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Abstract

The evaluation of risks and risk bounds for joint portfolios is an impor-
tant task in connection with the determination of risk capital as induced by
regulatory prescriptions in finance and in insurance. It faces two basic prob-
lems. One is induced by the model risk arising from the use of precise but
possibly incorrect models. On the other hand risk estimates based only on
basic information as for example on the marginal (individual) risk distribu-
tions may be too wide to be usable in praxis. In this paper we survey some
recent endeavor to include partial dependence and structural information in
order to obtain reliable and usable improved risk bounds.

1 Introduction
For the evaluation of risks there are several structural and dependence models in
use. The risk vector X = (X1, . . . , Xn) is described typically by specified marginal
distributions and by some copula model describing the dependence structure. Al-
ternatively there are several structural models like factor models in common use
to describe the connection between the risks. Several basic statistical methods
and techniques have been developed to construct estimators of the dependence
structure like the empirical copula function (see Rüschendorf (1976), Deheuvels
(1979), Stute (1984)) or the tail empirical copula as estimator for the (tail-) copula
function. Similarly various estimators for dependence parameters as for the tail
dependence index, for Spearmann’s % or for Kendall’s τ have been introduced and
used to test hypotheses on the dependence structure. (see f.e. Rüschendorf (1974),
Genest, Ghoudi, and Rivest (1995), Genest, Rémillard, and Beaudoin (2009)). In
many applications however there are not enough data available to use these meth-
ods in a reliable way. As a consequence there is a considerable amount of model risk
when using these methods in an uncritical way. Many instances of these problems
have been documented in the recent literature.

In recent years a lot of effort has been undertaken to base risk bounds only on
reliable information available from the data, arising from history or from external
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sources. In particular the case where only information on the marginals is available
while the dependence structure is completely unknown has been considered in detail
starting with the paper of Embrechts and Puccetti (2006).

In Section 2 we give a brief review of this development. In the following sections
we describe several recent approaches to introduce additional dependence informa-
tion and structural information in order to tighten the risk bounds. In particular
we consider higher order marginals, positive resp. negative dependence restric-
tions, independence information, variance and higher order moment bounds and
partially specified risk factor models. The general insight obtained is that positive
dependence information allows to increase lower risk bounds but typically not the
upper risk bounds. Negative dependence information on the other hand allows to
decrease upper risk bounds but typically not the lower risk bounds.

2 VaR- and TVaR bounds with marginal informa-
tion

Let X = (X1, . . . , Xn) be a risk vector with marginals Xi ∼ Fi, 1 ≤ i ≤ n. Then
the sharp tail risk bounds without dependence information are given by

M(s) = sup
Xi∼Fi

P

(
n∑
i=1

Xi ≥ s

)
and m(s) = inf

Xi∼Fi
P

(
n∑
i=1

Xi ≥ s

)
. (2.1)

Similarly, for the Value at Risk of the sum S =
n∑
i=1

Xi = Sn we define the sharp

VaR bounds

VaRα = sup
Xi∼Fi

VaRα(S) and VaRα = inf
Xi∼Fi

VaRα(S). (2.2)

The dependence uncertainty (DU-)interval is defined as the interval [ VaRα,VaRα ].
Dual representations of (sharp) upper and lower bounds were given in Embrechts
and Puccetti (2006) and in Puccetti and Rüschendorf (2012a). In some homo-
geneous cases exact sharp bounds were derived in Wang and Wang (2011) and
extended in Puccetti and Rüschendorf (2013) resp. Puccetti, Wang, and Wang
(2013) and in Wang (2014). Since the dual bounds are difficult to calculate in
higher dimensions in the inhomogeneous case the development of the rearrange-
ment algorithm (RA) in Puccetti and Rüschendorf (2012a) and extended in Em-
brechts, Puccetti, and Rüschendorf (2013) was an important step to approximate
the sharp VaR bounds in a reliable way also in high dimensional examples.

As a result it has been found that the DU-interval typically is very wide. The

comonotonic sum Sc =
n∑
i=1

Xc
i is typically not the worst dependence structure and

often the worst case VaR exceeds the comonotonic VaR denoted as VaR+ by a
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factor of 2 or more as shown f.e. in the following two examples (see Table 2.1
and Figure 2.1). A detailed discussion of these effects is given in Embrechts et al.
(2013).

α VaRα (RA range) VaR+
α (exact) VaRα (exact) VaRα (RA range)

0.99 530.12−530.24 5832.00 12302.00 12269.74−12354.00
0.995 562.33−562.50 8516.10 17666.06 17620.45−17739.60
0.999 608.08−608.47 19843.56 40303.48 40201.48−40467.92

Table 2.1 VaR-bounds, n = 648, Fi = Pareto(2), 1 ≤ i ≤ n

Figure 2.1 VaR-bounds, d = 8, GPD-risk for operational risk data from Moscadelli (2004)

The following theorem gives simple to calculate unconstrained bounds for the VaR
in terms of the TVaR resp. the LTVaR defined as

TVaRα(X) =
1

α

∫ 1

1−α
VaRu(X)du resp. LTVaRα(X) =

1

α

∫ α

0

VaRu(X)du.

