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Abstract

In this paper we give easy-to-implement closed-form expressions for European and Asian

Greeks for general L2-payoff functions and underlying assets in an exponential Lévy process

model with nonvanishing Brownian motion part. The results are based on Hilbert space valued

Malliavin Calculus and extend previous results from the literature. Numerical experiments

suggest, that in the case of a continuous payoff function, a combination of Malliavin Monte

Carlo Greeks and the finite difference method has a better convergence behavior, whereas

in the case of discontinuous payoff functions, the Malliavin Monte Carlo method clearly is

the superior method compared to the finite difference approach, for first- and second order

Greeks.

Reduction arguments from the literature based on measure change imply that the expres-

sions for the Greeks in this paper also hold true for generalized Asian options in particular

for fixed and floating strike Asian options.
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1 Introduction

One of the classical applications of Malliavin Calculus is to find closed-form expressions of the so-

called Greeks, which are partial derivatives of the estimated option prices with respect to certain

parameters like the initial price, the volatility, and the risk-free interest rate. Let X denote the

underlying financial asset, let Φ be the payoff function of the underlying option, let T be the

maturity of the option and let r denote the risk-free interest rate. Then the value V of the option

(or expected outcome) can be expressed as

VE = E[e−rTΦ(XT )] (1.1)

for a European option and

VA = E

[
e−rTΦ

(
1

T

T

∫
0
Xtdt

)]
(1.2)

for an Asian option. Common payoff functions for put or call options, respectively are Φp(x) =

max{0, (K −x)} = (K −x)+ and Φc(x) = max{0, (x−K)} = (x−K)+, where K is the exercise

or strike price. But it also includes exotic options like binary options, which provide a fixed

payoff p if the strike K is reached (see (Hull, 2022), p.239-243): Φb(x) = p1{x≥K}.

The problem of determining closed-form expressions or approximations for the pricing of European

and Asian options resp. for generalized Asian options has found a lot of interest and various

methods have been developed in the ample literature on this subject. Most of the results were

given first in the context of the Black Scholes model, then further on extended to some classes of

models driven by particular Lévy processes like the CGMY model or the general hyperbolic model

see e.g. (Dufresne, 2005) and finally given in general form for some general classes of semimartingale

models. For a detailed overview of this development, we refer to (Vecer, 2002) and (Vecer & Xu,

2004), see also (Albrecher, 2004) and (Albeverio & Lütkebohmert, 2005).

The main methods developed in this context are based on the inversion of the Laplace transform

(extending (Geman & Yor, 1993)), its connection to the fast Fourier transform, on the analytical

expansion method of (Linetsky, 2004) and the (integro-)differential equation method of (Rogers

& Shi, 1995), (Vecer & Xu, 2004) and (Vecer, 2014). Based on a change of measure technique as

in (Shreve & Vecer, 2000) it was shown in (Vecer, 2002) and (Vecer & Xu, 2004) that the path

dependency in the formulation of the Asian option pricing problem can be simplified to the case of

European options with modified payoff functions where the underlying asset is driven by a special

semimartingale process leading to an integro-differential equation where the stock price is driven
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by a process with independent increments. This reduction is given for generalized Asian options

of the form (
α

∫ T

0

Xt·dλ(t)−K1XT −K2

)
+

, (1.3)

which includes for K1 = 0 the fixed strike option and for K2 = 0 the floating strike option. The

averaging factor λ of finite variation includes for λ(t) = t
T the case of continuously sampled Asian

options and for λ(t) = 1
n⌊

nt
T ⌋ the case of discretely sampled Asian options as well as options

of inception at t0 ≥ 0. These reduction results imply that the results on Greeks in our paper

formulated for European and Asian options also hold true for generalized Asian options as in

formula (1.3) including also Asian options at the inception t0 ≥ 0.

The main results in our paper are concerned with extending the Malliavin method to the calcula-

tion of the Greeks of European and Asian options for exponential Lévy models.

Let ∆ = ∂
∂xV be the Greek ∆, i.e., the derivative of the option value with respect to the initial

value x of the underlying process X. Then, for an Asian option ∆ can be expressed as

∆ =
∂

∂x
E

[
e−rTΦ

(
1

T

T

∫
0
Xtdt

)]
. (1.4)

A straightforward method for the numerical approximation of Greeks is the Monte Carlo finite

difference method (see for example (Hull, 2022), p.472-473) An alternative method is the Monte

Carlo Malliavin method, which has numerical advantages for discontinuous payoff functions. Malli-

avin Calculus is used to find a stochastic weight π such that the derivative of the option value can

be expressed as

∆ = E

[
e−rTΦ

(
1

T

T

∫
0
Xtdt

)
π

]
. (1.5)

The value of ∆ is then computed by a Monte Carlo method. This method was introduced in

(Fournié, Lasry, Lebuchoux, Lions, & Touzi, 1999), where the integration by parts formula of

Malliavin Calculus is applied to derive closed formulas for Greeks in the Black Scholes model. In

this model, the price process is given by

dXt = rXtdt+ σXtdWt, X0 = x (1.6)

where r ∈ R is the risk-free interest rate, σ ∈ (0,∞) the volatility and x ∈ (0,∞) is the initial

condition. An introduction to this topic is given in (Montero & Kohatsu-Higa, 2003). As demon-

strated in (Fournié et al., 1999), (Bavouzet & Messaoud, 2006), (Davis & Johansson, 2006) and
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(Xu, Lai, & Yao, 2014) this approach leads to better convergence behavior for discontinuous payoff

functions (for example digital options) in comparison to the finite difference method.

There are various generalizations of the formulas of European Greeks to more general jump dif-

fusions. (Davis & Johansson, 2006) generalize the Malliavin Calculus to jump diffusions of the

form

dXt = b(Xt−)dt+ σ(Xt−)dWt +

m∑
k=1

αk(Xt−)(dN
(k)
t − λkdt), X0 = x (1.7)

where W is a Brownian motion and N (1), . . . , N (m) are Poisson processes.

(Davis & Johansson, 2006) assume a separability condition on the process, which states that there

is a continuously differentiable function f with bounded derivative in the first argument such that

Xt = f(Xc
t , X

d
t ), Xc

0 = x (1.8)

holds true. (Davis & Johansson, 2006) derive stochastic weights for European options.

On the other hand, (Forster, Lütkebohmert, & Teichmann, 2009) do not make a separability

assumption but rely instead on a Hörmander condition in order to ensure the existence of an ordi-

nary (non-jump) diffusion between two jumps. Again, stochastic weights are given for European

options.

(Kawai & Takeuchi, 2011) provide explicit formulas for European Greeks where the asset price

dynamics is described by gamma processes and Brownian motions time-changed by a gamma

process.

