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Abstract

The construction of lowest cost strategies for a given payoff has found considerable interest
in recent literature and it has been shown in applications to real market data, that the
cost savings associated with these cost-efficient strategies can be quite substantial. In
this paper we provide for a variety of options in the frame of Lévy models cost-efficient
counterparts and determine the efficiency loss (resp. gain) in applications to several sets of
market data. We discuss specific effects of the cost-efficient payoffs for a series of standard
options like puts, calls, self-quanto puts and straddles and butterfly spread options, and
develop their pricing. We obtain several new results on dependence of the magnitude of
the efficiency loss on various model and option parameters. We show that the cost-efficient
payoffs behave slightly improved compared to the standard payoffs concerning hedging
properties. We provide concrete hedging simulation schemes for various cost-efficient
options. The results of the paper show that cost-efficient payoffs may lead to considerable
reduction of cost in markets with pronounced trend.

1 Introduction to cost-efficient payoffs

The concept of distributional analysis of portfolio choice has been introduced by Dybvig
(1988a). In a market model (Ω,F , (Ft)0≤t≤T , P ) with finite time horizon [0, T ] let S =
(St)0≤t≤T ∈ Rd be a price model for d stocks and (Zt)0≤t≤T a pricing density rendering the
discounted process (e−rtStZt)0≤t≤T a P -martingale. The cost of a strategy with terminal
payoff XT then is given by the discounted expected payoff

c(XT ) = E[e−rTZTXT ]. (1.1)

For a given payoff distribution G a strategy with terminal payoff XT with distributed
payoff G (i.e. XT ∼ G) is called cost-efficient if it minimizes the cost i.e.

c(XT ) = min
XT∼G

c(XT ). (1.2)
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A strategy with payoff XT ∼ G is called most-expensive if

c(XT ) = max
XT∼G

c(XT ). (1.3)

The difference of the costs `(XT ) = c(XT )− c(XT ) is called the efficiency loss of XT .

The following characterization of cost-efficient payoffs has been stated in various
generality in a series of papers including Dybvig (1988a,b), Jouini and Kallal (2001),
Dana (2005), Schied (2004), Burgert and Rüschendorf (2006), Bernard and Boyle (2010);
Bernard et al. (2014), Vanduffel et al. (2008, 2012) and Rüschendorf (2012).

Theorem 1.1 (cost-efficient payoffs)

a) For a given payoff distribution G holds

c(XT ) = e−rT
∫ 1

0
G−1(u)F−1

ZT
(1− u)du . (1.4)

b) A payoff XT ∼ G is cost-efficient if and only if XT and ZT are antimonotonie.
XT ∼ G is most expensive if and only if XT and ZT are comonotonic.

c) If FZT is continuous then the cost-efficient resp. most expensive payoffs are given by

XT = G−1(1− FZT (ZT )) resp. XT = G−1(FZT (ZT )) . (1.5)

Theorem 1.1 has been applied in several papers to determine cost-efficient payoffs in
particular in the context of the Samuelson model as well as in some classes of exponential
Lévy processes (see Bernard et al. (2014), Vanduffel et al. (2012) and Hammerstein et al.
(2014)) and has been applied to real market data. In the context of Lévy models the
results have been mainly based on the Esscher measure defined by the pricing density

Zθt =
eθLt

MLt(θ)

(1.6)

where MLt denotes the moment generating function of Lt and θ, the Esscher parameter,
is a solution to the equation

er =
ML1(θ + 1)

ML1(θ)
. (1.7)

Condition 1.7 implies that the Esscher measure Qθ = ZθTP is a risk neutral measure for
the discounted stock price process (e−rtSt)0≤t≤T . It has the pleasant property that w.r.t

Qθ L remains a Lévy process with modified parameters.

For exponential Lévy models St = S0e
Lt with driving Lévy process L = (Lt) one gets

a simpler representation of efficient strategies and for the cost bounds.

Proposition 1.2 (cost-efficient payoffs in Lévy models ) Let (Lt)t≥0 be a Lévy pro-
cess with continuous distribution function FLT at maturity T > 0, and assume that a
solution θ̄ of (1.7) exists.
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If θ̄ < 0, the cost-efficient payoff XT and the most-expensive payoff XT with distribution
function G are given by

XT = G−1(FLT (LT )) and XT = G−1(1− FLT (LT )) and

E[e−rTZ θ̄TXT ] ≥ E[e−rTZ θ̄TXT ] =
1

MLT (θ̄)

∫ 1

0
e
θ̄F−1
LT

(1−y)−rT
G−1(1− y) dy .

If θ̄ > 0, the cost-efficient and the most-expensive payoffs are given by

XT = G−1(1− FLT (LT )) and XT = G−1(FLT (LT )) and

E[e−rTZ θ̄TXT ] ≥ E[e−rTZ θ̄TXT ] =
1

MLT (θ̄)

∫ 1

0
e
θ̄F−1
LT

(y)−rT
G−1(y) dy .

XT and XT are almost surely unique.

In Lévy models the market is bullish i.e. E St
S0
> ert iff θ < 0 and the market is bearish

iff θ > 0 (see Proposition 2.2 in Hammerstein et al. (2014)). Furthermore, for θ < 0 a
payoff XT is cost-efficient iff XT is an increasing function in LT and for θ > 0, XT is
cost-efficient iff XT is a decreasing function of LT . In particular a put is inefficient in
increasing markets where θ < 0 and a call is inefficient in decreasing markets (θ > 0). It
is shown (for some examples) that the magnitude of efficiency loss is increasing in the
magnitude of the trend in the market described by |θ|. As consequence one gets that
path dependent options are not cost-efficient and thus can be improved by cost-efficient
options.

The main aim in this paper is to determine cost-efficient payoffs for several classes of
monotone and nonmonotone options in Lévy models and thus to present a set of examples
showing that the method of cost-efficiency can be used in a great variety of applications.
We also extend the known results to describe the magnitude of the efficiency loss in
dependence on the model parameters and on the hedging costs for the efficient payoff
in comparison to the underlying payoffs. We apply and test the results for several real
market data modeled by Lévy processes; in particular we consider the normal inverse
Gaussian (NIG), the variance Gaussian (VG) and the normal model and consider two
increasing and two decreasing markets. As results we find that cost-efficient payoffs may
lead to considerable reduction of costs. The magnitude of the efficiency loss depends
essentially on the magnitude of trend in the market described by the absolute value of
the Esscher parameter |θ|. We show in several examples that cost-efficient payoffs have a
similar behavior concerning hedging as the basic payoffs. In particular cost-efficient payoffs
do not need extra hedging costs compared to the basic payoffs. The results in this paper
are given in the case of real markets and for the case of pricing by the Esscher martingale
measure. Some extensions to the multivariate case and to further pricing principles are
given in Rüschendorf and Wolf (2014, 2015). For several details in this paper we refer to
the dissertation Wolf (2014).

2 Lévy models and some classes of markets data

As in Hammerstein et al. (2014) we focus in this paper on the modeling of market data
by three types of Lévy processes, the NIG , the VG and the normal model. We apply this
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modeling to market data of 4 stocks (Volkswagen, Allianz, ThyssenKrupp and E.ON),
two of them increasing two of them decreasing in the observed period. In spite of the
fact that the first two models lead to a better fit of the market data it turns out in the
examples that the form of the efficient payoffs is largely independent of the chosen model
and the magnitude of the efficiency loss is of similar size in all models and examples of
options considered.

2.1 Lévy models

In this subsection we give a short description of the Lévy models used in the applications
in this paper. For a detailed introduction to these models and their role in financial
modeling we refer to Eberlein (2001) and Schoutens (2003).