(2.3)

Theorem 2.1 (unconstrained bounds)

A :=
n∑
i=1

LTVaRα(Xi) = LTVaRα(S
c
n)

≤ VaRα(Sn) ≤ TVaRα(Sn)

≤ TVaRα(S
c
n) =

n∑
i=1

TVaRα(Xi) =: B
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For these bounds see Wang and Wang (2011), Puccetti and Rüschendorf (2012a)
and Bernard, Rüschendorf, and Vanduffel (2015a).

Puccetti and Rüschendorf (2014) found the astonishing result, that the sharp
VaR bounds are asymptotically equivalent to the unconstrained TVaR bounds in
Theorem 2.1 (in the homogeneous case under some regularity conditions) i.e.

VaRα ∼ TVaRα(S
c
n) and VaRα ∼ LTVaRα(S

c
n) as n→∞. (2.4)

This result was then extended to the inhomogeneous case in Puccetti et al. (2013)
and Wang (2014). The worst case dependence structure has negative dependence in
the upper part of the distribution. Construction of this mixing (negatively depen-
dent) part is an interesting task in itself. As a result one obtains tools to determine
VaR bounds also for the high dimensional and for the general inhomogeneous case
based on marginal informations only. The bounds however are typically too wide
to be applicable in praxis. As consequence it is necessary to include further infor-
mation on the dependence structure in order to obtain tighter risk bounds.

3 Higher dimensional marginals
The class of all possible dependence structures can be restricted if some higher
dimensional marginals are known. Let E be a system of subsets J of {1, . . . , n}
and assume that for J ∈ E FXJ = FJ is known. The class

FE = F(FJ ; J ∈ E) ⊂ F(F1, . . . , Fn) (3.1)

resp. the corresponding class of distributionsME is called generalized Fréchet class.
In some applications f.e. some two-dimensional marginals additionally to the one-
dimensional marginals might be known. The relevant tail risk bounds then are
given by

ME(s) = sup {P (S ≥ s);FX ∈ FC} and mE(s) = inf {P (S ≥ s);FX ∈ FC} . (3.2)

Under some conditions a duality result corresponding to the simple marginal case
has been established under the assumption ME 6= ∅ for various classes of functions
ϕ as e.g. upper semicontinuous functions (see Rüschendorf (1984, 1991a), Kellerer
(1988)). The duality theorem then takes the form:

ME(ϕ) = sup

{∫
ϕdP ;P ∈ME

}
= inf

{∑
J∈E

∫
fJdPJ ;

∑
J∈E

fJ ◦ πJ ≥ ϕ

}
. (3.3)

The dual problem is however not easy to determine. For specific classes of indicator
functions one can use the duality result to connect up with Bonferroni type bounds.

Let (Ei,Ai), 1 ≤ i ≤ n be measurable spaces and let for J ∈ E , PJ ∈
M1(EJ ,AJ), (EJ ,AJ) = ⊗

j∈J
(Ej,Aj), be a marginal system. The following class of

improved Fréchet bounds was given in Rüschendorf (1991a).
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Proposition 3.1 (Bonferroni type bounds) Let (Ei,Ai), 1 ≤ i ≤ n ,(PJ , J ∈
E) be a marginal system. For Ai ∈ Ai and AJ =

∏
j∈J

Aj the following estimates

hold:

1. ME(A1 × · · · × An) ≤ min
J∈E

PJ(AJ)

2. In the case that E = Jn2 = {(i, j); i, j ≤ n}, and with qi = Pi(A
c
i), qij =

Pij(A
c
i × Acj) it holds:

ME(A1 × · · · × An) ≤ 1−
∑

qi +
∑
i<j

qij (3.4)

mE(A1 × · · · × An) ≥ 1−
∑

qi + sup
τ∈T

∑
(i,j)∈τ

qij, (3.5)

where T is the class of all spanning trees of Gn, the complete graph of {1, . . . , n}.

Part 1. yields improved Fréchet bounds compared to the usual Fréchet bounds with
marginal information only. Part 2. relates Fréchet bounds to Bonferroni bounds
of higher order, and implies in particular improved bounds for the distribution
function.

For particular cases of decomposable systems also conditional bounds were given
in Rüschendorf (1991a) and applied to risk bounds in Embrechts et al. (2013). For
non-overlapping systems E = {J1, . . . , Jm} with Jk ∩ Ji = ∅ for i 6= k define
Yr :=

∑
i∈Jr

Xi, Hr := FYr , r = 1, . . . ,m and H = F(H1, . . . , Hm). Then consider

MH(s) = sup{P (Y1 + · · ·+ Ym ≥ s);FY ∈ H} and
mH(s) = inf{P (Y1 + · · ·+ Ym ≥ s);FY ∈ H}

MH and mH are tail bounds corresponding to a simple marginal system with
marginals Hi.

