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applications to VaR estimates
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Abstract

The classical Fréchet bounds determine upper and lower bounds for the dis-
tribution function F of a random vector X, when the marginal df’s Fi are fixed.
As consequence these bounds imply also upper and lower bounds for the expec-
tation Eϕ(X) of a certain class of functions ϕ(X). The classical examples are
the Hoeffding bounds for the expectation of the product EX1X2 of two random
variables. In this paper we review and partially elaborate on several develop-
ments of improved Hoeffding–Fréchet bounds which assume some restriction
on the dependence structure additional to the information on the marginals.
We describe applications of the results to obtain improved VaR bounds for the
joint portfolio of risk vectors. We consider in particular improved VaR bounds
in the case where information of the joint distribution function resp. on the
copula is available on some subsets and the case where higher order marginal
information is available.
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1 Hoeffding–Fréchet bounds

The classical Fréchet bounds are one of the most prominent results in stochastic
ordering. They can be stated in the following form. For an n-dimensional df F holds:
F ∈ F(F1, . . . , Fn) – the Fréchet class of n-dimensional df’s with marginals F1, . . . , Fn
– if and only if

F− ≤ F ≤ F+, (1.1)

where F+(x) := min1≤i≤n Fi(xi) and F−(x) := max
{

0,
∑n

i=1 Fi(xi) − (n − 1)
}

are

the upper and lower Fréchet bounds. While F+ is in general a df and thus F+ ∈
F(F1, . . . , Fn), it holds that F− ∈ F(F1, . . . , Fn) only for n = 2 and for rare cases
when n ≥ 3. These cases were characterized in Dall’Aglio (1972). F+ is denoted the
comonotonic distribution, F− is called in case n = 2 the antimonotonic distribution.

The inequalities in (1.1) imply some integral inequalities. Let for a real function
ϕ = ϕ(x1, . . . , xn) of n variables

M(ϕ) := sup
{∫

ϕdP ;P ∈M(P1, . . . , Pn)
}

and m(ϕ) := inf
{∫

ϕdP ;P ∈M(P1, . . . , Pn)
} (1.2)

denote the generalized Hoeffding–Fréchet functionals, where Pi are probability mea-
sures on some measurable spaces (Ei,Ai). Since Hoeffdings paper from 1940 belongs
to the earliest papers on the bounds in (1.1) we call bounds of this type in the fol-
lowing invariably Fréchet bounds or Hoeffding–Fréchet bounds. In particular this
includes the case where (Ei,Ai) = (R1,B1) and Pi have distribution functions Fi.

A basic consequence of the Fréchet bounds in (1.1) is the following result on the
supermodular ordering of distributions. Define for P,Q ∈ M(P1, . . . , Pn) – i. e. P
and Q have marginals P1, . . . , Pn –

P ≤sm Q if

∫
fdP ≤

∫
fdQ (1.3)

for all supermodular functions f ∈ Fsm such that the integrals exist. Let ≤uo denote
the upper orthant ordering, i. e. P ≤uo Q if P ([a,∞)) ≤ Q([a,∞)) for all a ∈ Rn.
Then the following result holds

Theorem 1.1 (Supermodular order). Let P,Q ∈M1(Rn,Bn), then

a) In case n = 2 it holds:
P ≤sm Q⇔ P ≤uo Q (1.4)

b) Lorentz Theorem: For any P ∈M(P1, . . . , Pn) holds

P ≤sm P+, (1.5)

where P+ ∼ F+ is the comonotonic probability measure with marginals Pi.
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The characterization of the supermodular ordering by the upper orthant oder
≤uo in a) is due to Cambanis et al. (1976). It generalizes in particular the classical
Hoeffding bounds for the expectation of the product of two random variables. Let
X ∼ F , Y ∼ G, and U ∼ U(0, 1), then

EF−1(U)G−1(1− U) ≤ EXY ≤ EF−1(U)G−1(U). (1.6)

Part b) was proved in Tchen (1980) by discrete approximation and reduction
to the Lorentz (1953) inequalities. In Rüschendorf1 (1979, 1983) the problem to
determine the generalized Hoeffding–Fréchet functional was identified with a rear-
rangement problem for functions. The Lorentz Theorem was reduced to the Lorentz
inequality for functions.

There is also an analogue of the Fréchet bounds in (1.1) for the survival functions
F i(xi) = P (Xi ≥ xi) and F (x1, . . . , xn) = P (Xi ≥ xi, 1 ≤ i ≤ n)

F
−

(x) :=
( n∑
i=1

F i(xi)− (n− 1)
)

+
≤ F (x1, . . . , xn) ≤ min

1≤n
F i(xi) := F

+
(x). (1.7)

This version of the Fréchet bounds leads to an ordering result for the class of ∆-
monotone (also called n-increasing) functions by means of a partial integration for-
mula

Theorem 1.2 (∆-monotone ordering). Let f : Rn → R1 be ∆-monotone and assume
that for any 1 ≤ i ≤ n, limxi→−∞ f(x1, . . . , xi, . . . , xn) = 0, ∀xj, j 6= i,

a) For any F ∈ F(F1, . . . , Fn) holds∫
F
−

(x)df(x) ≤
∫
fdF ≤

∫
F

+
(x)df(x). (1.8)

b) If F ∈ F(F1, . . . , Fn) and G,H are decreasing functions with

F
− ≤ G ≤ F ≤ H ≤ F

+
, (1.9)

then ∫
G(x)df(x) ≤

∫
fdF ≤

∫
H(x)df(x). (1.10)

For part a) see Rü (2004, Theorem 5.5). Part b) is a direct consequence of the
proof of Part a) and the assumptions in Part b).

