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Abstract

The objective of this paper is two-fold: the �rst part (sections 1 to 3) is a dis-
cussion and an elucidation at the conceptual level of the notion of multivariate
quantile. We argue that the concept of quantile should not be considered as a
function but as a Markov kernel from a reference distribution to the considered
one. We organize our discussion in three stages of increasing conceptual general-
ity. In section 1, we adopt an analytical point of view: we review the properties
of univariate quantile functions (q.f.) and brie�y summarize the di�erent ap-
proaches considered in the literature to de�ne multivariate q.f. and the related
notion of depth. In section 2, we discuss how q.f. and cumulative distribution
functions (c.d.f.) arises naturally as reciprocal (randomized) transformations of
random variables. We show similarly how copula and conditional q.f./c.d.f. can
be viewed from this probabilistic viewpoint. In section 3, we eventually take
the �nal conceptual step and argue, on abstract algebraic grounds, that the ob-
ject quantile should be regarded at the categorical level of a Markov morphism
between probability measures, compatible with some algebraic, ordering and
topological structures.

In a second part (sections 4 to 5), we intent to show that the above concep-
tual discussion can be concretized by proposing a multivariate quantile Markov
morphism which combines the copula view and the mass transportation view,
elaborating on the recent article by [5]. The proposed Markov morphism is
the composition of a copula transformation which, although a random trans-
formation, leaves invariant the dependence structure while regularising the dis-
tribution, and a Monge transform arising from a mass transportation problem
between a reference spherical measure and the copula measure. The proofs of
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the consistency of the empirical version of the proposed quantile to its popula-
tion version are deferred in section 5.

1 Quantile as a function: a discussion of the an-

alytical view in the literature

Notation

• Let (X ,B(X )) a measurable Polish space endowed with its Borel sigma
algebra B(X );

• F(X ) stands for B(X )-measurable real-valued functions fX : X → R;

• P(X ) stands for the set of Borel Probability measures PX on (X ,B(X ));

• Unless speci�ed otherwise, we will work in practice on the Euclidean mea-
surable space (Rd,B(Rd)). Denote vectorsX by bold letters, and interpret
operations between vectors componentwise. PX will stand for the proba-
bility measure associated with its representing variable X.

Let's brie�y recall some basic facts about univariate quantile functions (q.f.),
which, although elementary, will help to motivate the approaches of sections 2
and 3.

1.1 Univariate quantile functions as inverse functions

Let X : Ω → R be an univariate real r.v. and denote by PX its corresponding
law. The probability measure PX on (R,B(R)) can be characterized analytically
by its cumulative distribution function (c.d.f.) FX(x) := PX((−∞, x]), (see any
probability book and e.g. Szekli [55] for other analytical characterisations). The
classical textbook view on the q.f. QX of FX is usually to de�ne it as the left-
continuous generalised inverse function of FX ,

QX(t) = F←X (t) := F−1
X (t) := inf{x ∈ R : FX(x) ≥ t}, 0 < t < 1. (1)

An informal rationale for such an �inverse� view could be the following: if
X is, as in insurance theory, thought as a random positive monetary quantity
which stands for the loss incurred by an insurer, the �risk� carried by X can be
approached via two dual paths:

• for a given level x, what is the degree of occurrence that the random loss
X be larger than x ? This is quanti�ed by the tail or survival function
FX(x) := P (X > x) (or equivalently by the c.d.f. FX(x) := P (X ≤ x) =
1− FX(x));

• for a given degree of occurrence t, what is the value xt such that the
insurer has probability (at least) t that he will not lose more than xt ?
This is quanti�ed by the q.f. xt := QX(t).
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More formally, de�nition (1) entails that the c.d.f. FX and q.f. QX are in a
sort of �inverse duality�: for 0 < t < 1 and x ∈ R,

FX(x) ≥ t⇔ x ≥ QX(t), (2)

which entails,
FX(QX(t)) ≥ t, and QX(FX(x)) ≤ x. (3)

Note, that even in the one-dimensional case, the de�nition (1) of the q.f. as a
left generalised inverse of F is not the sole possibility: one could have chosen as
well the right generalised inverse, F→X (t) := inf{x : F (x) > t}. Therefore, the
choice of a left-continuous inverse for the q.f. and of a right-continuous c.d.f.
is a matter of convention, (see e.g. Williams [61] p. 34). The ambiguity in
the de�nition of these generalised inverses comes from the fact that, although
the operation FX : x 7→ t := F (x) de�nes a function, the inverse operation
x ← t is an �inverse problem�, i.e. F−1

X : x ← t de�nes only a correspondence,
i.e. a multi-valued or set-valued mapping, see Aubin and Frankowska [1] or
Rockafellar and Wets [35] for general references on set-valued analysis.

1.2 A summary of some key properties of univariate q.f.

Parzen [25, 26] advocates that it is often advantageous to �think quantile func-
tions� in univariate statistical modeling instead of thinking in terms of c.d.f.:

• q.f. are well-suited for asymptotic inference:

� they characterize their parent probability measure (so there is no
identi�ability issues)

PX = PY ⇔ FX = FY ⇔ QX = QY . (4)

� they are convergence-determining, in the sense that weak and strong
convergence can be expressed via q.f. Indeed,

∗ univariate q.f. characterizes weak convergence:

Fn
d→ F ⇔ Qn

d→ Q, (5)

where Qn
d→ Qn stands for convergence in quantile, i.e. Qn(t)→

Q(t) at each continuity point t of Q in (0, 1) (See also proposition
7.3.1 p. 112 in [51]);

∗ univariate q.f. gives a simple constructive proof of Skorokhod's
representation theorem that turns weak convergence into a.s.
convergence.

∗ Distance between univariate probability measures (Wasserstein's
distances) can be expressed via quantile functions.
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• univariate q.f. enjoy good invariance properties w.r.t to left-continuous
monotone transformations:

Let g : R 7→ R monotone, left-continuous, g→(y) = sup{x ∈ R : g(x) ≤ y}
and Y = g(X).

� if g monotone non-decreasing, left-continuous, then

QY (t) = g(QX(t)), and FY (x) = FX(g→(y)); (6)

� if g monotone non-increasing, left-continuous,thenQY (t) = g(QX(1−
t)).

• univariate q.f. enjoy good algebraic properties: Gilchrist [14] notices that
q.f. can be added and multiplied (when positive);

• Moreover, Parzen [26] argues that univariate q.f. and their empirical ver-
sion also facilitate the study of order and extreme value distributions: they
are the unifying concept behind the notion of con�dence intervals, order,
ranks, and sign statistics, trimmed means and variances.

1.3 Multivariate quantile functions

If PX is now a probability measure on (Rd,B(Rd)), it can also be characterized
analytically by its multivariate c.d.f. F (x) := PX((−∞,x]), as in the univari-
ate case. Unfortunately, as discussed by e.g. Ser�ing [46], �the absence of a
natural ordering of Euclidean spaces of dimension greater than one [. . .]� makes
the de�nition of a multivariate q.f. more complicated and diverse. Ser�ing [46]
lists the large literature on the subject and classify several ad-hoc approaches to
de�ning a multivariate q.f. by the type of method used to obtain them: methods
based on depth functions (method 1), M-estimator based on norm minimization
(method 2), Z-estimator of gradients (method 4), inversion of surrogate distri-
butions (method 3), methods based on generalized quantile process (method
5). Refer to [46, 47, 48, 49, 15] for a detailed discussion of the merits and
shortcomings of each approach.

These authors favor the �geometric� approach based on depth: In short,
the depth D(x, F ) of a point x ∈ Rd with respect to a multivariate cdf F is
a measure of the �centrality� of x w.r.t. to the distribution of mass F , see
[47, 48, 46]. The �central point� of maximal depth is a �central point� from
which one can de�ne a measure of �outlyingness� and a �center-outward inner
region of speci�ed probability�, or depth region or area,

A(τ, F ) := {x ∈ Rd, D(x, F ) ≥ τ}, 0 < τ < 1, (7)

whose de�ning property,
P (X ∈ A(τ, F )) ≥ τ,

is the multivariate analogue of (3). Depth regions can thus be considered as mul-
tivariate extensions of the univariate con�dence interval [QX(1− t)/2), QX(1−
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(1 − t)/2)] of coverage probability t, centered around its median. Ser�ing and
Zuo [47, 49] propose a set of desirable properties depth functions should satisfy
and draw some perspectives on quantiles and depths.

However, the classi�cation of q.f. by their methods in Ser�ing [46], the state-
ment of desirable properties of depth functions in [47, 48], and the perspectives
drawn in [49] have a sort of ad-hoc character. A structural classi�cation of the
properties of section 1.2 will be proposed in section 3, once a paradigmatic shift
on the subject will have been properly motivated, as we now propose.

2 Quantile as a transformation of random vari-

ables: the probabilistic view

In this section, we shift our focus and adopt a probabilistic view on the quantile
object. This sort of intermediate point of view between those of sections 1 and
3 will be helpful to motivate the more abstract approach of section 3. It will
also allows to view copulas through the probabilistic lens, which will be helpful
for the second part of the paper.