The most general results on stochastic weights for European options and non-pure jump processes

in the literature so far is given in (Petrou, 2008). In this article, stochastic weights of the Greeks

for European options based on market models given by solutions of the Lévy stochastic differential

equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt +

∫
R0

γ(t, z,Xt−)µ̃(dz, dt), X0 = x (1.9)

are given. Here µ̃ is a compensated Poisson random measure and the coefficients are assumed to

be continuously differentiable with bounded derivatives. The Greeks are provided for the general

case (1.9), and for a general stochastic volatility model with jumps both in the underlying and

the volatility. In both cases, the formulas are not given as closed expressions, in that they contain

stochastic integrals, or even Skorohod integrals.

Our paper is based on (Petrou, 2008). It is also based on the Hilbert space approach to Malliavin
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Calculus in particular on the chain rule, the Skorohod integral and the integration by parts formula.

We give for the case of an underlying exponential Lévy model explicit formulas for the stochastic

weights for European and for Asian options. The advantage of the formulas provided in this

paper is that they are closed, i.e., without stochastic integrals. The implementation of a Monte

Carlo Simulation of the formulas in this article is therefore straightforward. The main theoretical

contribution of this paper, however, is that we also provide formulas for Asian options in Section

3.2.

More recent literature on Malliavin Monte Carlo weights include stochastic volatility models.

(Yilmaz, 2018) derives Malliavin Monte Carlo Greeks for European options under the assumption

that the underlying asset and interest rate both evolve from a stochastic volatility model and a

stochastic interest rate model, respectively. (Benth, Nunno, & Simonsen, 2021) consider an infinite

dimensional Heston stochastic volatility model and derive stochastic weights for forward contracts.

There are also several papers which are concerned with discretely-averaged Asian options:

(Saporito, 2020) derives a Monte Carlo approximation for the price of path-dependent derivatives

of options under a multiscale stochastic volatility model.

In the case of continuously monitored Asian options, only few closed-form expressions for stochastic

weights are given in the literature.

(Montero & Kohatsu-Higa, 2003) determine stochastic weights for Asian options in the Black

Scholes model using classical Malliavin Calculus. (El-Khatib & Privault, 2004) and (Huehne,

2005) give closed formulas for the Greeks when the underlying asset is represented by a pure jump

Lévy-process. (Bavouzet & Messaoud, 2006) derive Malliavin Monte Carlo weights in the Lévy

case for jump diffusions of the form

St = β +

Jt∑
i=1

c(Ti,∆i, ST−
i
) +

∫ t

0

b(u, Su)du+

∫ t

0

σ(u, Su)dWu (1.10)

where σ is assumed to be linearly bounded, has bounded first and second derivatives, and it is

assumed that there is an ε > 0 such that |σ(u, x)| ≥ ε for all (u, x) ∈ (0,∞)2.

(Pflug & Thoma, 2016) introduce a measure valued differentiation approach to calculate Greeks

of exotic options, which include Asian options, for discrete-time Lévy processes.

There are also approaches to compute Greeks which do not use Malliavin calculus: (Kirkby, 2017)

uses Fourier based methods for numerical European Greeks under general exponential Lévy pro-

cesses. (Fusai, Marazzina, & Marena, 2011) and (Kirkby, 2016) use Fourier-based methods for the

pricing the discretely-monitored Asian options. (Kirkby, 2016) also describe how to approximately
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generalize these results to continuously averaged options by the Richardson extrapolation. Some

Monte Carlo Methods which combine pathwise derivatives and likelihood ratio method estima-

tors are presented in (Glasserman & Liu, 2010). There are also analytical formulas for European

Greeks in exponential Lévy models as in (Aguilar, Kirkby, & Korbel, 2020).

The structure of this article is as follows: In Section 2, we recollect some basic results on the real-

valued Malliavin calculus for Hilbert space valued Malliavin calculus according to (Solé, Utzet, &

Vives, 2007) which allows a self-contained reading of this paper. Based on this method we derive

in Section 3 formulas for the Greeks of European and Asian options. In Section 4 we compare the

convergence properties of the Malliavin Greeks with the finite difference method numerically for

a class of examples given by jump diffusion models.

2 Malliavin calculus for Hilbert space valued processes

Let (X̃t)t∈[0,T ], X̃0 = 0 be a square-integrable Lévy process with nonvanishing Brownian motion

part on a probability space (Ω,F , P ). Let x ∈ (0,∞) and let Xt = x exp(X̃t). Then there is a

geometric Brownian motion with drift γ

X
(1)
t = γt+ σWt, σ ̸= 0

on a probability space (ΩW ,FW , PW ) and a pure jump process XJ on a probability space

(ΩJ ,FJ , PJ) such that (Ω,F , P ) ≃ (ΩW ,FW , PW )⊗ (ΩJ ,FJ , PJ) and such that under this iden-

tification

X̃t = γt+ σWt +XJ
t

holds true. We assume that W is a standard Brownian motion. The process XJ can furthermore

be decomposed into the sum of a compound Poisson process X(2) = α
∑Nt

i=1 Yi and a square-

integrable pure jump martingale X(3) that almost surely has a countable number of jumps on

finite intervals, i.e.,

XJ
t = α

Nt∑
i=1

Yi +X
(3)
t . (2.1)

The intensity of the Poisson process N is denoted by λ.

By means of the natural identification L2(ΩW × ΩJ) ≃ L2(ΩW , L2(ΩJ)) every random variable

Y ∈ L2(Ω) can be regarded as a random variable on ΩW with values in the Hilbert space L2(ΩJ).

For applications to the frame of exponential Lévy processes as described above we next remind
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some basic notion of Hilbert space valued Malliavin calculus as developed in (Solé et al., 2007)

extending the real-valued Malliavin Calculus in (Nualart, 2006).

Let D1,2 ⊆ L2(ΩW ) denote the domain of the Malliavin derivative D and δ its adjoint operator.

The following definition in (Solé et al., 2007) extends the notion of Malliavin derivative to the

Hilbert space case.

Definition 2.1 (Malliavin derivative). For X =
∑n

i=1 Fivi in the tensor product D1,2 ⊗ L2(ΩJ),

i.e., Fi ∈ D1,2 and vi ∈ L2(ΩJ) for all i = 1, . . . , n, the Malliavin derivative D is defined by

DX :=

n∑
i=1

DFi ⊗ vi. (2.2)

D is a closable operator with domain in L2(ΩW , L2(ΩJ)) and values in L2([0, T ] × ΩW , L2(ΩJ)).

The closure of its domain is denoted by D1,2(L2(ΩJ)).

We use the same symbol D for the derivative operator on D1,2 and on D1,2(L2(ΩJ)), but it becomes

clear from the context which operator is meant.