NIG-model

The NIG model is a special case of the generalized hyperbolic model GH(λ, α, β, δ, µ) which
is obtained by choosing λ = −1

2 and can be obtained as a normal mean-variance mixture
with an inverse Gaussian mixing distribution. More specifically, if X ∼ NIG(α, β, δ, µ),
then X can be represented as

X
d
= µ+ βZ +

√
ZW, (2.1)

where µ ∈ R, W ∼ N (0, 1), and Z ∼ IG(δ,
√
α2 − β2) is an inverse Gaussian distributed

random variable with δ > 0 and 0 ≤ |β| < α that is independent of W . This representation
also entails that the infinite divisibility of the mixing inverse Gaussian distribution
transfers to the NIG mixture distribution, thus there exists a Lévy process (Lt)t≥0 with
L(L1) = NIG(α, β, δ, µ). The Lebesgue density dNIG(α,β,δ,µ) is given by

dNIG(α,β,δ,µ)(x) =

∫ ∞
0

dN (µ+βy)(x)d
IG(δ,
√
α2−β2)

(y) dy

= n(α, β, δ)
K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
eβ(x−µ), (2.2)

where K1 is the modified Bessel function of third kind with index 1, and the norming
constant n(α, β, δ) is given by

n(α, β, δ) =
αδ

π
eδ
√
α2−β2

.

The corresponding moment generating function MNIG(α,β,δ,µ) is of the form

MNIG(α,β,δ,µ)(u) =

∫ ∞
−∞

euxdNIG(α,β,δ,µ)(x) dx = euµ+δ
(√

α2−β2−
√
α2−(β+u)2

)
(2.3)

which is defined for all u ∈ (−α− β, α− β). The Esscher parameter θ of the risk neutral

Esscher measure Qθ, i.e. the solution of (1.7) (if it exists) is given by

θ̄NIG = −1

2
− β +

r − µ
δ

√
α2

1 + ( r−µδ )2
− 1

4
.

Note that (Lt) remains a NIG Lévy process under Qθ with parameter β replaced by β+ θ,

θ = θNIG , i.e. w.r.t. Qθ holds: L1
d
= NIG(α, β + θ, δ, µ).
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Variance-Gamma model

A Variance-Gamma distributed random variable X ∼ VG(λ, α, β, µ) can be represented
as a normal mean-variance mixture as in equation (2.1), but in this case the mixing

variable Z ∼ Γ(λ, α
2−β2

2 ) is Gamma distributed with shape parameter λ > 0 and scale

parameter α2−β2

2 where 0 ≤ |β| < α. Again, the infinite divisibility of Γ(λ, α
2−β2

2 ) transfers
to VG(λ, α, β, µ). Analogously as above the corresponding Lebesgue density dVG(λ,α,β,µ)

is given by

dVG(λ,α,β,µ)(x) = m(λ, α, β)|x− µ|λ−
1
2Kλ(α|x− µ|)eβ(x−µ) (2.4)

with the norming constant

m(λ, α, β) =
(α2 − β2)λ

√
π(2α)λ−

1
2 Γ(λ)

,

and the moment generating function is of the form

MVG(λ,α,β,µ)(u) = euµ
m(λ, α, β)

m(λ, α, β + u)
= euµ

( α2 − β2

α2 − (β + u)2

)λ
(2.5)

which is defined for all u ∈ (−α− β, α− β). Here we have

lim
u→±α−β

MVG(λ,α,β,µ)(u) =∞ ,

and as consequence the condition 2α > 1 is sufficient to guarantee a unique solution θ̄ of
equation (1.7) in the VG case. Some lengthy calculations (see Wolf (2014)) show that the
Esscher parameter θ i.e. the solution of (1.7) is given by

θ̄VG =

−
1

1−e−
r−µ
λ

− β + sign(r − µ)

√
e−

r−µ
λ(

1−e−
r−µ
λ

)2 + α2, r 6= µ,

−1
2 − β, r = µ.

(2.6)

For Lt ∼ VG(λt, α, β, µt) the law of Lt under the Esscher martingale measure is again
Variance-Gamma distributed Lt ∼ VG(λt, α, β + θVG , µt).

Samuelson model

The classical benchmark model which also is at the basis of the Black–Scholes theory is
to assume that the stock price process (S0e

Lt)t≥0 follows a geometric Brownian motion.
In this case, the driving Lévy process is given by

Lt =
(
µ− σ2

2

)
t+ σBt, t > 0

where (Bt)t≥0 is a standard Brownian motion under the physical measure P , µ is the drift

and σ the volatility parameter. Here we have L(Lt) = N ((µ − σ2

2 )t, σ2t), its Lebesgue
density is given by

dLt(x) =
1√

2πσ2t
e−

1
2

(x−(µ−σ2

2 )t)2

σ2t ,
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and the moment generating function of L1 equals M
N (µ−σ2

2
,σ2)

(u) = eu(µ−σ
2

2
)+σ2u2

2 . The

Esscher parameter θ is a solution of er =
ML1

(θ̄N +1)

ML1
(θ̄N )

= eµ+θ̄Nσ
2

and is given by θ̄N = r−µ
σ2 .

Under the Esscher martingale measure Qθ holds Lt ∼ N ((r − σ2

2 )t, σ2t).

2.2 Modeling of market data

We apply the Lévy models from (2.1) to model German stock price data for Allianz and
Volkswagen and for E.ON and ThyssenKrupp from May 28, 2010, to September 28, 2012,
which are shown in Figure 1 and in Figure 2 respectively. The estimated parameters and
the corresponding Esscher parameter from the daily log-returns of Allianz and Volkswagen
are given in Table 1 and of E.ON and ThyssenKrupp in Table 2. The fitted densities in the
three Lévy models are displayed in Figure 3 for Allianz and Volkswagen and in Figure 4
for E.ON and ThyssenKrupp. It stands out that the normal density curve fits worse than
the NIG and VG density. The interest rate used to calculate the Esscher parameter θ̄ is
r = 4.2027 · 10−6 which corresponds to the continuously compounded daily-Euribor rate
of October 1, 2012. From the estimated Esscher parameter we find that the Allianz and
Volkswagen data have a positive trend while the ThyssenKrupp and E.On data have a
slight negative trend.
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Figure 1: Daily closing prices of Allianz and Volk-
swagen used for parameter estimation.
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Figure 2: Daily closing prices of E.ON and
ThyssenKrupp used for parameter es-
timation.

3 Cost-efficient payoffs for monotone and nonmonotone op-
tions

In this section we apply the results on cost-efficiency to a series of options in the class of
Lévy models in Section 2 and apply them to the market data introduced and modeled
in Section 2.2. The examples give a good impression on the magnitude of efficiency
loss in terms of the parameters and shows that this methodology is also applicable to
the improvement of nonmonotone options where calculations typically have to be done
numerically.
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Figure 3: Fitted density curves for Allianz and Volk-
swagen.
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Figure 4: Fitted density curves for E.ON and
ThyssenKrupp.

Allianz λ α β δ µ θ̄

NIG −0.5 35.01998 −0.36857 0.01478 0.000376 −1.01266

VG 1.03086 72.01061 0.55168 0.0 1.941 · 10−8 −1.04116

Normal µ = 4.2757 · 10−4, σ = 0.02026 −1.03143

Volkswagen λ α β δ µ θ̄

NIG −0.5 48.85903 −0.84151 0.02313 0.001451 −2.70867

VG 1.60198 82.94782 −2.16537 0.0 0.00206 −2.73948

Normal µ = 0.00129, σ = 0.02162 −2.74475

Table 1: Estimated parameters from daily log-returns of Allianz and Volkswagen for the NIG-, the VG-, and
the Samuelson model.