Remark 1.3. a) Convex ordering of risk portfolios. Taking functions of the form
ϕ(x) = Ψ(

∑n
i=1 xi), Ψ convex, we obtain that ϕ ∈ Fsm and the Lorentz Theorem

implies that for any random vector X = (X1, . . . , Xn), Xi ∼ Fi it holds that

n∑
i=1

Xi ≤cx

n∑
i=1

Xc
i , (1.11)

1In the further text Rüschendorf is abbreviated as Rü.
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where Xc = (Xc
i ) is a comonotonic vector with comonotonic distribution P+; a

result due to Meilijson and Nadas (1979). In risk theory this result implies that
Xc is the worst case dependence structure for the joint portfolio for any convex
risk measure %. Further recent results on the convex ordering of risk portfolios
as well as to VaR bounds of joint portfolios are described in Puccetti and Wang
(2015).

b) Parameter free price bounds under dependence constraints. Part b) in Theorem 1.2
implies that positive or negative dependence constraints on the survival function
F in terms of the upper orthant ordering ≤uo imply directly improved parameter
free bounds for the value of options defined by ∆-monotone functions.

Dependence restrictions as in (1.8) depend typically only on the copulas. They
are closely related to modelling of dependence structures and to various specific con-
structions and bounds on copulas. A wealth of relevant material on these kind of
theory and models is given in the by now classical book of Nelsen (2006) as well as
in the recent book on copulas of Durante and Sempi (2016).

In the following Section 2 we discuss various forms of dual representations which
are available to deal with the Hoeffding–Fréchet functional for general aggregation
functions ϕ and also allow to include dependence information.

In Section 3 we consider the case where additional information on the dependence
structure is available on some part of the domain. Finally in Section 4 we discuss ad-
ditional information on the dependence structure by including second order marginal
information. We discuss in particular applications to the problem of establishing
VaR-bounds for the joint portfolio.

2 Dual representation of Hoeffding–Fréchet bounds

The most relevant and general information on the generalized Hoeffding–Fréchet func-
tional is given by the dual representation of these functionals. The basic duality
theorem states under some general conditions on ϕ equality of M(ϕ) with a dual
functional U(ϕ). For detailed conditions see Rü (1991a, 2007):

Duality Theorem:

M(ϕ) = U(ϕ) := inf
{ n∑

i=1

∫
fidPi;

n∑
i=1

fi(xi) ≥ ϕ(x1, . . . , xn)
}
. (2.1)

Similarly,

m(ϕ) = I(ϕ) := sup
{ n∑

i=1

∫
fidPi;

n∑
i=1

fi ≤ ϕ
}
. (2.2)

Remark 2.1. Some history: The duality result was proved in Rü (1979, 1981) and
Gaffke and Rü (1981) including existence of solutions for the case where ϕ is bounded
continuous. For the case of bounded measurable functions it was shown in these
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papers that replacing the σ-additive measures by finitely additive measures with
marginals Pi and defining

M̃(ϕ) := sup
{∫

ϕdµ;µ ∈ ba(P1, . . . , Pn)
}

one gets
M̃(ϕ) = U(ϕ). (2.3)

This is a consequence of the Hahn–Banach separation theorem combined with Riesz
representation theorem. Under suitable regularity on the spaces and on ϕ one obtains
that M̃(ϕ) = M(ϕ). These duality results were then extended to some general classes
of functions based on continuity properties of the functionals U, I and on the Choquet
capacity theorem in Kellerer (1984).

For a survey of these developments see Rü (1991b, 2007) or Rachev and Rü (1998).
It should be noted that in case n = 2 the duality result in (2.1) and (2.2) was the
first instance of the Kantorovich duality theorem for mass transportation for general
functionals ϕ. Kantorovich (1942) had established his duality result in the case where
ϕ(x1, x2) is a metric on a compact space.

As consequence of the duality theorem some basic inequalities and bounds were
obtained, as for example the following result (see Rü (1981)).

Define for A ∈ A1 ⊗ · · · ⊗ An, M(A) := M(1A), then:

Theorem 2.2 (Sharpness of Fréchet bounds). For any Ai ∈ Ai, 1 ≤ i ≤ n holds

M(A1 × · · · × An) = min{Pi(Ai); 1 ≤ i ≤ n} (2.4)

and m(A1 × · · · × An) = min
( n∑
i=1

Pi(Ai)− (n− 1)
)

+
. (2.5)

In particular (2.5) was the first proof of the sharpness of the lower Fréchet bounds
in (1.1). An alternative proof was given in Sklar (1998) (see Nelsen (2006, Theorem
2.10.13)).

A consequence of the duality theorem (or alternatively of Strassens’s Theorem) is
also a formula for the maximal and minimal value of the distribution function of the
sum in case n = 2 due to Makarov (1981) and Rü (1982):

M(s) := sup{P (X1 +X2 ≤ x);X1 ∼ Fi}
= inf

x∈R
(F1(x) + F2(t− x)) =: F1 ∧ F2(t) (2.6)

m(s) := inf{P (X1 +X2 < s);Xi ∼ Fi}
= 1− sup

x∈R
(F 1(x) + F 2(t− x) := 1− F 1 ∨ F 2(t) (2.7)

This implies by inversion sharp bounds for the Value at Risk (VaR) in case n = 2.
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Embrechts and Puccetti (2006a,b) relaxed the dual representation by restricting
to admissible piecewise linear functions of a simple form. This way they establish the
following dual bounds:

M(s) ≤ D(s) = inf
u∈U(s)

min

{∑n
i=1

∫ s−∑j 6=i uj
ui

F i(t)dt

s−
∑n

i=1 ui
, 1

}
(2.8)

and m(s) ≥ d(s) = sup
u∈U(s)

max

{∑n
i=1

∫ s−∑j 6=i uj
ui

F i(t)dt

s−
∑n

i=1 ui
− d+ 1, 0

}
(2.9)

where U(s) =
{
u ∈ Rn;

∑n
i=1 ui < s

}
and U(s) =

{
u ∈ Rn;

∑n
i=1 u1 > s

}
.

