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 Adv. Appl. Prob. 23, 46-63 (1991)
 Printed in N. Ireland

 @ Applied Probability Trust 1991

 ON CONDITIONAL STOCHASTIC ORDERING OF
 DISTRIBUTIONS

 LUDGER RUSCHENDORF,* University of Miinster

 Abstract

 Conditional stochastic ordering is concerned with the stochastic ordering of a pair
 of probability measures conditional on certain subsets or sub-a-algebras. Some basic
 results of conditional stochastic ordering were proved by Whitt. We extend some of
 Whitt's results and prove a basic relation between stochastic ordering conditional on
 subsets and stochastic ordering conditional on a-algebras. In the second part of the
 paper we consider the ordering of conditional expectations. There are several
 different formulations of this problem motivated by different types of applications.

 MONOTONE LIKELIHOOD RATIO; MAXIMAL INEQUALITIES; ASSOCIATION

 1. Introduction

 The problem of conditional stochastic ordering of distributions is a natural and
 well-motivated problem, and one can find in the literature a lot of examples and
 applications for the conditional stochastic ordering. To mention a few of these
 applications let X, Y be two life lengths. Instead of comparing only X and Y with

 respect to the stochastic ordering <st, say X s, Y, in survival analysis it is more

 useful to compare the conditional life length pXIXt <st PYIY't for t- -to. Here
 pxlx-t denotes the conditional distribution of X given that X > t.

 In reliability, let X, Y be two systems whose reliability is to be compared.
 Typically, their behaviour depends on the state of (a part of) the remaining
 components say Z. So a useful comparison between X and Y is to compare the

 conditional reliability probabilities, say for example pXIZu <st pYizu, where u is a
 certain vector in ({0, 1}k or even the conditional distributions PXlz st pYiz a.s. In
 some applications it will be difficult to specify the whole conditional distributions. In
 these cases it might be more natural to compare only the conditional expectations,

 say E(X I Z) <s E(Y I Z) or the conditional variances. If X is a vector random
 variable, then it might be of interest to compare only the conditional distribution

 functions or conditional survival functions, e.g. P(X u u Z) - P(Y -u I Z) a.s., u E Rk, which by some well-known results implies corresponding comparisons of the
 system reliability. A weaker form of comparison (for k = 2) is to consider the

 conditional covariances E(X1X2 Z) <st E(Y1 Y2I Z), or the covariances of the
 conditional expectations E(XI r Z)E(X2 1 Z) <s, E(Y1 IZ)E(Y2 I Z).

 A general class of models where such questions arise is latent variable models,
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 On conditional stochastic ordering of distributions 47

 which have a wide range of applications. In Holland and Rosenbaum [5] some of the
 applications to psychometrics, population genetics, factor analysis, response models
 and reliability are discussed. In particular the question of conditional stochastic
 dependence (positive or negative) is discussed in their paper. Questions of positive
 stochastic dependence are a special case of conditional stochastic ordering. Consider
 e.g. the positive orthant dependence (POD) of two random variables X, Y defined
 by P(X ? u, Y v) ? P(X ? u)P(Y v). This relation is equivalent to P(X ?

 u I Y- v) - P(X>- u) i.e. to the conditional stochastic ordering relation PxlY-v >st pX (we can write formally also Px = pX'IYv", where X', Y are independent and X' has
 the same distribution as X).

 Some general results on conditional stochastic ordering were derived in several
 papers of Whitt [12], [13], [14]. Conditional stochastic ordering has been considered
 in the literature in particular for the stochastic ordering with respect to monotone
 functions and for variability and dispersion type orderings (cf. [12], [13], [14], [7],
 [21). We shall discuss some general results relating the ordering of elementary
 conditional probabilities to the ordering of the conditional distributions and derive
 some bounds in problems which are motivated by the applications discussed above.

 The framework of this paper is the following. On the Borel space (E, sd) let
 P, Q E M1(E, sd)--the set of probability measures--and let U c +(sd) be a subset
 of the non-negative measurable real functions. The U-ordering 5, on M1(E, d) is
 defined by

 (1) P5 - Q if fhdP -fhdQ for all hE U.
 Let W :s be a subset of measurable sets. Then one defines the conditional

 U-ordering 5u, by

 (2) P-u,5 Q if PA UQA for all AE W,
 where PA(B):=P(A fB)/P(A) is the elementary conditional distribution for

 P(A) > 0, while we define f h dPA = 0 for P(A) = O, h U. If = {E}, then -L-,Jz is identical to 5,. If W=AsAd for some Ae id, then P- ,,zQ is equivalent to
 PA U, sQA

 In Section 2 we derive some general results for the conditional U-ordering.
 Section 3 contains some applications to the conditional stochastic ordering with
 respect to monotone functions. Finally in Section 4 we consider the question of
 stochastic ordering of conditional expectations and correlations.

 2. Conditional ordering of distributions

 For a sub-o-algebra a d let Pa denote the conditional distribution of P given
 (. Define

 (3) Pa -v Q
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 48 LUDGER RUSCHENDORF

 if for any h E U there are versions hp of f h dP, = Ep(h I .) and hQ of EQ(h I 9)
 such that hp, hQ[P + Q], i.e. hp - hQ a.s. with respect to P + Q.

 Lemma 1. If (B,,),,N is a measurable partition of E and O = u({B,; n E N}), then
 it holds that

 (4) PB U, UQUQ,, n E Pa vU Q4g.
 Proof. The proof is obvious from the formula

 (5) f hdP,= ( (fhdP, )1B,,, hdQ=f (f hd )1B,,. n=1 n=(

 To extend Lemma 1 to general sub-a-algebras we need the following lemma. An

 index set T with a partial ordering _ is called upwards filtering, if for any s, t T
 there exists an element u ET with s _ u and t 5 u. Let (s)(2+(S )) denote the set
 of all (non-negative) sd-measurable real functions. Let * denote convergence in
 probability.