E.ON λ α β δ µ θ̄

NIG −0.5 44.831 −0.639 0.016 −5.25 · 10−5 0.297816

VG 1.276 86.399 −0.63 0.0 −6.17 · 10−5 0.322992

Normal µ = −0.0001, σ = 0.018878 0.293082

ThyssenKrupp λ α β δ µ θ̄

NIG −0.5 42.01665 −2.08815 0.02554 0.000846 0.203533

VG 1.43896 69.05434 −0.92983 0.0 0.000137 0.210135

Normal µ = −0.000128, σ = 0.02447 0.220797

Table 2: Estimated parameters from daily log-returns of E.ON and ThyssenKrupp for the NIG-, the VG-, and
the Samuelson model.

3.1 Put options

(Long) put options are inefficient in increasing markets where θ̄ < 0. Thus calculation of
cost-efficient options is only of interest in the Volkswagen (VW), Allianz (Al) examples.
We start with an example which was already analyzed in Hammerstein et al. (2014). We
give a short presentation of these results, extend them in various respect and compare
with the following options.

For a put option with strike K and maturity T > 0, i.e.

XPut
T = (K − ST )+ = (K − S0e

LT )+ (3.1)
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the payoff distribution is given by

GPut(x) = P
(
XPut
T ≤ x

)
=


1, if x ≥ K,
1− FLT

(
ln
(
K−x
S0

))
, if 0 ≤ x < K,

0, if x < 0.

(3.2)

Applying Proposition 1.2 for θ̄ < 0 the cost-efficient payoff that generates the same
distribution GPut as the long put is given by

XPut
T = G−1

Put(FLT (LT )) =
(
K − S0e

F−1
LT

(1−FLT (LT )))
+

(3.3)

with payoff function ωPut(y) :=
(
K − S0e

F−1
LT

(1−FLT (ln( y
S0

))))
+

.
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Figure 5: Classical put and its cost-efficient counter-
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October 1, 2012.
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Figure 6: Stock and put prices along the period [0, T ]
for Allianz strike K = 98, maturity T = 23
days.

Allianz c(XPut
T ) c(XPut

T ) Efficiency loss in %

NIG 6.4495 5.2825 18.09

VG 6.3681 5.2270 17.92

Normal 6.4324 5.2683 18.10

Volkswagen c(XPut
T ) c(XPut

T ) Efficiency loss in %

NIG 8.0064 4.0871 48.95

VG 7.9765 4.0603 49.10

Normal 7.9909 4.0749 49.01

Table 3: Comparison of the cost of a long put option on Allianz and Volkswagen, resp., and the corresponding
cost-efficient payoffs in different Lévy models. S0 = 93.42, K = 98, T = 23 for Allianz and
S0 = 130.55, K = 135, T = 23 for Volkswagen.

Figure 5 displays the payoff XPut
T of a long put option on one Allianz stock with strike

K = 98 and maturity T = 23 days, and its cost-efficient counterparts XPut
T for the three

Lévy models under consideration. Although the payoff profiles look quite similar, a closer
look reveals that the optimal payoff is model-dependent and slightly varies between the
different models.

Note that the cost-efficient long put payoff is increasing and is bounded by K as is its
vanilla counterpart, as follows from

lim
ST→∞

XPut
T = lim

ST→∞

(
K − S0e

F−1
LT

(1−FLT (ln(
ST
S0

))))
+

= K.
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In Table 3 we compare the cost of a long put option on Allianz and Volkswagen with their
cost-efficient counterparts for the Lévy models discussed in Section 2. All computations
are based on the estimated parameters given in Table 1 above. The initial stock prices
S0 of Allianz resp. Volkswagen are the closing prices at October 1, 2012, and the time
to maturity is chosen to be T = 23 trading days, meaning that the put options mature
on November 1, 2012. According to Proposition 1.2, the cost of the efficient put can be
calculated by

c
(
XPut
T

)
= E

[
e−rTZ θ̄TX

Put
T

]
=

1

Mdist(θ̄)

∫ 1

0
eθ̄F

−1
dist (1−y)−rT (K − S0e

F−1
dist (y)

)
+

dy (3.4)

where dist is NIG(α, β, δT, µT ), V G(λT, α, β, µT ), or N((µ− σ2

2 )T, σ2T ).

The cost c(XPut
T ) of the vanilla put in the NIG model is given by

c(XPut
T ) = Eθ̄

[
e−rT (K − ST )+

]
= e−rT

∫ ln(K/S0)

−∞
(K − S0e

x)Z θ̄,xT dNIG(α,β,δT,µT )(x) dx (3.5)

= e−rTKFNIG(α,β+θ̄,δT,µT )

(
ln
(
K
S0

))
− S0FNIG(α,β+θ̄+1,δT,µT )

(
ln
(
K
S0

))
,

where Z θ̄,xT = eθ̄x

MNIG(α,β,δT,µT )(θ̄)
. For the VG model one analogously obtains

c(XPut
T ) = e−rTKFVG(λT,α,β+θ̄,µT )

(
ln
(
K
S0

))
− S0FVG(λT,α,β+θ̄+1,µT )

(
ln
(
K
S0

))
. (3.6)

In the Samuelson model, c(XPut
T ) is calculated by the well-known Black–Scholes put price

formula.

In an exponential Lévy model with LT
d
= NIG(α, β, δT, µT ) or LT

d
= VG(λT, α, β, µT )

and with Esscher parameter θ we have

c(XPut
T ) = e−rTKF

Lθ̄T

(
ln
(K
S0

))
− S0FLθ̄+1

T

(
ln
(K
S0

))
, (3.7)

where Lθ̄+kT
d
= NIG(α, β + θ̄ + k, δT, µT ) or VG(λT, α, β + θ̄ + k, µT ), k = 0, 1. If

LT
d
= N ((µ− σ2

2 )T, σ2T ), then we have

c(XPut
T ) = e−rTKΦ(h)− S0Φ(h− σ

√
T ), (3.8)

where h = 1
σ
√
T

(ln(KS0
)− (r − σ2

2 )T ).

For symmetric Lévy processes which fulfill LT
d
= vT −LT , where v ∈ R, the cost of the

cost-efficient put (3.4) can be evaluated without any integration. Numerical computations
of prices, then, become a lot easier. The price formula for the cost-efficient put in the
Samuelson model is given in Bernard et al. (2014, Section 5.2). Some similar calculations
yield in the Lévy case the following result (for details see Wolf (2014)).

Proposition 3.1 (Price of efficient puts in symmetric Lévy models) Let XPut
T be

the payoff of a vanilla put option with strike K, maturity T > 0. Suppose (Lt)t≥0 is a
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Lévy process such that LT
d
= vT − LT . If θ̄ is an Esscher parameter, then the cost of the

cost-efficient put XPut
T w.r.t. the Esscher measure is given by c(XPut

T ) if θ̄ > 0 and by

c(XPut
T ) = e−rTK

(
1− F

Lθ̄T

(
ln(

S0

K
) + vT

))
− e−(r−v)TS0

MLT (θ̄ − 1)

MLT (θ̄)

(
1− F

Lθ̄−1
T

(
ln(

S0

K
) + vT

)) (3.9)

if θ̄ < 0. Here Lθ̄T denotes the Lévy process at maturity under the Esscher measure Qθ̄. In

particular, in the Samuelson model we have that LT
d
= 2(µ− σ2

2 )T − LT . Thus for θ̄ < 0

c(XPut
T ) = e−rTKΦ(h)− e2(µ−r)TS0Φ(h− σ

√
T ) (3.10)

where h = 1
σ
√
T

(
ln(KS0

)− (µ− σ2

2 )T + (r − µ)T
)
.