In the homogeneous case these dual bounds simplify strongly and can be shown
under some mixing conditions to be sharp bounds (see Puccetti and Rü (2012)).

The method of proving the duality theorem described above is flexible enough to
be able to handle also additional constraints. Some examples of additional constraints
have been considered in Ramachandran and Rü (1997, 1999, 2002) who considered
e. g. upper or lower bounds on the marginals, restrictions on the domain of the
admissible measures or upper local bounds on the class of admissible measures. In a
similar way also other types of constraints can be dealt with this approach. Consider
for example an additional positive upper orthant dependence assumption and define

MPUOD(P1, . . . , Pn) = {P ∈M(P1, . . . , Pn) : P is positive upper orthant dependent}.
(2.10)

Here P is called positive upper orthant dependent (PUOD) if P⊥ ≤uo P , where
P⊥ = ⊗ni=1Pi.

Let F∆ denote the cone of ∆-monotone functions, then for P ∈ M(P1, . . . , Pn)
holds:

P is PUOD iff P⊥ ≤F∆
P i. e.

∫
fdP⊥ ≤

∫
fdP for all f ∈ F∆. (2.11)

For a duality statement we consider as above the modified Hoeffding–Fréchet
problem with finitely additive measures

M̃PUOD(P1, . . . , Pn) = {µ ∈ ba(P1, . . . , Pn);µ is PUOD} (2.12)

and for bounded measurable ϕ

M̃PUOD(ϕ) = sup{ϕdµ;µ ∈ M̃PUOD(P1, . . . , Pn)}. (2.13)

There are several possible classes of dual problems. Define

H1 =
{

((fi), g); g ∈ F∆, fi ∈ L1(Pi),
n∑
i=1

fi − g ≥ ϕ
}
.
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Theorem 2.3 (Dual representation with PUOD constraints). For any bounded mea-
surable function ϕ holds:

M̃PUOD(ϕ) = I1(ϕ) := inf
{ n∑

i=1

∫
fidPi −

∫
gd⊗ni=1 Pi; ((fi), g) ∈ H1

}
(2.14)

Proof. For any µ ∈ M̃PUOD(P1, . . . , Pn) and any g ∈ F∆ holds by (2.11)∫
gdµ ≥

∫
gd⊗ni=1 Pi.

This implies for any ((fi), g) ∈ H1

n∑
i=1

∫
fidPi −

∫
gd⊗ni=1 Pi ≥

n∑
i=1

∫
fidPi −

∫
gdµ

=

∫ ( n∑
i=1

fi − g
)
dµ ≥

∫
ϕdµ.

As consequence we get
M̃PUOD(ϕ) ≤ I1(ϕ). (2.15)

By Riesz representation theorem any continuous linear functional T on B(Rn,Bn)
with Tfi =

∫
fidPi for fi = fi(xi) ∈ B(R1,B1) can be identified with an element

µ̃ ∈ M̃(P1, . . . , Pn). Further it holds that

µ̃ ∈ M̃PUOD(P1, . . . , Pn)⇔ µ̃ ≤ I1.

Therefore, the Hahn–Banach separation theorem implies that for any ϕ ∈ B(Rn,Bn)

M̃PUOD(ϕ) = I1(ϕ).

Remark 2.4. a) Existence and extensions: The separation theorem also implies the
existence of a solution µ̃ ∈ ba(P1, . . . , Pn). Restricting to the class of continuous
bounded functions Cb on Rn we obtain by Riesz representation theorem

MPUOD(ϕ) = M̃PUOD(ϕ) = I1(ϕ), ϕ ∈ Cb. (2.16)

This duality result can be further extended to more general classes of functions
by suitable continuity properties of the functionals MPUOD and I1 as in the simple
marginal case.

b) Reduced dual problem: The duality statements in (2.14) and (2.16) give an exact
upper bound for

∫
ϕdP , P ∈ MPUOD(P1, . . . , Pn) which however as in the simple

marginal case in general is not easy to evaluate. For the dual functional we can
restrict to a more simple generator of V∆ by restricting to g of the form

g(x) =
m∑
i=1

αi1[ai,∞)(x) with αi ≥ 0.
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Then the dual problem reduces to optimize∑∫
fidPi −

m∑
i=1

αiF⊥(ai) (2.17)

over all admissible duals of this form, where F⊥(x) =
∏n

i=1 Pi([x,∞)) is the sur-
vival function. In particular, any admissible dual choice yields by (2.14) and (2.15)
to an upper bound.

As second example we consider the case where additional to the marginals also
the covariances σij = Cov(Xi, Xj) = EXiXj − aiaj, ai = EXi are specified. In a
similar way as above one gets the dual representation for the class MΣ(P1, . . . , Pn) of
measures P with marginals Pi and correlation matrix Σ = (σij).