 Lemma 2. Let (T, 5) be an upwards filtering index set and let f,, g,, f, g E T (),

 f f, g, f g. If f, - g,[P], then there exist versions f of f (with respect to P) and g of g (with respect to Q) such that

 f 5g[P + Q].

 Proof. Assume at first that P << Q. By the E - 6 characterization of continuity we
 have: VE' > 0: 3E > 0, E 5 E', such that Q(A) < E implies P(A) < E'. By assumption

 for 6 > 0 there exists a t,  ET such that Q(Ig, - gI > 6) < e' for t t,,. By
 continuity, therefore, P(Ig, - gI > 6) < E for t t, b. Similarly, there exists it, ,, T

 such that for t > i,,: P(Ift -fl > 6) < e. For t _ tE, , and t => , , we have P(f > g + 26) 5P(If -f,I > 6) + P(Ig - g,I > 6) 2 2E. So we have f 5 g[P]. With A:=
 {dP/dQ = 0} and f :=f1Ac + glA it holds that f, f and f 5 g[P + Q].

 In the general case let p := P + Q and let

 dP dP/dy
 dQ dQ /dy

 denote the generalized likelihood ratio. Arguing with the continuity part of P with
 respect to Q we obtain as in the first part of the proof the existence of some versions

 f of f (with respect to P) and g of g (with respect to Q) satisfying f 1 g[P + Q].

 Theorem 3. For U c ?v ({P, Q}) and a sub-o-algebra Ohc :

 (6) P-gu,! Q implies that Pa! -u Q2 .
 Proof. Define T:= {t = a({B,}); (B,) c O is a measurable partition of E}. T is

 upwards filtering and by the L1-martingale convergence theorem (cf. [9], p. 95) for

 f e Uit holds that: f,:= E,(fI t)- E,(f ( ) in ?E(P) and g,:= E(f I t)- EQ(f I )

 in ?1(Q) implying that f,p- E,(f I ), g,-* EQ(f I ). Since by Lemma 1, f,=
 Ep(f It) - EQ(f t) = g,[P] we obtain from Lemma 2, E,(f I a) - E,(f t)[P], where we identify Ep(t I a) with a suitable version f as in Lemma 2.
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 On conditional stochastic ordering of distributions 49

 Remark 1.

 (a) The converse direction in Theorem 3 is generally false. Take for example

 A = ~; then for any h E ?~+(s), Ep(h ) - EQ(h I .) holds, i.e. P, -u Qg is trivial but P-:u,, Q obviously is not. The valid 'equivalence' formulation of Theorem 3 is:

 P-:u, Q if and only if P --- uQ for all sub-a-algebras T c . This equivalence follows from Lemma 1.

 (b) There is the following extension of Theorem 3 to certain generating systems.
 Let U c ' ({P, Q}) and let W c :d satisfy the following two conditions:

 1. B1, B2 E implies that B nl B2, B n B E E;
 2. There exists a sequence En, E with E, T E.

 If P - u, wQ, then P, !S-u Q with := a(W).
 Proof. Define T:= {t= a({B)}); (B,)c W is a measurable partition of E}. Then

 by assumptions (a), (b) T * 0, T is upwards filtering with a(U,, t) = h. Now the
 proof is analogous to that of Theorem 3.

 Proposition 4.

 (a) If P is a mixture, P = f P0 d(O0), M E M'(O, 1), and Po E u,Q for all
 6 E O, then P -u, Q.

 (b) If T:(E, ds)-- (E', s'), Py:= P(- I T = y) is the conditional distribution,
 then Pyu,,Q for pT almost all y eE' implies that Pu,, Q.

 Proof.
 (a) For hE U the following holds:

 hdPA = (A) hdP= P(AhdPo dp(0)

 = P(A)1 Po(A)(f h dP,A) dp(O) Q(A).

 (b) follows from (a).

 Part (a) of Proposition 4 is a generalization of Theorem 2.4 in [12]. There are some
 elementary bounds useful for conditional ordering.

 Proposition 5. For h E U c Y+(S), A c 1 holds:

 (a) If A, BE s, A B = 0, then

 (7) min(fhdPA, f h dP) f h dPAuB max(fhdPA, f h dPB).

 (b) With hp,:= ess inf, Ep(h I -)lB,, h:= ess sup, E,(h 1)1 and hQ,A, h
 defined similarly it holds that:

 (8) h, - hS l h dQB, - f h dPB - h - h,,B.

This content downloaded from 
�������������132.230.37.48 on Mon, 14 Mar 2022 11:32:54 UTC������������� 

All use subject to https://about.jstor.org/terms



 50 LUDGER ROSCHENDORF

 (c) If L = dQ/dP is the generalized likelihood ratio, LB := ess supp (L1B), then
 for h E U:

 (9) hdQP(B) ( B)L hdPB +f hl{L= , dQB.

 (d) If Pg_-u Qg and hEU implies EQ(h I)1 BeU for BEWC , then fBhdP fBhdQ, B ~ W.

 Proposition 6. For P E M1(E, sd), h E ?~+(s) and A E sd with P(A) - P(h - t) > 0 the following hold:

 (a) Ph h-st Ph-t}, ~st denoting stochastic order. (b) fh dPA -fh dP{hat}.

 Proof. (a)

 PA(h P((h - u) nA)< P(h - u) P(h - u)
 PA(h =2u) =P h)) Ph:_t)(h2:u)

 P(A) P(A) = P(h t) = Ph(h u)

 for u > t. For u <t this inequality holds trivially. This implies part (b) by a
 well-known integration by parts formula.