2.1 Univariate reciprocal transforms of random variables

Our starting point is that in the univariate case, it is well known that one can
transform a r.v. U uniform on [0, 1] into a r.v. X ∈ R with prescribed c.d.f.
FX , via the quantile transform mapping

QX : [0, 1] → R
U 7→ QX(U),

with
QX(U)

d
= X, (8)

where QX is the (left or right) generalised inverse of equation (1). This trans-
formation is key, e.g. to prove (the easy version of) Skorohod's theorem, results
on stochastic order, association and a.s. coupling constructions (the method of
a single probability space) in classical empirical process theory, (see e.g. Tho-
risson, chapter one [56], Szekli [55], KMT, Shorack and Wellner, Csorgo and
Revesz).

The reciprocal transformation is known as the Probability integral transfor-
mation

FX : R → [0, 1]

X 7→ FX(X).

If FX is continuous, then

FX(X)
d
= U (9)
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However, if FX is discontinuous, the latter distributional equality is no longer
true. Hopefully, de�ne the extended c.d.f.

FX(x, λ) := P (X < x) + λP (X = x), λ ∈ [0, 1],

and let V a uniform [0, 1] r.v., independent of X. Then, the distributional
transform is the randomized transformation of random variables

FX(., V ) : R → [0, 1]

X 7→ FX(X,V ) := U

and is the generalisation of (9) to an arbitrary F : one has, see Rüschendorf [42],

U
d
= U[0,1], and QX(U) = X a.s. (10)

Such a �randomized mapping� FX(., V ) allows to view the pair (QX(.), FX(., V ))

U
QX−→ X

U
FX(.,V )←− X

as genuine reciprocal transformations between r.v.: it bypasses the issue, ex-
plained in section 1, of having to represent the inverse operation F−1

X as a
multivalued-mapping and even strengthens (8) into an a.s. statement. Of
course, the choice of the reference distribution of U , uniform on [0, 1] is con-
ventional. It can be motivated by Laplace's view on randomness: one should
generate random variables from an �equiprobable� continuous distribution, viz.
a uniform one. It may prove advantageous to use, say, an Exponential or Pois-
son distribution, as reference distribution and the corresponding transforma-
tions then have a di�erent interpretation (in particular, as a hazard function,
see Szekli [55]).

2.2 Multivariate transforms of random vectors

For a multivariate X = (X1, . . . , Xd) ∈ Rd, one can similarly look for a trans-
formation

T : [0, 1] → Rd

U 7→ X

from a univariate U ∼ U[0,1]. Such a generalisation to X ∈ Rd or even to
X ∈ X a Polish space, would be given by Borel's isomorphism theorem (See
Parthasaraty [24], chapter one ). Unfortunately, such isomorphisms (which
would be perfect candidates for higher-dimensional �quantile functions�) are not
very convenient tools: no explicit construction, even for X = R2, is known; they
may be unsmooth and present some pathologies, see [24, 29].
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Therefore, it is more convenient to look for a transformation between vectors
of same dimensionality, i.e. not from a single univariate U but from a vector
U = (U1, . . . , Ud),

[0, 1]d � Rd

U � X.

Moreover, it is expedient for interpretative purposes to impose that the marginals
of the reference vector U have some prescribed distribution, say uniform on
[0, 1]. Basically, there are two competing routes, depending on the dependence
structure of the (U1, . . . , Ud), which leads to either multivariate quantile repre-
sentations, or copula representations.

2.2.1 Multivariate Quantile representations

Starting from a vector U = (U1, . . . , Ud) of mutually independent U[0,1], one
wants to generate the vector X whose distribution is a prescribed c.d.f F .

• The direct transformation QU→X := (Q1, . . . , Qd),

QU→X : [0, 1]d → Rd

U 7→ QU→X(U) (11)

is the multivariate conditional quantile transform, which is the set of suc-
cessive conditional quantile transforms: set

Q1(u1) := QX1(u1) =: x1, 0 < u1 < 1,

Qi(ui|ui−1, . . . , u1) := QXi|Xi−1,...,X1
(ui|xi−1, . . . , x1) =: xi,

0 < ui < 1, 2 ≤ i ≤ d.

the successive conditional q.f. of the conditional distributions of Xi given
(Xi−1, . . . , X1), for 1 ≤ i ≤ d, see Rüschendorf [42]. Then, letting

X̃ := QU→X(U) = (Q1(U1), . . . , Qd(Ud|Ud−1, . . . , U1)),

one obtains a random vector X̃ equal to X in distribution,

X̃
d
= X,

i.e. the multivariate analogue of (8).

• Starting from a vector X = (X1, . . . , Xd) with prescribed c.d.f. F , the
reciprocal transformation (known as Rosenblatt's transform in the contin-
uous case [36] and generalised to the general case in Rüschendorf [42]),

RX→U(.,V) : Rd → [0, 1]d

X 7→ RX→U(X,V)
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is de�ned similarly as in (10) via the set of successive extended conditional
c.d.f.

(FXi|Xi−1,...,X1
(xi, λi|xi−1, . . . , x1), 1 ≤ i ≤ d), 0 < λi < 1

and an additional randomizer vector V = (V1, . . . Vd), made of i.i.d.
marginals U[0,1] r.v., also jointly independent of X. The multivariate con-
ditional distributional transform is the randomized transformation

RX→U(X,V) := (FX1(X1, V1), . . . , FXd|Xd−1,...,X1
(Xd, Vd|Xd−1, . . . , X1)).

Then, one has the analogue of (10): if

U := RX→U(X,V), (12)

then U is uniform on the unit cube and

QU→X(U) = X a.s.

Again, this view encapsulates Laplace's view on randomness and is similar to
the engineers' approach on modeling time series, (see Priestley [27], chapter
2): the most unpredictable time series is a strong white noise, viz. a sequence
(Ui) of i.i.d. r.v. with a common prescribed distribution (here uniform on
[0, 1], but which is often taken standard Gaussian in the context of time series).
Hence, starting from such a sequence (Ui) of i.i.d. r.v. considered as a �source
of randomness�, Nature generates successively the next output Xi+1 from the
�past� realizations (X1, . . . , Xi) by a random mechanism involving an indepen-
dent Ui+1. Such random mechanism is described by the �response functions�
formed by the successive conditional q.f. One obtains a �Markov (quantile) re-
gression representation� of X ∼ F from the source of i.i.d Ui r.v. Reciprocally,
one can consider a stochastic temporal model, made of the successive extended
conditional c.d.f., has captured all the stochastic dependence in a vector X, if
it can transform the latter vector into strong white noise, i.e. into a sequence
of i.i.d. r.v. with a prescribed univariate reference distribution(here uniform).

2.2.2 Copula representations

In an approach dual to the multivariate conditional quantile representation of
the previous section 2.2.1, one may start from a vector X = (X1, . . . , Xd) with
given multivariate c.d.f. F , and wish to obtain a vectorU = (U1, . . . , Ud), which
is no longer made of independent marginals as in (12), but captures the �depen-
dence�, irrespectively of the marginals. This is obtained by standardizing the
marginals of X by using the marginal distributional transforms, thus obtaining
a vector U, whose c.d.f. is a copula function, as is explained now.

• A primer on copulas as probabilistic transforms:
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For X ∼ F , denote its corresponding vector of marginal cdfs by G =
(G1, . . . , Gd), namely

Gi(xi) = F (∞, . . . ,∞, xi,∞, . . . ,∞).

Recall that a d-dimensional copula function C : [0, 1]d 7→ [0, 1] is de�ned
analytically as a grounded, d−increasing function, with uniform marginals
whose domain is [0, 1]d (see Nelsen [23]). Alternatively, it can be de�ned
probabilistically as the restriction to [0, 1]d of the multivariate cdf of a ran-
dom vector U, called a copula representer, whose marginals are uniformly
distributed on [0, 1] (see Rüschendorf [42, 43]). Their interest stems from
Sklar's theorem (see [52, 53]), which asserts that, for every random vector
X ∼ F , there exists a copula function connecting, or associated with X,
in the sense that:

Theorem 2.1. For every multivariate cdf F , with marginal cdfs G, there
exists some copula function C such that

F (x) = C(G(x)), ∀x ∈ Rd. (13)

Conversely, if C is a copula function and G = (G1, . . . , Gd) a vector of
marginal univariate distribution functions, then the function F de�ned by
(13) is a joint distribution function with marginals G.