The product of two random variables X =
∑n

i=1 Fivi ∈ D1,2 ⊗ L2(ΩJ) and Y =
∑m

j=1 Gjwj ∈

D1,2 ⊗ L2(ΩJ) is defined pointwise i.e.,

XY (ω)(ω′) :=
∑

1≤i≤n,1≤j≤m

Fi(ω)Gj(ω)vi(ω
′)wj(ω

′). (2.3)

This definition extends naturally to the whole domain of D1,2(L2(ΩJ)) and leads to the following

product formula.

Proposition 2.2 (Product formula). The Malliavin derivative on D1,2(L2(ΩJ)) satisfies the prod-

uct rule: For X,Y ∈ D1,2(L2(ΩJ)) it holds XY ∈ D1.2(L2(ΩJ)) and

D(XY ) = XDY + Y DX. (2.4)

The chain rule can be generalized to differentiable functionals on D1,2(L2(ΩJ)) as established in

(Solé et al., 2007) for simple Lévy processes and in the general case in (Petrou, 2008).

Theorem 2.3 (Chain rule). Let Φ: Rm → R be a continuously differentiable function with bounded

partial derivatives and let X = (X(1), . . . , X(m)) be a vector of random variables such that X(j) ∈
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D1,2(L2(ΩJ)) for all j = 1, . . . ,m. Then it holds that

DΦ(X) =

m∑
i=1

∂

∂xi
Φ(X)DX(i). (2.5)

A basic notion of Malliavin Calculus is the divergence operator or Skorohod integral. It is char-

acterized by a partial integration formula.

Definition 2.4. The divergence operator or Skorohod integral

δ : L2([0, T ]× ΩW , L2(ΩJ)) → L2(ΩW , L2(ΩJ))

is defined as the adjoint operator of D : L2(ΩW , L2(ΩJ)) → L2([0, T ]× ΩW , L2(ΩJ)). Its domain

dom(δ) is the set of u ∈ L2(ΩW , L2(ΩJ)) such that there is a c ∈ R such that

EΩW×ΩJ

[∫ T

0

DtXutdt

]
≤ c∥X∥L2(ΩW×ΩJ )) (2.6)

for all X ∈ D1,2. The divergence operator is characterized by the integration-by-parts formula

EΩW×ΩJ

[∫ T

0

DtXutdt

]
= E[Xδ(u)] (2.7)

for all X ∈ D1,2.

From the Riesz representation theorem, it follows that inequality (2.6) describes the greatest

possible domain on which δ can be defined. The dual operator is also sometimes referred to as

the adjoint operator of D. Since the domain of D is dense in L2(ΩW × ΩJ), this operator is

well-defined. It turns out that the operator δ is unbounded and closed, and dom(δ) is dense in

L2(ΩW , L2(ΩJ)).

The following proposition due to (Petrou, 2008) shows how a real-valued random variable can be

factored out of the divergence. This will be a useful tool in order to find an explicit representation

of the divergence in the following section.

Proposition 2.5. Let X ∈ D1,2(L2(ΩJ)) and u ∈ dom(δ) such that

Xu ∈ L2([0, T ]× ΩW , L2(ΩJ)) and Xδ(u)−
∫ T

0

(DtX)utdt ∈ L2(ΩW , L2(ΩJ)).
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Then Xu ∈ dom(δ) and

δ(Xu) = Xδ(u)−
∫ T

0

(DtX)utdt. (2.8)

3 The calculation of Greeks of European Options and Asian

Options in exponential Lévy models

In this section, we derive the formulas for the calculation of European and Asian Greeks in

exponential Lévy models. Since the European case is already treated in (Petrou, 2008), the

main theoretical contribution of this this paper is section 3.2.

Let the underlying asset be described by a square integrable exponential Lévy process Xt =

x exp(X̃t) with nonvanishing Brownian motion part such that X0 = x. We stress that that

there are no further conditions on X. With the Lévy-Itô decomposition ((Cont & Tankov, 2003),

Proposition 3.7), Xt can be represented as

Xt = exp

(
γt+ σWt + α

Nt∑
i=1

Yi +X
(3)
t

)
. (3.1)

Here,
∑Nt

i=1 Yi is a compound Poisson process with intensity λ of the Poisson process Nt, and X
(3)
t

is a square-integrable pure jump martingale that almost surely has a countable number of jumps

on finite intervals.

Since exp(γt+ σWt) ∈ D1,2, Xt is Malliavin derivable, and it follows that

= D exp(γt+ σWt)⊗ exp(XJ
t ) = σ exp(γt+ σWt)1[0,t] ⊗ exp(XJ

t ) = σXt1[0,t]. (3.2)

3.1 European Greeks in exponential Lévy models

As in the Brownian motion case, an extension of the integration by parts formula from

(Nualart, 2006) is the main tool for the calculation of European Greeks. This extended formula

is given in (Petrou, 2008).

Theorem 3.1 (Integration by parts formula). Let G be a real-valued random variable, F ∈

D1,2(L2(ΩJ)) and let u ∈ L2([0, T ]×Ω) such that
∫ T

0
DtFutdt ̸= 0 a.s. and Gu(

∫ T

0
DtFutdt)

−1 ∈
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dom(δ). For Φ ∈ C1
b(R) continuously differentiable with bounded derivative we have

E[Φ′(F )G] = E

[
Φ(F )δ

(
utG∫ T

0
DtFutdt

)]
. (3.3)

As consequence, the integration by parts formula leads to closed formulas for European Greeks.

Some related formulas are given in the case of Lévy diffusions in (Petrou, 2008), and in the case

of asset price dynamics described by gamma processes and Brownian motions time-changed by a

gamma process in (Kawai & Takeuchi, 2011). In comparison to the diffusion case, the following

formulas are much simplified and allow for an easy implementation.

Theorem 3.2. Let Φ ∈ L2((0,∞)) such that E[Φ(XT )] < ∞, let V0 = E
[
e−rTΦ(XT )

]
bet the

option value at time T = 0. Then the Greeks for European options of exponential Lévy processes

are given by

∆ =
∂V0

∂x
=

e−rT

xσT
E [Φ(XT )WT ] (3.4)

V =
∂V0

∂σ
= e−rTE

[
Φ(XT )

(
W 2

T

σT
−WT − 1

σ

)]
(3.5)

ρ =
∂V0

∂r
= Te−rTE

[
Φ(XT )

(
WT

σT
− 1

)]
(3.6)

Θ = −∂V0

T
= −e−rTE

[
Φ(XT )

(
W 2

T

2T 2
+ µ

WT

σT
−
(

1

2T
+ r

))]
(3.7)

Γ =
∂V0

∂x2
=

e−rT

x2σT
E

[
Φ(XT )

(
W 2

T

σT
−WT − 1

σ

)]
(3.8)

A =
∂V0

∂α
=

e−rT

σT
E

[
Φ(XT )WT

NT∑
i=1

Yi

]
. (3.9)

The proofs of equations (3.4) - (3.8) are similar to the proofs in the Black Scholes case, see (Fournié

et al., 1999). We will exemplarily give the proof for equation (3.4). The Greek A (capital Alpha)

is a Greek that does not exist in the Black Scholes model, its derivation is also given here.

