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Abstract

We derive improved estimates for the model risk of risk portfolios when ad-
ditional to the marginals some partial dependence information is available. We
consider models which are split into k subgroups and consider various classes of
dependence information either within the subgroups or between the subgroups.
As consequence we obtain improved VaR bounds for the joint portfolio com-
pared to the case with only information on the marginals. Our paper adds to
various recent approaches to obtain reliable and usable risk bounds resp. esti-
mates of the model risk by including partial dependence information additional
to the information on the marginals. In particular we extend an approach sug-
gested in Bignozzi et al. (2015) and in Puccetti et al. (2015) which is based
on positive dependence resp. on independence information available for some
subgroups.
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1 Introduction

Several approaches have been developed in recent years in order to obtain realistically
usable risk bounds for portfolio vectors based on reliable information on the marginals
and on the dependence structure. It has become clear that in order to obtain a not
too wide range of model risk the inclusion of further partial dependence information
in addition to the marginal information is necessary. This paper extends methods
which were introduced in Bignozzi et al. (2015) and in Puccetti et al. (2015) who
are considering models which are split into k subgroups. We consider a variety of
possible types of dependence information either within the subgroups or between the
subgroups. As a result we obtain usable and typically strongly improved risk bounds
for the joint portfolio where we concentrate mainly on the Value of Risk (VaR) or
on the TVaR. For a survey on various further methods to reduce the model risk by
partial dependence information we refer to Rüschendorf (2016).

In Section 2 we introduce the model of risks with information on subgroups and
describe some basic notions and results. Section 3 collects some results on stochastic
ordering used for the comparison of different models. Section 4 is concerned with
partial dependence information within the subgroups keeping the dependence between
the subgroups fixed. In particular we consider the case of elliptical subgroup copulas
with only partial knowledge on the correlations, the case of completely unknown
dependence structure and the case of subgroups with partially specified factor model
structure. In Section 5 we consider the case with additional dependence information
between the subgroups. As examples we consider subgroup models with a copula
between the subgroups bounded above (or below) by a Gaussian copula, a t-copula
and by Clayton or Gumbel copulas. The effects of the various inclusions of dependence
information on the risk bounds resp. on the reduction of dependence uncertainty (DU)
is demonstrated at several examples of copula models.

The paper develops a flexible class of tools which may lead to a relevant reduction
of risk bounds in various applications.

2 Risk bounds in risk models with a subgroup

structure

We consider a risk vector X = (X1, . . . , Xd) of d risks defined on a probability space
(Ω,A, P ). Our basic assumption is that the marginal distributions (resp. distribution
functions) Fi = FXi

, 1 ≤ i ≤ d, are known while only partial information is available
on the joint distribution (function) F .

Our aim is to derive (good) upper and lower bounds for the Value at Risk (VaR)
of the joint portfolio S =

∑d
i=1Xi = Sd resp. for further risk measures like the TVaR.

Here VaRα(s) = F−1
S (α) is defined as the α-quantile of S.
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Under marginal information only the sharp VaR bounds are defined as

VaRα = sup
Xi∼Fi

VaRα(S) and VaRα = inf
Xi∼Fi

VaRα(S). (2.1)

Note, that the inf and the sup in (2.1) are in fact defined over the joint distributions
F in the Fréchet class F(F1, . . . , Fd). The dependence uncertainty (DU) interval is
defined as the interval [VaRα,VaRα].

Dual representations of (sharp) upper and lower VaR bounds were given in Em-
brechts and Puccetti (2006) and in Puccetti and Rüschendorf (2012a). In some ho-
mogeneous cases exact sharp bounds were derived in Wang and Wang (2011) and
extended in Puccetti and Rüschendorf (2013) resp. Puccetti et al. (2013) and in
Wang (2014). Since the dual bounds are difficult to calculate in higher dimensions
in the inhomogeneous case the introduction of the rearrangement algorithm (RA) in
Puccetti and Ruschendorf (2012b) and Embrechts et al (2013) was an important step
to approximate the sharp VaR bounds also in high dimensional examples.

As a result it has been found that the DU interval typically is very wide and thus
the VaR bounds are not tight enough to be useful in practice. The comonotonic sum
Sc =

∑d
i=1X

c
i is typically not the worst dependence structure and often the worst

case VaR exceed the comonotonic VaR denoted as VaR+ by a factor of 2 or more.
For a detailed discussion of these issues see [8].

Defining the TVaR resp. the LTVaR by

TVaRα(Y ) =
1

1− α

∫ 1

α

VaRu(Y )du resp. LTVaRα(Y ) =
1

α

∫ α

0

VaRu(Y )du (2.2)

the following simple to calculate unconstrained bounds for the VaR were given
in Wang and Wang (2011), Puccetti and Rueschendorf (2012a), and Bernard et al.
(2015)

A :=
d∑
i=1

LTVaRα(Xi) = LTVaRα(Sc)

≤ VaRα(S) ≤ TVaRα(S)

≤ TVaRα(Sc) =
d∑
i=1

TVaRα(Xi) =: B.

(2.3)

Puccetti and Rüschendorf (2014) found the astonishing result, that the sharp VaR
bounds are asymptotically equivalent to the unconstrained TVaR bounds in (2.3) in
the homogeneous case under some regularity conditions, i. e.