When G is continuous, the copula C associated with X in relation (13)
is unique and can be de�ned from F either analytically by C = F ◦G−1,
where G−1 = (G−1

1 , . . . , G−1
d ) is the vector of marginal quantile functions,

or probabilistically as the cdf of the multivariate marginal probability
integral transforms, namely C(u) = P (G(X) ≤ u), u ∈ [0, 1]d. Whenever
discontinuity is present, C is no longer unique: in other words C, as a
functional parameter, is not identi�able from the multivariate cdf F alone.
In such a case, the most natural way to derive a probabilistic construction
of a copula representer U associated with X is to use the the d-variate
marginal distributional transform: set

U = G(X,V)

where is the vector of extended marginal cdfs, and V is a vector of uni-
form [0, 1] marginals (i.e. its cdf is itself a copula function), independent
of X. Then, the cdf C of U is a copula function which satis�es (13), see
Moore and Spruill [21], Rüschendorf [38, 42, 43], Faugeras [11, 12]. The
distribution function of V = (V1, . . . , Vd) can be any copula, but the most
natural choice is to choose the independent one, so that dependence mea-
sures computed on U matches those computed on X, see [12]. Hence, one
can view again the pair (G−1(.),G(.,V)) as reciprocal transformations
between X and its copula representer U,

U
G−1

−→ X

U
G(.,V)←− X. (14)
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• Empirical copulas:

If F is unknown, but one has instead a sample X1,X2, . . . of copies dis-
tributed according to F on a probability space (Ω,A, P ), one can de�ne
the ecdf Fn,

Fn(x) =
1

n

n∑
i=1

1Xi≤x,

and the corresponding vector of marginal ecdfs Gn. Sklar's theorem there-
fore entails that there exists some copula function Cn associated with Fn.
As the ecdf is discrete, Cn is no longer unique and can no longer be de-
�ned, in parallel with the continuous case, as C∗n := Fn ◦ G−1

n , or as
C∗∗n (u) := P ∗(Gn(X∗n) ≤ u), with X∗n ∼ Fn, conditionally on the sample,
and where P ∗ is the corresponding conditional probability (more on this
below). Indeed, C∗n and C∗∗n do not have uniform marginals and hence
are not genuine copula functions associated with Fn. C

∗
n and C∗∗n are ver-

sions of the improperly called empirical �copula� functions, introduced by
Rüschendorf [37] under the name of multivariate rank order function and
Deheuvels [9, 10] under the name of empirical dependence function.

When F is continuous, the disadvantage of estimating C = F ◦G−1 by
estimators which are not proper, in the sense that they do not belong to the
same functional class of the parameter to be estimated, is mitigated by the
fact that these estimators coincide, with any copula function associated
with Fn on the grid of points uk = (k1/n, . . . , kd/n) for k1, . . . , kd =
0, . . . , n; see Deheuvels [10]. Moreover, any version of the corresponding
empirical �copula� process weakly converges, see e.g. Fermanian et al.
[13], Deheuvels [10], or Rüschendorf [37]. Hence, in the continuous case,
the choice of which �empirical copula� function to use is often of little
relevance for statistical purposes.

However, we will see in section 4 that de�ning the empirical copula as
a genuine copula function will be a key element in the construction of
empirical quantile morphisms, even in the continuous case. Hence, let us
de�ne the empirical copula representer, conditionally on the sample, as
follows: on an extra probability space (Ω∗,A∗, P ∗), let X∗n ∼ Fn. Set

Un := Gn(X∗n,V), (15)

the multivariate distributional transforms for the ecdf Fn, with indepen-
dent randomisation V. Denote as Cn the cdf of Un, i.e. the copula
function associated with Fn.

3 Quantile as Markov morphisms: an algebraic

categorical view

What often matters in probability and statistics is not the random elements X
per se, but the distribution they induce PX and the properties of the latter.
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Hence, it is advantageous to see the transformations (14), (12), (11) of random
elements of section 2 as transformations of probability measures,

PX � PU.

(Such view can be rendered rigorous, subject to some measure theoretic sub-
tleties which we leave aside, see details in Zolotarev [62] chapter 1, Rachev [30],
chapter 2 or the introduction in Cencov [4]). This �nal change of perspective
will allow us to eventually motivate the forthcoming de�nition of the quantile
object from an abstract algebraic viewpoint, inspired by category theory.

3.1 The category of Markov morphisms

Informally, category theory is made of �objects� or abstract sets denoted by
A,B,C, . . . and a system of mappings, morphisms or �arrows� α, β, . . . of the
objects into one another. It will often be necessary to precise the domain and
codomain of morphisms by subscripts, so that A

α→ B, be denoted by αAB .
Such system of morphisms must obey the following two axioms:

• Associativity of composition: morphisms with compatible domains and
codomains can be composed, i.e. if αAB : A → B, βBC : B → C then
αAB ◦ βBC : A → C is also a morphism. (We will use Cencov's [4] left-
to right convention so that Aα = B (and not α(A) = B) denotes the
�transformation� of A into B under the �action� of α, so that composition
of morphisms is reversed from the usual ◦ composition operation, as in
e.g. Lawvere [19]). Moreover, the composition law is associative, i.e. if

A
α→ B

β→ C
γ→ D, then (αAB ◦ βBC) ◦ γCD = αAB ◦ (βBC ◦ γCD).

• Identity law: For every object A, the system includes the identical map-
ping idA = εAA which is both the right and left identity: εAA◦αAB = αAB ,
and βBA ◦ εAA = βBA.

The system of morphisms forms an abstract category and the pair (objects, mor-
phisms) is called a concrete category : it is the conceptual framework to carry
the idea that a class of objects or ��gure� A can be transformed into other an-
other �gure B via �motions� α. It paves the way to study the properties of those
�gures which remain invariants under structure-preserving transformations, see
[4, 18, 19, 17] for readable introductions.

In his seminal book, Cencov [4] show how statistical inference can be studied
from such a viewpoint. To that purpose, let us recall the de�nition of a Markov
probability kernel or Markov morphism:

De�nition 3.1. Let (Ω1,A1), (Ω2,A2) be two measurable spaces, a function
K12 : Ω1 × A2 7→ [0, 1] is a Markov probability kernel (or transition probability
distribution) from (Ω1,A1) to (Ω2,A2) i�

i) for every ω1 ∈ Ω1, A2 ∈ A2 → K12(ω1, A2) is a probability measure on
A2;
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ii) for every A2 ∈ A2, ω1 ∈ Ω1 → K12(ω1, A2) is a A1-measurable function.

Markov kernels K12 will also be denoted Markov morphisms: K12 induces
two morphisms preserving the algebraic structure (i.e. homomorphisms), which
will be denoted by the same letter K12:

• a positive bounded linear operator on the convex set of probability mea-
sures : K12 transforms a probability measure P1 on (Ω1,A1) into a prob-
ability measure P2 on (Ω2,A2), by acting on the right on measures as

P2(.) := (P1K12)(.) :=

∫
Ω1

P1(dω1)K12(ω1, .), (16)

see Cencov [4] lemma 5.2 p. 67. Symbolically,

P1
K12−→ P2.

• a positive bounded linear operator K12 on the vector space Fb(Ω2,A2) of
bounded measurable functions f2 : (Ω2,A2) 7→ R into the vector space
of bounded measurable functions Fb(Ω1,A1) := {f1 : (Ω1,A1) 7→ R}, by
acting on the left on functions as

f1(.) := (K12f2)(.) :=

∫
Ω2

K12(., dω2)f2(ω2), (17)

see [4] lemma 5.1 p. 66. Symbolically,

f1
K12←− f2.

• and one has commutation, see [4] lemma 5.3 p. 68, i.e.

(P1K12)f2 = P1(K12f2). (18)

where

P (f) :=

∫
fdP := 〈P, f〉 (19)

is the expectation of f w.r.t. P , viz. the duality bracket between measures
and functions. In view of (16, 17, 18), the action of K12 on measures
and functions will be written without parentheses nor brackets in the
remainder.

Such Markov probability kernels K12 : (Ω1,A1) → (Ω2,A2) and K23 :
(Ω2,A2)→ (Ω3,A3) obey the composition law,

K13(ω1, A3) :=

∫
Ω2

K12(ω1, dω2)K23(ω2, A3) (20)

which is associative ([4] lemma 5.4 and 5.6), and the Dirac kernel I : (Ω,A)→
(Ω,A) de�ned by

I(ω,A) = δω(A), (21)
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corresponding to the Dirac measure in ω, is the identity on (Ω,A) for the com-
position law (20), ([4] lemma 5.8). In other words, the system of Markov mor-
phisms is an abstract category ([4] theorem 5.1) and together with the class of
probability (or signed) measures a concrete category ([4] theorem 5.2 and lemma
5.9). In view of (16, 17, 18, 20), we drop the composition symbol ◦ and denote
composition by mere juxtaposition, viz. K13 = K12K23. Let us state out this
key result as a theorem:

Theorem 3.2 (Cencov's theorem 5.2). The class of objects P(Ω,A) of proba-
bility measures on (Ω,A) with the system of Markov morphisms {K} of Markov
probability kernels forms the concrete category CAP of all probability measures.

Remark 1. By duality (18), (19), the class of objects Fb(Ω,A) of bounded,
measurable, real-valued functions f : Ω → R with the system of Markov mor-
phisms {K} of Markov probability kernels forms the concrete category CAF of
all bounded measurable functions.

3.2 Quantiles as Markov morphisms: qualitative aspects

The conceptual framework introduced in the previous subsection allows us to
recast the problem of de�ning a quantile object of section 1 and to review the
transformations between random variables of section 2 at the right categorical
level of Markov morphisms.