Theorem 2.5 (Fixed correlations). For any ϕ ∈ B(Rn,Bn) holds

M̃Σ(ϕ) = I2(ϕ) := inf
{ n∑

i=1

∫
fidPi +

∑
(i,j)

αijsij;ϕ ≤
n∑
i=1

fi(xi) + Σαijxixj

}
(2.18)

Remark 2.6. a) Similarly as above for ϕ ∈ Cb, M̃Σ(ϕ) = MΣ(ϕ) and the duality can
be extended to more general classes of functions ϕ.

b) If we consider as in Bernard et al. (2015) ϕ = 1{
∑n

i=1 xi≥t} and assume that it is
known that additional to the marginals Pi, also it is known that VaR(Sn) ≤ σ2,
then the dual in (2.18) simplifies strongly to the form

I2,σ2(ϕ) = inf
{ n∑

i=1

∫
fidPi + α(σ2 − µ2);

ϕ(x) ≤
n∑
i=1

fi(xi) + α
[( n∑

i=1

xi

)2

− µ2
]
, α ≥ 0, fi ∈ L1(Pi)

}(2.19)

In Bernard et al. (2015) good upper bounds for this case were given. In contrast
formula (2.19) gives theoretically sharp upper bounds.

c) Model independent price bounds: In a similar way the above sketched method also
applies to various other types of constraints. For robust model independent price
bounds in recent years dual representations with martingale constraints have been
developed (see e. g. Acciaio et al. (2013) and Beiglböck et al. (2013)). This kind of
constraints is due to the fact, that reasonable pricing measures have the martingale
property. Also this type of constraints can be dealt with by the above described
method.

3 Improved Hoeffding–Fréchet bounds – distribu-

tional information on domains

Motivated by the problem to determine good bounds for the Value at Risk (VaR)
of the joint portfolio there has been a lot of recent papers to improve the Fréchet
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bounds in (1.1) by including additional dependence information and as consequence
to obtain improved bounds for the tail risk P (

∑n
i=1 Xi ≥ t) or on VaRα(

∑n
i=1Xi).

For a random vector X with Xi ∼ Fi and distribution function FX = F we can
pose positive dependence restrictions in the form that F ≤ G or that the survival
function F ≥ G for some increasing (resp. decreasing) function G (G), where G and
G are bounded above and below by the Fréchet bounds in (1.1) resp. (1.7). Defin-
ing A(s) := {u = (u1, . . . , un) ∈ Rn :

∑n
i=1 ui = s} and

∧
G(s) = infu∈A(s) G(u),∨

G(s) = supu∈A(s) G(u), the following improved standard bounds on the joint port-
folio have been given in several similar forms in the literature, see Williamson and
Downs (1990), Embrechts et al. (2003), Rü (2005, 2013), Embrechts and Puccetti
(2006b, 2010), and Puccetti and Rü (2012).

Theorem 3.1 (Improved standard risk bounds under positive dependence restric-
tion). Let X,F,G, and G be as introduced above.

a) If G ≤ F , then

P
( n∑
i=1

Xi ≤ s
)
≥
∨

G(s) (3.1)

b) If G ≤ F , then

P
( n∑
i=1

Xi < s
)
≤ 1−

∨
G(s). (3.2)

In the case where G = F− resp. G = F− include no further dependence in-
formation these bounds are called standard bounds. By inversion we obtain the
standard bounds for VaR which depend only on the lower Fréchet copula bound
W (u) = (

∑n
i=1 ui− (n− 1))+. We denote the corresponding standard VaR bound by

VaRW .

In particular (3.1) and (3.2) give upper and lower bounds for the distribution
function and thus also for the tail risk of the sum if the risk vector X is positive
quadrant dependent (i. e. PUOD and PLOD).

To establish bounds for the df as in (3.1) or in (3.2) it is of course sufficient to have
bounds for the copula C = CX . An elaboration on the method induced by Theorem
3.1 to VaR bounds has been given in Embrechts et al. (2013, 2014). Also several
alternative ways to include dependence information in order to obtain improved VaR
bounds for the sum have been discussed in the recent literature. For example Bernard
et al. (2016a,b) derive improved risk bounds based on additional variance or moment
information. Positive and negative dependence restrictions as in (3.1) and (3.2) based
on independence and positive dependence information in subgroups were considered
in Bignozzi et al. (2015) and Puccetti et al. (2015). Structural information by partially
specified risk factor models was investigated in Bernard et al. (2016b). A survey of
these developments is given in Rü (2017).

Assuming that for a distribution function F with marginals Fi it is known that
F ≤ G and/or that F ≥ G on some subset S ⊂ Rn one obtains the following improved

9



Hoeffding–Fréchet bounds which were given independently in Puccetti et al. (2016)
and in Lux and Papapantoleon (2016).

Theorem 3.2 (Improved Hoeffding–Fréchet bounds). Let G : Rn → R be an increas-
ing function with F− ≤ G ≤ F+ and define

F ∗(x) = min
(

min
1≤i≤n

Fi(xi), inf
y∈S

{
G(y) +

n∑
i=1

(Fi(xi)− Fi(yi))+

})
F∗(x) = max

(
0,

n∑
i=1

Fi(xi)− (n− 1), sup
y∈S

{
G(y)−

n∑
i=1

(Fi(yi)− Fi(xi))+

})
Then for F ∈ F(F1, . . . , Fn) holds

i) If F (y) ≤ G(y) for all y ∈ S, then F (x) ≤ F ∗(x) for all x ∈ Rn.

ii) If F (y) ≥ G(y) for all y ∈ S, then F (x) ≥ F∗(x) for all x ∈ Rn.

iii) If F (y) = G(y) for all y ∈ S, then F∗(x) ≤ F (x) ≤ F ∗(x) for all x ∈ Rn.

Remark 3.3. In the case n = 2 the improved Hoeffding–Fréchet bounds in Theorem
3.2 are due to Rachev and Rü (1994). They were restated in the case of uniform
marginals i. e. for copulas in Tankov (2011) for the case of equality constraints. In
this paper also a sharpness result for increasing sets S and an application to model
free pricing bounds for multi-asset options is given. In the case that S is singleton and
n = 2 these bounds and their sharpness were shown in Nelsen et al. (2004, Theorem
3.2.2).