VaRα ∼ TVaRα(Scd) and VaRα ∼ LTVaRα(Scd) as d→∞. (2.4)

This result then was extended to the inhomogeneous case in Puccetti et al. (2013),
Wang (2014), and Embrechts et al. (2015).
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Since the bounds with only marginal information are typically too wide, some
additional dependence information of the form

G ≤ F – a positive dependence restriction on the lower tail probabilities

H ≤ F , where F (x) = FX(x) = P (X ≥ x)

– a negative dependence restriction on the upper tail probabilities

(2.5)

have been considered in the literature, leading to ‘improved standard bounds ’ (for the
ample history see [8] and [26]). The restrictions in (2.4) and (2.5) lead to improve-
ments of the standard bounds. But often, if the restrictions in (2.4) and (2.5) are not
strong enough or the dimension d is not relatively small the improvements are only
of minor size.

An interesting class of models with additional dependence information was intro-
duced in Bignozzi et al. (2015) and an effective variant of it was considered in Puccetti
et al. (2015). Assume that the risk set {1, . . . , d} =

⋃k
i=1 Ij is split into k disjoint

subgroups. In Bignozzi et al. (2015) it is assumed that a vector Z is available such
that

Z ≤ X (positive dependence restriction)

or X ≤ Z (negative dependence restriction).
(2.6)

Here ≤ is a positive dependence order like the upper orthant order ≤uo resp. ≤lo the
lower orthant order, the concordance ordering ≤c or ≤wcs the weakly conditionally
increasing in sequence order (see Section 3). Z is assumed to have independent sub-
groups ZIj = (Zi)i∈Ij while the components within the subgroups Ij are comonotonic.
In [22] it is assumed that the subgroups XIi are themselves independent, while within
the subgroups any kind of dependence is possible.

This kind of model assumptions is motivated from hierarchical models like in in-
surance, where f. e. several independencies can naturally be expected. The usefulness
of these assumptions has been demonstrated in several applied examples (see [22] or
[4]).

In the following sections we extend this kind of model assumptions and discuss
related possibilities of reduction of the DU spread. In our extension we consider the
case that copula information in terms of upper resp. lower bounds on the copulas of
the subgroup vectors XIi is available. We further assume that bounds are available
for the copula of the vector of subgroup sums, i. e. we have information on the
copula between the subgroups. Besides the motivation on possible independencies or
strong positive dependence within subgroups as often available in hierarchical models
f. e. in insurance models (see the above mentioned papers of [5] and [22]), this kind of
information is often also available f. e. in models with uncertainty on some dependence
parameters. This uncertainty then often leads to stochastic ordering bounds for the
copulas within or between the subgroups. As a result it turns out that our models
yield some flexible tools to formulate partial dependence information and to determine
(often strongly) reduced VaR and TVaR bounds.

Denoting, by Yi :=
∑

j∈Ii Xj and Wi :=
∑

j∈Ii Zj the subgroup sums, we have

S =
∑k

i=1 Yi which has to be compared with the sum T =
∑k

i=1Wi of the comparison

4



vector Z. We denote the distribution function of Yi by Gi and that of Wi by Hi.
The basic comparison results between S and T use dependence conditions inside the
groups Ii in order to infer that Gi ≤ Hi or Gi ≥ Hi w.r.t. suitable orderings ≤ and
further on the copulas between the groups C = CY for Y = (Y1, . . . , Yk) and D = CW
for W = (W1, . . . ,Wk), to conclude the comparison between the generic sum S and
the bound T .

In the next section we review and develop some of the ordering results used then
in the following sections to obtain risk bounds.

3 Some results from stochastic ordering

In this section we collect some results from stochastic ordering which are useful for the
ordering of the subgroup structure models. Let ≤cx, ≤dcx and ≤sm denote the convex,
the directionally convex and the supermodular ordering on the class of random vectors
resp. probability measures on Rm, i. e. X ≤cx Y iff Ef(X) ≤ Ef(Y ) for all convex
functions f : Rm → R1 such that the integrals exist; similarly for ≤dcx and ≤sm.
The orderings ≤dcx and ≤sm are positive dependence orders, while ≤cx is a order on
diffusiveness. For general properties of these orders we refer to [15] and [27].

Further we denote by ≤wcs the weakly conditional in sequence order (see Rüschen-
dorf (2004)): X ≤wcs Y if

Cov(1(Xi>x), f(Xi+1, . . . , Xm)) ≤ Cov(1(Yi>x), f(Yi+1, . . . , Ym)) (3.1)

for all increasing functions f such that the expectations exist.

In particular X is called weakly associated in sequence (WAS) if X⊥ ≤wcs X,

where X⊥ has independent components with X⊥i
d
= Xi or, equivalently, with X(i+1) :=

(Xi+1, . . . , Xm)

PX(i+1) ≤st P
X(i+1)|Xi>x, for all x and 1 ≤ i ≤ m− 1, (3.2)

where ≤st is the stochastic order and PX(i+1) is the distribution of X(i+1).

X is called conditionally increasing in sequence (CIS) if

Xi ↑st (X1, . . . , Xi−1), 2 ≤ i ≤ m, (3.3)

i. e. E(f(Xi) | (X1, . . . , Xi−1) = (x1, . . . , xi−1)) is increasing in (x1, . . . , xi−1) for
increasing functions f .

X is called conditionally increasing (CI) if for all i

Xi ↑st XJ for all J ⊂ {1, . . . ,m} \ {i} (3.4)

Some of the basic connections between these dependence and variability orderings
are the following (see [25]).
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Theorem 3.1 (Relations between dependence orderings).

a) CI ⇒ CIS ⇒ WA ⇒ WAS (3.5)

For random vectors X and Y in Rm holds:

b) If for all i : Xi
d
= Yi and X ≤wcs Y, then X ≤sm Y (3.6)

c) If for all i : Xi ≤cx Yi and X ≤wcs Y, then X ≤dcx Y (3.7)

d) If X and Y have the same CI copula and

Xi ≤cx Yi, then X ≤wcs Y (3.8)

e) If CX ≤sm CY and the copula CY is CI, then

Xi ≤cx Yi, ∀i implies X ≤wcs Y (3.9)

Remark 3.2. [13] established that for X and Y with the same CI copula and Xi ≤cx Yi,
1 ≤ i ≤ m, holds

X ≤dcx Y. (3.10)

This conclusion also follows from a combination of (3.7) and (3.8).