Indeed, such Markov morphisms allow to subsume probability measures and
(the measure induced by) random variables into the same abstract conceptual
object:

• a probability measure P2 on (Ω2,A2) is simply a constant Markov kernel
IP : (Ω1,A1)→ (Ω2,A2), de�ned as,

IP2
(ω1, A2) = P2(A2). (22)

• a measurable function f12 : (Ω1,A1) → (Ω2,A2) can be described (em-
bedded) as a degenerate Markov morphism If12 : (Ω1,A1) → (Ω2,A2),
as

If12(ω1, A2) = δf12(ω1)(A2) = δω1(f−1
12 (A2)) (23)

so that the image measure P2(.) := P1 ◦ f−1
12 (.) on (Ω2,F2) induced by

f12 from the measure P1 on (Ω1,F1) (or in the push-forward notation
f12#P1 =: P2) simply writes as a composition (20) of Markov morphisms,

P2 = P1If12 = IP1If12 .

For further reference, let us single out this family of degenerate Markov
morphisms by stating out a de�nition:

De�nition 3.3. A Markov morphism K12 from (Ω1,A1) to (Ω2,A2) is
of degenerate type if there exists a measurable funtion f12 : (Ω1,A1) →
(Ω2,A2) s.t.

K12 = If12 .

13



Such notation is consistent with the identity morphism I on (Ω,A) of
(21), as the Dirac kernel can be expressed as I = Iid, where id : Ω → Ω
is the identity function.

As a consequence, the transformations between random vectors of section
2, can be reformulated as transformations between measures through a Markov
morphism. In particular, we already noted that the univariate quantile trans-
form (8), QX : U → X as a mapping between random variables, can be con-
strued as a morphism IQX between univariate measures,

PU
IQX−→ PX ,

where IQX is a Markov morphism of the degenerate type (3.3), whereas its
reciprocal, the distributional transform (10) F (., V ) : X → V as a randomized
transform between univariate random variables, can be construed as a genuine,
non degenerate Markov morphism DX

PU
DX←− PX ,

where DX(x,A) is the conditional probability of U := F (X,V ) ∈ A given

X = x. Let us de�ne similarly IG−1

and DX their multivariate counterparts
transforming corresponding to (14), i.e. transforming a multivariate PX into its
copula representer distribution PU = PG(X,V ),

PU IG
−1

−→ PX

PU DX←− PX (24)

Remark 2 (Markov morphisms as degenerate Markov morphism on an enlarged
probability space). Note that a randomised transform between random vectors
(i.e. genuine Markov morphisms of the nondegenerate type) could also be written
as a purely functional transform (i.e. as a degenerate Markov morphism), at
the price of having to enlarge the probability space.

For example, for the univariate distributional transform (10), enlarge (Ω,A, P )
to (Ω× [0, 1],A⊗ B([0, 1]), P ⊗ λ), denote FX the c.d.f. of X and λ = PV the
Lebesgue measure on [0, 1], transfer all previously de�ned random elements on
this new, enlarged probability space, and consider the bivariate mapping

FX(., .) : R× [0, 1] → [0, 1]

(X,V ) 7→ FX(X,V ).

and the corresponding bivariate product mapping FX ⊗ id,

FX ⊗ id : R× [0, 1] → [0, 1]× [0, 1]

(X,V ) 7→ (FX(X,V ), V ).

Then, with U := FX(X,V ) and π : (U, V ) 7→ U the projection mapping on the
�rst coordinate,

PX ⊗ λ IFX⊗id−→ P (U,V ) Iπ−→ PU = λ.
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Hence, the univariate distributional transform (10) can be construed as the com-
position of two degenerate Markov morphisms, i.e. as a degenerate Markov
morphism, on the enlarged space.

More generally, see Thorisson [56] chapter 3, Kallenberg [16] lemma 2.22,
lemma 5.9 and theorem 5.10 p. 89 and [50] lemma 1.1 p. 18 and lemma 1.3 p.
20 for a rigorous formulation of the principle that �a randomized decision for an
experiment E is a non-randomized decision, but for an experiment Ẽ which is an
"extension" of E� ([50] p. 17). The same remark apply to the multivariate con-
ditional quantile (11), distributional (12), and copula (14) transforms of section
2. However, from the categorical perspective, limiting oneself to purely func-
tional transforms is awkward and we prefer to unify all kind of transformations
into the same category of Markov morphism.

Eventually, note also that when we will represent the Markov morphism
corresponding to the transformations (14) and (15) by the random elements
U = G(X,V) and Un = Gn(X∗n,V), we use the same random vector V in
both cases, in order to obtain a.s. convergence (see the forthcoming theorem 5.1
in section 5).

We are now in a position to formulate a (preliminary) de�nition of the ob-
ject multivariate quantile as a Markov morphism, which combines the idea (2)
in section 1 of quantile as an inverse, and those of section 2 of quantile as a
reciprocal (randomized) transformation between vectors (or measures), one of
which being thought of as a reference distribution (see (8), (10) in section 2):

De�nition 3.4 (Preliminary). Let (S,B(S)) and (X ,A) = (Rd,B(Rd)) be two
measurable spaces. Consider as object on S, the one set consisting of a single
probability measure 1 := {PS}, which is thought as a reference distribution, and
as objects on X the collection P(X ,A) := {PX} of all probability measures on
X . A Quantile morphism Q of PX w.r.t. PS is an isomorphism

PS Q−→ PX,

whose inverse R,
PS R←− PX

will be called a Rank morphism of PX w.r.t. PS. In other words, the pair of
Markov morphisms (Q,R) satisfy QR = IS, and RQ = IX, where IS, IX are
the identity (21) on S,X , respectively.

Remark 3. We used the term rank morphism instead of distributional (or prob-
ability integral, or c.d.f) morphism to agree with the terminology of [5], see
section 4 below.

We temporarily leave aside the question of existence and unicity of these
Quantile and Rank morphisms, since this qualitative view of reciprocal trans-
formations of measures will be turned into a quantitative problem, via mass
transportation theory, as we now show.
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3.3 Quantitative transformation of measures via Mass Trans-
portation

The Monge-Kantorovich optimal transportation problem aims at �nding a joint
measure PX,Y on the product measurable space, say (X ×Y = Rd×Rd,B(Rd)⊗
B(Rd)), with prescribed marginals (PX, PY), which is the solution of the opti-
misation problem:

kc(P
X, PY) := inf

PX,Y∈P(PX,PY)
PX,Y[c(X,Y)], (25)

where c : Rd × Rd 7→ R+ is a cost function and the in�mum is on the set
P(PX, PY) of joint distribution with marginals PX, PY. Informally, mass at
x of PX is transported to y, according to the conditional distribution P (dy|x)
of the transportation plan PX,Y ∈ P(PX, PY), in order to recover PY while
minimising the average cost of transportation PX,Y[c(X,Y)]. See Rachev and
Ruschendorf [32], Villani [59, 60] for book-length treatment on the subject,
Rachev [28], Rüschendorf [41, 40] for survey articles. This topic is closely related
to coupling ([56]) and probability metrics ([62, 30, 31]).

The relatedMonge transportation problem is when one looks for a solution of
(25) which is �deterministic� in the sense that the laws of (X,Y) are restricted
to those of (X,H(X)) for a measurable transportation map H := HPX→PY :
Rd 7→ Rd, s.t. PH(X) = PY, so that

mc(P
X, PY) := inf

H:PH(X)=PY
PX[c(X,H(X))]. (26)

By disintegrating the transportation plan PX,Y into the �bered product

PX,Y = PX ⊗ PY
x ,

where PY
x is a regular conditional distribution (i.e. a Markov kernel) of Y given

X = x, it is clear that mass transportation can be translated in the language
of Markov morphisms: the Monge-Kantorovich optimal transportation problem
amounts to �nding a Markov morphism K = PY

x ,

PX K−→ PY,

which is a genuine Markov kernel, whereas Monge optimal transportation prob-
lem amounts to �nding a degenerate Markov morphism IH of the kind (23)
induced by a transportation map H,

PX IH−→ PY.

The cost function c is often specialised to the squared euclidean distance,
c(x,y) = ||x− y||2, which yields the so-called L2 Wasserstein probability dis-
tance, see e.g. [6]. The characterization of the optimal L2 solution of (25) was
given by theorem 1 in Rachev and R#uschendorf [44], and can be rewritten in
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the language of Markov morphisms as follows: for PX almost all x, there exists
some l.s.c. convex function ψ : Rd → R, s. t.

supp(K(x, .)) ⊂ ∂ψ(x),

where supp stands for the support and ∂ for the subgradient, see [44]. In par-
ticular, if PX << λd, this result implies Brenier's theorem [34] on existence and
unicity PX-a.e. of Monge's transportation map H, while additional existence
of second moments of both PX and PY yields strict unicity. One then obtains,
via Kantorovich-Fenchel-Legendre duality, the transportation maps H and its
reciprocal transformation H← corresponding to

PX IH
←

←− PY,

as gradients of ψ and its dual ψ∗,

H = ∇ψ, H← = ∇ψ∗ (27)

see [44, 7, 28, 41, 39].

Remark 4. Rüschendorf [39] shows how one can recover the multidimensional
conditional quantile and distributional transform from such a mass transforma-
tion problem. Copulas, completely monotone dependent random variables and
Fréchet-Hoe�ding bounds also arise from mass transportation, see Rüschendorf
[40, 43].