Proof of equation (3.4). We consider XT as a function of the initial value x, XT : (0,∞) → (0,∞),

x 7→ XT (x) = x exp(X̃T ). In the first part of the proof, we pose the additional assumption

that Φ ∈ C1
b((0,∞)) is a continuously differentiable function with bounded derivative. Since

∂
∂xXT = 1

xXT , it holds that

∂

∂x
E[e−rTΦ(XT )] =

e−rT

x
E[Φ′(XT )XT ].
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An application of the integration by parts formula from Theorem 3.1 with F = G = XT and

u = DXT yields

E[Φ′(XT )XT ] = E

[
Φ(XT )δ

(
(DXT )XT∫ T

0
(DtXT )2dt

)]
=

1

σT
E[Φ(XT )δ(1[0,T ])] =

1

σT
E[Φ(XT )WT ].

(3.10)

For the second part of the proof, first assume that Φ ∈ L2((0,∞)) is bounded, but with no further

conditions. Let (φn)n∈N be an approximation of unity, and for each n ∈ N, let Φ(n) = Φ ∗ φn be

the convolution of Φ and φn. Then Φ(n) converges to Φ in L2((0,∞)),

Φ(n) L2((0,∞))−−−−−−−−−→ Φ. (3.11)

Moreover, each Φn is continuously differentiable, i.e. Φn ∈ C1
b((0,∞)). From (3.11) it follows

that there is a subsequence (m) ⊆ N such that Φ(m) converges to Φ a.s. and in L2((0,∞)). From

Young’s inequality and the assumption that Φ is bounded it follows that

∥Φ(m)∥L∞ = ∥Φ ∗ φm∥L∞ ≤ ∥Φ∥L∞∥φm∥L1 = ∥Φ∥L∞ =: C < ∞,

i.e., (Φ(m))m∈N is bounded uniformly by the constant C. From the bounded convergence theorem

it follows that

Φ(m)(XT ) → Φ(XT ) (3.12)

P -a.s. and in L2(P ). Define hm(x) = E
[
Φ(m) (XT (x))

]
, and define h(x) = E [Φ (XT (x))] for all

x ∈ (0,∞). We conclude that for all x ∈ (0,∞), hm(x) converges to h(x). From the first part of

the proof it follows that
∂

∂x
hm(x) =

1

xσT
E
[
Φ(m)(XT )WT

]
. (3.13)

Now, let g(x) = 1
xσT E [Φ (XT (x))WT ]. From equation (3.13) and from (3.12) it follows that

∣∣∣∣ ∂∂xhm(x)− g(x)

∣∣∣∣ ≤ 1

xσT

(
E
[
Φ(m)(XT )− Φ(XT )

]
︸ ︷︷ ︸

:=ϵm(x)

2) 1
2

E
[
W 2

T

] 1
2 m→∞−−−−→ 0 (3.14)

for all x ∈ (0,∞). Since X̃ is defined as a convolution with a Gaussian random variable, it has a

density and therefore also Y = exp(X̃T ) has a density fY with respect to the Lebesgue measure
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λ. This implies

h(x) = E [Φ(xY )] =

∫ ∞

−∞
Φ(xy)fY (y)dy = 1

x

∫ ∞

−∞
Φ(z)fY

( z
x

)
dz

for all x ∈ (0,∞). We conclude that h is continuous. It follows that

E

[(
Φ(m)(xY )− Φ(xY )

)2]
= ϵm(x)2

m→∞−−−−→ 0

uniformly on compacts K ⊆ (0,∞) and thus

∂
∂xhm(x) → g(x)

uniformly on compacts in K ⊆ (0,∞). A classical result from analysis finally implies, that g is

differentiable and that

h′
n(x)

n→∞−−−−→ h′(x) = g(x).

In the case Φ ∈ L2((0,∞)) the sequence Φn = (−n ∨ Φ) ∧ n converges pointwise to Φ as n → ∞.

Furthermore, Φn(XT ) → Φ(XT ) in L2(µ) where µ ∼ XT , and also uniformly on compacts in

x. The result follows by the previous approximation argument. This completes the proof of

equation (3.4).

Proof of equation (3.9). As before in the first step we assume that Φ ∈ C1
b((0,∞)) is continuously

differentiable with bounded derivative such that E[Φ(XT )] < ∞. The derivative of XT with

respect to α is ∂
∂αXT = XT

∑NT

i=1 Yi. An application of the integration by parts formula from

Theorem 3.1 with u = 1[0,T ] yields

∂

∂α
E[Φ(XT )] = E

[
Φ′(XT )XT

NT∑
i=1

Yi

]

= E

[
Φ(XT )δ

(
XT

∑NT

i=1 Yi

σTXT

)]

=
1

σT
E

[
Φ(XT )δ

(
NT∑
i=1

Yi

)]

=
1

σT
E

[
Φ(XT )WT

NT∑
i=1

Yi

]
.

The generalization to Φ ∈ L2((0,∞)) such that E[Φ(XT )] < ∞ then follows analogously to the

12



proof of equation (3.4).

3.2 Asian Greeks in exponential Lévy models

Asian options are options where the payoff is determined by the average price of the underlying

asset. The option price for an Asian option with exercise time T then is given by

V0 = E

[
e−rTΦ

(
1

T

∫ T

0

Xtdt

)]
,

where Φ is the payoff function. For all n ∈ N let

I(n) =

∫ T

0

tnXtdt, n ≥ 0.

Before proceeding we present a useful lemma:

Lemma 3.3. The random variables I(n) =
∫ T

0
tnXtdt are in D1,2(L2(ΩJ)) and it holds:

DsI(n) = Ds

∫ T

0

tnXtdt = σ

∫ T

s

tnXtdt for all s ∈ [0, T ], n ∈ N, (3.15)

∫ T

0

DsI(n)ds = σI(n+1) for all n ≥ 0. (3.16)

Proof. Equation (3.15) follows with an approximation of an increasing sequence of Riemann sums.

Define the Riemann sums

Sk
(n)(X) =

T

2k

2k−1∑
i=0

sni,kXsi,k

where s0,0 = 0 and

si,k+1 =


s⌊i/2⌋,k if s⌊i/2⌋,k ≤ Ti

2k+1

Ti
2k+1 else

for i ≤ 2k+1. The sequence Sk
(n)(X) is clearly in D1,2(L2(ΩJ)) and converges to I(n) a.s. Since the

sequence
(
Sk
(n)(X)

)
k

is also monotonously increasing, it follows that Sk
(n)(X) converges to I(n) in

L2(Ω). The derivative of Sk
(n)(X) is

DSk
(n)(X) =

T

2k

2k−1∑
i=0

DskiXsi =
σT

2k

2k−1∑
i=0

skiXsi1[0,si].