The results from Table 3 show that the savings from choosing the cost-efficient
strategies can be quite large: For Allianz, the cost of the efficient put is less than 83%
of the price of the plain vanilla put, and in case of Volkswagen the vanilla put is almost
twice as expensive as the efficient put. The great differences in the efficiency losses of the
Allianz and Volkswagen puts may seem somewhat surprising at first glance because the
stock price to strike ratio S0

K is roughly the same in both cases (0.953 for Allianz and
0.967 for Volkswagen). But the difference is induced by the greater magnitude of positive
trend in the VW data compared to Allianz as seen from Table 2. The value of |θ̄| for
Volkswagen is more than 2.5 times as large as that of Allianz. For each stock itself the
efficiency losses obtained under the different Lévy models are of almost the same size and
thus seem to be widely model-independent.

In contrast to the latter static formulas and results we also consider time dynamic
behavior of the cost of the cost-efficient payoff. Therefore, we keep the payoff function

ωPut(y) =
(
K − S0e

F−1
LT

(1−FLT (ln( y
S0

))))
+

of the cost-efficient long put fixed within the

trading period [0, T ]. The payoff function ωPut depends on S0 which becomes a location
parameter in this context. In consequence, the price at time t < T of a cost-efficient long
put with maturity T is given by

ct(X
Put
T ) = e−r(T−t)E

[
Z θ̄T−t

(
K − S0e

F−1
LT

(1−FLT
(

ln( y
S0

)+LT−t)
))

+

] ∣∣
y=St

. (3.11)

In Figure 6 we notice that during some time in the trading period [0, T ] the cost of
the cost-efficient long put exceeds the cost of the plain vanilla long put. For the case of
the Allianz stock this is even beneficial for writers of the cost-efficient long put XPut

T since
at maturity, November 1, 2012, the higher price corresponds to a higher payout. However,
we could also have the reverse situation. In other words, an initially optimal strategy
may become less profitable as its vanilla counterpart if the market scenario significantly
changes in between.

Although, the cost-efficient put behaves like a modified call, i.e. it is increasing in
LT , both XPut

T and XPut
T end up in the money, whereas a plain vanilla call would expire

worthless. But besides this abnormal behavior the progression of the cost of the long put
and its cost-efficient counterpart exhibit similar price behavior as one would expect from
vanilla long call and put options.
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Remark 3.2 (Short put option) Similarly for the short put X−Put
T = −(K − S0e

LT )+

which is inefficient for θ > 0 the cost-efficient version is given by

X−Put
T = G−1

−Put(1− FLT (LT )) =
(
S0e

F−1
LT

(1−FLT (LT )) −K
)
−. (3.12)

and we obtain by simple arguments the following duality relation.
For θ̄ < 0 holds

XPut
T = −X−Put

T and c
(
XPut
T

)
= −c

(
X
−Put
T

)
. (3.13)

Similarly, if θ̄ > 0 we have

X−Put
T = −XPut

T as well as c
(
X−Put
T

)
= −c

(
X

Put
T

)
.

3.2 Call options

Call options are inefficient in decreasing markets i.e. when θ̄ > 0. For the call XCall
T =

(ST − K)+ = (S0e
LT − K)+ with payoff function ωCall(y) := (y − K)+ we obtain the

payoff distribution function GCall = FXCall
T

by

GCall(x) = P
(
XCall
T ≤ x

)
=

{
FLT

(
ln
(
K+x
S0

))
, if x ≥ 0,

0, if x < 0.
(3.14)

Applying Proposition 1.2 for θ̄ > 0 the cost-efficient payoff that generates the same
distribution GCall as the long call option is given by

XCall
T = G−1

Call(1− FLT (LT )) =
(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+
(3.15)

with payoff function ωCall(y) := (S0e
F−1
LT

(1−FLT (ln( y
S0

))) −K)+.
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Figure 7 displays the payoff XCall
T of a long call option on one ThyssenKrupp stock

with strike K = 16.5 and maturity T = 23 days, and its cost-efficient counterparts XCall
T

for the three Lévy models under consideration. As seen before the optimal payoff is
model-dependent and slightly varies between the different models.
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Next, we state formulas for the cost of the standard call in the three Lévy models. Let
(Lt)t≥0 be a Lévy process, with L(LT ) = NIG(α, β, δT, µT ) or VG(λT, α, β, µT ). If θ̄ is a
Esscher parameter for L, then we have

c(XCall
T ) = S0

(
1− F

Lθ̄+1
T

(
ln
(K
S0

)))
− e−rTK

(
1− F

Lθ̄T

(
ln
(K
S0

)))
, (3.16)

where L(Lθ̄+kT ) is NIG(α, β + θ̄ + k, δT, µT ) or VG(λT, α, β + θ̄ + k, µT ), k = 0, 1. If

L(LT ) = N ((µ− σ2

2 )T, σ2T ), then we have

c(XCall
T ) = S0Φ(−h+ σ

√
T )− e−rTKΦ(−h), (3.17)

where h = 1
σ
√
T

(ln(KS0
)− (r − σ2

2 )T ).

Similarly to the case of a put in (3.1) also for a call a simple formula can be given for

cost-efficient calls for symmetric Lévy models which fulfill LT
d
= vT − LT , v ∈ R

Proposition 3.3 (Price of efficient calls in symmetric Lévy models)
Suppose (Lt)t≥0 is a Lévy process such that L(LT ) = L(vT − LT ). If θ̄ is a Esscher
parameter, then the cost of the cost-efficient call XCall

T equals

c(XCall
T ) = e−(r−v)TS0

MLT (θ̄ − 1)

MLT (θ̄)
F
Lθ̄−1
T

(
ln
(S0

K

)
+ vT

)
− e−rTKF

Lθ̄T

(
ln
(S0

K

)
+ vT

) (3.18)

if θ̄ > 0, where Lθ̄T denotes the Lévy process at maturity under the Esscher measure Qθ̄.

In particular, in the Samuelson model we have that LT
d
= 2(µ− σ2

2 )T − LT , thus

c(XCall
T ) = e2(µ−r)TS0Φ(−h+ σ

√
T )− e−rTKΦ(−h) (3.19)

if θ̄ > 0, where h = 1
σ
√
T

(
ln(KS0

)− (µ− σ2

2 )T + (r − µ)T
)
.

E.ON c(XCall
T ) c(XCall

T ) Efficiency loss in %

NIG 0.7502 0.7018 6.45

VG 0.7398 0.6893 6.83

Normal 0.7550 0.7073 6.32

Thyssen c(XCall
T ) c(XCall

T ) Efficiency loss in %

NIG 0.9016 0.8484 5.90

VG 0.8989 0.8443 6.07

Normal 0.8987 0.8418 6.33

Table 4: Comparison of the cost of a long call option on E.ON and ThyssenKrupp, resp., and the corresponding
cost-efficient payoffs in different Lévy models. S0 = 17.48, K = 17.24, T = 23 for E.ON and
S0 = 16.73, K = 16.5, T = 23 for ThyssenKrupp.

In Table 4 above we compare the cost of a long call option on E.ON and ThyssenKrupp
with their cost-efficient counterparts for the Lévy models discussed in Section 2. The
results from Table 4 show that the savings from choosing the cost-efficient strategies are
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close to each other as is the magnitude of |θ̄| for ThyssenKrupp and E.ON (compare
Table 2). The time dynamic behavior of the cost-efficient call compared to call is displayed
in Figure 8. There we notice that the formerly bearish market setting of the ThyssenKrupp
changed to a bullish market setting, since the drift of the stock price altered its direction
from negative to positive (cf. Figure 2). Moreover, the stock price remains above the
strike during the entire trading period [0, T ]. As the cost-efficient long call behaves like an
modified put, it decreases over [0, T ] and expires worthless. Indeed, this is an unpropitious
example for writers of the cost-efficient long call XCall

T .