3.4 Towards a structural point of view

One of the main interest of category theory is to propose a framework which
allows to study which transformations of the objects in the category preserves
the structures attached to these objects, i.e. which leave invariant the properties
of the objects, see Cencov [4] paragraph 4 to 8.

As announced in section 1, we are now equipped with the right conceptual
tools to substantiate our claim that the multivariate q.f. and related depth
proposals of subsection 1.3 should be evaluated according to their structural
properties instead of their method. To that purpose, let us reexamine the prop-
erties of q.f. listed in subsection 1.2, classify them according to this structural
point of view, and translate them in categorical terms, so that we can let emerge
a set of desirable axioms that multivariate quantile and rank objects should obey
(some of which will be loosely stated).

• Algebraic Structure:

� [A1] Identi�ability / Isomorphism:

in view of (4), (QX , FX) characterizes their parent distribution. In
the language of Markov morphisms, the pair of isomorphims (Q,R) in
de�nition 3.4 are precisely achieve such characterization: PSQ = PX,
and PSR = PX.
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� [A2] Algebraic compatibility:

We viewed in section 1 that q.f. have good algebraic properties.
Moreover, the collection of probability measures on some �xed mea-
surable space forms a convex subset of the vector space of signed mea-
sures. Therefore, multivariate extensions of quantile objects should
be compatible with addition and scalar multiplication in a way that
re�ect the underlying structure of the collection of measures. In view
of (20), (16) and (17), and the fact that the set of Markov morphisms
between two �xed measurable space is convex, such desideratum will
be automatically satis�ed if the objects quantile and rank are taken
as Markov morphisms.

• Ordering structure:

� [O1] Galois connection between two ordered spaces.

The fundamental property of univariate q.f. (2) and (3), can be
illuminated by introducing the notion of Galois connection (see Blyth
[2], chapter 1 and also the related idea of residuated mapping):

De�nition 3.5. Let (X,≤X), (Y,≤Y ) be two ordered sets and L :
X 7→ Y,U : Y 7→ X be a pair of mappings. Then (X,≤X), (Y,≤Y
), L, U is an isotone Galois connection

∗ i� for every x ∈ X and every y ∈ Y L(x) ≤Y y ⇔ x ≤X U(y)

∗ i� L,U are monotone (or isotone) and for every x ∈ X and
every y ∈ Y , x ≤X U(L(x))⇔ L(U(y)) ≤Y y.

Indeed, consider the two ordered sets (I,≤I), with I = (0, 1) the
unit interval and ≤I=≤ the usual order ≤ and (R,≤R) with its usual
order ≤R=≤. Then, for univariate q.f. properties (2) and (3), sim-
ply mean that (I,≤), (R,≤), QX , FX is an isotone Galois connection.
Therefore, the desirable property for Quantile and Rank morphisms:
Quantile and Rank morphisms should form a Galois connection be-
tween two ordered spaces.

In the spirit of section 2, this concept of Galois connection can be
reformulated in probabilistic terms: starting from a r.v. U uni-
formly distributed on [0, 1], setting X ′ := QX(U), one has that
U ∈ (0, FX(x)] i� X ′ ∈] − ∞, x]. In other words, starting from a
reference distribution PU , and a given a quantity of mass 0 ≤ τ ≤ 1,
these considerations amount to construct on a common probability
space some copies X ′ ∼ PX = PUIQX of X from a transformation
of U ∼ PU s.t. if Aτ :=] −∞, x], is a subset of R with PX mass τ ,
viz. PX(Aτ ) = τ , then Bτ = FX(Aτ ) is a subset of [0, 1] with PU

mass τ , with
QX(U) ∈ Aτ ⇔ U ∈ FX(Aτ ),
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as

τ = PX(Aτ ) = P (X ′ ∈ Aτ ) = P (QX(U) ∈ Aτ )

= P (U ∈ FX(Aτ )) = P (U ∈ Bτ ).

In addition, the set of subsets O+
I := {Bτ , τ ∈ [0, 1]}, O+

R := {Aτ , τ ∈
[0, 1]} should have an order structure (for the inclusion) compatible
with the order relations ≺I ,≺R, in the sense that τ1 ≺I τ2 ⇔ Aτ1 ⊂
Aτ2 ⇔ Bτ1 ⊂ Bτ2 .
Turning to the general case, the setting can be (loosely) formulated
in terms of the Markov morphisms (Q,R) as follows: let F∗(S) :=
{s → 1Bτ (s)} a collection of indicator function S → R, indexed by
0 ≤ τ ≤ 1, where {Bτ} ⊂ B(S) is a collection of measurable depth
regions of PS mass τ , PS(Bτ ) = τ . De�ne F∗(X ) := R(F∗(S)) =
{Aτ := R1Bτ }, the image of F∗(S) by the Rank Morphism R. Then,

PX(Aτ ) = PX(R1Bτ ) = (PXR)(1Bτ ) = PS(Bτ ) = τ,

i.e. Aτ is of PX mass τ . These are depth �regions� (functions) for
X , see section 3.5 for a detailed description of the order structure,
its preservation by Markov morphisms and its interpretation.

� [O2] Equivariance w.r.t. left-continuous univariate monotone trans-
formation:

in view of (6), one should have some form of scale invariance w.r.t. to
a monotone non-decreasing univariate transformation. In the multi-
variate case, let g : Rd → Rd be made of d univariate monotone
non-decreasing functions gi : R → R, 1 ≤ i ≤ d, viz. g(x) =
(g1(x1), . . . , gd(xd)). In the language of Markov morphisms, if Q
and Qg are quantile morphisms of X, g(X) respectively, i.e.

PS Q−→ PX Ig−→ P g(X)

PS Qg−→ P g(X),

one should have commutativity of the composition diagram,

Qg = QIg.

• Topological structure:

� [T1] Compatibility with weak convergence of measures.

In view of (5), it is desirable that quantile generalisations should be com-
patible with some notion of weak convergence on the space of probability
measures: Let PXn , PSn a sequence of probability measures on X ,S re-
spectively. Let (Qn,Rn), respectively (Q,R) their corresponding quantile
and rank morphisms of de�nition 3.4,

PSnQn = PXn , PXnRn = PSn ,

PSQ = PX, PXR = PS.
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One requires that PXn
d→ PX ⇔ PSn d→ PS.

Combining the preliminary de�nition (3.4) and these desirable properties,
we can state an eventual possible de�nition of quantile and rank morphisms:

De�nition 3.6. Let PS be a �xed reference distribution and PX be the distri-
bution considered on the measurable space (Rd,B(Rd)). A Quantile and Rank
morphism of PX w.r.t. PS is a pair of Markov isomorphisms (Q,R)

PS Q−→ PX

PS R←− PX,

compatible with the algebraic, topological and ordering structures given by the
axioms [A1,A2,O1,O2,T1].

3.5 Order structure and depth regions

The concept of depth requires a way to quantify a measure of �remoteness� of a
distribution from a �deepest� or most central point. The minimal requirements
to translate these phenomenological notions into a mathematical concept seems
to give a preorder structure (a re�exive, transitive relation 6S) on the reference
space S. In order to be able to de�ne such a �median� or �deepest point�, it
is necessary that the preordered space (S,6S) possess a smallest element 0, so
that one can evaluate the degree of �remoteness� of two points in s1, s2 ∈ S
w.r.t. 0. In other words, one consider that (S,6S) is a preordered set with a
universal lower bound 0, so that (S − 0,6S) has the structure of a downward
directed set, viz a preordered set s.t. every pair of elements has a lower bound.
(See [8], [45] for background on order).

If S is chosen as a subset of Rd and has the algebraic and metric structure
given by the usual Euclidean distance ||.||, such framework is obtained by setting

s1 6S s2 ⇔ ||s1 − 0|| ≤ ||s2 − 0|| ⇔ ||s1|| ≤ ||s2||.

As in [5], let us choose S to be the unit ball of Rd of center 0. (Notice that
(S,6S) is not a lattice (two points on a same sphere have same radius and can
not be distinguished) and also that this preorder is not compatible with the
vector space structure of S, in the sense that s1 6S s2 ; s1 + s3 6S s2 + s3
for s1, s2, s3 ∈ S).

The general idea is as follows:

1. transfer this preorder on S into a stochastic preorder on P(S), the set of
probability measures on S, via an order embedding s→ δs;

2. then use Markov kernels (Q,R) in Galois connection to transfer this pre-
order onto P(X);

3. obtains a preorder on X via the mapping δx → x, or at least a depth
function or area on X .
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More precisely,

1. Step one:

• Preorder interval: On (S,6S), de�ne the (pre-)order interval [r, t] :=
{s ∈ S, r 6S s 6S t}, so that the closed balls Bτ := {s ∈ S, |s| ≤
τ} = [0, s] for some s ∈ S s.t. |s| = τ .