In the following examples we consider the classes of elliptical and Archimedean
copulas and describe criteria for the various orderings within these classes.

A) Elliptical copulas
Elliptical copulas are generalizations of the multivariate normal and also of the
multivariate t-distributions. A random vector X ∈ Rd is elliptically distributed
X ∼ Ed(µ,Σ, φ) if the characteristic function ϕX of X has a representation of the
form

ϕX(t) = eit
>µφ(t>Σt) (3.11)

for some φ : R+ → R, the characteristic generators. Elliptical distributions are
characterized by a stochastic representation of the form

X
d
= µ+RAU, (3.12)

where Σ = AA>, U is uniformly distributed on the unit sphere Sd−1 and the radial
part R is independent of U . Σ is called the correlation matrix of X (see [11], [10],
and [12]).

Recall that a matrix A = (aij)i,j≤d is called M -matrix if aij ≤ 0, ∀i 6= j and all
principal minors are positive. For a positive definite matrix A holds:

A is an M -matrix ⇔ There exists a lower triangular M -matrix L
such that A = LL>

(3.13)

(see [24, Lemma 1]). The following result extends Theorem 2 in Rüschendorf (1981)
from the normal case to elliptical distributions (see also [28]).
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Proposition 3.3. Let X ∼ Ed(0,Σ, φ) be elliptically distributed with positive definite
correlation matrix Σ, then it holds

X is CI ⇔ Σ−1 is an M-matrix, (3.14)

Proof. “⇐” Let Σ−1 be an M -matrix. Let Q be a permutation matrix such that
QΣQ> is the correlation matrix of (Xi, X(i)), where X(i) is the vector (Xj)j 6=i.
(QΣQ>)−1 is also an M -matrix and thus by (3.13) there exists a lower triangular
M -matrix L such that (QΣQ>)−1 = L>L or equivalently QΣQ> = L−1(L−1)>.

Therefore, there exists Y ∼ Ed(0, Id, φ) such that (Xi, X(i)) = L−1(Yi, Y(i)).

Defining L =

(
L11 0
L12 L22

)
the partition of L according to (Xi, X(i)) then L11 and

L22 are M -matrices and L12 ≤ 0. Using that L−1 =

(
L−1

11 0
−L−1

22 L12L
−1
11 L−1

22

)
we

obtain

Xi = L−1
11 Yi

X(i) = −L−1
22 L12L

−1
11 Yi + L−1

22 Y(i)

= −L−1
22 L12Xi + L−1

22 Y(i) = h(Xi, Y(i))

(3.15)

with h(x1, y2) = −L−1
22 L12x1 +L−1

22 y2. Since L and L22 are M -matrices it follows
that L22 is inverse-positive, i. e. L−1

22 ≥ 0 and also that L12 ≤ 0, h is increasing
in both arguments and we get (Xi, X(i)) = (Xi, h(Xi, Y(i)).

As consequence we obtain

E(f(Xi) | X(i) = x(i)) = E(f(Xi) | h(Xi, Y(i)) = x(i))

is increasing in x(i) for increasing functions f , i. e. Xi ↑st X(i), (see [1, Lemma
4.8, pg. 147]). This implies that X is CI.

“⇒” The proof of this direction is similar as in the normal case (see [24, Proof of
Theorem 2]).

As consequence Theorem 3.1 combined with Proposition 3.3 implies a dcx-ordering
result between elliptically distributed vectors X and Y with identical CI-copulas.

The following theorem gives criteria for the increasing convex ordering ≤icx and
the supermodular ordering ≤sm for elliptical distributions.

Theorem 3.4. Let X ∼ Ed(µ1,Σ1, φ) and Y ∼ Ed(µ2,Σ2, φ), Σ1 = (σ
(1)
ij ) be ellipti-

cally distributed with common generator φ and with correlation matrices Σ2 = (σ
(2)
ij ).

Then it holds:

a) If µ1 ≤ µ2 and Σ1 ≤psd Σ2, then X ≤icx Y .

b) If µ1 = µ2 and σ
(1)
ij ≤ σ

(2)
ij , ∀i 6= j, and σ

(1)
ii = σ

(2)
ii for all i, then X ≤sm Y .

c) If µ1 = µ2 and σ
(1)
ij ≤ σ

(2)
ij for all i, j, then X ≤dcx Y .

7



Proof. a) follows from Pan et al. (2016, Theorems 2.1 and 4.1).

b) and c) follow from Block and Sampson (1988, Corollaries 2.3 and 3.2).

B) Archimedean Copulas
A copula is called Archimedean if it has the form

C(x1, . . . , xd) = Ψ
( d∑
i=1

Ψ−1(xi)
)

= CΨ(x), (3.16)

where Ψ : R+ → [0, 1]. Ψ ∈ Cd(R+) is called d-alternating if (−1)kΨ(k) ≥ 0 for k ∈
{1, . . . , d}. If Ψ ∈ Cd(R+) is d-alternating and further Ψ(0) = 1 and limx→∞Ψ(x) =
0, then Ψ is the generator of an Archimedean copula. In the following we restrict to
this subclass of Archimedean copulas.

The following characterization of positive dependence properties is due to Müller
and Scarsini (2001, 2005).