 Remark 2. If h is monotonically non-decreasing on E = Rl1, then {h - t} is of the
 form [u, 00) or (u, oo) with u = h-(t) the generalized inverse, i.e. the right open
 intervals have the highest concentration. If h is unimodal, symmetric around zero,

 then {h - t}-a symmetric interval around zero-has the highest concentration.

 3. Conditional stochastic order

 For E = Rk and P, Q e MI(Rk, Bk) define the MLR-ordering

 (10) P r Q,
 if there exist versions p, q of the densities of P, Q with respect to a dominating

 measure M,, such that q(x)/p(x) is non-decreasing on the support of P + Q. For
 c d = B1 and U c ?4+(R1, B1) the set of all non-decreasing, non-negative func-
 tions define the W-conditional stochastic order by

 (11) P<=,stQ if P-vu,,Q with U' = Un1({P, Q}).
 If V = B1, then -:w,st is called uniform conditional stochastic order (UCSO) in the
 notation of Whitt [121).

 It is well known that P , Q implies P -st Q for k = 1. Furthermore, the ordering

 =, is 'stable' with respect to conditioning, i.e. P -, Q implies PA_, QA if P(A) >0,

 Q(A) >0 (this idea of finding sufficient conditions for -U which are stable with respect to conditioning is one general idea in conditional ordering). As a
 consequence one obtains part (a) of the following theorem which is due to Whitt
 [12], Theorem 1.1. Part (b) follows from (a) and Theorem 3.

This content downloaded from 
�������������132.230.37.48 on Mon, 14 Mar 2022 11:32:54 UTC������������� 

All use subject to https://about.jstor.org/terms



 On conditional stochastic ordering of distributions 51

 Theorem 7. For P, Q e M'(R1, B1) with P-,r Q holds:
 (a) P<-5-,st Q;
 (b) P9 <st Qg for all sub-a-algebras 5 c4 B'.

 The following result shows that the notion of uniform conditional stochastic order
 on Rk is too strong, amplifying p. 117 of [12]. Let fy denote the measure with
 density f with respect to p.

 Theorem 8. Let P, Q EMI(Rk, Bk), P =fp, Q =gp, p a-finite equivalent to
 P + Q and P <Bk,st Q. Then:

 f(x) g(x) (a) ( g(x) ] on {(x, y): x y and y x)}. f(y) g(y)
 (b) P -rQ.

 Proof.
 (a) Let Mn = o{Bi, n}, n E N, be the increasing system of a-algebras, generated by

 pairwise disjoint dyadic intervals 2 i- iFor x e , h
 2" '2" ' n (i ' " " " ' i,) k. ForEx ENk,h

 let x E Bi ,n =: Bx,n. For (x, y) such that neither x : y nor y : x, it holds for n- -no that {z E Rk; 3w E Bx,n with z = w} n B,,, = 0 and {z E Rk; 3w E By,n with z s w} n

 Bx,n = 0. With An := Bx,n U By,n the assumption PAn -st QAn for n _ no implies that

 P(By,) < Q(By,n) >
 P(Bx,n) + P(B,n) - Q(Bx,n) + Q(By,,) ' and also

 P(Bx,n) Q (Bx,n)

 P(Bx,n) + P(By,n)- Q(Bx,n) + Q(By,,) '
 i.e.

 P(Bx,n) Q(Bxn)

 P(Byn) a(Byn)' n no.
 By the martingale convergence theorem

 fn:=(E(fdP P(B.. d n P(Bin,) n-f dP ].
 (f.i ndy p(Bi,,) dy

 Similarly,

 gn = E,(g I 9,)= -Q(Bi,) [dQ ].
 Q (B;i,) dP

 This implies that
 fJ(x) f(x)

 - [(P + Q) ? (P + Q)].
 Since by (12)

 f,(x) P(Bx,n) Q(Bx,n) g,(x)

 fn(y) P(B,,,) Q(B,,,) gn(y)
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 52 LUDGER RUSCHENDORF

 it follows that

 f(x) g(x)
 f(y) g(y)

 (b) The proof of (b) is similar now using that for x _ y, x ~ y, Bx, _-5By,

 (elementwise) for n --no implying that g [p ? p] a.s. on {x 5 y}. f(x) -f(y)
 Remark 3. Part (a) of Theorem 8 essentially implies that for equivalent

 distributions uniform conditional stochastic order implies that the common support
 of P, Q is totally ordered. Whitt [12], Theorem 1.3, gives a valid proof of part (b)
 for continuous densities. In the general case in Whitt's proof it is not clear that the
 continuous approximating densities can be chosen in a way such that the conditional
 stochastic order is preserved.

 Let Y denote the set of all lattices in R k and define for P, Q << = C)= 1 i with densities p, q:

 (13) P-<t, Q if p(x)q(y) 5-p(x Ay)q(x v y) for all x, y

 (cf. Karlin and Rinott [6]). Then 5-, is stable by conditioning

 (14) P5t,, Q =PA-t,,QA for all AE Y

 and, as 5t,--> -st (cf. 1.19 of Karlin and Rinott [6]),

 (15) P , Q > P-5, st Q,
 (cf. Theorem 2.3 of Whitt [13]).

 Define P to be MTP2 if P_-5t P. Whitt proves also the following partial converse
 of (15). If P or Q is MTP2, then:

 (16) PP, Q - P:5,st Q P 5r, Q.
 P is called associated if fJfg dP ((ffdP)(f g dP) for all non-decreasing f, g such
 that the integrals exist. We have the following characterization of association.

 Lemma 9. Let P E MI(Rk, Bk), then P is associated iff for any Q E Ml(Rk, Bk),

 Q << P and P ~, Q implies that Pst , Q.