Again as in the put case we get the following symmetry relation between long and
short calls: If θ̄ > 0, it holds that

XCall
T = −X−Call

T and c
(
XCall
T

)
= −c

(
X
−Call
T

)
.

Similarly, if θ̄ < 0 we have X−Call
T = −XCall

T as well as c
(
X−Call
T

)
= −c

(
X

Call
T

)
.

3.3 Self-quanto calls and puts

A quanto option is a (typically European) option whose payoff is converted into a different
currency or numeraire at maturity at a pre-specified rate, called the quanto-factor. Such
products are attractive for speculators and investors who wish to have exposure to a
foreign asset, but without the corresponding exchange rate risk. Quanto options are
attractive because they shield the purchaser from exchange rate fluctuations. In the
special case of a self-quanto option the numeraire is the underlying asset price at maturity
itself. The payoff of a long self-quanto call with maturity T and strike price K is

XsqC
T = ST · (ST −K)+ = S0e

LT (S0e
LT −K)+

which is monotonically increasing in LT and thus not cost-efficient if θ̄ > 0. Its payoff
function is then given by ωsqC(y) := y(y −K)+. To derive the corresponding distribution
function GsqC = F

XsqC
T

, observe that the positive solution S∗T of the quadratic equation

S2
T −KST = x, x > 0, is given by

S∗T =
K

2
+

√
K2

4
+ x,

then {S2
T −KST − x ≤ 0} = {ST ≤ S∗T }, hence

GsqC(x) = P
(
XsqC
T ≤ x

)
=

FLT
(

ln
( K

2
+

√
K2

4
+x

S0

))
, if x ≥ 0,

0, if x < 0.

The generalized inverse is given by

G−1
sqC(y) = S0e

F−1
LT

(y)(
S0e

F−1
LT

(y) −K
)

+
, y ∈ (0, 1) . (3.20)

Consequently according to Proposition 1.2 the cost-efficient strategy for a long self-quanto
call in the case θ̄ > 0 is,

XsqC
T = G−1

sqC(1− FLT (LT )) = S0e
F−1
LT

(1−FLT (LT ))(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+
(3.21)

13



10 15 20 25 30

0
50

10
0

15
0

Standard and optimal self−quanto call for ThyssenKrupp ( T = 23, K = 16.5 )

ST

pa
yo

ff

standard sqC
cost−eff. sqC (NIG)
cost−eff. sqC (VG)
cost−eff. sqC (Normal)

Figure 9: Classical self-quanto call and its cost-
efficient counterparts for ThyssenKrupp.
S0 = 16.73

0
10

20
30

40

self−quanto call prices of ThyssenKrupp (NIG model)

se
lf−

qu
an

to
 c

al
l p

ric
e

K

vanilla sqC

efficient sqC

03.10.2012 11.10.2012 19.10.2012 29.10.2012

Figure 10: Cost of a classical self-quanto call
and its cost-efficient counterpart for
ThyssenKrupp.

with payoff function ωsqC(y) := S0e
F−1
LT

(
1−FLT (ln( y

S0
))
)(
S0e

F−1
LT

(
1−FLT (ln( y

S0
))
)
−K

)
+

.

Figure 9 displays the payoff XsqC
T of a long self-quanto call option on one ThyssenKrupp

stock with strike K = 16.5 and maturity T = 23 days, and its cost-efficient counterparts
XsqC
T for the three Lévy models under consideration.

The cost of the efficient self-quanto call can be calculated using (3.20),

c(XsqC
T ) =

1

Mdist(θ̄)

∫ 1

0
eθ̄F

−1
dist (y)−rTS0e

F−1
dist (1−y)

(
S0e

F−1
dist (1−y) −K

)
+

dy (3.22)

where dist is NIG(α, β, δT, µT ), V G(λT, α, β, µT ), or N((µ− σ2

2 )T, σ2T ).

If θ̄ is an Esscher parameter and MLT (θ̄ + 2) <∞ , then

c(XsqC
T ) ≤ e−rTEθ̄[S2

T ] = e−rTS2
0

MLT (θ̄ + 2)

MLT (θ̄)
<∞. (3.23)

In general this holds true for the Samuelson model, since the moment generating function
of L1, M

N ((µ−σ2

2
),σ2)

(u) is defined for all u ∈ R. For the NIG resp. VG model

θ̄ + 2 ∈ (−α− β, α− β) and θ̄ ∈ (−α− β, α− β) (3.24)

which implies that θ̄ ∈ (−α− β, α− β − 2). All estimated parameters from the daily log
returns of E.ON and ThyssenKrupp from Table 2 fulfill this condition as well as equation
(3.24). We get the following pricing formula.

Proposition 3.4 (Price of a vanilla self-quanto call) Let (Lt)t≥0 be a Lévy process,

such that LT
d
= NIG(α, β, δT, µT ) or VG(λT, α, β, µT ). If MLT (θ̄+ 2) <∞, where θ̄ is a

Esscher parameter, then we have

c(XsqC
T ) =

MLT (θ̄ + 2)

MLT (θ̄ + 1)
S2

0

(
1− F

Lθ̄+2
T

(
ln
(K
S0

)))
− S0K

(
1− F

Lθ̄+1
T

(
ln
(K
S0

)))
(3.25)

where Lθ̄+kT
d
= NIG(α, β + θ̄ + k, δT, µT ) or VG(λT, α, β + θ̄ + k, µT ), k = 0, 1, 2.
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If LT
d
= N ((µ− σ2

2 )T, σ2T ), then we have

c(XsqC
T ) = e(r+σ2)TS2

0Φ
(
−h′ + σ

√
T
)
− S0KΦ

(
−h′

)
, (3.26)

where h′ = 1
σ
√
T

(ln(KS0
)− (r + σ2

2 )T ).

For details of the proof we refer to Wolf (2014).

Remark 3.5 (symmetric Lévy case) In the case of symmetric Lévy processes where

LT
d
= θT − LT for some θ ∈ R the formulas for the cost of efficient self-quanto calls

simplify to

c(XsqC
T ) = evTS0

(
e−(r−v)TS0

MLT (θ̄ − 2)

MLT (θ̄)
F
Lθ̄−2
T

(
ln
(S0

K

)
+ vT

)
− e−rTKMLT (θ̄ − 1)

MLT (θ̄)
F
Lθ̄−1
T

(
ln
(S0

K

)
+ vT

)) (3.27)

where Lθ̄T denotes the Lévy process at maturity under the Esscher measure Qθ̄.

In particular, in the Samuelson model we have that LT
d
= 2(µ− σ2

2 )T − LT , thus

c(XsqC
T ) = e2(µ−r)TS0

(
e−rT e2(µ+σ2

2
)TS0Φ(−h+ σ

√
T )−KΦ(−h)

)
(3.28)

where h = 1
σ
√
T

(
ln(KS0

)− (µ+ σ2

2 )T + (r − µ)T
)
.