Theorem 3.5 (Positive dependence properties of Archimedean copulas).

a) An Archimedean copula CΨ is positive lower orthant dependent (PLOD) if and
only if

Ψ ◦ exp is superadditive. (3.17)

b) For an Archimedean copula CΨ the following conditions are equivalent:

1) CΨ is CIS

2) CΨ is CI

3) (−1)kΨ(k) is log-convex for 1 ≤ k ≤ d− 1

4) (−1)d−1Ψ(d−1) is log-convex (3.18)

c) If Ψ is completely monotone, i. e. d-alternating for all d ≥ 1, then CΨ is CI.

d) CΨ is MTP2, i. e. CΨ has a density which is log-supermodular if and only if

(−1)dΨ(d) is log-convex. (3.19)

The condition for MTP2 is strictly stronger than the condition for CI.

Let C∗∞ denote the class of completely monotone generators, i.e. which are d-
alternating for all d ≥ 1. The following criterion for the ≤sm ordering of Archimedean
copulas is due to Wei and Hu (2002).

Theorem 3.6 (Supermodular ordering of Archimedean copulas). Let Ci = Cφi be
Archimedean copulas with φi ∈ C∗∞, i = 1, 2. Then the convolution condition

φ−1
1 ◦ φ2 ∈ C∗∞ implies C1 ≤sm C2. (3.20)
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Example 3.1. a) Gumbel copulas:
The Gumbel copula is an Archimedean copula with generator φϑ(s) = exp(−s1/ϑ),
ϑ ≥ 1 and thus

CGu
ϑ (u) = exp

(
−
( d∑
i=1

(− lnui)
ϑ
)1/ϑ )

. (3.21)

For ϑ = 1 it is identical to the independence copula, for ϑ → ∞ it approaches
the comonotonic copula. φϑ is completely monotone (see Nelsen (1999, Example
4.23)). For ϑ1 < ϑ2 holds that φ−1

ϑ1
◦φϑ2 ∈ C∗∞ (see Joe (1997, pg. 375)). Therefore,

by Theorem 3.6 holds:
CGu
ϑ1
≤sm CGu

ϑ2
(3.22)

b) Clayton copula:
The Clayton copula has a completely monotone generator φϑ(s) = (1 + sϑ)−1/ϑ,
ϑ ≥ 0, and is given by

CCl
ϑ (u) =

( d∑
i=1

u−ϑi − d+ 1
)−1/ϑ

. (3.23)

For ϑ → 0 it approaches the independence copula, for ϑ → ∞ it approaches the
comonotonic copula. For ϑ1 < ϑ2 holds that φ−1

ϑ1
◦ φϑ2 ∈ C∗∞ (see Joe (1997, pg.

275)) and, therefore, it holds:

ϑ1 < ϑ2 implies CCl
ϑ1
≤sm CCl

ϑ2
. (3.24)

4 Dependence structures within the subgroups

We consider risk bounds for risk models with a subgroup structure as introduced in
Section 2. We consider various partial dependence assumptions within the subgroups
Ii while keeping the copula C = CY of the subgroup sums Y1, . . . , Yk fixed.

We assume first that C is a positive dependent copula in the sense that C is weakly
associated in sequence (WAS). In particular by Theorem 3.1 this is fulfilled if C is CI
or CIS. WAS holds in particular in the case that the subgroups XIi are independent.

Proposition 4.1. Under the assumption that C is WAS it holds:

a) If Yi ≤cx Wi, 1 ≤ i ≤ k, and the comparison vector W = (W1, . . . ,Wk) has the
same copula as Y , i. e. CW = C = CY , then

S =
k∑
i=1

Yi ≤cx T =
k∑
i=1

Wi. (4.1)

In particular,
LTVaRα(T ) ≤ VaRα(S) ≤ TVaRα(T ). (4.2)
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b) If Wi ≤cx Yi, 1 ≤ i ≤ k, and CW = C = CY , then

T ≤cx S and TVaRα(T ) ≤ TVaRα(S). (4.3)

Proof. a) The assumption that C is WAS is by definition equivalent to the ordering
condition C⊥ ≤wcs C, where C⊥ is the independence copula.

From the assumption Yi ≤cx Wi we, therefore, conclude by Theorem 3.1 c) that
Y = (Y1, . . . , Yk) ≤dcx W = (W1, . . . ,Wk).

This implies that S =
∑k

i=1 Yi ≤cx T =
∑k

i=1Wi.

b) Part b) is a consequence of Part a), where Yi and Wi change their roles.

Remark 4.2. a) If for the comparison vector Z it holds that

XIi ≤wcs ZIi , 1 ≤ i ≤ k, and Xj ≤cx Zj for 1 ≤ j ≤ d, (4.4)

then by Theorem 3.1 c) XIi ≤dcx ZIi and as consequence

Yi ≤cx Wi, 1 ≤ i ≤ n. (4.5)

Similarly,
if XIi ≤sm ZIi , then Yi ≤cx Wi, (4.6)

and the converse conclusion holds if switching the role of X and Z in order to get
lower bounds for the portfolio risk vector X. As consequence under these ordering
conditions Proposition 4.1 applies and delivers risk bounds.