 Proof. Association of P is equivalent to the condition that f fg dP - ffdP f g dP
 for all f, g ?0 non-decreasing integrable with respect to P. Defining h = g/f g dP
 and Q = hP the measure with density h with respect to P we see that P is associated

 if f fdQ >- f fdP for all Q = hP with h .

 Proposition 10. Let 'c Bk, and let P be associated, conditionally on ' (i.e. PA is

 associated for A E ). If P < Q and P -, Q, then P --,,t Q.
 Proof. Since <, is stable with respect to conditioning, Proposition 10 follows from

 Lemma 9.
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 On conditional stochastic ordering of distributions 53

 If P is MTP2, then P is associated conditionally on T. But the MTP2 property is
 much stronger than association (consider e.g. the case of normal distributions where
 association is equivalent with positive correlation while the MTP2 property is
 equivalent to the condition that the inverse of the covariance matrix I-1 is an
 M-matrix). Note that Proposition 10 does not need the assumption of dominated-

 ness by a product measure which is crucial for the application of the tp-ordering and
 the MTP2 property.

 4. Ordering of conditional expectations

 If one is not able to compare the whole conditional distributions, it may be possible
 in some cases to compare or bound conditional expectations E(X I V), conditional
 covariances E(XY I ) (assuming EX = EY = 0) or products of conditional expecta-
 tions E(X I 04)E(Y I).
 For a real random variable X E ?(P) on (Q, si, P) define the Hardy-Littlewood

 maximal function

 (17) H(t) = E(X I X > t).

 Then H is right continuous, monotonically non-decreasing on the support of pX and

 (18) EX -5 H(t) 5 ess sup X. P

 By Proposition 6,

 (19) supf X dPA; A S, P(A) - P(X -t)} = H(t).
 The function H(t) has an interesting property also for the formulation of sharp
 bounds for the set of conditional expectations {E(X I 0); 0 c (d}. Define

 M(u):= inf E(X- x),
 x<u U - X

 Theorem 11. (cf. Blackwell and Dubins [1], Dubins and Gilat [3], Meilijson and
 Nadas [8]).

 (a) For any sub-a-algebra 4c :sd,

 (20) P(E(X I 0) -u) M(u).
 (b) For u e (EX, ess supp X] define x0:= H-l(u) = inf {t: H(t) > u}, then:

 (21) P(X > xo)E(x -o)+P(Xxo) = P(H(X) u). u -xo

 (c) E(XI 2) Est H(X) for any A c ? .

 (d) M(u) = P(H(X) -? u) = sup {P(E(X I 2) - u); A c d}, Vu.
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 54 LUDGER RUSCHENDORF

 Remark 4.

 (a) The proof of the crucial inequality in Theorem 11 is simple. By the Markov

 and Jensen inequality with (t) := (t - x)+,

 P(E(X I V) ? u) 5 P((p(E(X I 1)) ?- 2p(u)) 5 E (E(X $ )) Eq(X) - E(X-x)+ U -x u -x u -X

 (b) From representation results for the convex ordering <, (the ordering with
 respect to convex functions) it is known (cf. [3], [10], [11]) that

 (pXl2); = QcE} = (Q E M'(,1, B1); Q < pX}
 (22) = {pY; (Y, X) is a martingale}.
 Therefore, Theorem 11 gives the least upper bound (with respect to <st) for the set
 of all probability measures which are smaller than pX with respect to <c. Trivially,

 the bound in Theorem 11 is also valid and sharp for {Q E MI(R1, B1); Q <m Px},
 where <m is the ordering with respect to convex monotone functions (cf. [91). For
 p > 1 it follows from the Doob inequality that

 (23) IIH(X)IllI- p IIX Ip p-1

 (cf. [3]). It is interesting to remind that Blackwell and Dubins [1] showed that the
 upper bound is even valid (and sharp) for the maxima of martingales in countable
 time implying in particular sharp prophet inequalities for martingale sequences.

 Later on in this section we shall improve the bounds in (20), (21) and (c) and (d)
 of Theorem 11 under additional restrictions on the sub-a-algebras. These restric-
 tions are partially motivated by the following consideration of bounds for E(XY i)

 respectively for E(X I)E(YI ) for sub-a-algebras 0 c-- for real random
 variables X, Y.

 We first note that integrability of XY, equivalently, of E(XY I h) does generally
 not imply integrability of E(X I 0)E(Y I 0) and conversely. The reason is that the
 choice of O may introduce strong dependence entailing that large values of X are
 combined with large values of Y.

 Example 1.
 (a) Let X, YE ?f'(P) be independent, identically distributed, then XY ?E(P)

 and EXY = EXEY = (EX)2. Let T:= X+ Y and 0:= o(T)--the generated
 a-algebra. Then E(X I) = E(XI T)= T = E(YI T) and E(X I 0)E(YI ) =
 I(X + y)2. The product of the conditional expectations is, therefore, integrable if
 and only if X, Y Et2(P) and then it holds that

 (24) (EX)2 = EXY - EE(X I )E(Y I ) = }EX2 + (EX)2.
 (b) Similarly, if X, Y E ?P1(P) are i.i.d. with d.f. F symmetric around zero and

 D:= X- Y, then E(X iD)= (X- Y), E(Y X - Y)= -?(X- Y) and, therefore,
 (25) E(X I D)E(Y D)= -(X - Y)2,
 which is integrable if and only if X E _ 2(P).
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 On conditional stochastic ordering of distributions 55

 (c) Let A,, - * ., Ak E si, k oO, be a partition of 9 and 6 = u(A , A2, ? y ", Ak). Then