We display the cost of a long self-quanto call option on E.ON and ThyssenKrupp with

E.ON c(XsqC
T ) c(XsqC

T ) Efficiency loss in %

NIG 14.6161 13.6394 6.68

VG 14.3741 13.3613 7.05

Normal 14.6988 13.7397 6.53

Thyssen c(XsqC
T ) c(XsqC

T ) Efficiency loss in %

NIG 17.4182 16.3441 6.17

VG 17.3619 16.2628 6.50

Normal 17.3394 16.1980 6.58

Table 5: Comparison of the cost of a long self-quanto call option on E.ON and ThyssenKrupp, resp., and the
corresponding cost-efficient payoffs. S0 = 17.48, K = 17.24, T = 23 for E.ON and S0 = 16.73,
K = 16.5, T = 23 for ThyssenKrupp.

their cost-efficient counterparts for the three Lévy models under consideration in Table 5.
Again, we emphasize that the relative efficiency loss of the self-quanto option on E.ON
and ThyssenKrupp has almost the same size. The same is true for the corresponding
Esscher parameter θ̄.

Utilizing Proposition 1.2 and the explicit formula of the payoff function ωsqC the price
at time t < T of a cost-efficient long call with maturity T can be computed as

ct(X
sqC
T ) = e−r(T−t)E

[
Z θ̄T−t S0e

F−1
LT

(1−FLT
(

ln( y
S0

)+LT−t)
)
·(

S0e
F−1
LT

(1−FLT
(

ln( y
S0

)+LT−t)
)
−K

)
+

] ∣∣
y=St

.

From Figure 10 the leverage effect of the self-quanto call payoff is clearly recognizable in

15



comparison to the standard long call payoff. The peaks and lows are more pronounced
then in the vanilla call case (compare Figure 8).

Again, we have the symmetry relation G−1
sqC(y) = −G−1

−sqC(1− y) and conclude:

If θ̄ > 0, then XsqC
T = −X−sqC

T and c
(
XsqC
T

)
= −c

(
X
−sqC
T

)
.

If θ̄ < 0 then X−sqC
T = −XsqC

T as well as c
(
X−sqC
T

)
= −c

(
X

sqC
T

)
.

3.4 Self-quanto put options

A long self-quanto put XsqP
T = ST (K − ST )+ with payoff function ωsqP(y) := y(K − y)+

and strike K > 0 is designed to profit from moderate decreasing prices of the underlying
security. It provides highest outcomes when the price is at K

2 . Its distribution function can
be calculated and is presented in the following lemma. Since the payoff function ωsqP is
not monotone self-quanto puts are not efficient for θ̄ 6= 0. The payoff distribution function
GsqP can be calculated as

GsqP(x) =



1, x ≥ K2

4 ,

1−
(
FLT

(
ln
( K

2
+

√
K2

4
−x

S0

))
− FLT

(
ln
( K

2
−
√
K2

4
−x

S0

)))
, 0 < x < K2

4 ,

1− FLT
(
ln(KS0

)
)
, x = 0,

0, x < 0 .

(3.29)
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Figure 12: Classical self-quanto put and its cost-
efficient counterparts for ThyssenKrupp.
S0 = 16.73

Figure 11 displays the payoff XsqP
T of a long self-quanto put option on one Allianz stock

with strike K = 98 and maturity T = 23 days and its cost-efficient counterparts XsqP
T for

the three Lévy models under consideration. The bearish market counterpart is illustrated
in Figure 12 which shows the payoff XsqP

T of a cost-efficient long self-quanto put option
on one ThyssenKrupp stock with strike K = 16.5 and maturity T = 23 days. Note, that
all three Lévy models generate fairly equal plots.

For the price of a standard and optimal self-quanto put we have similarly as in the
call case the following simplified formula.
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Proposition 3.6 (Price of a vanilla self-quanto put) Let (Lt)t≥0 be a Lévy process,

such that LT
d
= NIG(α, β, δT, µT ) or VG(λT, α, β, µT ). If θ̄ is a Esscher parameter, then

we have

c(XsqP
T ) = S0KFLθ̄+1

T

(
ln
(K
S0

))
− S2

0E
[ e(θ̄+2)LT

MLT (θ̄ + 1)
1{

LT<ln( K
S0

)
}]

where Lθ̄+kT
d
= NIG(α, β + θ̄ + k, δT, µT ) or VG(λT, α, β + θ̄ + k, µT ), k = 0, 1, 2. If in

addition MLT (θ̄ + 2) <∞, then

c(XsqP
T ) = S0KFLθ̄+1

T

(
ln
(K
S0

))
− MLT (θ̄ + 2)

MLT (θ̄ + 1)
S2

0FLθ̄+2
T

(
ln
(K
S0

))
(3.30)

For LT
d
= N ((µ− σ2

2 )T, σ2T ) we have

c(XsqP
T ) = S0KΦ

(
h
)
− e(r+σ2)TS2

0Φ
(
h− σ

√
T
)

(3.31)

where h = 1
σ
√
T

(ln(KS0
)− (r + σ2

2 )T ).

Allianz c(XsqP
T ) c(XsqP

T ) Efficiency loss in %

NIG 547.2179 452.8534 17.24

VG 542.4431 449.5875 17.12

Normal 546.3491 452.2157 17.23

ThyssenKrupp c(XsqP
T ) c(XsqP

T ) Efficiency loss in %

NIG 9.5988 9.5987 0.001041

VG 9.5737 9.5736 0.001044

Normal 9.5826 9.5825 0.001043

Table 6: Comparison of the cost of a long self-quanto put option on Allianz and ThyssenKrupp resp., and
the corresponding cost-efficient payoffs. S0 = 93.42, K = 98, T = 23 for Allianz and S0 = 16.73,
K = 16.5 for ThyssenKrupp.

Table 6 gives the cost of a long self-quanto put option on Allianz with their cost-efficient
counterparts for the three Lévy models under consideration. To cover the bearish markets
the analogous results for the cost of a long self-quanto put option on ThyssenKrupp are
included in Table 6. One observes that for the ThyssenKrupp stock the efficiency loss
is insignificantly small. This is due to the fact that equality of the payoff functions on
sets with high probability (under the Esscher martingale measure) plus boundedness on
the complementary set implies nearly equal cost and, thus small efficiency loss. This is
quantified in the next remark in the NIG case.

Remark 3.7 Assume that LT
d
= NIG(α, β, δT, µT ), then the payoff functions of the

long self-quanto put XsqP
T and of the cost-efficient counterpart XsqP

T are both bounded
by C = (K2 )2 = 68.0625 and are identical on the interval I = [ln(8.25

S0
), ln( 30

S0
)] with

probability (w.r.t. Esscher martingale measure) nearly one, F
Lθ̄T

(I) = F
Lθ̄T

(ln(30/S0))−
F
Lθ̄T

(ln(8.25/S0)) = 99.9999%. Hence
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`(XsqP
T ) = e−rTEQθ̄ [X

sqP
T −XsqP

T ]

=

∫
I
(XsqP,x

T −XsqP,x
T )dF

Lθ̄T
(x) +

∫
Ic

(XsqP,x
T −XsqP,x

T )dF
Lθ̄T

(x)

=

∫
Ic

(XsqP,x
T −XsqP,x

T )dF
Lθ̄T

(x)

≤ sup
x∈Ic

(XsqP,x
T −XsqP,x

T ) · F
Lθ̄T

(Ic) ≤ C · 0.00001 = 0.0001089 ,

where XsqP,x
T = ωsqP(S0e

x) = S0e
x(K − S0e

x)+ and XsqP,x
T = ωsqP(x) = G−1

sqP(1 −
FLT (ln( x

S0
))).
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Figure 13: Evolution of prices of standard and cost-
efficient self-quanto put with strike K =
16.5 for ThyssenKrupp in the VG model.
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Figure 14: Evolution of prices of standard and cost-
efficient self-quanto put with strike K =
98 for Allianz in the NIG model.

