈ (0, 1) such that 𝜄−𝐺(𝑡0) < 𝜄𝐺(𝑡0) . This implies that the conditional distribution functions 𝜕𝐺2 𝑀

2(·, 𝑡0) ,
𝜕𝐺2 𝐷(·, 𝑡0) , and 𝜕𝐺2 𝐸(·, 𝑡0) are continuous. Now, choose 𝑢 = (𝑢1, 𝑢2, 𝑢3) ∈ [0, 1]3 and 𝑣 = (𝑣1, 𝑣2, 𝑣3) = (1, 1, 1)

such that

𝜕𝐺2 𝐷(𝑢1, 𝑡0) = 𝜕𝐺2 𝐸(𝑢2, 𝑡0) = 𝜕𝐺2 𝑀
2(𝑢3, 𝑡0) = 0.5 ,

𝜕𝐺2 𝐷(𝑣1, 𝑡0) = 𝜕𝐺2 𝐸(𝑣2, 𝑡0) = 𝜕𝐺2 𝑀
2(𝑣3, 𝑡0) = 1 .

Then, it follows that

𝑃
(︁
(𝑈1, 𝑈2, 𝑈3) ∈ [𝑢, 𝑣] |𝑍 = 𝐺−1(𝑡0)

)︁
= 𝑉𝑊 3

(︁
[12 , 1]

3
)︁
= −0.5 < 0 ,

where 𝑉𝑊 3([12 , 1]
3) denotes the 𝑊 3-volume of the box [12 , 1]

3 ⊂ [0, 1]3 , see Nelsen [23, Exercise 2.36]. This
yields a contradiction and, thus, 𝑀2 ∧𝐺 𝐷 ∧𝐺 𝐸 is not a copula.
(iii) is a consequence of Theorem 2.7 and Remark 2.8.
(iv) and (v): For (𝑢, 𝑣) ∈ [0, 1]× Ran(𝐺) , it holds that

𝐷 ∧𝐺𝑀2(𝑢, 𝑣) =

1∫︁
0

max
{︁
𝜕𝐺2 (𝑢, 𝑡) + 𝜕𝐺2 𝑀

2(𝑣, 𝑡)− 1, 0
}︁

d𝑡 =

𝑣∫︁
0

𝜕𝐺2 𝐷(𝑢, 𝑡) d𝑡 = 𝐷(𝑢, 𝑣) ,

where the second equality holds true because 𝜕𝐺2 𝑀
2(𝑣, 𝑡) = 1{𝑣>𝑡} using that 𝑣 ∈ Ran(𝐺) . The third equality

follows from Proposition 2.2.
The other statements follow similarly.
(vi): As a consequence of (iv),

⋀︀
is not commutative if 𝐷 is not symmetric. For a counterexample for

associativity, let 𝐷𝑖 ∈ 𝒞2 be a Gaussian copula with correlation 𝜌𝑖 ∈ (−1, 1) , 𝑖 = 1, 2, 3 . Then, 𝐶𝑖 ∧ 𝐶𝑗 is

a Gaussian copula with correlation 𝑚(𝜌𝑖, 𝜌𝑗) = 𝜌𝑖𝜌𝑗 −
√︁

1− 𝜌2𝑖

√︁
1− 𝜌2𝑗 . Obviously, in general, it holds that

𝑚(𝜌1,𝑚(𝜌2, 𝜌3)) ̸= 𝑚(𝑚(𝜌1, 𝜌2), 𝜌3) .

Proof of Lemma 3.6. For condition (21), the statement is trivial.
For condition (22), we need to show that

𝛿∫︁
0

[𝐵𝑎+𝛿+𝑠(𝑢)−𝐵𝑎+𝛿+𝑠(𝑣) +𝐵𝑎+𝑠(𝑣)−𝐵𝑎+𝑠(𝑢)] d𝑠 ≥ 0 , ∀ 0 ≤ 𝑎 ≤ 1− 2𝛿 , ∀𝛿 > 0 , (44)

implies

𝛿∫︁
0

[︁
𝐵𝐺𝑎+𝛿+𝑠(𝑢)−𝐵𝐺𝑎+𝛿+𝑠(𝑣) +𝐵𝐺𝑎+𝑠(𝑣)−𝐵𝐺𝑎+𝑠(𝑢)

]︁
d𝑠 ≥ 0 , ∀ 0 ≤ 𝑎 ≤ 1− 2𝛿 , ∀𝛿 > 0 , (45)

where 𝑢 = (𝑢𝑘), 𝑣 = (𝑣𝑘) ∈ [0, 1]𝑑 such that for some 𝑖 ∈ {1, . . . , 𝑑} and 𝑢𝑖 ≤ 𝑣𝑖 , 𝑢𝑗 = 𝑣𝑗 for all 𝑗 ̸= 𝑖 .

Consider the function 𝑓 : [0, 1] → [−1, 0] given by

𝑓(𝑡) = 𝐵𝑡(𝑢)−𝐵𝑡(𝑣) .

Then, condition (44) is equivalent to

𝛿∫︁
0

𝑓(𝑎+ 𝛿 + 𝑠) d𝑠 ≥
𝛿∫︁

0

𝑓(𝑎+ 𝑠) d𝑠 for all 0 ≤ 𝑎 ≤ 1− 2𝛿 and 𝛿 > 0 ,
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which means that 𝑓 is increasing. Thus, the smoothed function 𝑓𝐺 : [0, 1] → [−1, 0] given by

𝑓𝐺(𝑡) =

⎧⎨⎩𝑓(𝑡) , if 𝜄−𝐺(𝑡) = 𝜄𝐺(𝑡) ,

1
𝜄𝐺(𝑡)−𝜄−𝐺(𝑡)

∫︀ 𝜄𝐺(𝑡)

𝜄−𝐺(𝑡)
𝑓(𝑠) d𝑠 , if 𝜄−𝐺(𝑡) ̸= 𝜄𝐺(𝑡)

= 𝐵𝐺𝑡 (𝑢𝑖)−𝐵𝐺𝑡 (𝑢𝑖 + ℎ)

is also increasing. But this is equivalent to (45).
For condition (23), the statement follows analogously.
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