In Nelsen (2006) several constructions are given for copulas with given sections.
An interesting construction are f. e. the diagonal copulas with prescribed diagonal
section. They are however different from the upper or lower bounds F ∗ resp. F∗ as
specified in Theorem 3.2. For n ≥ 2 and S being a singleton the improved bounds
were given in Rodŕıguez-Lallena and Úbeda-Flores (2004) and in Sadooghi-Alvandi
et al. (2013) for finite sets S.

Extensions of the sharpness result are given in Bernard et al. (2012). The paper
of Bernard et al. (2013) discusses as application the case where S is the central part
of the distribution.

As corollary in the case that Fi ∼ U(0, 1), 1 ≤ i ≤ n Theorem 3.2 implies the
following improved bounds for the copula of a risk vector.

Corollary 3.4 (Improved copula bounds). Let S ⊂ [0, 1]n and let Q be a compo-
nentwise increasing function on [0, 1]n such that W (u) ≤ Q(u) ≤ M(u), u ∈ [0, 1]n.
Define the bounds AS,Q, BS,Q : [0, 1]n → [0, 1] as

AS,Q(u) = min
(
M(u), inf

a∈S

{
Q(a) +

n∑
i=1

(ui − ai)+

})
BS,Q(u) = max

(
W (u), sup

a∈S

{
Q(a)−

n∑
i=1

(ai − ui)+

})
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Then for an n-dimensional copula C, it holds

i) If C(u) ≤ Q(u) for all u ∈ S, then C(u) ≤ AS,Q(u) for all u ∈ [0, 1]n.

ii) If C(u) ≥ Q(u) for all u ∈ S, then C(u) ≥ BS,Q(u) for all u ∈ [0, 1]n.

iii) If C(u) = Q(u) for all u ∈ S, then BS,Q(u) ≤ C(u) ≤ AS,Q(u) for all u ∈ [0, 1]n.

It is shown in Puccetti et al. (2016) in several relevant examples that the improved
Hoeffding–Fréchet bounds in Theorem 3.2 may lead to strongly improved VaR bounds
for the joint portfolio based on the method of improved standard risk bounds in
Theorem 3.1.

Some examples showing the effect of the improved Hoeffding–Fréchet bounds are
discussed in Puccetti et al. (2015). The following example shows related results in a
graphical way.

Example 3.1. a) Positive dependence in the tails. We consider the case n = 2 with
F1 = F2 = Pareto(2) and assume that the copula Q of the risk vector is comono-
tonic on the tail area S = [0.9, 1]2, i. e. for a copula vector (U1, U2) ∼ Q holds

P (U1 ≥ u1, U2 ≥ u2) = min(1− u1, 1− u2), ui ≥ 0.9.

This models a case where in extreme situations a strong form of positive depen-
dence arises. As consequence of this strong positive dependence in the tails we
obtain from Corollary 3.4 and Theorem 3.1 a remarkable reduction of the improved
VaR bounds VaRBS,Q

α for moderate and in particular for high quantile levels α (see
Figure 3.1). In fact in this example the standard bounds are know to be sharp
bounds.

Based on Corollary 3.4 a similar effect also holds in the case that n ≥ 2. The
assumption of comonotonicity in the tails is a strong assumption.

In Puccetti et al. (2016) it is shown that some related effects are obtained when
replacing the strong positive dependence assumption in the tail in Corollary 3.4
by a weaker assumption of the form Q(u) = 1−Q(u) ≥ Gϑ(u), u ∈ S, where Gϑ

is a parametric class of Gumbel or of Gaussian copulas.

b) Independent subgroups with positive internal dependence. In this example we mod-
ify the model assumption investigated in Bignozzi et al. (2015). We consider the
case that the risks are split into k independent subgroups Ij. Bignozzi et al. (2015)
allow any kind of dependence within these subgroups. In comparison we assume
that the risks within the subgroups are strongly positive dependent (comonotonic)
in the tails, i. e., similar as in Example 3.1 a) on [0.9, 1]ni , where ni = |Ii|.
As concrete example we consider the case where n = 20, with k = 1, 10, 20
subgroups, where the subgroup sizes are equal to 20

k
. We further assume that

Fi = Pareto(2) = F , 1 ≤ i ≤ n. As consequence of Theorem 3.1 and Corollary 3.4

11



Figure 3.1 Comparison of VaRBS,Q

α and the standard bound VaRS
α for n = 2 with

Pareto(2) marginals.

we obtain

P
( n∑
i=1

Xi ≤ s
)
≥ BS,Q

k

(
F
( s
n

)
, . . . , F

( s
n

))
= max

(
nF
( s
n

)
− (n− 1),max

a∈S

{
Q(a)−

n∑
i=1

(
ai − F

( s
n

))
+

})
,

where S = [0.9, 1]n and Q(a) :=
∏k

j=1 mini∈Ij ai. The corresponding VaR bounds

VaR
BS,Q

k
α are obtained by inversion and are given in Figure 3.2. In that paper

also the improved standard bounds are compared with the (sharp) bounds with
marginal information only. For strong enough positive dependence the improved
standard bounds are sharper than the dual bounds.

The results obtained can be expected. The worst bound is the standard bound.
The best bound is obtained for the case k = 1 of general comonotonicity in the
tails. The case of 10 independent subgroups with positive tail dependence leads
to a considerable reduction.

As in Example 3.1 a) Puccetti et al. (2016) describe similar effects in this exam-
ple when replacing the comonotonicity assumption inside the groups by weaker
Gumbel type specification in the tails.