If f. e. the subgroup vectors are modelled by elliptical copulas where only upper
(or lower) estimates for the covariances are available σij ≤ σ

(1)
ij (or σij ≥ σ

(2)
ij ) then

with elliptical vectors ZIi with the same generator φi and with the covariance

matrix Σ(1) = (σ
(1)
ij ) (resp. Σ(2) = (σ

(2)
ij )) we obtain from Theorem 3.4 the ≤dcx

resp. ≤sm ordering estimates and, therefore, the convex ordering condition Yi ≤cx

Wi (resp. Wi ≤cx Yi)

b) Completely unknown dependence structure within subgroups
If besides the marginal distributions Fj of Xj no dependence information is avail-
able on the i-th subgroups XIi , then with Zj = F−1

j (Ui), j ∈ Ii, Ui ∼ U(0, 1) we
have by the well-known ordering property of the comonotonic vector

XIi ≤sm ZIi = (F−1
j (Ui))j∈Ii (4.7)

and as consequence

Yi ≤cx Wi =
∑
j∈Ii

F−1
j (Ui). (4.8)

If (U1, . . . , Uk) ∼ C, then we obtain

X ≤sm Z and S ≤cx T. (4.9)
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c) Partially specified risk factor model
Let the i-th subgroup be modelled by a partially specified risk factor model i. e.

Xj = fj(Z
f
i , εj), j ∈ Ii, (4.10)

where Zf
i are systemic risk factors and εj are individual risk factors. It is assumed

that the joint distributions of (Xj, Z
f
i ), j ∈ Ii, are known, but the joint distribution

of (εj) and of (Zf
i ) is not specified. These partially specified risk factor models

were introduced and analyzed in Bernard et al. (2016a) and they turned out to be
very flexible models with considerable potential for risk reduction. It was shown
in [3] that

Yi =
∑
j∈Ii

Xj ≤cx Wi =
∑
j∈Ii

Xc

j|Zf
i

, (4.11)

where Xc

j|Zf
i

:= F−1

j|Zf
i

(Ui), j ∈ Ii is the conditionally comonotonic vector given Zf
i ,

Fj|zi are the conditional distribution functions of Xj given Zf
i = zi.

If (W1, . . . ,Wk) have the copula C, specifying dependence between the groups,
then with

R+
z := TVaRV (Scz) = TVaRV

( k∑
i=1

∑
j∈Ii

F−1
j|zi(Ui)

)
and R−z := LTVaRV (Scz)

(4.12)

where V ∼ U(0, 1) is independent of (Ui) ∼ C, the following bounds were shown
in [3] for S =

∑d
s=1Xj:

VaRα(R−
Zf ) ≤ VaRα(S) ≤ VaRα(R+

Zf ). (4.13)

(4.13) gives upper resp. lower estimates of the VaR in the partially specified risk
factor models based on upper resp. lower estimates by TVaR in the conditional
models.

In the following example we consider the case where the different subgroups are
independent, i. e. C = C⊥ is the independence copula. We compare various risk
bounds and demonstrate the effects of various dependence restrictions within the
subgroups. In particular we compare the case of marginal information only, the case
with independent subgroups and no dependence information within the subgroups,
and the case of independent subgroups with additional partial factor information
within the subgroups.

Example 4.1. We consider a portfolio X of d risks with k independent subgroups
Ii of the same size m, i. e. d = km. Within the subgroups we consider partially
specified risk factor models. One half of the elements in the i-th subgroup are of
the form Xj = (1 − Ui)

−1/3 − 1 + εj, while the other half is of the form Xj =

p((1 − Ui)
−1/3 − 1) + (1 − p)(U

−1/3
i − 1) + εj, where Ui ∼ U(0, 1), εj ∼ Pareto(4)

and p ∈ (0, 1) is a parameter describing the dependence of the systemic risk factors
within the subgroups; p = 0 ∼ antimonotonic, p = 1 ∼ comonotonic behaviour.
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The variables εj and Ui are independent for j ∈ Ii, while the {εj}j∈Ii may have any
dependence. An example of this kind of factor model without different subgroups (i. e.
for k = 1) was considered in [3]. If we use for this case only the marginal information
we get for d = 100 and α = 0.95 by the rearrangement algorithm (RA) the following
sharp VaR bounds VaRα resp. VaRα.

p = 0.0 p = 0.2 p = 0.5 p = 0.8 p = 1.0

(VaRα,VaRα) (68; 392) (69; 367) (70; 349) (69; 368) (68; 391)

Table 4.1 Sharp VaR bounds with marginal information only d = 100, α = 0.95.

The following table (Table 4.2) contains the TVaR bounds

b(TVaRα) = (LTVaRα(Sc),TVaRα(Sc))

from (2.3) with marginal information only. It also contains the TVaR bounds with

p = 0.0 p = 0.2 p = 0.5 p = 0.8 p = 1.0

k = 1

b(TVaRα) (68; 474) (69; 376) (70; 372) (69; 384) (68; 402)

b(TVaRf
α) (72; 297) (72; 301) (71; 320) (69; 351) (68; 376)

b(VaRf
α) (132; 263) (134; 265) (145; 273) (164; 286) (182; 296)

k = 2

b(TVaRα) (72; 385) (74; 295) (74; 295) (74; 301) (73; 313)

b(TVaRf
α) (76; 231) (75; 234) (75; 247) (74; 269) (73; 287)

b(VaRf
α) (121; 209) (122; 210) (130; 216) (146; 227) (158; 237)

k = 5

b(TVaRα) (77; 305) (77; 222) (77; 226) (77; 229) (77; 234)

b(TVaRf
α) (79; 173) (79; 174) (78; 183) (77; 197) (77; 208)

b(VaRf
α) (110; 161) (110; 162) (116; 167) (125; 174) (133; 180)

k = 10

b(TVaRα) (79; 266) (79; 186) (79; 193) (79; 193) (79; 195)

b(TVaRf
α) (80; 144) (80; 145) (80; 151) (79; 161) (79; 169)

b(VaRf
α) (101; 137) (102; 138) (107; 141) (113; 146) (119; 151)

Table 4.2 VaR bounds with and without factor model information for various group
sizes, d = 100, α = 0.95, k = 1, 2, 5, 10.

partial factor information within the subgroups from (4.13),

b(TVaRf
α) = (VaRα(R−

Zf ),VaRα(R+
Zf ))

and the sharp VaR bounds with factor information

b(VaRf
α) = (VaRf

α,VaR
f

α).