Figure 13 illustrates the nearly equal payoff function of the standard and optimal self-
quanto put in the bearish market situation. This leads to almost identical prices during
the entire trading period [0, T ] in October 2012. Figure 14, shows distinctive similarities
to Figure 6 with more pronounced peaks and lows which is due to the design of the long
self-quanto put option. The prices of the efficient options always roughly move in the
direction opposite to that of the standard options which reflects the reversed monotonicity
properties of the underlying payoff profiles in Figure 11.

3.5 Long straddle options

A long straddle investment strategy allows the holder to profit based on how much the
price of the underlying security moves, regardless of the direction of price movement. A
long straddle option Xstrdl

T is realized by going long in both a call option and a put option
on some stock, index or other underlying. i.e. Xstrdl

T = XCall
T +XPut

T . It involves buying
the put and call options at the same strike K > 0 with the same maturity T . A profit
is gained if the underlying price moves a long way from the strike price, either above or
below. The payoff distribution function is given by

Lemma 3.8 Let (Lt)t≥0 be a Lévy process with continuous distribution function FLT at
maturity T > 0. The distribution function Gstrdl of the payoff of the long straddle Xstrdl

T
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with strike K > 0 at maturity T is given by

Gstrdl(x) =


FLT (ln(K+x

S0
)), x ≥ K,

FLT (ln(K+x
S0

))− FLT (ln(K−xS0
)), 0 ≤ x < K,

0, x < 0 .

(3.32)
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Figure 15: Payoff functions of a classical straddle
option and its cost-efficient counterparts
for Volkswagen.
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Figure 16: Evolution of prices of standard and cost-
efficient long straddle with strike K =
135 for Volkswagen in the NIG model.
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Figure 17: Payoff functions of a classical straddle
option and its cost-efficient counterparts
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Figure 18: Evolution of prices of standard and cost-
efficient long straddle with strike K =
16.5 for ThyssenKrupp in the VG model.

The cost of the cost-efficient long straddle is compared with its vanilla counterpart in
Table 7, while in Figure 15 we contrast the payoffs Xstrdl

T of a long straddle option on one
Volkswagen stock with strike K = 135 and maturity T = 23 days, and its cost-efficient
counterparts Xstrdl

T for the three Lévy models under consideration. For the bearish markets
we present in Figure 17, the payoff Xstrdl

T of a cost-efficient long straddle option on one
ThyssenKrupp stock with strike K = 16.5 and maturity T = 23 days.

Regarding Figure 15 we notice that with increasing stock price at maturity of the
Volkswagen the payoff of the cost-efficient long straddle dominates that of the standard
long straddle. This difference becomes more and more irrelevant with increasing stock
price and takes the greatest value if the stock prices moves around the exercise price. A
reverse pattern is depicted in Figure 17. Thus, the evolution of the prices of standard and
cost-efficient long straddle for Volkswagen, Figure 16, shows that close to maturity, where
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Volkswagen c(Xstrdl
T ) c(Xstrdl

T ) Efficiency loss in %

NIG 11.5759 8.9844 22.39

VG 11.5161 8.9239 22.51

Normal 11.5448 8.9722 22.28

ThyssenKrupp c(Xstrdl
T ) c(Xstrdl

T ) Efficiency loss in %

NIG 1.5717 1.5377 2.17

VG 1.5662 1.5312 2.23

Normal 1.5657 1.5293 2.32

Table 7: Comparison of the cost of a long straddle option on Volkswagen and ThyssenKrupp resp., and the
corresponding cost-efficient payoffs. S0 = 130.55, K = 135, T = 23 for Volkswagen and S0 = 16.73,
K = 16.5 for ThyssenKrupp.

the stock price rapidly increases, the costs are increasing too, and the cost-efficient long
straddle is more expensive than the standard long straddle option. For the ThyssenKrupp
stock we have a more complex situation. Here, the trend alters from bearish to bullish
within the trading period, thus the stock price increases close to maturity. Hence, the payoff
of the cost-efficient long straddle becomes less worthy which is illustrated in Figure 18.

3.6 Long call butterfly spread options

A long (call) butterfly option strategy is created to earn substantial but limited profits
with great probability. It is a limited risk and non-directional financial investment strategy,
and due to its design it is a suitable neutral option strategy for low volatility markets.
A long butterfly spread is the combination of two long calls C3 and C1 with strikes
K3 > K1 > 0, and two short calls −C2 with strike K2 = K1+K3

2 . The payoff Xbfly
T of a

butterfly spread is given by

Xbfly
T = (ST −K1)+ + (ST −K3)+ − 2(ST −K2)+.

An investor may take a long butterfly position if he expects that the market is mildly
volatile, thus profiting the most if the stock price is at K2. The payoff distribution function
can be calculated and is given by:

Gbfly(x) =


1, x > K2 −K1,

1− FLT (ln(K3−x
S0

)) + FLT (ln(K1+x
S0

)), 0 ≤ x ≤ K2 −K1,

0, x < 0 .

(3.33)

In Figure 19 the payoffs of a butterfly spread and its efficient counterpart of one Allianz
stock with strikes K1 = 94 and K3 = 104 are presented. For the bearish markets, Figure 20
shows the payoff Xbfly

T of a cost-efficient long butterfly spread option on one ThyssenKrupp
stock with strikes K1 = 12 and K3 = 20. The cost of a long butterfly spread option on
Allianz and ThyssenKrupp with their cost-efficient counterparts for the three Lévy models
under consideration are considered in Table 8. Again, in case of the ThyssenKrupp stock we
notice that the more the payoffs functions resemble on sets with greater mass the smaller
becomes the efficiency loss (cf Figure 20 and also Remark 3.7). We see from Figure 20
that the payoff of the cost-efficient version of the long butterfly spread is dominated if the
stock price of the underlying is greater than approximately 15.5. Since the stock price of
the ThyssenKrupp is above 15.5 during the entire trading period 0 < t ≤ T the cost of
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Allianz c(Xbfly
T ) c(Xbfly

T ) Efficiency loss in %

NIG 0.8398 0.7739 7.84

VG 0.8475 0.7825 7.67

Normal 0.8349 0.7691 7.87

ThyssenKrupp c(Xbfly
T ) c(Xbfly

T ) Efficiency loss in %

NIG 2.4153 2.4008 0.60

VG 2.4210 2.4064 0.60

Normal 2.4196 2.4044 0.63

Table 8: Comparison of the cost of a long butterfly spread option on Allianz and ThyssenKrupp resp., and
the corresponding cost-efficient payoffs. S0 = 93.42, K1 = 94, K3 = 104, for Volkswagen and
S0 = 16.73, K1 = 12, K3 = 20 for ThyssenKrupp.
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Figure 21: Evolution of prices of standard and cost-
efficient long call butterfly spread with
strikes K1 = 94 and K3 = 104 for Allianz
in the VG model in October 2012, T =
23 days.
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Figure 22: Evolution of prices of standard and cost-
efficient long call butterfly spread with
strikes K1 = 12 and K3 = 20 for
ThyssenKrupp in the NIG model in Octo-
ber 2012, T = 23 days.

the standard butterfly spread dominates the cost of the efficient counterpart which can
be seen in Figure 22.
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4 Efficiency loss for monotone payoff functions

The efficiency loss `(θ̄) = `(θ̄, η) = e−rTEθ̄(XT −XT ) depends on the Escher parameter
θ̄ = θ̄(η) and in particular on the model parameter η = (η1, . . . , ηk),. In Hammerstein
et al. (2014) it has been shown that `(θ̄, η) is an increasing function in |θ̄| which leads in
particular in the examples of put and call options to the result that the magnitude |θ̄| of
market trend determines the magnitude of the efficiency loss.