Proposition 3.2 (non-overlapping systems) For a non-overlapping marginal
system E, holds:

ME(s) =MH(s) and mE(s) = mH(s). (3.6)

The following extension to general marginal systems was given in Embrechts and
Puccetti (2010) and Puccetti and Rüschendorf (2012a). Let ηi := #{Jr ∈ E ; i ∈
Jr}, 1 ≤ i ≤ n. For a risk vector X with FX ∈ FE define:

Yr :=
∑
i∈Jr

Xi

ηi
, Hr := FYr , r = 1, . . . ,m.

H = F(H1, . . . , Hm) denotes the corresponding Fréchet class.
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Proposition 3.3 (reduced Fréchet bounds) Let FE 6= ∅ be a consistent marginal
system, then for s ∈ R holds

ME(s) ≤MH(s) and mE(s) ≥ mH(s). (3.7)

In comparison to the non-overlapping case the bounds in (3.7) are not sharp in
general but they can be determined numerically. The RA algorithm can be used to
calculate the reduced Fréchet bounds MH and mH. In order to apply the reduced
bounds in Proposition 3.2, 3.3 it is enough to know the partial sum distributions
Hr instead of the multivariate marginal distributions FJr .

Also generalized weighting schemes of the form

Y α
r =

m∑
i=1

αriXi, with αri > 0 iff i ∈ Jr and
m∑
r=1

αri = 1

have been introduced, leading to a parametrized family of bounds.
The magnitude of reduction of the reduced bounds VaRr

α compared to the un-
constrained upper bound VaRα and the comonotonic VaR+ depends on the struc-
ture of the two-dimensional marginals. In the following example we assume that
there are n = 600 Pareto(2) risks and that the two-dimensional marginals are
comonotonic in case A) and independent in case B). The results confirm the intu-
ition, that in case A) the improvement is moderate while in case B) it is considerable
(see Figure 3.1, Table 3.1).

Figure 3.1 reduced bounds n = 600 Pareto(2) variables, A ∼ comonotone F2j−1,2j marginals,
B ∼ independent F2j−1,2j marginals
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α VaR+
α VaR

r,A

α VaR
r,B

α VaRα(L)

0.99 5400.00 10309.14 8496.13 11390.00
0.995 7885.28 14788.71 12015.04 16356.42
0.999 18373.67 33710.3 26832.2 37315.70

Table 3.1 reduced bounds as in Figure 3.1

As a result it is found that higher order marginals may lead to a considerable
reduction of VaR bounds, when the known higher dimensional marginals do not
specify strong positive dependence. For various applications like in insurance ap-
plications however this kind of higher oder marginals information FJr or Hr may
not be available.

4 Risk bounds with variance and higher order mo-
ment constraints

In several applications like in typical insurance applications it may be possible to
have information available on bounds for the variance or for higher order moments
of the portfolio. Consider therefore information of the form:

Xi ∼ Fi, i ≤ i ≤ n and Var(Sn) ≤ s2. (4.1)

Alternatively also partial information on some of the covariances Cov(Xi, Xj) may
be available. The corresponding optimization problems

M=M(s2) = sup{VaRα(Sn); Sn satisfies (4.1)} and

m= m(s2) = inf{VaRα(Sn); Sn satisfies (4.1)}
(4.2)

have been considered in Bernard et al. (2015a). A variant of the Cantelli bounds
then is given as follows:

Theorem 4.1 (VaR bounds with variance information ) Let α ∈ (0, 1) and
Var(Sn) ≤ s2, then

a := max

(
µ− s

√
α

1− α
,A

)
≤ m ≤ VaRα(Sn)

≤M ≤ b := min

(
µ+ s

√
α

1− α
,B

)
where µ = ESn .

(4.3)

The bounds in (4.3) are simple to evaluate and depend only on the variance bound
s, on the mean µ as well as on the unconstrained bounds A, B.

The VaR bounds and the convex order worst case dependence structure depend
on convex order minima in the upper and in the lower part {Sn ≥ VaRα(Sn)}
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resp. {Sn < VaRα(Sn)} of the distribution of Sn. This is described in the following
proposition (cf. Bernard et al. (2015a)). Let for Xi ∼ Fi, qi(α) denote the upper
α-quantile of X.