13



DsS
k
(n)(X) is monotonously increasing and therefore also converges to

∫ T

s
tkXtdt in L2(Ω). It

follows that
∫ T

0
Xtdt ∈ D1,2(L2(Ω)) and that

Ds

∫ T

0

tnXtdt = σ

∫ T

s

tnXtdt

holds true. (3.16) is a straightforward application of the integration by parts formula of the

Riemann integral.

As a consequence of Lemma 3.3, the following integration by parts formula is obtained, which will

be the key for the calculation of Asian Greeks:

Corollary 3.4. Let Φ be a continuously differentiable payoff function with bounded derivatives

and let F be a random variable such that F
I(1)

is Skorohod integrable. Then it holds that

E

[
Φ′
(
I(0)

T

)
F

]
= E

[
Φ

(
I(0)

T

)
δ

(
TF

σI(1)

)]
.

Proof. With Lemma 3.3 it follows that

∫ T

0

DsΦ

(
I(0)

T

)
ds =

∫ T

0

Φ′
(
I(0)

T

)
σ

T

(∫ T

s

Xtdt

)
ds =

σ

T
Φ′
(
I(0)

T

)
I(1).

The result then follows from the definition of the Skorohod integral in Definition 2.4.

Theorem 3.5 (Asian Greeks). Let Φ ∈ L2((0,∞)) be such that E[Φ( 1
T

∫ T

0
Xtdt)] < ∞. Then the

Greeks for Asian options are given by

G = e−rTE

[
Φ

(
I(0)

T

)
πG

]
, G ∈ {∆,V, ρ,Θ,Γ, A}

14



where

π∆ =
1

σx

(
−σ +WT

I(0)

I(1)
+ σ

I(0)I(2)

I2(1)

)
(3.17)

πV =
1

σ

(
−(1 + σWT ) +

WT

∫ T

0
XtWtdt− σ

∫ T

0
tXtWtdt

I(1)
+

σ(
∫ T

0
XtWtdt)I(2)

I2(1)

)
(3.18)

πρ =

(
WT

σ
− T

)
(3.19)

πΘ =

(
r − 1

T
+

1
σT I(0)WT − 1

σWTXT + TXT

I(1)
+

1
T I(0)I(2) − I(2)XT

I2(1)

)
(3.20)

πΓ =
1

σ2x2

(
2σ2 − 4σWT

I(0)

I(1)
+ ((W 2

T − T )I(0) − 4σ2I(2))
I(0)

I2(1)
(3.21)

+ σ(3WT I(2) − σI(3))
I2(0)

I3(1)
+ 3σ2

I2(0)I
2
(2)

I4(1)

)

πA =
1

α

(
1
σWT

∫ T

0
X

(2)
t Xtdt−

∫ T

0
tX

(2)
t Xtdt

I(1)
+

∫ T

0
X

(2)
t XtdtI(2)

I2(1)

)
. (3.22)

We give the proofs of equations (3.17) and (3.22); the proofs of equations (3.18) - (3.21) can

be found in the Appendix. Throughout the proofs, Φ ∈ C1
b((0,∞)) will be a continuously dif-

ferentiable function with bounded derivative such that E[Φ( 1
T

∫ T

0
Xtdt)] < ∞ holds true. The

generalization to general Φ ∈ L2((0,∞)) then follows like in the proof of equation (3.4).

Proof of equation (3.17). The integration by parts formula in Corollary 3.4 yields

∆ =
∂

∂x
E

[
e−rTΦ

(
I(0)

T

)]
= e−rTE

[
Φ′
(
I(0)

T

)
I(0)

xT

]
=

e−rT

σx
E

[
Φ

(
I(0)

T

)
δ

(
I(0)

I(1)

)]
.

From Proposition 2.5 applied with u = 1[0,T ], it follows that

δ

(
I(0)

I(1)

)
=

I(0)

I(1)
δ(1[0,T ])−

∫ T

0

Ds

I(0)

I(1)
ds. (3.23)

We apply the chain rule in Theorem 2.3 to the second term of the right-hand side of equation (3.23),

and obtain from Lemma 3.3:

∫ T

0

Ds

I(0)

I(1)
ds =

∫ T

0

I(1)DsI(0) − I(0)DsI(1)

I2(1)
ds

=

∫ T

0
DsI(0)ds

I(1)
−

I(0)
∫ T

0
DsI(1)ds

I2(1)
= σ −

σI(0)I(2)

I2(1)
.
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The divergence can therefore be expressed as

δ

(
I(0)

I(1)

)
= WT

I(0)

I(1)
− σ +

σI(0)I(2)

I2(1)
.

This finally leads to a closed-form expression for ∆:

∆ =
e−rT

σx
E

[
Φ

(
I(0)

T

)(
−σ +WT

I(0)

I(1)
+ σ

I(0)I(2)

I2(1)

)]
.

Proof of equation (3.22). The derivative of Xt with respect to α is

∂

∂α
Xt = Xt

∂

∂α

(
X

(1)
t + α

Nt∑
i=1

Yi +X
(3)
t

)
= Xt

Nt∑
i=1

Yi =
1

α
X

(2)
t Xt.

This gives us

∂

∂α
E

[
Φ

(
I(0)

T

)]
= E

[
Φ′
(
I(0)

T

)
1

αT

∫ T

0

X
(2)
t Xtdt

]
=

1

α
E

[
σ

T
Φ′
(
I(0)

T

)
I(1)

(∫ T

0
X

(2)
t Xtdt

σI(1)

)]

=
1

α
E

[∫ T

0

DsΦ

(
I(0)

T

)(∫ T

0
X

(2)
t Xtdt

σI(1)

)
ds

]

=
1

α
E

[
Φ

(
I(0)

T

)
δ

(∫ T

0
X

(2)
t Xtdt

σI(1)

)]
.

The Skorohod integral can be calculated with Proposition 2.5, applied with u = 1[0,T ]:

δ

(∫ T

0
X

(2)
t Xtdt

σI(1)

)
=

∫ T

0
X

(2)
t Xtdt

σI(1)
WT − 1

σ

∫ T

0

Ds

∫ T

0
X

(2)
t Xtdt

I(1)
ds.

The second term can be rewritten as

1

σ

∫ T

0

Ds

∫ T

0
X

(2)
t Xtdt

I(1)
ds =

1

σ

(∫ T

0

∫ T

s
σX

(2)
t Xtdtds

I(1)
−
∫ T

0
X

(2)
t Xtdt

∫ T

0
DsI(1)ds

I2(1)

)

=

∫ T

0
tX

(2)
t Xtdt

I(1)
−
∫ T

0
X

(2)
t XtdtI(2)

I2(1)
.