 (26) E(X XP)E(Y) )f= q P(Ai)-2 XdP YdP)lAi
 i=1 Ai Ai

 is integrable if X, Y are integrable. So XY is not necessarily integrable.
 (d) Some implications are valid in more special cases:

 11
 (dl) If p,qE[1,oo] are conjugate, -+-=1 and X P, YEYq, then

 P q

 E(X I 0)E(YI )E Yf1 for any !.
 (d2) If ! is large in the sense that 0 D o(X) or 0 D o(Y), then XY e E1 if and

 only if E(X I 0)E(YI 0) e .
 Define for a fixed sub-a-algebra 0 c d the conditional distribution functions

 Fa(x) := P(X :5 x 1I ), Ga(x) := P(Y x I )
 (27)

 and Ha(x, y):= P(X 5-x, Y 5-y I).
 We now vary the dependence structure but fix the conditioning a-algebra 0.

 Proposition 12.

 (a) E(XY I ) = E(X I P3)E(Y I ) = ff (Ha(x, y) - Fa(x)Ga(y) dx dy a.s. with
 respect to P.

 (b) f Fll(u)G 1(1 - u) du - E(XY 1) 5i f F1(u)G-1(u) du.
 Proof.
 (a) This follows from the covariance representation formula of Hoeffding applied

 to the conditional distributions.

 (b) For the conditional distributions the Frech6t bounds imply that

 (28) (F (x) + Gg(y) - 1)+ _5 Hg(x, y) 5 min (F9(x), Ga(y)) for x, y E R1.
 Again by the Hoeffding formula this implies the corresponding inequality for the

 expectations. Since (Fa(x) + Ga(y)- 1)+, min (Fa(x), Ga(y)) are the d.f.'s of
 (F~1(U), G-1(1 - U)) or (F1(U), GB1(U)), where U is uniformly distributed on
 [0, 1], (b) follows.

 Remark 5.

 (a) In particular, the condition

 (29) Ha(x, y)( $ )Fa(x)Ga(y) for A2 a.a. x, y
 i.e. conditional positive (negative) quadrant dependence, implies that

 (30) E(XY I -)( )E(X I )E(Y I).
 Part (b) of Proposition 12 gives exactly the range of possible values of E(XY I ) if
 the conditional distributions Fa, Go are fixed. The case of conditional independence
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 56 LUDGER RUSCHENDORF

 'corresponds' to

 (31) E(X I 0)E(Y ) = ( 1F1 (u) du)( G (u) du
 lying somewhere between the bounds and each intermediate point is possible.
 In particular, the conditions -0 < E(f' F-I(u)G~1(1 - u) du) and
 E(f' F-l(u)G a(u) du) <0 , imply that XY E Y1.

 (b) A useful condition to imply that Hg(x, y) - Fa(x)Fa(y) is to apply the multivariate total positivity (MTP2) ordering (cf. (13)) to the conditional distribu-

 tions. If fg(x, y) is a density of H/ with respect to p = 1P ? 02, then the condition

 (32) fgg(z1)fg(z2) 1fg(Zl V Z2)fg Z1 2)
 for all z1, z2 2, implies that He is associated and, therefore, Hg is positive
 quadrant dependent i.e. Hg(x, y) iFF(x)Gg(y), Vx, y E R1.

 Example 2. Let X be distributed on (0, o) and let Y:= 1/X. For any sub-a-
 algebra 34 of the Borel u-algebra,

 (33) Gg(y)=P(Y-5y I )=P(X l i )=l -F(() )
 (the minus sign denoting the left-hand limit).
 1 /1

 For any --x, H (x, y)= P(X x, Yy la) x=P _-x _ x )-= F(x)- y y

 F() -) F(x)(1 - F( -() = Fa(x)Ga(y). Therefore, for any 2 c ?, X, Y
 are conditional negative quadrant dependent. By Proposition 12

 E(X I 4)E(Y I 0) =1- ff (H(x, y) - F&(x)G.(y)) dx dy

 =1- - F(() -)(1 - F(x)) dx dy
 (34) ( x1/y)--

 + ff F(x)(1-F(() - ) )dxdy
 {(1/y)_x }

 >= E(XY 10) = 1.

 While Proposition 12 gives relevant bounds if one fixes the sub-a-algebra 9r c4
 but varies the dependence structure between X and Y, we now fix the joint
 distribution p(XY) but vary the o-algebras a c r . Define

 M(X, Y):= sup E(E(X I $)E(Y I 2))= sup EXE(Y I ),
 (35)

 m(X, Y):= inf E(E(XI T)E(Y I)).
 9~cd
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 On conditional stochastic ordering of distributions 57

 Remark 5. The problem of determining M and m is related to a problem
 considered by Dubins and Pitman [4], namely deriving (sharp) upper bounds for

 E max<S n E(X I 4), O 5 X 5 1, EX = p, the bounds depending only on p and n. In this paper one also finds a motivation for this kind of problem. Sharp lower
 bounds for E maxlis, E(X I 4j) are trivial as are sharp upper bounds for

 E -17=1 E(X Ii 9). The question of lower bounds for E [L7= E(X I i) remains open (cf. [4], p. 224).

 Proposition 13. If E(X I X + Y) = E(Y I X + Y), then

 (36) M(X, Y) = E(X + y)2,

 which is attained for V = r(X + Y).

 Proof. By the geometric-arithmetic mean and the Jensen inequality for any

 Ic 4, E(X I )E(Y I V)- 51(E(X I) + E(Y - 2))2 = -1(E(X+ Y |))2<- 4E((X + y)2I ). Therefore, EE(X I 9)E(Y I 2) !E(X + Y)2. By our assumption
 E(X I X + Y) = E(Y I X + Y) = ?(X + Y), and, therefore, equality holds.
 Remark 7.