Proposition 4.2 Let Xi ∼ Fi, Fα
i ∼ Fi/[qi(α),∞) and let Xα

i , Y α
i ∼ Fα

i , then:

a) M = sup
Xi∼Fi

VaRα

(
n∑
i=1

Xi

)
= sup

Y αi ∼Fαi
VaR0

(
n∑
i=1

Y α
i

)

b) If Sα =
n∑
i=1

Y α
i ≤cx

n∑
i=1

Xα
i , then

VaR0

(
n∑
i=1

Xα
i

)
≤ VaR0(S

α) = ess inf

(
n∑
i=1

Y α
i

)
≤ B

Thus maximizing of VaR corresponds to maximizing the minimal support over
all Yi ∼ Fα

i and it is implied by convex order. This connection is intuitively
explainable. An extreme dependence structure for the maximization is obtained
when the random variables are mixable in the upper resp. the lower part of the
distribution. In the following Figure 4.1 this is applied to the quantile function in
the comonotonic case and leads to an increase of the upper resp. decrease of the
lower value of VaR if the distribution of Sn is mixable on the upper resp. lower
part of the distribution.

u

A := LTVaRα(S
c)

B := TVaRα(S
c)

α 1

Figure 4.1 VaR bounds and convex order

The connection to the convex order gives the motivation for the extended rear-
rangement algorithm (ERA) a variant of the RA. This algorithm consists of two
alternating steps:

1. choice of domain, starting from largest α-domain
2. rearrangement in the upper α-part and in the lower 1−α-part
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3. check if the variance constraint is fulfilled
4. shift the domain and iterate

a

b

a

p

Figure 4.2 ERA algorithm

Also a variant of the algorithm has been introduced which uses self determined
splits of the domain. The following Table 4.1 compares for a portfolio of n = 100
Pareto(3) distributed risks the approximate sharp bounds (m,M) calculated by the
ERA for various variance restrictions, determined by constant pairwise correlations
% with the VaR bounds (a, b) and the unconstrained bounds (A,B).

We find considerable improvements over the unconstrained bounds (A,B) for
small variance levels. Since the ERA bounds correspond to valid dependence struc-
tures and are close to the theoretical bounds (a, b) this shows that the bounds (a, b)
are good and also that the ERA works well.

(m,M) % = 0 % = 0.15 % = 0.3

VaR0.95 (47.96; 84.72) (42.48; 188.9) (39.61; 243.3)
VaR0.99 (48.99; 129.5) (46.61; 366.0) (45.36; 489.5)
VaR0.995 (49.23; 162.8) (47.54; 499.1) (46.68; 671.5)

(a, b) % = 0 % = 0.15 % = 0.3 (A,B)

VaR0.95 (47.96; 84.74) (42.48; 188.9) (39.61; 243.4) VaR95% (36.46; 303.3)
VaR0.99 (48.99; 129.6) (46.59; 367.3) (45.33; 491.7) VaR99% (44.47; 577.6)
VaR0.995 (49.23; 162.9) (47.54; 500.0) (46.65; 676.3) VaR99.5% (46.33; 741.1)

Table 4.1 VaR bounds and ERA with unconstrained bounds for Pareto(3) variables, n = 100

In an application to a credit risk portfolio of n = 10000 binomial loans Xj ∼ B(1, p)
with default probability p = 0.049 and variance s2 = np(1−p)+n(n−1)p(1−p)%D
where the default correlation is %D = 0.0157, Bernard et al. (2015a) compared the
unconstrained and constrained bounds with some standard industry models like
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KMV, Beta and Credit Metrics. The following table shows the improvement of the
variance constrained bounds and also the still considerable dependence uncertainty.
It raises some doubts on the reliability of the standard models used in practice.

(A,B) (a, b) (m,M) KMV Beta Credit Metrics

VaR0.8 (0%; 24.50%) (3.54%; 10.33%) (3.63%; 10%) 6.84% 6.95% 6.71%
VaR0.9 (0%; 49.00%) (4.00%; 13.04%) (4.00%; 13%) 8.51% 8.54% 8.41%
VaR0.95 (0%; 98.00%) (4.28%; 16.73%) (4.32%; 16%) 10.10% 10.01% 10.11%

Table 4.2 VaR bounds compared to some standard models (KMV, Beta, Credit Metrics)

It is found that the amount of reduction of the VaR bounds can be considerable
when the variance bound s2 is small enough. Additional higher order moment
restrictions of the form ESkn ≤ ck, 2 ≤ k ≤ K are considered in Bernard, Denuit,
and Vanduffel (2014), Bernard, Rüschendorf, Vanduffel, and Yao (2015b) . The
following table shows the potential of higher order moments in a specific case for a
corporate portfolio.

VaR assessment of a corporate portfolio
q = KMV Comon. Unconstrained K = 2 K = 3 K = 4

0.95 340.6 393.3 (34.0; 2083.3) (97.3; 614.8) (100.9; 562.8) (100.9; 560.6)
% = 0.10 0.99 539.4 2374.1 (56.5; 6973.1) (111.8; 1245.0) (115.0; 941.2) (115.9; 834.7)

0.995 631.5 5088.5 (89.4; 10119.9) (114.9; 1709.4) (117.6; 1177.8) (118.5; 989.5)

Table 4.3 VaR bounds with higher order moment constraints % = 0.10, n = 100, models as in
Table 4.2

The variance resp. moment restriction is a global negative dependence assumption.
Therefore one can expect from this assumption a reduction of the upper VaR
bounds as shown in the examples. The effect on an improvement of lower bounds
is of minor magnitude.