12



Figure 3.2 Comparison of VaR
BS,Q

k
α for k = 1, 10, 20 and standard bound VaRS

α, n =
20, Fi = Pareto(2).

4 Higher order marginal information; comparison

of various VaR bounds for the joint portfolio

If higher order marginal distributions of the risk vector X are known then it is possible
to improve the Hoeffding–Fréchet bounds and as consequence of (3.1), (3.2), (2.8),
and (2.9) one gets improved standard bounds for the VaR. In this section we consider
the case where two dimensional marginal distributions are known. Alternative dual
bounds with higher order marginals called ‘reduced bounds’ have been discussed in
Embrechts and Puccetti (2006a), Puccetti and Rü (2012), and in Embrechts et al.
(2013). As a result it was found in these papers that the additional information of
higher dimensional marginals may lead to considerably improved upper VaR bounds,
when the joint marginals are not ‘too close’ to the upper Hoeffding–Fréchet bounds.

One obtains improved Hoeffding–Fréchet bounds for the distribution function
(resp. for the copula) by means of Bonferroni-type bounds (see Rü (1991a, Prop. 6)).

Proposition 4.1 (Bonferroni-type bounds). Let C be an n-dimensional copula with
bivariate marginals Ci,j for i 6= j. Then

min
i 6=j

Cij ≥ C ≥ WB ≥ WA ≥ W, (4.1)

where W (u) = (
∑n

i=1 ui − (n− 1))+ is the Hoeffding–Fréchet lower bound,

WA(u) =
( n∑
i=1

ui − (n− 1) +
2

n

∑
i<j

(1− ui − uj + Ci,j(ui, uj))
)

+
(4.2)

and WB(u) =
( n∑
i=1

ui − (n− 1) + sup
τ

∑
(i,j)∈τ

(1− ui − uj + Ci,j(ui, uj))
)

+
, (4.3)
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the sup being taken over all spanning trees of the complete graph induced by {1, . . . , n}.

The bound WB is a consequence of the Bonferroni inequality from Hunter (1976)
(see Rü (1991a, Prop. 6)). It improves the bound WA arising from a Bonferroni bound
of Hunter (1976) and Worsley (1982). As consequence of (3.1) and (3.2) these bounds
imply improved bounds for the tail-risk and the VaR of the joint portfolio

∑n
i=1Xi,

where (Xi, Xj) have copulas Ci,j. Let

VaRW
α = W (F1, . . . , Fn)−1(α), VaRWA

α = WA(F1, . . . , Fn)−1(α)

and VaRWB
α = WB(F1, . . . , Fn)−1(α)

(4.4)

denote the upper α-quantiles of W , WA, WB with marginals F1, . . . , Fn. Then we
obtain as consequence of (4.1)

VaRα(S) ≤ VaRWB
α ≤ VaRWA

α ≤ VaRW
α . (4.5)

The upper bound VaRWA
α has been investigated in Liu and Chan (2011). In

contrast to their statement this bound is not the ‘best possible upper bound’ for
VaRα(S). As their numerical results indicate the bound VaRWA

α improves on the dual
bound, which is based solely on marginal information, only for high confidence levels
α and for highly positive correlated two-dimensional marginals. Correspondingly it
was seen in Embrechts et al. (2013) that strong improvements of lower bounds are
obtained, when the two-dimensional marginals are independent.

In the following examples we compare the Bonferroni bounds VaRWA
α and VaRWB

α

with each other and with the standard bounds VaRW
α as well as with the dual bound

VaRD
α arising from (2.8) for various dependence levels on the bivariate marginals.

By (3.1) we have

P
( n∑
i=1

Xi ≤ t
)
≥ sup

u∈U(t)

CL(F1(u1), . . . , Fn(un)), (4.6)

where CL is either W or is one of the (improved) bounds WA, WB. For u =
(
t
n
, . . . , t

n

)
we get the lower bound

P
( n∑
i=1

Xi ≤ t
)
≥ CL

(
F1

( t
n

)
, . . . , Fn

( t
n

))
. (4.7)

In general the improvements of the Fréchet bounds as in (4.1) can be considerable.
The improved standard bounds in (4.6) are not easy to determine in general in explicit
form. In several cases however conditions are easy to state which allow to determine
them explicitly. In general we obtain the strongest improvement of the upper bound
VaRW

α if the two-dimensional copulas are comonotonic.

We next state for some cases explicit solutions to (4.6). If CL = W and F1, . . . , Fn
have decreasing densities and u∗ ∈ U(t) satisfies F1(u∗1) = · · · = Fn(u∗n) then u∗ =

14



(u∗1, . . . , u
∗
n) is uniquely determined and u∗ is a solution to (4.6). If F1 = · · · = Fn

has a decreasing density, then
(
t
n
, . . . , t

n

)
is a solution to (4.6) and thus the bound in

(4.7) coincides with that in (4.6).

More generally let

A = {(F1(u1), . . . , Fn(un)); u = (ui) ∈ U(t)}

and assume that (Fi(u
∗
i )) is a smallest element of A w.r.t. the increasing Schur convex

order �S, then

sup
u∈U(t)

W (F1(u1), . . . , Fn(un)) = W (F1(u∗1), . . . , Fn(u∗n)). (4.8)

Similarly, assuming that WA resp WB are Schur concave, i. e. decreasing w.r.t. the
increasing Schur convex order �S we obtain

sup
u∈U(t)

WA(F1(u1), . . . , Fn(un)) = WA(F1(u∗1), . . . , Fn(u∗n)) (4.9)

resp. sup
u∈U(t)

WB(F1(u1), . . . , Fn(un)) = WB(F1(u∗1), . . . , Fn(u∗n)). (4.10)

Sufficient conditions for Schur concavity of WA and WB can be inferred from
Chapters 3 and 4 in Marshall and Olkin (1979). For example, in the homogeneous
case Cij = C2 for all i, j, if C2 is concave and symmetric or more generally is Schur
concave, then WA and WB are Schur concave.