 (a) If p(XY)= P((,x), then E(X I X + Y) = E(Y I X + Y).
 (b) The o-algebra V = o(X + Y) does not always produce large conditional

 correlation. For example, let P(xY){(1, 0)} = P(XY){(O, 2)} = 1, then: E(X IX +
 Y) = 1(x+Y= ), E(Y I X + Y) = 21(x+Y=2) and, therefore, E(X I X + Y)E(Y IX +
 Y) = 0, while EXEY = 4, which is attained for the trivial o-algebra . = { , ,Q}.
 (c) If X = U is uniformly distributed on [0, 1] and Y = 1 - U, then X + Y = 1 and

 the proof of Proposition 13 yields:

 (37) M(U, 1 - U) = - with equality for 04 = {4, [0, 1]}.

 Proposition 14. Assume that X, Y ? 0, Y = cp(U), X = tp(U).
 (a) If 9p, pV are monotonically non-decreasing, then M(X, Y) = EXY.
 (b) If 9p is monotonically non-increasing, Vf monotonically non-decreasing, then

 m (X, Y)= EXY.

 Proof.

 (a) A well-known rearrangement argument shows that E(Vp(U)9g(U) 0) -
 E(p(U) I 1V)E(p(U) I ) and, therefore, EE(X I 0)E(Y I .) - EXY.

 (b) is proved analogously.

 Proposition 15. Let X, Y_ 0 and 9g [0, oo)--* R+ be measurable, Q(0) = 0, p9
 monotonically non-decreasing with generalized inverse 99-1. Define the Young
 functions #(x):= f' 9(u) du, p(x):= fx q-1(u) du, then

 (a) A := EE(X I )E(Y ) 5 B := E (X) + E(E(Y )) C:= E (X) +
 E4'(Y).

 (b) A = B if and only if E(Y I) = (p(X).
 (c) If Y = Q(X), then M(X, Y)= E4(X)+ E4y(Y).

This content downloaded from 
�������������132.230.37.48 on Mon, 14 Mar 2022 11:32:54 UTC������������� 

All use subject to https://about.jstor.org/terms



 58 LUDGER RUSCHENDORF

 Proof. Since EE(XI 4)E(Y I )= EXE(Y I 1V), (a) and (b) follow from the
 Young inequality. (c) follows from (a), (b) and the Jensen inequality.

 The results and examples so far suggest to look for o-algebras 9 such that
 E(Y I ) = 9p(X), 9 T. But it is easy to construct examples where an 'optimal' V is
 not of this type. From Theorem 11 and (28) we obtain the following general bound
 for the survival function of (X, E(Y I)).

 Proposition 16. With H(y):= E(Y I Y y):

 (a) P(X-x, E(Y I 1) -y)5 P(F xl(U) -x, Fg-y)(U)-y)= min ({F(x), FH(Y)(Y)},
 x, y e R1; U denoting a random variable distributed uniformly on (0, 1), Fx(x), FH(Y)
 denoting the survival functions of X, H(Y).

 (b) EXE(Y I) I ~f~J Fxl(u)F-y)(u) du.

 Proof. P(X E x, E(Y I1 ) - y) 5 sup {p([(x, y), 0o)); M E M(PX, pE(Y0g))} _ sup {f[(x, y), 00); M E M(PX, pH(Y))}, where M(P, Q) denotes the measures with
 marginals P, Q; the last inequality following from Theorem 11. Now (a) follows
 from the Frech6t bounds, while (b) is a consequence of (a).

 The bounds in Proposition 16 for EE(X I $)E(Y I $) are typically too large. By
 Propositions 14 and 15, they are quite good if X and Y are approximately similarly
 ordered. This leads to the question whether for the determination of M(X, Y) one
 can restrict to sub-a-algebras V such that X and E(Y I ) are similarly ordered.

 The next example shows that M(X, Y) in general is not identical to

 (38) AI(X, Y):= sup {EXE(Y I V); V c 4, X and E(Y I ) are similarly ordered}.

 Example 3. Let (Q, , P)= ([0, 1), [0, 1)B1, A1) and X=[j, ) + 3 1 [1),i Y =
 3 1[0,j) + 1[A,i). Then M(X, Y) = EXE(Y O*) = 1, where 0* = o{[0, 3) U [3, 1)}
 while the optimal monotone solution is V = {fq, [0, 1)} which yields M(X, Y)=
 EXE(Y k) = < 1 = M(X, Y).

 If X = EC=l x 1, is a discrete random variable, B, E 4, then for an optimal
 solution V* satisfying M(X, Y) = EXE(Y ?V*) we can restrict to sub-o-algebras of

 o{Br, j = 1, .., K}.

 Proposition 17. If X = E1 xjl1 is discrete, K 5oo and V* = o{A1, A2,
 A,m}, (A,) pairwise disjoint, is an optimal o-algebra satisfying EXE(Y I*) =
 M(X, Y), then for i<j5 M

 E(X I A,) < E(X I Ai) implies E(Y I Ai) - E(Y I A,), (39)
 i.e. E(X I *), E(YI s*) are similarly ordered.