5 Dependence / Independence information
How does positive, negative or independence information influence risk bounds? A
weak notion of positive dependence is the positive orthant dependence (POD). X
is called positive upper orthant dependent (PUOD) if

FX(x) = P (X ≥ x) ≥
n∏
i=1

P (Xi ≥ xi) =
n∏
i=1

F i(xi).

X is called positive lower orthant dependent (PLOD) if

FX(x) ≥
n∏
i=1

Fi(xi), ∀x.
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X is POD if X is PLOD and PUOD.
More generally for F = FX , F = FX let G be an increasing function with

F− ≤ G ≤ F+; F−, F+ the Fréchet bounds and let H be a decreasing function
with F

− ≤ H ≤ F
+. Further let ≤uo, ≤lo denote the upper resp. lower orthant

ordering. Then

G ≤ F is a positive dependence restriction on the lower tail probabilities and

H ≤ F is a positive dependence restriction on the upper tail probabilities.

In the case that G is a distribution function and H is a survival function these
conditions correspond to ordering conditions w.r.t. ≤lo resp. ≤uo. In the case that
G(x) =

∏
Fi(xi), these conditions together are equivalent to X being POD.

Similarly: F ≤ H, F ≤ H are negative dependence restrictions.

These kind of restrictions have been discussed in a series of papers, as in Williamson
and Downs (1990), Denuit, Genest, and Marceau (1999), Denuit, Dhaene, and
Ribas (2001), Embrechts, Höing, and Juri (2003), Rüschendorf (2005), Embrechts
and Puccetti (2006), Puccetti and Rüschendorf (2012a). As a result the following
improved standard bounds are obtained (see Puccetti and Rüschendorf (2012a)).

Theorem 5.1 (positive dependence restriction, improved standard
bounds) Let X be a risk vector with marginals Xi ∼ Fi. Let G be an in-
creasing function with F− ≤ G ≤ F+ and let H be a decreasing function with
F
− ≤ H ≤ F

+. Then

a) If G ≤ FX , then

P

(
d∑
i=1

Xi ≤ s

)
≥
∨

G(s); (5.1)

b) If H ≤ FX , then

P

(
d∑
i=1

Xi < s

)
≤ 1−

∨
H(s); (5.2)

c) If F is POD, then ∨(
d∏
i=1

Fi

)
(s) ≤ P

(
d∑
i=1

Xi ≤ s

)
,

P

(
d∑
i=1

Xi < s

)
≤ 1−

∨(
d∏
i=1

F i

)
(s),

(5.3)

where with U(s) :=
{
x ∈ Rn;

n∑
i=1

xi = s

}
,
∧
G(s) := inf

x∈U(s)
G(x) is the G-infimal

convolution,
∨
H(s) := sup

x∈U(s)

H(x) is the G-supremal convolution.



12 5 Dependence / Independence information

Bignozzi, Puccetti, and Rüschendorf (2015) considered the following specific
type of model assumption to explore the consequences of this kind of dependence
assumptions. Let the risk vector X = (X1, . . . , Xn) have marginals Fi = FXi and

assume that {1, . . . , n} =
k⋃
j=1

Ij is a split into k subgroups. Let Y = (Y1, . . . , Yn)

be a random vector, that satisfies

FY (x) =
k∏
j=1

min
i∈Ij

Gj(xi), (5.4)

i.e. Y has k independent homogeneous subgroups and the components within the
subgroup Ij are comonotonic. The basic assumption made is

Y ≤ X (5.5)

where ≤ is the upper or lower positive orthant ordering ≤uo or ≤lo.
In case Fi = Gj for i ∈ Ij and k = n, (5.5) is equivalent to X being PUOD

resp. PLOD. As k decreases the assumption is getting stronger and for k = 1 it
amounts to the strictest assumption that X is comonotonic. In Bignozzi et al.
(2015) an analytic expression for the upper and lower bounds VaRub

α , VaRlb
α under

this assumption is given. It turns out that as expected the upper VaR bounds are
only slightly improved. The lower bounds are improved strongly if k is relatively
small. For k = n there is no improvement of the unconstrained lower VaR bounds
VaRα. The POD assumption alone is too weak to lead to improved lower bounds
(see Table 5.1).

n = 8 k = 1 k = 2 k = 4 k = 8

α VaRα VaRlb
α VaRlb

α VaRlb
α VaRlb

α

0.990 9.00 72.00 36.00 18.00 9.00
0.995 13.14 105.14 52.57 26.28 13.14

Table 5.1 n homogeneous Pareto(2) risks, split into n
k subgroups of equal size

Similar conclusions are also obtained for inhomogeneous cases.
A stronger notion of positive dependence is the (sequential) positive cumulative

dependence (PCD) defined by

P

(
k−1∑
i=1

Xi > t1 | Xk > t2

)
≥ P

(
k−1∑
i=1

Xi > t1

)
, 2 ≤ k ≤ n (5.6)

This is a sequential version of the PCD notion in Denuit et al. (2001). Similarly,
(sequential) negative cumulative dependence (NCD) is defined if “≤” holds in (5.6).