In the following we use the vector u∗ with identical components (F1(u∗1), . . . ,
Fn(u∗n)) as above as a proxy for comparison of the upper bounds in (4.8)–(4.10).
In particular in the case F1 = · · · = Fn = F we use the vector

(
F
(
t
n

)
, . . . , F

(
t
n

))
.

In contrast to statements in Liu and Chan (2011) this choice will not give the exact
bounds in (4.8) and (4.9) (and also in (4.10)) in general.

In the following examples we consider the homogeneous case where Fi = F and
where Ci,j = C2 for all i < j. We concentrate on the approximate bounds based on
u∗.

Comparison of VaRWA, standard bounds, and dual bound
In the first example we compare the standard bound, i. e. the VaR bound induced by
W , the VaR bound induced by WA and the dual bound D, which gives the optimal
bound with only marginal information in this example.

Let n = 5 and let Xi be standard normal resp. log-normal distributed, 1 ≤ i ≤ 5.
Let C2 be a Gauß-copula with correlations % = 0, 0.5, 1. Figure 4.1 compares the
VaRWA

α,% upper bounds with the dual bound VaRD
α in dependence on α and % for both

distributions. Note that using the proxies the bounds VaRWA
α,% and VaRWB

α,% coincide in
this case.

Figure 4.1 (a) shows that the VaRWA
α,% bound improves with increasing correlation.

In particular the case % = 1 (comonotonicity) for the two dimensional marginals gives
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(a) (b)

Figure 4.1 Comparison VaRWA
α,% , standard bound and dual bound, n = 5, % =

0, 0.5, 1, in case of Gauß copula in (a) and log normal copula in (b).

better upper bounds than the case % = 0 (independence). This kind of dependence
on % can also be seen directly from the definition of WA in (4.2). Further one finds
as expected, that for any % the VaRWA

α,% bound using information on two-dimensional
marginals is an improvement on the standard bound based on marginal information
only.

The dual bound VaRD
α is a strong improvement over the standard bound, both

being based on marginal information only. It is known that the dual bound is optimal
in this example. This example shows that the technique of standard bounds does not
work well in higher dimensions.

From Figure 4.1 and Table 4.1 one sees that the dual bound VaRD
α is even an

improvement over the bounds VaRWA
α,% when % < 0.9 and α ≥ 0.9, i.e. the information

on two-dimensional marginal information does not lead to an improved upper bound
in these cases, when using the method of improved standard bounds.

α VaRS
α VaRD

α VaRWA
α,0 VaRWA

α,0.5 VaRWA
α,0.9 VaRWA

α,1

0.9 10.268 8.773 10.234 9.943 8.764 6.407

0.95 11.631 10.311 11.616 11.415 10.425 8.224

0.99 14.390 13.322 14.388 14.297 13.589 11.631

Table 4.1 Comparison of VaRS , VaRD and VaRWA

In Figure 4.1 (b) we see that in the case of log-normal distributions with heavy
tails we obtain a similar picture of the relation between these VaR bounds.

While in this example the bounds VaRWA and VaRWB coincide when using the
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proxies, in the following example we show that in inhomogeneous cases the difference
can be quite big so that VaRWB is a strong improvement over VaRWA .

Comparison of VaRWA and VaRWB

We consider the case n = 20 where the marginals Xi are log-normal distributed. We
assume that Ci,j(ui, uj) is a t-copula with three degrees of freedom and correlation
%. The risks Xi are divided into two groups of equal size 10. Within the groups the
rv’s are pairwise comonotone, i. e. % = %1 = 1 and between the groups the rv’s are
pairwise independent, i. e. % = %2 = 0.

In this case the sup in (4.3) is attained by the tree which uses only once the
correlation %2 = 0. On the other hand VaRWA

α can be seen as an average over all
starwise trees which also contains trees which use several times the low correlation
connections with %2 = 0. This construction makes the difference between both bounds
in a particular way big. We find in Figure 4.2 (a) that in this case VaRWB

α is strongly
improved compared to the VaR bound VaRWA

α . For example we obtain VaRWB
0.9 =

99.5875 which is about 50 % better than VaRWA
0.9 = 202.6817. The difference between

the bounds is increasing in α. For α = 0.99 we have for example VaRWB
0.99 = 257.1075

an improvement of 59 % over VaRWA
0.99 = 437.2221. VaRWB

α improves over the dual
bound VaRD

α whereas VaRWA
α is worse than the dual bound.

(a) %1 = 1, %2 = 0 (b) %1 = 0.9, %2 = 0.1

Figure 4.2 Comparison of VaRWA
α , VaRWB

α , VaRD
α , inhomogeneous case, Ci,j t-

copula

In Figure 4.2 (b) we see that under slightly weaker differences for the correlations
with %1 = 0.9 and %2 = 0.1 the dual bound VaRD

α is better than the Bonferroni bounds
VaRWA

α and VaRWB
α indicating again a weakness of the method of improved standard

bounds. While the Fréchet bounds for the df’s improve considerably by inclusion of
two dimensional marginals, the corresponding VaR bounds for the aggregated sums
only improve in certain cases which exhibit strong enough positive dependence.