 Proof. Let pi = P(A,) > O, a, = E(X I A,), bi = E(Y I A,) and assume that ai < aj
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 On conditional stochastic ordering of distributions 59

 and b, < bi, without loss of generality assume that i = 1, j = 2. Then
 1

 E(X f Al UA2) = (p1al + 2a2), P1 +P2

 1

 E(YI A UA2) (p1bl + P2b2). P1+P2
 Therefore,

 (Pi +p2)E(X I A1 UA2)E(Y A1 UA2)
 1

 - 1 (plal +P2a2E)(plbl +P2b2) P1 +P2
 1

 - (p2albl +P1P2b2 +P1P2bla2 +p22ab2) Pi +P2

 1
 > - [p albl +p1P2(albl + a2b2) +p22b2]

 P1 +P2

 1

 = P1 [(Pi + P2)plalbl + (Pi +P2)P2a2b2]
 Pl +P2

 = E[E(X I A1)E(Y I A)1A, + E(X I A2)E(Y I AA2],
 the inequality following from ab1, + a2b2 <alb2 + a2b1. With ?:= o(A1 U

 A2, A3, -" -, AA) a contradiction to the optimality of V* follows.
 It is not difficult but a bit technical to extend Proposition 17 to the general

 non-discrete case. We next evaluate M(X, Y) explicitly, in this way sharpening the
 bound of Theorem 11 considerably under the additional hypothesis that X and
 E(Y I V) are similarly ordered.

 Assume in the first case that X, Y are defined on [0, 1) with P = A1 and assume
 that X is monotonically increasing. We also assume that a = 0 < a2 " .. < an = 1 is

 a partition of [0, 1) such that Y(u) = yj for u [aj, a,+1). Define a sequence
 1 >j2>.."> jk = 1 by:

 j:= inf I n: E(Y I [a, an))= sup E(Y I [ai, an)

 (40) j2=inf j<j: E(Y [a, aj)) = sup E(Y r[ai, a,)) if jIl> 1

 ji:= inf { <jl-i: E(Y I[a,, a,_,)) = sup E(Y I [a, aj,_,))}, if j-1 > 1

 jk '=1,

 define * = o{[ai,, a,), [ai,, ai,), ? ? ?, [0, aIk_,)} and
 k

 (41) Y* = E(Y | a*)= y Y ,)l with y* = E(Y I [ai,, ai_,)). r=-1
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 60 LUDGER RUSCHENDORF

 Y* is monotonically non-decreasing and Y* has the following uniform optimality
 property independently from the special non-decreasing X.

 Theorem 18. If f = E(Y I ) is monotonically non-decreasing on [0, 1] and Y* is
 defined as in (41), then

 (42) YP 5st Y*P,
 kP denoting the measure with density Y with respect to P = i1l[0,11. Equivalently,

 (43) f XYdP fXY*dP= M(X, Y)
 for all X: [0, 1]--+ R+ monotonically non-decreasing.

 Proof. Since f= E(Y I A) is monotonically non-decreasing, we can assume

 without loss of generality that A = o{[as,, as,+,), 1 _5i r - 1}, where 1 =s <s2<
 ? " < Sr+i = n. By definition of Y* it holds that

 Y*(u) dP(u) = Y(v) dP(v), 1 5 i 5 k,

 and, furthermore, for any u e [ai,+,, ai,) it holds that

 (44) f Y*(v) dP(v) f Y(v) dP(v),
 since

 1 r 1 aj,

 i Y(v) dP(v)_ 1 Ia Y(v) dP(v) = Y*(v) aj, - u U, aj,, - aj,+1a

 for v E [a, +,, a,). Therefore, in particular for u = a,, it holds that

 (45) Yf*(v) dP(v) - Y(v) dP(v) = f ?(v) dP(v). asi as, as,

 This implies that f Y*(v) dP(v)- i !1, '(v) dP(v) as follows from the following argument. If aj,+1 < as, < u < v < aj, < as,+, and

 f Y(v) dP(v) > Y*(v) dP(v),

 then in case that f(v)> Y*(v) we also would have that

 S(v) dP(v) > fY*(v) dP(v)

 in contradiction to (45). But if f(v) - Y*(v), then also f(v) = f(v') - Y*(v') for

 a?, -v' <as,+ and we would have

 f(v) dP(v) > Y*(v)dP(v),
 asl+I Mst+I
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 On conditional stochastic ordering of distributions 61

 again a contradiction to (45). In the case that ai,+, < as, < u < as,+, < ai, we can argue
 in a similar way. This completes the proof.

 So in the class of monotonically non-decreasing elements E(Y )I) we found one
 element Y* = E(Y I V*) such that Y*P is the largest one with respect to stochastic

 order. If we denote Y*(v) = y7 for v E [aj, aj+l), 1 _ j _ n, and similarly i(v) = yj
 for any f = E(Y 1 A), then we get the following corollary.

 1

 Corollary 19. Assume that P([aj, a,+1)) = -, 1 5j 5 n - 1, and define AT {( =

 (, ... , ) ); 3A with Y= E(Y I )5, kt I [aj, a,+1) = }. Then with respect to
 Schur-ordering -sch, Y* = (y TC, "" , y*) is the largest element of At.

 Obviously the smallest element of AT with respect to -sch is (y, ' - , yY) with
 y := EY. It is now also obvious how to construct decreasing elements Y = E(Y I A)
 and how to minimize

 (45) f XYdP fXY, dP, with Y, = E(Y Ia0,),

 with respect to this class, namely, by defining the sequence 0 -5j l5j2. . in (46)
 increasing from the left to the right.

 We next extend our construction to the case that X = EC-1 xj1,j is finite discrete
 on (Q, s, P), x15 . - " x, and yj := E(Y I X = xj) = E(Y I Bj) arranges Y in the order of X by conditioning. Define

 j1:= inf {j 5 n: E(Y X - xj)= sup E(Y I X Ex,)}

 (47) j2 =inf j < j: E(Y xj, - X < xj,) = sup E(YI x,-5 X < xj,) if jl > 1

 jk =

 Defining

 (48) A* = ({X E [xE,, x,], x e [xj2' Xj,, ..) *}, := E(Y I*),
 then Y* and X are similarly ordered, i.e. X(w) <X(w') > Y*(w) - Y*(w') and

 Y*(w)< Y*(w'):>X(w) 5X(w'). With the same arguments as in the proof of
 Theorem 18 we obtain the following.