As a consequence, it holds that

A =
1

α
E

[
Φ

(
I(0)

T

)( 1
σWT

∫ T

0
X

(2)
t Xtdt−

∫ T

0
tX

(2)
t Xtdt

I(1)
+

∫ T

0
X

(2)
t XtdtI(2)

I2(1)

)]
.
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Remark 3.6. a) The chain rule in Theorem 2.3 is the basis of the integration-by-parts formula

leading to the formulas for the Greeks in Theorem 3.2 and Theorem 3.5. Since this rule also holds

true for functions in the multidimensional case, the formulas for the Greeks can also be stated in

a similar way for multidimensional Greeks.

b) As described in the introduction, the reduction results from the literature directly enable

corresponding expressions for the Greeks also for generalized Asian options, as for example for

discretely sampled Asian options at the inception time t0 ≥ 0. In particular it implies explicit

formulas for fixed strike and for floating strike Asian options.

4 Numerical Example

In this section we use the R package (Hudde, 2021), which contains an implementation of the

formulas (3.4) - (3.8) and (3.17) - (3.21) to compare the convergence properties of the Malliavin

Greeks with the finite difference method in the Asian option case and for different payoff func-

tions. In order to investigate the numerical properties of the Malliavin Monte Carlo Method in

comparison with the finite difference method, we make use of a jump diffusion model allowing for

more simple simulations. Consider the jump diffusion model

Xt = x exp
(
(r − σ2/2)t+ σWt

)
exp

(
α

Nt∑
i=1

Yi

)
, (4.1)

where Nt is a Poisson process, the Yi are such that
√
3Yi follow the Student t-distribution with 3

degrees of freedom (i.e., sd(Yi) = 1), and α is a scale parameter for the size of the jumps. Note that

posing of a no arbitrage condition is not done in model (4.1) as the formulas for the sensitivities

(Greeks) also make sense for general drifts in the model. The parameters are x = 100, r = −0.01,

σ = 0.25, α = 0.15, and λ = 1. Since the distribution of exp(∫T0 tXtdt) is not known, we also need

Monte Carlo simulation to calculate the option price, and hence for the finite difference method.

In order to provide the best possible numeric differentiation for comparison, we use the R package

(Gilbert & Varadhan, 2015) which uses Richardson’s extrapolation, and which provides results

that are more precise than the results obtained with the simple finite difference method. In all

cases, we calculate the integrals with 252 discretization steps.

17
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Figure 4.1: Densities of simulated ∆ and Γ for an Asian call option

mean sd q0.01 q0.99
Malliavin ∆ 0.5418 0.01326 0.5108 0.5730

finite difference ∆ 0.5421 0.005752 0.5288 0.5554
Malliavin Γ 0.02786 0.001846 0.02368 0.03227

finite difference Γ 0.02782 0.001405 0.02461 0.03110
combi Γ 0.02786 0.0004719 0.02677 0.02895

Table 4.1: Numeric results for an Asian call option

4.1 Call option in a jump diffusion model

First, we consider the case of an Asian call option with continuous payoff function Φc(x) =

max{0, (x − 100)} = (x − 100)+. We run 10 000 simulations with 10 000 paths each. The results

show that in this case, the finite difference method provides significantly better convergence prop-

erties for the first-order derivative Greeks, e.g., the Greek ∆ (see Figure 4.1), where the standard

deviation of numeric ∆ is 0.0057 compared to the standard deviation of the Malliavin ∆ of 0.013

(see Table 4.1). In the case of second-order derivatives, the finite difference method still obtains

better results, although the difference is much smaller (the standard deviation of the finite differ-

ence Γ is 0.0014 in comparison to the standard deviation of the Malliavin Γ of 0.0019). But the

best result is obtained by a combination of both methods, i.e., by calculating ∆ with the Malliavin

Monte Carlo method, and then calculating its first-order derivative by the finite difference method.

This results in a standard deviation of 0.00047 which decreases the standard deviation of the finite

difference method by a factor of roughly 3.
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mean sd q0.01 q0.99
Malliavin ∆ -0.22663 0.013843 -0.26396 -0.20058

finite difference ∆ -0.22444 0.031778 -0.29782 -0.16168
Malliavin V 10.834 1.2868 8.2257 14.427

finite difference V 11.217 4.8840 2.3248 22.612
Malliavin Θ -1.2714 0.30836 -1.9196 -0.67163

finite difference Θ -1.2876 0.94021 -3.7941 0.63568
Malliavin ρ -13.532 0.75671 -15.660 -12.182

Malliavin ρ10 000 -13.510 0.09239 -13.734 -13.340
finite difference ρ -13.506 0.10995 -13.762 -13.220

Malliavin Γ 0.012500 0.0021446 0.0078978 0.017840
finite difference Γ 0.012387 0.0021373 0.0078785 0.016954

Table 4.2: Numeric results for a digital Asian put option

4.2 Digital option in a jump diffusion model

Now we investigate an example of a discontinuous payoff function. Consider a digital put option

with payoff function

Φ(x) =


10 if x ≤ 90

0 if x > 90,

which results in a payoff of 10, if 1
T

∫ T

0
Xtdt ≤ 90. We run 100 simulations of the finite difference

method with 1 000 000 paths, each, to compare the results with the Malliavin Monte Carlo method,

where we run 100 simulations with 1 000 paths, each. For the Greek ρ, we also run 100 Simulations

using the Malliavin method with 10 000 paths. The densities of the resulting distributions are

plotted in Figure 4.2, the aggregated results are also presented in Table 4.2. For all the plotted

first-order Greeks except ρ, the variance of the results is still considerably smaller than in the case

of the Malliavin Monte Carlo Method, although we used the squared number of simulated paths.

For Γ, the results are nearly the same, and for ρ the result with 10 000 comparable to the finite

difference results with 1 000 000 paths. But still, the very large number of paths does not suffice

to result in an acceptable accuracy.

We conclude that for the jump diffusion model introduced here, the Malliavin Monte Carlo provides

a much betters convergence behaviour that the finite difference method.

5 Summary

We have used a Hilbert-space valued Malliavin calculus to derive stochastic weights for sensitivities

of options where the underlying asset is represented by a general exponential Lévy model with
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Figure 4.2: Densities of simulated ∆ V, Θ, ρ, and Γ for a digital Asian put option

nonvanishing Brownian motion part. Results are given for European options and path-dependent

Asian options, and for general L2-payoff functions, in particular for common put, call and binary

options. In the case of Asian options, this is a significant generalization of previous results in

(Montero & Kohatsu-Higa, 2003).