It has been shown in [3] that the determination of the bounds VaRf
α, VaR

f

α can be
reduced to VaR upper and lower bounds for the conditional models given the values
of the risk factors.
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As a result one finds as expected a strong improvement of the upper bounds with
increasing number k of independent subgroups. Also the assumption of partially spec-
ified factor models within the subgroups strongly reduces the risk bounds compared
to the case of arbitrary dependence within the subgroups. The improvements of the
bounds are shown in Table 4.3.

p = 0.0 p = 0.2 p = 0.5 p = 0.8 p = 1.0

k = 1

∆ TVaRf
α (4; 177) (3; 75) (1; 52) (0; 33) (0; 26)

∆ VaRf
α (64; 211) (65; 111) (75; 99) (95; 98) (114; 106)

k = 2

∆ TVaRf
α (4; 154) (1; 61) (1; 48) (0; 32) (0; 26)

∆ VaRf
α (49; 176) (48; 85) (56; 79) (72; 74) (85; 76)

k = 5

∆ TVaRf
α (2; 132) (2; 48) (1; 53) (0; 32) (0; 26)

∆ VaRf
α (33; 144) (33; 60) (39; 59) (48; 55) (85; 76)

k = 10

∆ TVaRf
α (1; 122) (1; 41) (1; 42) (0; 32) (0; 26)

∆ VaRf
α (22; 129) (22; 48) (28; 52) (34; 47) (40; 44)

Table 4.3 Improvement of bounds in Table 4.2, ∆ TVaRf
α = b(TVaRα)−b(TVaRf

α),
∆ VaRf

α = b(TVaRα)− b(VaRf
α).

For p ≈ 0 the chosen structure produces strong negative dependence, for p ≈ 1 it
produces strong positive dependence between the two parts in the subgroups. In the
first case this leads to a strong improvement of the upper bounds while in the second
case the improvement of the lower bound is more pronounced.

Example 4.2 (Partially specified Gauss factor submodels).

a) Gauss factor model: Let X = (Xi) be a one factor Gauss model of the form

Xi = riZ
f +

√
1− r2

i εi, 1 ≤ i ≤ d, (4.14)

where {εi} are independent N(0, 1)-distributed, and Zf , {εi} are independent.
If Zf is N(0, 1)-distributed and ri ∈ [−1, 1], then X ∼ N(0,Σ) is multivariate
normal with σij = rirj. If Zf is t-distributed, then X is multivariate t-distributed.

b) Partially specified Gauss factor submodels: Let X be a portfolio of d risks with
k independent subgroups Ii of the same size m. For the subgroups we assume
homogeneous Gauss factor models as in (4.14), i. e.

Xj = riZ
f
i +

√
1− r2

i εj, j ∈ Ii, (4.15)

where ri = r ∈ [−1, 1], Zf
i ∼ N(0, 1) are independent of εj for j ∈ Ii and (Zf

i )
and (εIi) are independent.

13



VaRα k = 1 k = 2 k = 5 k = 10

r = 0.0 12 12 12 12
r = 0.2 20 16 14 13
r = 0.5 43 31 21 16
r = 0.8 66 47 30 21
r = 1.0 83 58 27 26

Table 4.4 Simulation of VaRα(S) for d = 50, α = 0.95; fully specified factor model

If the εi within the subgroups are independent, then with the assumption of in-
dependence between the subgroups the distribution of X is uniquely determined
and VaRα(

∑d
i=1 Xi) can be easily calculated (see Table 4.4).

With increasing value of r the dependence within the subgroups increases and the
VaR of the sum increases. With increasing number of independent subgroups it
decreases.

If the factor models within the groups are partially specified only, i. e., the (εj)j∈Ii
are possibly dependent, we have that

Xj|Zf
i =zi
∼ N(rzi,1−r2),

we obtain from (4.11) the convex bounds

S =
k∑
i=1

Yi ≤cx

k∑
i=1

Wi =
k∑
i=1

∑
j∈Ii

F−1

j|Zf
i

(Ui) ∼ N(0, km2), (4.16)

since F−1

j|Zf
i

(Ui) ∼ N(0, 1) are independent of j distributed and thus {
∑

j∈Ii F
−1

j|Zf
i

}
are independent N(0,m2) random variables.

Generally for X ∼ N(µ, σ2) holds TVaRα(X) = µ− σ2 ϕ(Φ−1(α))
α

.

Here, ϕ and Φ are the pdf and the cdf of N(0, 1). Therefore, we obtain from (4.16)
and (2.3)

−
√
km

ϕ(Φ−1(α)

α
≤ VaRα(S) ≤

√
km

ϕ(Φ−1(α))

1− α
. (4.17)

The conditional distributions Fj|Zf
i

are independent of j. Therefore, the convex

bounds in (4.16), i. e. the conditional comonotonic sums for the partially spec-
ified risk factor models in the subgroups coincide with the comonotonic sums∑

j∈Ii F
−1
j (Ui). Here Fj = Fj|Zf

i
∼ N(0, 1) are the marginal distributions for

the unconstrained model within the subgroups. These bounds are given in the
following table (Table 4.5) for the case d = 50 and α = 0.95.

k = 1 k = 2 k = 5 k = 10
(-5; 103) (-4; 73) (-3; 46) (-2; 33)

Table 4.5 TVaR bounds for d = 50, α = 0.95

In comparison the VaR bounds in (4.13) are for r > 0 improvements of the TVaR
bounds in Table 4.5, in particular of the lower bounds.
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5 Dependence structure between the subgroups

In comparison to Section 4 we now consider the case where the dependence structure
between the subgroups is estimated from above or below. Let as in Section 2 C
denote the copula of the vector Y of subgroup sums and let D denote the copula of
the comparison vector W = (W1, . . . ,Wk) of subgroup sums of Z.