• Down-sets : Recall that for A ⊂ S, A is a down-set if

t ∈ A, s 6S t⇒ s ∈ A

Denote the set of down-sets of S as O(S). De�ne the down-closure
or order ideal of A ⊂ S as the smallest down-set containing A: A↓ :=
{s, s 6S t for some t ∈ A}. Hence, the ball s↓ := {s}↓ = [0, s] is the
principal ideal generated by s. Set O∗(S) = {s↓,x ∈ S} the set of
balls/principal ideals of S.

• Partial embedding into the powerset: Although (S,6S) is only a
preordered space, its set of principal down-sets O∗(S) is a partially
ordered set (poset) included in the powerset (2S ,⊂), via the mapping

(S,6S) → (O∗(S) ⊂ 2S ,⊂)

s 7→ s↓ = [0, s]

since
s 6S t⇔ [0, s] ⊂ [0, t].

(Notice however that s 7→ [0, s] is not injective, hence one has only a
partial embedding)

Each element of O∗(S) is obviously measurable, so the embedding is
in reality in B(S). This principal ideal O∗(S) makes up the collection
of depth areas for PS: for each set/ball B ∈ O∗(S), there exists
τ ∈ [0, 1] s.t. PS(B) = τ . Hence, they capture the features required
for their interpretation as central regions of S with a given PS mass.

• Order embedding on P(S): inspired from Massey [20], one can now
de�ne a stochastic preorder ≺S on the space P(S) of probability
measures compatible with the embedding x → δx, according to the
following de�nition:

De�nition 3.7. ≺S is a stochastic preorder on P(S) if

i) ≺S is a preorder on P(S);

ii) s → δs is an order-embedding: for all s, t ∈ S, s 6S t holds i�
δs ≺S δt.

In our case, the stochastic preorder ≺S on P(S) is de�ned via the
previous embedding on the principal ideal (S,6S) ↪→ (O∗(S),⊂):

PS1 ≺S PS2 ⇔ PS1([0, s]) ≤ PS2([0, s]), ∀s ∈ S.
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By duality or by considering the embedding S ↪→ F(S) = {f : S →
R}, obtained via the mapping s→ 1[0,s], the stochastic preorder ≺S
corresponds to an integral preorder with generator the set of indicator
functions (see [22]): F∗(S) := {s→ 1[0,s]}:

PS1 ≺S PS2 ⇔ PS1(f) ≤ PS2(f), ∀f ∈ F∗(S).

2. Step two: Galois connections for probability measures.

Given a pair of Markov morphisms,

PS Q−→ PX

PS R←− PX

and a stochastic preorder ≺S on P(S) de�ned by the function set F∗(S) :=
{s → 1[0,s]} on F(S), the image of the latter by R de�nes a function set
F∗(X ) := R(F∗(S)) = {g := Rf, f ∈ F∗(S)} which in turns de�ne an
integral stochastic preorder ≺X for P(X ) so that

PSQ ≺X PX ⇔ PS ≺S PXR.

Indeed,

PSQ ≺X PX ⇔ PSQ(g) ≤ PX(g),∀g ∈ F∗(X )

⇔ PSQ(Rf) ≤ PX(Rf),∀f ∈ F∗(S)

⇔ PS(QR)f ≤ PXR(f),∀f ∈ F∗(X )

⇔ PS ≺S PXR

since QR = IS . In other words, (Q,R) is a Galois connection between
the preordered sets (P(S),≺S) and (P(X ),≺X )

3. Step three: depth areas in the X space.

In turn, such preorder structure (P(X ),≺X ) can sometimes be �descended�
down to a preorder structure on (X ,6X ), in case the mapping δx 7→ x
induces a compatible preorder structure. In particular, depth areas (set
objects) in the S world, corresponding to the balls or principal down sets
O∗(S) can become depths areas R(O∗(S)) in the X world, in case the
rank morphism R is of the degenerate type (3.3). Indeed, if R = If , for
some f : X → S and Bτ ∈ O∗(S) is of PS mass τ , then

R(Bτ )(x) = 1f(x)∈Bτ = 1x∈f−1(Bτ ) = 1f−1(Bτ )(x)

is a function X → {0, 1} ∼= 2 isomorphic to the measurable set f−1(Bτ )
of B(X ). This is in particular the case for quantile and rank morphisms
obtained by Monge's optimal transportation of section 3.3: if

PS IH−→ PX

PS IH
−1

←− PX
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are obtained with some optimal transportation map H of (27), then

R(Bτ ) = IH
−1

(Bτ ) = 1H(Bτ ),

that is to say, the depth regions in the X world are the direct image by
the optimal transportation map of the depth regions in the S world.

In the case where the morphisms are not degenerate, one only obtains as
object a non binary function, i.e. some object interpretable at best as a
random set in a enlarged space, see the discussion in remark 2. Moreover,
having �depth areas� which are not deterministic subsets also poses epis-
temological issues and is a matter of debate, see the discussion in section
4.1.

4 A copula and mass transportation approach to

quantile morphism

4.1 A discussion on randomization of statistical function-
als and a motivation for a combined copula-Monge
approach

The discussion of section 2 and of subsection 3.2 showed the necessity to allow
for random transformations between probability measures in order to be able to
de�ne Quantile and Rank morphisms as reciprocals of each other. However, such
a stance, mathematically legitimated on the abstract algebraic grounds of cat-
egory theory, may be objectionable from an epistemological/statistical point of
view. Indeed, quoting Cencov [4] p. 6, �The decision-making procedure Π(ω, de)
requires that, after observing the outcome ω, an additional, independent, ran-
dom choice of the inference e be made, based on the law Π(ω; .). This random
answer is then a statistical decision by the rule Π.� Consequently, switching
from the classical viewpoint of statistics f(ω) as measurable functions of the
observations ω to the Blackwell-Le Cam-Cencov theory of statistical inference
based on randomized procedure (i.e. Markov kernels Π(ω, de)) may be con-
sidered problematic from the scienti�c viewpoint: two statisticians, having the
same observation ω, with the same non degenerate decision rule Π(ω; .), may
obtain two di�erent answers on the inference considered. In other words, if used
improperly, randomized statistical inference procedures may fail to abide by one
of the main criteria of the scienti�c method, i.e. reproducibility and objectivity
of its conclusions in face of common empirical evidence. (Note, however, that
extraneous randomisation appears in disguise in several statistical procedure
like smoothing, regularization, which may appear �deterministic� at �rst glance,
see the discussion of section 3.2).

One is confronted with an issue similar when one endorses the subjectivist/
Bayesian interpretation of probability: introducing arbitrary or subjective a-
priori randomness is likely to introduce arbitrary and subjective conclusion (in
�nite samples), unless a Bernstein-Von Mises type theorem can come to our
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rescue and allows us to recover (asymptotically) the true value of the parameter
under investigation, whose ontological (and not merely mathematical) existence
is posited. Since our intent is not to stir controversy, nor to get to far in
�philosophical� discussions, we let the interested reader refer to Bunge [3] for
an examination of those issues. Let us mention that a comparable problem
can occur in copula theory: by de�ning a copula attached to a discrete vector
X by the randomised distributional transform (10), one can twist the depen-
dence structure of the copula representer U corresponding to X, by choosing a
randomiser V with a distribution di�erent from the independence copula, see
[12, 42].

In this respect, in order to minimise the subjectivity/perturbation intro-
duced by extraneous randomization, we advocate that Quantile and Rank mor-
phisms should be based, as far as possible, on deterministic transforms (a credo
which might seem paradoxical at �rst glance with the content of section 3). To
this end, we propose a Quantile morphism which combines the copula view of
section 2 and the Monge transportation approach of section 3. It builds on a
mass transportation approach to depth functions by Chernozhukov et al. [5],
which we now present.

4.2 The Monge transportation based depth of Chernozukhov
et al. [5]

In Chernozukhov et al. [5], a (Monge) transportation approach to quantiles and
depths functions is proposed. Their basic idea is that in a spherical distribution,
balls give a natural de�nition of a region which is central for the distribution and
which contains most of its mass. Therefore, their basic device is to transform a
multivariate X ∼ F into a S := (r,a) ∼ PS with spherical uniform distribution
on the unit ball B1 := {x ∈ Rd : ||x|| ≤ 1} of Rd, and conversely,

PX RF−→ PS

PX QF←− PS,

with RF = IRF and QF = IQF . More precisely, their scheme is as follows:

• One transforms (�polarizes�) X into S := (r,a), where r stands for a
radius uniformly distributed, r ∼ U[0,1], and a for an angle vector, also

uniformly distributed on the unit sphere of Rd, with r and a mutually
independent. In transportation theory terms, one transforms PS into PX

and conversely, via a pair of (deterministic) Monge transformation maps
QF and RF s.t.

QF#PS = PX, RF#PX = PS.

• One then computes the depth region of content τ on this spherical uniform
distribution S: it is simply the ball Bτ of radius τ , since PS(Bτ ) = τ .
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• One back transforms the ball Bτ of radius τ to the original space Rd where
X lives, via the transformation QF :

A(τ, F ) := QF (Bτ ).

One then obtains a depth region A(τ, F ) of the kind (7), whose PX prob-
abilistic content is τ :

PX(A(τ, F )) = P (QF (S) ∈ QF (Bτ )) = PS(Bτ ) = τ

• Depth measures for X can be transfered from depth measures for S (e.g.