These stochastic weights can be used for Monte Carlo simulations, which are easily implemented

for arbitrary L2-payoff functions and provide numerically good approximations of the Greeks.

We investigate numerically the quality of the Malliavin Monte Carlo method in comparison to the

finite difference method for an easy-to-implement class of jump diffusion models. The simulations

of the first-order Greeks with continuous payoff functions have a reasonable convergence behavior,

and in this case the finite difference approach seems to be the better choice. For second-order

Greeks a combination of the finite difference approach and the Malliavin Monte Carlo method for

first-order Greeks is the superior method. Finally, for non-continuous payoff functions, like the

case of binary options, the Malliavin Monte Carlo method seems to provide the only feasible way

of obtaining numerical results for the Greeks, the finite difference method being unstable even

for extremely large numbers of paths. Thus, the stochastic weights introduced here provide a
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possibility to implement the calculations of Greeks of digital Asian options for exponential Lévy

processes, which is not possible with the finite difference method.
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6 Appendix

In the appendix we give the proofs of equations (3.18) to (3.21). Throughout the proofs, let Φ ∈

C1
b((0,∞)) be a continuously differentiable function with bounded derivative. The generalization

to the payoff functions in L2((0,∞)) such that E[Φ( 1
T

∫ T

0
Xtdt)] < ∞ then follows analogously to

the proof of equation (3.4).

Proof of equation (3.18). The derivative of Xt with respect to σ is

∂

∂σ
Xt = Xt(Wt − σt).
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This gives us
∂

∂σ

I(0)

T
=

1

T

∫ T

0

Xt(Wt − σt)dt =
1

T

∫ T

0

XtWtdt−
σ

T
I(1).

With this representation, V can be written as

V =
∂

∂σ
E

[
e−rTΦ

(
I(0)

T

)]
=e−rT E

[
1

T
Φ′
(
I(0)

T

)(
T

∫
0
XtWtdt

)]
︸ ︷︷ ︸

(∗)

−e−rT E

[
σ

T
Φ′
(
I(0)

T

)
I(1)

]
︸ ︷︷ ︸

(∗∗)

.

The integration by parts formula in Corollary 3.4 then allows us to calculate

(∗) = 1

σ
E

[
Φ

(
I(0)

T

)
δ

(∫ T

0
XtWtdt

I(1)

)]

and

(∗∗) = E

[
Φ

(
I(0)

T

)
δ(1(0,T ])

]
= E

[
Φ

(
I(0)

T

)
WT

]
.

We apply Proposition 2.5 with u = 1[0,T ] and obtain

δ

(
1[0,T ]

∫ T

0
XtWtdt

I(1)

)
=

(∫ T

0
XtWtdt

I(1)

)∫ T

0

1[0,T ](t)dWt −
∫ T

0

Ds

(∫ T

0
XtWtdt

I(1)

)
ds

=

(∫ T

0
XtWtdt

I(1)

)
WT −

∫ T

0

Ds

(∫ T

0
XtWtdt

I(1)

)
ds.

With

DsXtWt = Xt(σWt + 1)

for s ≤ t it follows that

Ds

∫ T

0

XtWtdt = σ

∫ T

s

XtWtdt+

∫ T

s

Xtdt.

24



The chain rule in Theorem 2.3 yields

∫ T

0

Ds

(∫ T

0
XtWtdt

I(1)

)
ds

=
I(1)

(
σ
∫ T

0
(
∫ T

s
XtWtdt)ds+

∫ T

0
(
∫ T

s
Xtdt)ds

)
− (
∫ T

0
XtWtdt)

∫ T

0
DsI(1)ds

I2(1)

=
σ
∫ T

0
tXtWtdt

I(1)
+ 1− σ

(
∫ T

0
XtWtdt)I(2)

I2(1)
.

We can therefore write the divergence as

δ

(
1[0,T ]

∫ T

0
XtWtdt

I(1)

)
=

(∫ T

0
XtWtdt

I(1)

)
WT −

σ
∫ T

0
tXtWtdt

I(1)
− 1 + σ

(
∫ T

0
XtWtdt)I(2)

I2(1)
.

This implies

(∗) = 1

σ
E

[
Φ

(
I(0)

T

)(
−1 +

WT

∫ T

0
XtWtdt− σ

∫ T

0
tXtWtdt

I(1)
+

σ(
∫ T

0
XtWtdt)I(2)

I2(1)

)]
.

It follows that

V =
e−rT

σ
E

[
Φ

(
I(0)

T

)(
− (1 + σWT ) +

WT

∫ T

0
XtWtdt− σ

∫ T

0
tXtWtdt

I(1)

+
σ(
∫ T

0
XtWtdt)I(2)

I2(1)

)]
.

Proof of equation (3.19). We have ∂
∂rXt = tXt and therefore ∂

∂r I(0) = I(1). It follows that

ρ =
∂V0

∂r
=

∂

∂r
E

[
e−rTΦ

(
I(0)

T

)]
= −Te−rTE

[
Φ

(
I(0)

T

)]
+ e−rTE

[
Φ′
(
I(0)

T

)
I(1)

T

]
.

The integration by parts formula in Corollary 3.4 yields

E

[
Φ′
(
I(0)

T

)
I(1)

T

]
=

1

σ
E

[
Φ

(
I(0)

T

)
WT

]
,

and conclude that

V = e−rTE

[
Φ

(
I(0)

T

)(
WT

σ
− T

)]
.
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Proof of equation (3.20). A straightforward calculation gives us

Θ = −∂V0

∂T
= − ∂

∂T
E

[
e−rTΦ

(
I(0)

T

)]
= re−rTE

[
Φ

(
I(0)

T

)]
+ e−rTE

[
Φ′
(
I(0)

T

)(
I(0)

T 2
− XT

T

)]
= rV0 +

x

T
∆− e−rTE

[
Φ′
(
I(0)

T

)
XT

T

]
.

From the integration by parts formula in Corollary 3.4 it follows that

E

[
Φ′
(
I(0)

T

)
XT

T

]
= E

[
Φ

(
I(0)

T

)
δ

(
XT

σI(1)

)]
. (6.1)

To calculate the Skorohod integral in the expectation of the right-hand side of equation (6.1), we

apply Proposition 2.5 with u = 1[0,T ] and obtain

δ

(
XT

σI(1)

)
=

XT

σI(1)
WT −

∫ T

0

Ds

(
XT

σI(1)

)
ds.

From the chain rule in Theorem 2.3 and from Lemma 3.3 it follows that

∫ T

0

Ds
XT

σI(1)
ds =

∫ T

0

σ2I(1)XT − σ
(
DsI(1)

)
XT

σ2I2(1)
ds =

TXT

I(1)
−

I(2)XT

I2(1)
.