From the PCD assumption one obtains the following result
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Proposition 5.2 Let S⊥n =
n∑
i=1

X⊥i denote the independent sum with X⊥i ∼ Fi.

a) If X is PCD, then S⊥n ≤cx Sn

b) If X is NCD, then Sn ≤cx S
⊥
n

This result implies as consequence the following VaR resp. TVaR bounds.

Corollary 5.3 (positive dependence restriction) If X is PCD, then

a) TVaRα(S
⊥
n ) ≤ TVaRα(Sn)

b) LTVaRα(S
⊥
n ) ≤ LTVaRα(Sn) ≤ VaRα(Sn) ≤ TVaRα(S

c
n)

The stronger PCD notion implies improvements of the lower bounds for VaR and
for TVaR. Under the corresponding negative dependence assumption one obtains
improvements of the upper bounds.

Proposition 5.4 (negative dependence restriction) If X is NCD, then

a) Sn ≤cx S
⊥
n and

b) VaRα(Sn) ≤ TVaRα(Sn) ≤ TVaRα(S
⊥
n )

Remark 5.5 A stronger positive dependence ordering between any two random
vectors X and Y , the WCS = the weakly conditionally in sequence ordering was
introduced in Rüschendorf (2004).

X ≤wcs Y implies that
n∑
i=1

Xi ≤cx

n∑
i=1

Yi. (5.7)

This ordering notion allows to pose more general kinds of positive (negative) de-
pendence restrictions and to compare not only to the independent case. Several
examples for applications of this ordering are given in that paper.

In the subgroup example the WCS condition is strong enough to imply strongly
improved lower bounds for k ≤ n subgroups also in the case that k = n (see
Table 5.2).

n = 8 unconstrained k = 1 k = 2 k = 4 k = 8

α ESα ESα ESlb
α ESlb

α ESlb
α ESlb

α

0.990 12.00 38.27 38.27 29.15 23.29 19.56
0.995 12.00 41.64 41.64 31.15 24.52 20.33

Table 5.2 n = 8, Gamma distributed risk, 4 Gamma (2, 1/2), 4 Gamma (4, 1/2)
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The reduction of the DU-spread in this example ranges from about 28 % for k = 8
to 65 % for k = 2.

A particular relevant case of reduction of the VaR bounds arises under the
independence assumption I) which was discussed in Puccetti, Rüschendorf, Small,
and Vanduffel (2015).

I) The subgroups I1, . . . , Ik are independent.

In this case we can represent the sum S as an independent sum

S =
k∑
i=1

Yi where Yi =
∑
j∈Ii

Xj. (5.8)

We denote by Sc,k =
k∑
i=1

Y c
i the comonotonic version of the sum.

Theorem 5.6 Under the independence assumption I) holds:

aI := LTVaRα(S
c,k) ≤ VaRI

α ≤ VaR
I

α

≤ bI := TVaRα(S
c,k).

Note that the upper and lower bounds aI, bI can be calculated numerically by Monte
Carlo simulation. As consequence one obtains strongly improved VaR bounds aI, bI
compared to the sharp VaR bounds as is demonstrated for a Pareto example in
Table 5.3.

(aI, bI) k = 1 k = 2 k = 5 k = 25 k = 50 (VaRα; VaRα)

α = 0.990 (18.23; 153.72) (20.21; 116.32) (22.03; 81.54) (23.76; 48.57) (24.15; 41.09) (18.24; 153.3)
α = 0.995 (22.24; 297.84) (23.14; 208.2) (23.92; 132.28) (24.59; 65.87) (24.73; 51.98) (22.26; 297.64)

Table 5.3 n = 50, Pareto(3) variables

The bounds in Theorem 5.6 have also been extended to the case of partial inde-
pendent substructures which appear to be realistic models in several important
applications like in hierarchical insurance models (containing several independen-
cies). It has been applied to a real insurance example in dimension n = 11 and
with k = 4 independent subgroups.