Remark 4.2 (Reduced bounds versus Bonferroni-type bounds). The reduced bounds
in Embrechts et al. (2013) consider the case with the weaker assumption that only the
non-overlapping distributions F12 of (X1, X2), . . . , F2n−1,2n of (X2n−1, X2n) are known
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and give a non-sharp reduction to the one-dimensional case for Y1 = X1+X2, . . . , Yn =
X2n−1 + X2n, which can be handled by the dual bounds. From the examples in the
present and in the related papers on improved bounds, it seems reasonable to expect
that the reduced bounds may be well better than the Bonferroni bounds if the positive
dependence on the 2-dimensional marginals is not strong. But in grouped examples
like in Example 3.1 b) or in related structured examples the Bonferroni bounds are
better able to make use of this structure by the choice of a suitable dependence tree
τ consisting of strongly positive dependent components. So in case that information
on more than the serial two-dinensional marginals are available it seems that the
Bonferroni-type bounds in combination with the improved standard bounds are better
than the reduced bounds.

In the following example we compare the bounds for a set of heavy tailed marginal
distributions and a different set of bivariate copulas.

Comparison of VaR bounds for bivariate Clayton copulas
We assume that n = 20 and Xi are Pareto-distributed, i. e. Fi(x) = 1 − x−2, x ≥ 1.
We assume that Ci,j(ui, uj) is a Clayton copula with parameter ϑ. Note that for
ϑ→∞ the Clayton copula approaches comonotonicity while for ϑ→ 0 it approaches
independence. As in the third example we consider the case that the risks are di-
vided into two groups. Within the groups the risks are approximatively comonotone
(strongly positive dependent), i. e. the Clayton parameter ϑ = ϑ1 is big. Between the
groups the risks are approximatively independent, i. e. the Clayton parameter ϑ = ϑ2

is small. This construction allows us to investigate the behaviour of the various VaR
bounds in dependence of the dependence parameter ϑ of the copulas.

In Figure 4.3 and Table 4.2 we consider the choice ϑ1 = 10 000, ϑ2 = 0.1 in 4.3a
and ϑ = 1 000, ϑ2 = 1 in 4.3b. As in the case of log-normal distributions we find that
the Bonferroni bound VaRWB

α is significantly better than VaRWA
α and in particular

improves the standard bound VaRS
α.

ϑ1 = 10 000, ϑ2 = 0.1 ϑ1 = 1 000, ϑ2 = 1

α VaRS
α VaRD

α VaRWA
α VaRWB

α VaRWA
α VaRWB

α

0.9 282.842 123.288 209.452 88.717 214.864 93.168

0.99 894.427 389.871 684.720 301.371 813.773 676.727

0.999 2 828.427 1 232.883 2 574.672 2 141.456 2 797.193 2 764.304

Table 4.2 Comparison of VaR bounds, n = 20, Pareto-marginals, Clayton copulas
with parameter ϑ1 and ϑ2 for α ≥ 0.9

In case ϑ1 = 10 000 and ϑ2 = 0.1 the dual bound VaRD
α improves on the Bonferroni

bound VaRWB
α for α ≥ 0.9975 = α0. Experience of further examples shows that this

turning point moves to smaller values of α, the smaller the dependence parameter ϑ1

gets. For example, for ϑ1 = 1 000 and ϑ2 = 1 the turning point is α0 = 0.975. For
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(a) ϑ1 = 10 000, ϑ2 = 0.1 (b) ϑ1 = 1 000, ϑ2 = 1

Figure 4.3 Comparison of VaR bounds, n = 20, Pareto-marginals, bivariate Clayton
copula

α > α0 the dual bounds are better than the Bonferroni bounds if the model is in
enough distance to the comonotonic case.

As general conclusion of the examples in this section we obtain that the Bon-
ferroni bound VaRB

α and the dual bound VaRD
α improve upon the standard bound

VaRW
α . VaRWB

α also improves generally on VaRWA
α . The Bonferroni bound VaRWB

improves for high degree of positive dependence on the dual bound VaRD but for
weaker forms of positive dependence the dual bound may be preferable. It should be
noted however that the dual bound is typically only calculable for small dimensions
for inhomogeneous cases. In these cases however the rearrangement algorithm (RA)
can be applied to yield sharp marginal bounds. In our applications we used proxies
for the calculation of the Bonferroni bounds. These were shown above to be sharp
under some conditions.

Acknowledgements: The simulations in Sections 3 and 4 were produced by Dennis
Manko in the frame of his master thesis.
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G. Puccetti and L. Rüschendorf. Sharp bounds for sums of dependent risks. Journal
of Applied Probability, 50(1):42–53, 2013.

G. Puccetti and R. Wang. Extremal dependence concepts. Statistical Science, 30:
485–517, 2015.

G. Puccetti, B. Wang, and R. Wang. Complete mixability and asymptotic equivalence
of worst-possible VaR and ES estimates. Insurance: Mathematics and Economics,
53(3):821–828, 2013.

G. Puccetti, L. Rüschendorf, D. Small, and S. Vanduffel. Reduction of Value-at-Risk
bounds via independent and variance information. Scand. Actuar. J., (to appear),
2015. doi: 10.1080/03461248.2015.1119717.
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bounds. In V. Beneš et al., editors, Distributions with Given Marginals and Moment
Problems. Proceedings of the 1996 Conference, Prague, Czech Republic, pages 283–
290. Kluwer Academic Publishers, 1997.
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L. Rüschendorf. Bounds for distributions with multivariate marginals. In K. Mosler
and M. Scarsini, editors, Stochastic Orders and Decision Under Risk, volume 19 of
IMS Lecture Notes, pages 285–310. 1991a.
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L. Rüschendorf. Monge–Kantorovich transportation problem and optimal couplings.
Jahresbericht der DMV, 109:113–137, 2007.
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