Together, this leads to

δ

(
XT

σI(1)

)
=

XT

σI(1)
WT − TXT

I(1)
+

I(2)XT

I2(1)
=

1
σWTXT − TXT

I(1)
+

I(2)XT

I2(1)
.

We can finally write

Θ = − ∂

∂T
E

[
e−rTΦ

(
I(0)

T

)]
= rV0 +

x

T
∆− e−rTE

[
Φ′
(
I(0)

T

)
XT

T

]
= e−rTE

[
Φ

(
I(0)

T

)(
r − 1

T
+

1
σT I(0)WT

I(1)
+

1
T I(0)I(2)

I2(1)
−

( 1σWT − T )XT

I(1)
−

I(2)XT

I2(1)

)]

= e−rTE

[
Φ

(
I(0)

T

)(
r − 1

T
+

1
σT I(0)WT − 1

σWTXT + TXT

I(1)
+

1
T I(0)I(2) − I(2)XT

I2(1)

)]
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Proof of equation (3.21). To calculate Γ, we have to differentiate

∆ =
e−rT

σx
E

[
Φ

(
I(0)

T

)(
−σ +WT

I(0)

I(1)
+ σ

I(0)I(2)

I2(1)

)]

with respect to the initial value x again: This gives

Γ =
∂

∂x
∆ = − 1

x
∆+

e−rT

σx
E

[
Φ′
(
I(0)

T

)
I(0)

xT

(
−σ +WT

I(0)

I(1)
+ σ

I(0)I(2)

I2(1)

)]

+
e−rT

σx
E

[
Φ

(
I(0)

T

)
∂

∂x

(
−σ +WT

I(0)

I(1)
+ σ

I(0)I(2)

I2(1)

)]

= − 1

x
∆+

e−rT

σx
E

[
Φ′
(
I(0)

T

)
I(0)

xT

(
−σ +WT

I(0)

I(1)
+ σ

I(0)I(2)

I2(1)

)] (6.2)

since I(0)
I(1)

and I(0)I(2)
I2
(1)

are constant functions of x. An application of the integration by parts

formula in Corollary 3.4 to the right-hand side of equation (6.2) yields

Γ = − 1

x
∆+

e−rT

σ2x2
E

[
Φ

(
I(0)

T

)
δ

(
−σ

I(0)

I(1)
+WT

I2(0)

I2(1)
+ σ

I2(0)I(2)

I3(1)

)]
. (6.3)

An application of Proposition 2.5 with u = 1[0,T ] to the Skorohod integral on the right-hand side

of equation (6.3) with u = 1[0,T ] yields

δ

(
−σ

I(0)

I(1)
+WT

I2(0)

I2(1)
+ σ

I2(0)I(2)

I3(1)

)
(6.4)

=

(
−σ

I(0)

I(1)
+WT

I2(0)

I2(1)
+ σ

I2(0)I(2)

I3(1)

)
δ(1[0,T ])−

∫ T

0

Ds

(
−σ

I(0)

I(1)
+WT

I2(0)

I2(1)
+ σ

I2(0)I(2)

I3(1)

)
ds

= −σWT

I(0)

I(1)
+W 2

T

I2(0)

I2(1)
+ σWT

I2(0)I(2)

I3(1)
+

∫ T

0

Ds

(
σ
I(0)

I(1)
−WT

I2(0)

I2(1)
− σ

I2(0)I(2)

I3(1)

)
ds.

The Malliavin derivative of WT is DWT = 1[0,T ] P-a.s. Thus it holds that

∫ T

0

DsWT ds = T. (6.5)
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For the right-hand expression of the right-hand side of equation (6.4) we obtain

∫ T

0

Ds

(
σ
I(0)

I(1)
−WT

I2(0)

I2(1)
− σ

I2(0)I(2)

I3(1)

)
ds

= σ
I(1)σI(1) − I(0)σI(2)

I2(1)
−

I2(1)TI
2
(0) + 2I2(1)WT I(0)σI(1) − 2WT I

2
(0)I(1)σI(2)

I4(1)

− σ
I3(1)2I(0)σI(1)I(2) + I3(1)I

2
(0)σI(3) − I2(0)I(2)3I

2
(1)σI(2)

I6(1)
(6.6)

= σ2 − σ2 I(0)I(2)

I2(1)
− T

I2(0)

I2(1)
− 2σWT

I(0)

I(1)
+ 2σWT

I2(0)I(2)

I3(1)
− 2σ2 I(0)I(2)

I2(1)
− σ2

I2(0)I(3)

I3(1)
+ 3σ2

I2(0)I
2
(2)

I4(1)

= σ2 − 2σWT

I(0)

I(1)
− (TI(0) + 3σ2I(2))

I(0)

I2(1)
+ σ(2WT I(2) − σI(3))

I2(0)

I3(1)
+ 3σ2

I2(0)I
2
(2)

I4(1)
.

From equation (6.6) it follows that the left-hand side of equation (6.4) can be written as

− σWT

I(0)

I(1)
+W 2

T

I2(0)

I2(1)
+ σWT

I2(0)I(2)

I3(1)
+ σ2 − 2σWT

I(0)

I(1)
− (TI(0) + 3σ2I(2))

I(0)

I2(1)

+ σ(2WT I(2) − σI(3))
I2(0)

I3(1)
+ 3σ2

I2(0)I
2
(2)

I4(1)

= σ2 − 3σWT

I(0)

I(1)
+ ((W 2

T − T )I(0) − 3σ2I(2))
I(0)

I2(1)
+ σ(3WT I(2) − σI(3))

I2(0)

I3(1)
+ 3σ2

I2(0)I
2
(2)

I4(1)

(6.7)

As a consequence of equations (6.3), (6.4), and (6.7), we finally obtain

πΓ =
1

σ2x2

(
− σπ∆ + σ2 − 3σWT

I(0)

I(1)
+ ((W 2

T − T )I(0) − 3σ2I(2))
I(0)

I2(1)
+ σ(3WT I(2) − σI(3))

I2(0)

I3(1)

+ 3σ2
I2(0)I

2
(2)

I4(1)

)

=
1

σ2x2

(
σ2 − σWT

I(0)

I(1)
− σ2 I(0)I(2)

I2(1)
+ σ2 − 3σWT

I(0)

I(1)
+ ((W 2

T − T )I(0) − 3σ2I(2))
I(0)

I2(1)

+ σ(3WT I(2) − σI(3))
I2(0)

I3(1)
+ 3σ2

I2(0)I
2
(2)

I4(1)

)

=
1

σ2x2

(
2σ2 − 4σWT

I(0)

I(1)
+ ((W 2

T − T )I(0) − 4σ2I(2))
I(0)

I2(1)
+ σ(3WT I(2) − σI(3))

I2(0)

I3(1)

+ 3σ2
I2(0)I

2
(2)

I4(1)

)
.
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