Let I1, . . . , I4 be risks which are modeled in the insurance company I1 =
{market-, credit-, insurance-, business-, asset-, non life-, reput.-, and life risk} by
Gaussian marginals. Further denote by I2 = {reinsurance risk}, I3 = {operational
risk} risks which are modeled by log-Normal distributions and finally let I4 =
{catastrophic risk} be a risk modeled by a Pareto distribution. The independence
assumption leads to a considerable reduction of approximatively 30 % of the upper
risk bound (see Table 5.4) which is even a strong improvement over the comonotonic
case.
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α bI VaR+
α VaRα

0.990 147.34− 149.66 168.37 209.59
0.995 173.37− 176.96 202.89 249.55
0.999 250.41− 262.47 304.63 367.70

Table 5.4 comparison of bI, VaR+
α , and VaRα for a insurance portfolio, n = 11

An analysis shows that in this example the independence information is dominating
the variance information, i.e. the independence bounds improve on the variance
based bounds. The results in this example yield upper risk bounds which are based
on reliable information and are acceptable for the application considered.

6 Partially specified risk factor models
In Bernard, Rüschendorf, Vanduffel, and Wang (2016) risk bounds are discussed
under additional structural information. It is assumed that the risk vector is de-
scribed by a

factor model: Xj = fj(Z, εj), 1 ≤ j ≤ n (6.1)

where Z is a systemic risk factor and εj are individual risk factors. It is assumed
that the joint distributions Hj of (Xj, Z) are known 1 ≤ j ≤ n, but the joint
distribution of (εj) and Z is not specified as is done in the usual factor models.
Therefore, this describes partially specified risk factors models without the usual
assumptions of conditional independence of (εj) given the risk factor Z.

In particular the marginal distributions Fj|z of Xj given Z = z are known. The
set of admissible models consistent with this partial specification is denoted by
A(H) where H = (Hj). The idea underlying this approach is that the common
risk factor Z should reduce the DU-interval. This model assumption reduces the
upper VaR bounds VaRf

α over the class of admissible models if Z generates negative
dependence and it increases the lower VaR bounds VaRf

α when Z induces positive
dependence.

The partially specified factor model can be described by a mixture represen-
tation X = XZ with Xz = (Xj,z) ∈ A(Fz), Fz = (Fj|z), where Z and (Xj,z) are
independent. Then

FS =

∫
FSz dG(z) with G ∼ Z. (6.2)

Let qz(α) = VaRα(Sz) denote the VaR of Sz at level α and define for γ ∈ R1,
γz = q−1z (γ) the inverse γ-quantile of Sz i.e. the amount of probability chosen from
{Z = z}. Further define

γ∗(β) = inf

{
γ ∈ R;

∫
γz dG(z) ≥ β

}
. (6.3)
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From the mixture representation in (6.1) the following mixture representation of
VaRα(SZ) and of the worst case VaR

f

α w.r.t. the admissible class is derived.

Theorem 6.1 (worst case VaR in partially specified factor model) For α ∈
(0, 1) holds:

a) VaRα(SZ) = γ∗(α)

b) VaR
f

α = γ∗(α) = inf

{
γ;

∫
γzdG(z) ≥ α

}
, (6.4)

where qz(α) = VaRα(Sz), γz = (qz)
−1(γ) is the worst case inverse γ-quantile.

The mixture representation in (6.4) has an obvious intuitive meaning. It is however
in general not simple to calculate. For that purpose it is useful to replace the con-
ditional VaR’s in formula (6.4) by conditional TVaR’s which are easy to calculate,
i.e. define

tz(β) = TVaRβ(S
c
z) =

n∑
j=1

TVaRβ(Xj,z). (6.5)

Then qz(β) ≤ tz(β) and we obtain

γ∗(β) ≤ γ∗t (β) = inf

{
γ;

∫
t−1z (γ)dG(z) ≥ β

}
. (6.6)

As a result this estimate from above leads to the following corollary.

Corollary 6.2 (TVaR bounds for the partially specified risk factor mod-
el)

a) VaR
f

α = γ∗(α) ≤ γ∗t (α). (6.7)

b) With T+
z := TVaRU(S

c
z), U ∼ U(0, 1), the following representation holds

VaRα(T
+
Z ) = γ∗t (α). (6.8)

The expression in (6.8) is well suited for Monte Carlo simulations and thus for the
numerical calculation of upper bounds for VaRf

α. The following example confirms
the idea of the influence of the systemic risk factor Z on the reduction of the
DU-spread.

Example 6.3 Consider the case n = 2 where

X1 = (1− Z)−1/3 − 1 + ε1

X2 = p
(
(1− Z)−1/3 − 1

)
+ (1− p)

(
Z−

1/3 − 1
)
+ ε2

where Z ∼ U(0, 1), εi ∼ Pareto(4) and p ∈ [0, 1] is a dependence parameter. For
small p the common risk factor produces strong negative dependence, for large p
it produces strong positive dependence. Therefore, for p ≈ 0 we expect a strong
reduction of the upper risk bounds; for p ≈ 1 we expect a strong improvement of
the lower risk bound. This is confirmed in Figure 6.1 for the case α = 0.90.
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Figure 6.1 TVaR reduction in factor model independence of DU-spread on p

Similar reduction results are also obtained at other confidence levels α for VaR
and hold true also in higher dimensional examples (see Bernard et al. (2016)).
For strong negative dependence we see a strong reduction of the upper bounds, for
strong positive dependence induced by the common risk factor Z we obtain a strong
improvement of the lower bound. But for all possible values of the dependence
parameter p the reduction of the DU-spread is of similar order. In our example
above it is of order of 60 - 70 % which is due to the dominant influence of the
common risk factor Z.