Tukey's depth): D(x, F ) = DTukey(RF (x), PS)

The empirical versions are de�ned similarly: for samples X1,X2, . . . (re-
spectively S1,S2, . . .) of copies distributed according to F (resp. PS), let Fn
(resp. FS

n ) the corresponding ecdf. Several variants are proposed, depending
on whether one use smoothed versions F̂n, F̂

S
n of the ecdfs Fn, F

S
n , and whether

one uses the sample S1,S2, . . . or a �xed reference PS distribution.

4.3 A combined approach

We propose to elaborate on the previous approach of section 4.2, by composing
it with a preliminary step of reduction to the copula representation of section
2.2.2. More precisely, the proposed scheme is as follows:

1. Transform X ∼ F into its copula representer U = G(X,V), whose c.d.f.
C satisfy Sklar's identity (13).

2. Transport PU into a spherical distribution PS, via transportation maps
QC ,RC ;

QC#PS = PU, RC#PU = PS

3. Compute the depths regions A(τ, PS) of level τ , i.e. balls Bτ of radius τ :
A(τ, PS) := Bτ and PS(A(τ, PS)) = PS(Bτ ) = τ ;

4. Use the transportation mapsQC ,RC to turn these balls into depth regions
A(τ, PU) of level τ at the copula level, i.e. for U;

A(τ, C) := QC(Bτ ), PU(A(τ, C)) = τ

5. Use the multivariate marginal quantile transform G−1 to obtain depth
regions

A(τ, PX) = G−1(A(τ, PU))

for the original variable X: PX(A(τ, PX)) = τ .
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In other words, one de�nes a pair of Quantile and Rank Morphism (QX,RX)
as,

QX := IQC ◦ IG
−1

, RX := DX ◦ IRC , (28)

where DX is the distributional transform Markov morphism of (24), according
to the following diagram,

PS IQC−→ PU IG
−1

−→ PX

PS IRC←− PU DX←− PX .

The empirical version is de�ned similarly:

1. conditionally on the sample X1(ω),X2(ω), . . ., set (one bootstrap replica-
tion) X∗n ∼ Fn, and de�ne as in (15), Un := Gn(X∗n,V) ∼ Cn, where Cn
is the empirical copula function;

2. transport PUn into a spherical distribution PS, via transportation maps
QCn ,RCn ;

QCn#PS = PUn , RCn#PUn = PS

3. the rest of the procedure is the same: one obtain empirical depth area of
content τ , as

A(τ, Cn) := QCn(Bτ ), PUn(A(τ, Cn)) = τ

and
A(τ, PX∗n) = G−1

n (A(τ, Cn)).

Symbolically, in terms of morphisms,

PX∗n
DX∗n−→ PUn

IRCn−→ PS

PX∗n
IG
−1
n

←− PUn
IQCn←− PS,

where DX∗n is the distributional transform Markov morphism of (24) for X∗n into
Un, i.e. the empirical Quantile and Rank Morphisms are

Qn := IQCnIG
−1
n , Rn := DX∗nI

RCn (29)

4.4 Discussion

The advantage of such combined copula transportation approach to quantile
and depth areas is fourfold:

1. �rst, as with many copula approaches, standardizing the marginals to
uniform distributions on [0, 1] allows to separate the randomness in PX

pertaining to the marginals G alone from the randomness pertaining to
the �dependence� C only. Hence, one reduces the computation of depth
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regions only to the dependence structure PU of PX. Moreover, as copulas
are invariant w.r.t. monotone increasing transformations of the marginals,
the corresponding depth regions on U computed from the balls of PS are
invariant w.r.t. monotone increasing transformations of the marginals:
combined with the multivariate quantile transforms G−1, one obtains a
Markov morphism which automatically satisfy the axiom [O2] of section
3.2. In addition, the corresponding depth measures at the copula level PU

will obey an axiom of monotone invariance which is much more stronger
and natural that the axiom (A1) of a�ne invariance in [5, 47, 48].

2. second, the adjunction of a (continuous, non singular) randomizer V in
the copula transformation step smoothes the empirical copula function Cn
(it is even at least Lipshitz). Hence, the empirical copula measure PUn

is absolutely continuous w.r.t to the d-variate Lebesgue measure λd. In
addition, since Un,U ∈ [0, 1]d, moments of all order exist. Therefore,
the assumptions of Brenier and McCann (theorem 2.1 in [5]) on the ex-
istence and unicity of a transportation map are automatically satis�ed.
The consequence in terms of Markov morphisms is clear: all morphisms
in (28) and (29) are of the degenerate type (23), except for the copula
morphism IG(.,V) and its empirical companion (One obviously chooses
a randomizer V made of independent uniform components, in order not
to modify the dependence structure of X,X∗n, when viewed in the cop-
ula world, through U,U∗n). Hence, the proposed combined Quantile and
Rank morphism proposed are in agreement with the credo of section 4.1.
Moreover, one comply with the assumptions of the powerful theorems 3.2
and 3.4 by Cuesta-Albertos et al. [6], which will prove expedient for the
asymptotic analysis of section 5.

3. third, one obtains a smoothing device of the empirical (copula) measure
which does not rely on ad-hoc bandwidth parameters as in the classical
kernel smoothing approach in [5]: this is relevant from the �nite sample
point of view, since it is well known that the classical kernel smoothed
empirical measure is biased. Hence the resulting transportation maps and
depths of [5] are likely to be also biased in �nite sample, and one has to
optimize the bandwidth in practice.

4. fourth, one obtains a uni�ed approach for both a discrete or a continu-
ous X, and one can therefore extend depth areas to multivariate discrete
distributions and get rid of the continuity assumptions in [5].

5 Asymptotic results

The proofs of the consistency in probability of transportation maps and depth
measures in [5] (their theorem 3.1) are analytical and are based on results on
the local uniform convergence of subdi�erentials, via duality analysis. As in
Faugeras [11, 12], we favor the use of the method of a single probability space
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(a.s. constructions, see Skorohod [54], Varadarajan [58], Ranga-Rao [33]) which
allows to use results by Cuesta-Albertos et al. (theorem 3.4 in [6]), Ranga Rao
([33]), and Faugeras ([11, 12]).

5.1 Framework

The setting is as follows:

• Framework:

Let X1,X2, . . . an in�nite dimensional sample de�ned, w.l.o.g. on the
canonical countably in�nite product probability space

(Ω,A, P ) := (Rd × Rd × . . . ,B(Rd)⊗ B(Rd)⊗ . . . , P ).

In other words ω = (ω1, ω2, . . .) and Xi(ω) = ωi, the coordinate projec-
tions. Let Pn the empirical measure based on the n−sample X1, . . . ,Xn,

Pn(.) := Pωn (.) =
1

n

n∑
i=1

δXi(ω)(.),

and Fn, Gn its c.d.f. and corresponding vector of marginal e.c.d.f. Such
Pn(.) = Pωn (.) is a random measure, i.e. it can be construed as a Markov
kernel from (Ω,A) to (Rd,B(Rd)), (and we suppress the dependence on ω,
as is customary).

• Ergodicity hypothesis:

Assume that X1,X2, . . . , is an ergodic sample of PX, in the sense that,
for each real-valued function g on Rd, s.t. PX(|g|) =

∫
|g|dPX <∞,

Pn(g) :=

∫
g(x)Pn(dx)→ PX(g), P − almost everywhere (30)

Remark 5. The above de�nition is a specialization of Ranga-Rao's [33]
de�nition of ergodicity to a non-random invariant measure, similar to
de�nition (E) of [5] and the framework of [12].

• Assumption on PX:

We will also make one of the following assumption:

� (C): PX << λd,

� (D): PX is discrete.

5.2 Main theorem

Theorem 5.1. Assume (30) and either (C) or (D). Then with P -probability
one, one can construct on some probability space (Ω∗,A∗, P ∗) a sequence Sn,S
of random vector distributed as PS, and a sequence of copula representers Un,U
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distributed as Cn, C, a sequence of random vectors X∗n,X
∗ distributed as Fn, F

s.t., with P−probability one,

(Un,Sn)
d→ (U,S),

and also, with P−probability one,

(X∗n,Un,Sn)→ (X∗,U,S) P ∗ − a.s.

Proof. • Step one: ergodicity imply weak convergence of empirical measures
with probability one.

By Varadajan-Ranga Rao's extension of the Glivenko-Cantelli's theorem
(See Ranga-Rao [33] Theorem 6.1 and [58]), (30) implies

P [Pn
d→ PX] = 1 (31)

In other words, there exists Ω0 ⊂ Ω, with P (Ω0) = 1, s.t. for all ω ∈ Ω0,

Pn
d→ PX. Pick some �xed ω ∈ Ω0.

• Step two: a.s. convergence of copula representers on a suitable probability
space.