 Theorem 19. If Y = E(Y I A) is similarly ordered as X, then for all j:

 (49) Y dP f- Y* dP
 and, in particular,

 (50) X~dP fXY*dP = A(X, Y).
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 62 LUDGER RUfSCHENDORF

 By a limiting argument one can extend the construction of Y* to non-discrete
 random variables X using the inequalities:

 sup E(YE(X 10)) - sup E(YE(X I V)) sup JEYE(X - X j)

 -EE YjI if IX-XI<e.
 But since this construction is not very explicit it may be more useful to construct a
 somewhat larger majorant which is not necessarily monotonically non-decreasing.
 For X, Y real and t ER define

 (51) G(t) = sup E(Y Js - X 5 t); s<t

 then we have the following quite obvious result.

 Proposition 20. If X, Y> 0, and Y = E(Y I V) is similarly ordered as X, then for
 all x

 (52) f dP - GP(X) dP. In particular,

 (53) f XdP f XG(X) dP.
 Again there are also antitone versions of (51). Obviously, G(X) - X* in the cases

 where we have defined X*. On the other hand G(X) is smaller than the 'sharp'
 stochastic bound H(X) considered in Proposition 16, or Theorem 11 respectively.
 So in the case where we can assume that the ordering of E(Y I .) is the same as the
 ordering of X we obtain a strong improvement of the crude stochastic bounds in
 Proposition 16 (or Theorem 11), while in the general case (without restricting the
 conditional information 1V) our proposed construction method seems to be quite
 good if the orderings of X, Y are not 'too much' in an opposite direction i.e. if the
 correlation is not very negative. These kind of assumptions seem to be realistic, e.g.
 in examples concerning the reliability of systems where the positive dependence of
 two components should not be too much destroyed by additional information on the
 system.

 Acknowledgement

 I thank the referee for several suggestions concerning the organization of the
 manuscript.

 References

 [1] BLACKWELL, D. AND DUBINS, L. E. (1963) A converse to the dominated convergence theorem.
 Illinois J. Math. 7, 508-514.

This content downloaded from 
�������������132.230.37.48 on Mon, 14 Mar 2022 11:32:54 UTC������������� 

All use subject to https://about.jstor.org/terms



 On conditional stochastic ordering of distributions 63

 [2] BLOCK, H. W. AND SAMPSON, A. R. (1988) Conditionally ordered distributions. J. Multivariate
 Anal. 27, 91-104.

 [3] DuBINs, L. E. AND GILAT, D. (1978) On the distribution of the maxima of martingales. Trans.
 Amer. Math. Soc. 68, 337-338.

 [4] DuBINs, L. E. AND PITMAN, J. (1980) A maximal inequality for skew fields. Z. Wahrscheinlich-
 keitsth. 52, 219-227.

 [5] HOLLAND, P. W. AND ROSENBAUM, P. R. (1986) Conditional association and unidimensionality in
 monotone latent variable models. Ann. Statist. 14, 1523-1543.

 [6] KARLIN, S. AND RINOTr, Y. (1980) Classes of orderings of measures and related correlation
 inequalities. I Multivariate totally positive functions. J. Multivariate Anal. 10, 467-498.

 [7] KEILSON, J. AND SUMITA, U. (1982) Uniform stochastic ordering and related inequalities. Canad.
 J. Statist. 10, 181-198.

 [8] MEILUSON, I. AND NADAS, A. (1979) Convex majorization with an application to the length of
 critical paths. J. Appl. Prob. 16, 671-677.

 [9] NEVEU, J. (1975) Discrete Parameter Martingales. North-Holland, Amsterdam.
 [10] RUiSCHENDORF, L. (1981) Ordering of distributions and rearrangement of functions. Ann. Prob.

 9, 276-283.
 [11] STRASSEN, V. (1966) The existence of probability measures with given marginals. Ann. Math.

 Statist. 36, 423-439.
 [12] WHrrr, W. (1980) Uniform conditional stochastic order. J. Appl. Prob. 17, 112-123.
 [13] WHrrr, W. (1982) Multivariate monotone likelihood ratio and uniform conditional stochastic

 order. J. Appl. Prob. 19, 695-701.
 [14] WHrrr, W. (1985) Uniform conditional variability ordering of probability distributions. J. Appl.

 Prob. 22, 619-633.

This content downloaded from 
�������������132.230.37.48 on Mon, 14 Mar 2022 11:32:54 UTC������������� 

All use subject to https://about.jstor.org/terms


	Contents
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63

	Issue Table of Contents
	Advances in Applied Probability, Vol. 23, No. 1 (Mar., 1991), pp. 1-228
	Front Matter
	Worth of Perfect Information in Bernoulli Bandits [pp. 1-23]
	Monotone Stopping-Allocation Problems [pp. 24-45]
	On Conditional Stochastic Ordering of Distributions [pp. 46-63]
	Superposition of Renewal Processes [pp. 64-85]
	Strategy Evaluation for Stochastic Scheduling Problems with Order Constraints [pp. 86-104]
	Analysis of Separable Markov-Modulated Rate Models for Information-Handling Systems [pp. 105-139]
	Synchronous Service on a Circle [pp. 140-151]
	Product Forms for Queueing Networks with State-Dependent Multiple Job Transitions [pp. 152-187]
	A New View of the Heavy-Traffic Limit Theorem for Infinite-Server Queues [pp. 188-209]
	Monotonicity Results for Queues with Doubly Stochastic Poisson Arrivals: Ross's Conjecture [pp. 210-228]
	Back Matter