Proposition 5.1. a) Assume that C ≤wcs D and that Yi ≤cx Wi, 1 ≤ i ≤ k, then

S =
k∑
i=1

Yi ≤cx T =
k∑
r=1

Wi

In particular

LTVaRα(T ) ≤ VaRα(S) ≤ TVaRα(S) ≤ TVaRα(T ). (5.1)

b) If Wi ≤cx Yi, 1 ≤ i ≤ k and D ≤wcs C, then T ≤cx S and TVaRα(T ) ≤ TVaRα(S).

Proof. The assumption that C ≤wcs D and that Yi ≤cx Wi implies by Theorem 3.1 c)
that Y = (Y1, . . . , Yk) ≤dcx W = (W1, . . . ,Wk).

This implies that S =
∑k

i=1 Yi ≤cx T =
∑k

i=1Wi. Thus part a) follows.

Part b) follows by an analogue argument.

Also the following related criterion in terms of the supermodular ordering can be
given.

Proposition 5.2. Assume that C or D is CI.

a) If C ≤sm D and Yi ≤cx Wi, 1 ≤ i ≤ k, then

S =
k∑
i=1

Yi ≤cx T =
k∑
i=1

Wi

and LTVaRα(T ) ≤ VaRα(S) ≤ TVaRα(S) ≤ TVaRα(T )

(5.2)

b) If D ≤sm C and Wi ≤cx Yi, 1 ≤ i ≤ k, then

T ≤cx S and TVaRα(T ) ≤ TVaRα(S) (5.3)

Proof. Let D be CI and let V be a random vector with CV = D = CW and Vi
d
= Yi.

Then by [14] holds V ≤dcx W , which implies that

k∑
i=1

Vi ≤cx

k∑
i=1

Wi.
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Since Yi
d
= Vi the assumption C ≤sm D implies that Y ≤dcx V . Thus

S =
k∑
i=1

Yi ≤cx

k∑
i=1

Vi ≤cx

k∑
i=1

Wi

and a) follows from transitivity of the convex ordering ≤cx.

The proof under the assumption that C is CI is similar. The proof of b) is
analogous.

In Section 3 we have recollected stochastic ordering results for a variety of concrete
copulas like the independence copula, the Gauss copula, the t-copula, the Clayton
copula or the Gumbel copula. We use these kind of copulas in the following examples
as bounds for the dependence structure between the groups. Within the subgroups
we allow any dependence structure.

Example 5.1 (Bounds for the copulas between subgroups). Let X be a risk portfolio
of d = 50 risk variables. We assume that Xi ∼ Pareto(3, 1), 1 ≤ i ≤ d, i. e.

Fi(x) = 1− 1

(1 + x)3
, 1 ≤ x. (5.4)

The portfolio is split into k subgroups of equal size. The copula C between the
subgroups can be bounded by one of the above mentioned copulas D in the sense of
supermodular order as in Proposition 5.2. For the application of Proposition 5.2 we
need to verify the CI condition of D.

If D is a Gauss copula or a t-copula and all elements σij of the correlation matrix
Σ are positive, then Σ−1 is an M -matrix and, therefore, by Proposition 3.3 D is
CI. If D is a Clayton or a Gumbel copula, then D is an Archimedean copula with
completely monotone generator and thus by Theorem 3.5 D is CI. Thus by application
of Proposition 5.2 we obtain by means of the comparison vector W estimates for
the Value of Risk of S. Since there are no usable convolution properties for the
Pareto distribution we calculate all bounds in the following by means of Monte Carlo
simulations.

In the first table (Table 5.1) we determine upper and lower VaR bounds using no
subgroup structure but using only the information on the marginals. The calculations
of VaR estimates are based on the rearrangement algorithm (RA). (a; b) denote the
TVaR estimates in this case.

(VaRα; VaRα) (a; b)

α = 0.95 (18; 153) (18; 154)
α = 0.99 (22; 298) (22; 298)
α = 0.995 (23; 388) (22; 389)

Table 5.1 Unconstrained VaR bounds (VaRα,VaRα) calculated by RA, case with-
out subgroups.
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In the following table (Table 5.2) we consider the case that the copula C of the
vector Y of subgroup sums is bounded above by the independence copula D = C⊥.
Within the subgroups we allow arbitrary dependence. From (5.1) we obtain the
improved TVaR bounds with this subgroup information.

k = 2 k = 5 k = 10 k = 25

α = 0.95 (20; 116) (22; 82) (23; 64) (24; 49)
α = 0.99 (23; 209) (24; 132) (24; 96) (25; 66)
α = 0.995 (24; 266) (24; 163) (25; 115) (25; 76)

Table 5.2 VaR bounds in subgroup model with independence copula between sub-
groups.