On some (uninteresting) extra probability space (Ω∗,A∗, P ∗), de�ne, con-
ditionally on ω, one (bootstrap) representing variable X∗n : Ω∗ → Rd of
Pn, for each n ∈ N∗, i.e. X∗n ∼ Pn. De�ne similarly X∗ : Ω∗ → Rd in

such a conditional manner s.t. its law be P ∗
X∗

= PX. (We have dropped
the dependency of these random elements on the chosen ω ∈ Ω0). Note
that such conditional measures are guaranteed to exists and to be genuine
probability measures, since the underlying spaces are Polish. In the re-
maining, we will also suppress �with P probability one� in our statements,
corresponding to the fact that ω ∈ Ω0 with P (Ω0) = 1 according to (31).
By Skorohod's theorem, (Ω∗,A∗, P∗), X∗n,X∗ can be chosen so that

X∗n
P∗a.s.−→ X∗

Set V, de�ned also on (Ω∗,A∗), a vector with uniform marginals, inde-
pendent of (X∗1,X

∗
2, . . . ,X

∗) (Enlarge the probability space by product if
necessary). Set

Un := Gn(X∗n,V) ∼ Cn
so that X∗n = G−1

n (Un). Similarly, set U := G(X∗,V).

If assumption (D) is true (i.e. when PX is discrete), then Un
P∗−a.s.→ U,

thanks to the almost sure convergence theorem of the empirical copula
representer for an ergodic sample (see theorem 3.1 by Faugeras [12]).

If assumption (C) is true, then F is continuous and a.s. consistency of
copula representer is an easy consequence of Skorohod's theorem, as shown
in the the following lemma, whose proof is relegated in the appendix:

29



Lemma 5.2. If F is continuous, then Un
P∗a.s.→ U.

• Step three: a.s. convergence of copula-Monge transportation representers

As proposed in section 4.3, transport PUn towards the reference spherical
distribution PS and conversely by solving the Monge-Kantorovich problem
with quadratic cost (Wasserstein distance),

PUn
QCn←− PS,

PUn
RCn−→ PS,

where the Markov morphism, as solution of Monge's problem with quadratic
cost (see section 3.3) are of degenerate type (see de�nition 3.3 or (23)),
i.e. are induced by the transportation maps QCn and RCn ,

QCn = IQCn , RCn = IRCn .

Equivalently, in the push-forward notation,

QCn#PS = PUn , RCn#PUn = PS.

Indeed, since both distributions PUn and PS have compact support and
are absolutely continuous, the assumptions of Brenier and Mc Cann's the-
orem are satis�ed and the transportation mapsQCn andRCn exist and are
unique. Similarly, assumption (C) or (D) yields that the transportation
maps

QC#PS = PU, RC#PU = PS

also exists and are unique.

Hence, one can realize these distributions on (Ω∗,A∗) by de�ning the
random vectors Sn and S, distributed as PS, by

Sn := RCn(Un), S := RC(U)

which also satisfy

QCn(Sn) = Un, QC(S) = U.

Now, the assumptions of theorems 3.2 and 3.4 in Cuesta et al. [6] (see

also Theorem 3.2 in Tuero [57]) are satis�ed. Hence, Un
P∗a.s.→ U yields

(Un,Sn)
d→ (U,S)

and

Sn := RCn(Un)
P∗a.s.→ RC(U) := S (32)

Thanks to (31), the latter results are true with P -probability one.
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5.3 Convergence of depth areas in average symmetric dif-
ference distance

The (population and empirical) depth area of mass τ are de�ned from the cen-
tered ball Bτ of radius τ via the combined Markov morphism QX of (28) and
Qn of (29) as

A := QXBτ = DXIRCBτ

An := QnBτ = DX∗nI
RCnBτ

which reduces, due to the degeneracy of the Markov morphisms, to the sets

A := G−1 ◦QC(Bτ )

An := G−1
n ◦QCn(Bτ )

A way to measure the distance between these sets is through their average
symmetric di�erence

PX(An∆A) = PX|1An − 1A|

(which generalizes to the L1 distance w.r.t. PX when An, A are functions).

Corollary 5.3. With P -probability one, the L1(PX) or symmetric di�erence
distance between the PX depth area and its empirical counterpart converges
towards zero, as n→∞,

PX(An∆A)→ 0.

Proof. By de�nition of the random variables of the previous subsection, X∗ ∈
A⇔ X∗ ∈ G−1 ◦QC(Bτ )⇔ S ∈ Bτ and X∗ ∈ An ⇔ RCn ◦Gn(X∗,V) ∈ Bτ ,
P ∗ a.s.

Hence,

PX(An∆A) = P ∗|1S∈Bτ − 1RCn◦Gn(X∗,V)∈Bτ |
= P ∗(S ∈ Bτ ,RCn ◦Gn(X∗,V) /∈ Bτ )

+ P ∗(S /∈ Bτ ,RCn ◦Gn(X∗,V) ∈ Bτ )

By the continuous mapping theorem, RCn◦Gn(X∗,V)
P∗a.s.−→ S, hence the above

two probabilities go to zero as n→∞, since Bτ is a PS continuity set.

Remark 6. The PX-L1 or PX-averaged symmetric di�erence distance is well
suited to the problem at hand, whereas the Hausdor� distance of [15], being
intrinsic, mandates special restrictive conditions to the ranges of the c.d.fs. and
also to avoid in�nities. For completeness, let us brie�y sketch an argument for
convergence in the Hausdor� metric: by corollary A.1 in [5], it su�ces to show
uniform convergence of

G−1
n ◦QCn → G−1 ◦QC (33)
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on some suitable compact subsets of the unit ball B1. Uniform convergence on
compacta of optimal mappings QCn → QC is provided by checking conditions of
their theorems A.1 and A.2: in the notation of [5], U = B1, Y = [0, 1]d are com-
pact and convex; PS, PUn are absolutely continuous w.r.t. d−variate Lebesgue
measure, under the choice of of a coordinate independent randomizer V (see sec-
tion 2.2.2) and under assumption (C) or (D) of our paper, PU is also absolutely
continuous w.r.t. d−variate Lebesgue measure; condition (W) in theorem A.2 of
[5] holds by theorem 5.1; condition (C) in theorem A.2 of [5] holds for optimal
gradient mappings (QC ,RC) and (QCn ,RCn) on the sets U0 = int(suppPS)
and Y0 = int(suppPU) = (0, 1)d. Hence, one obtains uniform convergence of
QCn → QC on compact subsets K of U0, and that dH(QCn(Bτ ),QC(Bτ ))→ 0,
with P− probability one.

Next, one needs to prove uniform or continuous convergence of

G−1
n → G−1. (34)

The most simple case is when G−1 is strictly increasing on its domain. Then,
(34) holds pointwise everywhere and uniform convergence holds on {|G−1| ≤ k}
or any k <∞ and (33) holds uniformly on K∩{RC(|G−1| ≤ k)} =: Kk, where
K ⊂ U0. In the general case, under (C) or (D), the discontinuity set D of G−1

is at most �grid� parallel to the coordinate axis of dimension lower than d−1, and
we can replace Kk above by K ′k := K ∩ {RC(|G−1| ≤ k∩K0)} where K0 ⊂ Dc

is any compact subset. One then obtains (33) on Kk or K ′k and Hausdor�
convergence of the depth areas restricted on those sets, with P−probability one.

6 Appendix

6.1 Proof of lemma 5.2

Proof. Under Assumption (C), (31) imply the usual Polya-Glivenko-Cantelli
theorem, ||Fn − F ||∞ → 0, and ||Gn −G||∞ → 0, by Ranga-Rao's theorem 4.1
(see also his theorem 3.4) applied to the coordinate projections li(x) = xi.

One has the decomposition,

Un −U = Gn(X∗n,V)−G(X∗n,V) + G(X∗n,V)−G(X)

= Gn(X∗n,V)−G(X∗n) + G(X∗n)−G(X)

since G is continuous. But

Gn(X∗n−)≤ Gn(X∗n,V)≤ Gn(X∗n)

where G(x−) denotes the left-hand limit of G. Therefore,

|Gn(X∗n,V)−G(X∗n)| ≤ ||Gn−G||∞ + 1/n

By Skorohod's theorem, Fn
d→ F imply X∗n

a.s.→ X for some copies on some
probability space. Hence, by the continuous mapping theorem G(X∗n)→ G(X)
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and

||Un −U|| → 0,

as n→∞.

6.2 A reminder on convergence of o.t.p.

For the convenience of the reader, we recall below the main result of Cuesta-
Albertos et al. [6]: let P2 the set of probability measures on Rd with �nite
second moment: P2 = {P :

∫
||x||2dP <∞}.

Theorem 6.1 (Theorem 3.2 by [6]). Let (Pn)n∈N, (Qn)n∈N, P , Q be probability

measures in P2 such that P << λd and such that Pn
w→ P and Qn

w→ Q. Let
us assume that Tn (resp. T) are o.t.p.'s between Pn and Qn (resp. P and Q),
n ∈ N. Then,

(Xn,Tn(Xn))
d→ (X,T(X)).

Theorem 6.2 (Theorem 3.4 by [6]). With the same assumptions as in theorem
6.1, if, in addition, (Xn)n∈N is a sequence of r.v.'s which converges a.s. and
Xn ∼ Pn, we have that, almost surely,

Tn(Xn)→ T(X).
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