The consideration of partially specified risk factor models is a flexible and ef-
fective tool to reduce DU-spreads. The magnitude of the reduction amounts to
the influence of the common risk factor Z. Examples of particular interest for
applications are the Bernoulli mixture models for credit risk portfolios where the
conditional distributions Fi|z of Xi given Z = z are given by B(1, pi(z)). Common
models for financial portfolios are the multivariate normal mean-variance mixture
models of the form

Xi = µi + γiZ +
√
Z%iεi, 1 ≤ i ≤ n (6.9)

where Z is a stochastic factor and εi are standard normal distributed. These models
include many of the standard and well established marginal distributions in finance
like Variance Gamma, hyperbolic or Normal Inverse Gaussian distributions. In our
partially specified factor model we dismiss with the usual Gaussian dependence
among the εi.

The results on partially specified risk factor models described above can be
extended to more generalmixture models. LetD = D1+D2+D3 be a decomposition
of the state space D of Z. Assume that for states z ∈ D1 of the risk factor Z we
have available a precise model P 1

z for the risk vector X given Z = z while for states
z ∈ D2 we have available the conditional distributions Fz = (Fj|z) i.e. the partially
specified distributions. For z ∈ D3 we only have available marginal information
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(Gj). As result we obtain a mixture model of the form

PX =

∫
D1

P 1
z dP

Z(z) +

∫
D2

P 2
z dP

Z(z) + p3P
3 (6.10)

with P 1
z completely specified for z ∈ D1, P 2

z ∈ A(Fz) for z ∈ D2 and P 3 ∈ A(Gj).
With pi = P (Z ∈ Di) the model in (6.10) has three components

PX = p1P
1 + p2P

2 + p3P
3, (6.11)

where the (normalized) first component P 1 is explicitly modeled, the second one P 2

contains partially specified risk factor information, and the third one P 3 contains
only marginal information.

Since

P

(
n∑
j=1

Xj ≥ t

)
=

3∑
i=1

piP
i

(
n∑
j=1

Xj ≥ t

)
(6.12)

we obtain the sharp tail risk bound for this extended mixture model

M(t) = p1P
1

(
n∑
j=1

Xj ≥ t

)
+ p2

∫
D2

M2,z(t)dP
Z(z) + p3M3(t), (6.13)

where M2,z(t) is the constrained tail risk bound in D2 and M3(t) is the marginal
tail risk bound in D3. The convex sharp upper bound in this model is given by

S =
n∑
i=1

Xi ≤cx I(Z ∈ D1)F
−1
1 (U) + I(Z ∈ D2)S

c
2,Z + I(Z ∈ D3)S

c
3, (6.14)

where F1 is the distribution function of
n∑
j=1

Xi under P 1, Sc2,z =
n∑
j=1

F−1j|z (U) and

Sc3 =
n∑
j=1

G−1j (U) are the conditional resp. unconditional comonotonic vectors,

U ∼ U(0, 1) independent of Z. The formula in (6.14) implies directly sharp upper
bounds for the Tail Value at Risk of S.

Also the TVaR upper bounds in Corollary 6.2 generalize to this extended mix-
ture model since they are based only on the convex ordering properties as in (6.14).

An interesting case of this general model is the case where D = {0, 1} and where
for z = 0 we have an exact model in the central part of the distribution in Rn and
for z = 1 we have only marginal information. The model has been suggested and
analyzed in Bernard and Vanduffel (2015). In particular, the reduction of tail risk
of the distribution of S for moderate levels α by the exactly modeled central part
of the distribution is of practical relevance.
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7 Conclusion

Sharp risk bounds for portfolios where only marginal information is available can
be calculated by the RA-algorithm. They are however typically to wide to be
usable in applications. Therefore, various further reductions of the VaR bounds
have been proposed in the literature and are discussed in this paper. These are
based on additional dependence or structural information.

Higher order marginals may give a good reduction of th DU-bounds when avail-
able. Variance constraints and also higher order moment constraints are often
available and yield a good reduction when the constraints are small enough.

Partial dependence information together with structural information on sub-
groups can lead to interesting improvements, when the dependence notion used is
strong enough. The weak positive orthant dependence (POD) alone is not sufficient.
Of particular interest for applications is to include some (structural) independence
information on the underlying model.

A particular flexible method to introduce relevant structural information is
based on partially specified risk factor models. These models can be used based on
realistic model information and often give a considerable improvement of the DU-
spread depending on the magnitude of the influence of the common risk factor. We
also briefly describe in this paper an extension of this approach to a more general
class of mixture models.
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