We observe strong improvements of the upper bounds and minor improvements
of the lower bounds. This is to be expected when posing as upper bound the inde-
pendence copula which restricts only the positive dependence from above.

k = 2 k = 5 k = 10 k = 25 ∆

Table A: Corr = 0.1

α = 0.95 (20; 119) (22; 88) (22; 73) (23; 71) 58
α = 0.99 (23; 214) (24; 142) (24; 116) (24; 110) 130
α = 0.995 (24; 271) (24; 174) (24; 135) (24; 131) 174

Table B: Corr = 0.25

α = 0.95 (20; 124) (21; 98) (22; 86) (22; 78) 58
α = 0.99 (23; 222) (24; 161) (24; 134) (24; 115) 107
α = 0.995 (24; 283) (24; 197) (24; 160) (25; 135) 135

Table C: Corr = 0.5

α = 0.95 (19; 132) (20; 116) (21; 109) (21; 105) 27
α = 0.99 (23; 242) (24; 200) (23; 183) (24; 172) 70
α = 0.995 (24; 308) (24; 248) (24; 225) (25; 210) 98

Table D: ν = 50, Corr = 0.1

α = 0.95 (20; 119) (22; 89) (22; 74) (23; 63) 56
α = 0.99 (23; 215) (24; 146) (24; 114) (24; 90) 125
α = 0.995 (24; 274) (24; 179) (24; 137) (25; 105) 169

Table E: ν = 50, Corr = 0.25

α = 0.95 (20; 124) (21; 99) (22; 88) (23; 80) 44
α = 0.99 (23; 224) (24; 164) (24; 139) (24; 122) 102
α = 0.995 (24; 285) (24; 202) (24; 168) (24; 144) 143

Table F: ν = 10, Corr = 0.25

α = 0.95 (20; 125) (21; 102) (21; 93) (23; 87) 38
α = 0.99 (23; 230) (23; 177) (24; 157) (24; 144) 86
α = 0.995 (24; 294) (24; 223) (24; 196) (24; 177) 117

Table 5.3 VaR bounds in subgroup model with Gauss copula in A, B, and C and
with t-copula in D, E, and F. ∆ denotes the difference between upper
bounds for k = 2 and k = 25.

In Table 5.3 we consider as examples for the comparison copula D the case of
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Gaussian copulas and t-copulas with various values of the correlation parameter,
% = %ij, i 6= j.

Again we see a strong improvement of the upper bounds. The improvements
increase with decreasing correlation. For the case of t-copulas the improvements
increase with increasing degree of freedom ν. The independence copula gives the
strongest improvement w.r.t. all upper bounds by CI copulas considered.

Table 5.4 is concerned with the case of a Clayton copula and a Gumbel copula.
Again with decreasing value of the dependence parameter the upper bounds improve
considerably.

k = 2 k = 5 k = 10 k = 25 ∆

Table A: ϑ = 1

α = 0.95 (20; 122) (22; 94) (22; 81) (23; 71) 51
α = 0.99 (23; 216) (24; 147) (24; 116) (24; 92) 124
α = 0.995 (24; 274) (24; 179) (24; 135) (25; 103) 171

Table B: ϑ = 3

α = 0.95 (20; 130) (21; 108) (21; 98) (22; 90) 40
α = 0.99 (23; 227) (24; 166) (24; 138) (24; 119) 108
α = 0.995 (24; 285) (24; 198) (24; 160) (25; 132) 153

Table C: ϑ = 10

α = 0.95 (19; 140) (20; 128) (20; 122) (20; 118) 22
α = 0.99 (23; 244) (23; 196) (23; 176) (24; 162) 82
α = 0.995 (24; 304) (24; 232) (24; 202) (24; 180) 124

Table D: ϑ = 1.5

α = 0.95 (19; 140) (19; 132) (20; 129) (20; 127) 13
α = 0.99 (23; 272) (23; 258) (23; 254) (23; 250) 22
α = 0.995 (23; 353) (23; 338) (23; 329) (23; 327) 26

Table E: ϑ = 3

α = 0.95 (18; 151) (18; 150) (18; 149) (18; 148) 3
α = 0.99 (22; 294) (22; 290) (22; 290) (22; 289) 5
α = 0.995 (23; 383) (23; 379) (23; 379) (23; 375) 8

Table 5.4 VaR bounds in subgroup model with Clayton copula in A, B, and C and
Gumbel copula in D and E.

Remark 5.3. a) Proposition 5.1 also allows to derive lower bounds for TVaRα(S)
assuming that D ≤wcs C and Wi ≤cx Yi.

b) Lower bounds for VaRα(S) are also obtainable by the conclusion:

S ≤cx T implies LTVaRα(T ) ≤ VaRα(S). (5.5)

c) If the copula C between the subgroups is modelled by an elliptical copula with
negative correlations σij < 0 between subgroups i 6= j. Then by Proposition 5.2
an upper bound for VaRα(S) is obtained by the independence copula D = C⊥.
Table 5.2 shows some results for the VaR bound induced by the independence
copula D, for Pareto(3,1)-marginals.
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The results in this section show that the assumption of an CI upper bound D
for the copula C between the subgroups leads to considerable reduction of the upper
VaR and TVaR bounds and of the DU spread of the portfolio. The largest reduction
is obtained by this method when D is the independence copula.

We consider in this section the case of no dependence information within the sub-
groups. By the results in Sections 4 and 5 both kinds of dependence information
those between and those within the subgroups can however be combined leading to
accumulated reduction effects. The magnitude of the single reduction effects are con-
siderable and can be well estimated from the examples treated in the above sections.
Altogether, this approach gives quite flexible tools with promising potential which
seems to be of interest for various real applications.
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[2] Bernard, C., L. Rüschendorf, and S. Vanduffel (2015). Value-at-Risk bounds with
variance constraints. J. Risk and Insurance. http://ssrn.com/abstract=2342068.
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