In the previous sections we typically reported the relative efficiency loss `(θ̄)
c(XT ) = `r(θ̄)

which might be more relevant for applications. In this section we study the efficiency
loss for plain vanilla puts and calls as well as for self-quanto calls. For vanilla puts as for
its cost-efficient counterparts the cost rises with increasing strike price. Hence, it would
be interesting to know how the efficiency loss resp. relative efficiency loss behaves when
changing the strike. The next theorem confirms that the efficiency loss `(K) in case of
the put option is increasing in the strike while the relative efficiency loss `r(K) shows
an opposite behavior. This has noticeable consequences for trading put options, when
investors are seeking to maximize their (relative) efficiency loss. Related results for the
call resp. self-quanto call option are given too.

Theorem 4.1 (Efficiency loss vs. relative efficiency loss for XPut
T , influence of

strike) Let (Lt)t≥0 be a Lévy process with continuous and strictly increasing distribution
function FLT at maturity T > 0. Suppose XPut

T is the payoff of a long put option with
strike K > 0 and let θ̄ be an Esscher parameter.

1. The efficiency loss, `(K) := c(XPut
T )− c(XPut

T ) is increasing in K.

2. ∂
∂K c(X

Put
T ) ≤ ∂

∂K c(X
Put
T ) and the costs of the standard and efficient put are increasing

in K.

3. The relative efficiency loss `r(K) := `(K)

c(XPut
T )

decreases in K.

Proof:

1. If θ̄ > 0 then XPut
T = XPut

T and `(K) ≡ 0, thus w.l.g., let θ̄ < 0. By definition

`(K) ≥ 0 for all K ∈ R+, thus ` : R+ → R+. Define C := e−rTEθ̄[S0e
F−1
LT

(1−FLT (LT )−ST ]

and observe that the pair (X+
1 , X

+
2 ) := (Z θ̄T , S0e

F−1
LT

(1−FLT (LT ))
) is comonotonic whereas

the pair (X−1 , X
−
2 ) := (Z θ̄T , ST ) is countermonotonic. The marginals FX+

1
= FX−

1
and

FX+
2

= FX−
2

are equal, thus, Hoeffdings inequality implies

erTC = Cov(Z θ̄T , S0e
F−1
LT

(1−FLT (LT ))
)− Cov(Z θ̄T , ST ) ≥ 0

and thus C ≥ 0. Since the first term is non-negative and the second is non-positive it

holds that C = 0 if and only if Cov(Z θ̄T , S0e
F−1
LT

(1−FLT (LT ))
) = Cov(Z θ̄T , ST ) = 0. Since

Z θ̄T = h(ST ) for some decreasing function h : R+ → R+, this can only be true if and only
if LT respectively L1 is degenerate. By our general assumption this case is excluded and
thus C > 0. Further, we easily obtain that `(0) = 0 and we also have
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Eθ̄[(K − a)+ − (K − b)+] = Eθ̄[min(K, b)−min(K, a)]

≤ Eθ̄[min(K, b)]

≤ Eθ̄[b] .

Hence, with the identity (K − a)+ = K −min(K, a) for all K, a ∈ R+, the dominated
convergence yields

lim
K→∞

Eθ̄[min(K, b)−min(K, a)] = Eθ̄[ lim
K→∞

min(K, b)]− Eθ̄[ lim
K→∞

min(K, a)]

= Eθ̄[b− a]

for all a, b ∈ R+, such that Eθ̄[b], Eθ̄[a] <∞. Putting a = ST and b = S0e
F−1
LT

(1−FLT (LT ))

we have shown that

lim
K→∞

`(K) = C > 0.

For the proof of 1) it is sufficient to show the existence of a K∗ ∈ R+ such that ` is convex
on [0,K∗) and concave on [K∗,∞). For θ̄ < 0 the plain vanilla put is most-expensive. By
Proposition 1.2 the efficiency loss as is given by

`(K) =
1

MLT (θ̄)

∫ 1

0
e
θ̄F−1
LT

(1−y)−rT (
(K − S0e

F−1
LT

(1−y)
)+ − (K − S0e

F−1
LT

(y)
)+

)
dy.

Note that `(K) is bounded from above by the price c(XPut
T ) of the original long put which

obviously is finite for all K ∈ R+. Moreover, the functions

f1(K, y) = e
θ̄F−1
LT

(1−y)−rT
(K − S0e

F−1
LT

(1−y)
)+ and

f2(K, y) = e
θ̄F−1
LT

(1−y)−rT
(K − S0e

F−1
LT

(y)
)+

are differentiable in K for all y ∈ [0, 1]. The points K = S0e
F−1
LT

(1−y)
, K = S0e

F−1
LT

(y)
can

be neglected since the left- and right-hand derivatives are bounded. The partial derivatives
are

∂

∂K
f1(K, y) = e

θ̄F−1
LT

(1−y)−rT
1[0,FLT (ln( K

S0
))(1− y) and

∂

∂K
f2(K, y) = e

θ̄F−1
LT

(1−y)−rT
1[0,FLT (ln( K

S0
))(y).

It holds that | ∂∂K fi(K, y)| ≤ eθ̄F
−1
LT

(1−y)−rT
, i = 1, 2. For the integrability of e

θ̄F−1
LT

(1−y)−rT

observe that∫ 1

0
e
θ̄F−1
LT

(1−y)−rT
dy =

∫ 1

0
e
θ̄F−1
LT

(z)−rT
dz

=

∫ ∞
−∞

eθ̄x−rT fLT (x) dx = e−rTMLT (θ̄) <∞,

23



where fLT denotes the density of LT which exists and is strictly positive on R due to our
assumptions on FLT . Hence, we can interchange differentiation and integration and obtain

∂`

∂K
(K) =

e−rT

MLT (θ̄)

∫ FLT (ln( K
S0

))

0
e
θ̄F−1
LT

(y) − eθ̄F
−1
LT

(1−y)
dy. (4.1)

Differentiating w.r.t. K once again yields

∂2

∂2K
`(K) =

e−rT

MLT (θ̄)

(
fLT

(
ln
(K
S0

))) 1

K

[
e
θ̄F−1
LT

(
FLT (ln( K

S0
))
)
− eθ̄F

−1
LT

(
1−FLT (ln( K

S0
))
)]
.

Thus, ∂2

∂2K
`(K) > 0 if and only if

θ̄F−1
LT

(
FLT

(
ln
(K
S0

)))
> θ̄F−1

LT

(
1− FLT

(
ln
(K
S0

)))
,

or equivalently, FLT (ln(KS0
)) < 1− FLT (ln(KS0

)), since θ̄ < 0.

For K∗ := S0e
F−1
LT

(0.5)
we obtain K < K∗ if and only if FLT (ln(KS0

)) < 1−FLT (ln(KS0
)).

Thus, ` is convex on [0,K∗). Analogously, we get ∂2

∂2K
`(K) ≤ 0 if and only if K ≥ K∗.

Thus, ` is concave on [K∗,∞) as consequence we therefore get that ` is increasing.

2. This follows directly from the fact that ∂
∂K `(K) ≥ 0, thus ∂

∂K c(X
Put
T ) ≤ ∂

∂K c(X
Put
T )

and

∂

∂K
c(XPut

T ) =
e−rT

MLT (θ̄)

∫ FLT (ln( K
S0

))

0
e
θ̄F−1
LT

(1−y)
dy ≥ 0

as can be seen from equation (4.1).

3. Note that the function `r(K) is decreasing in K if and only if for all compact intervals
[K1,K2] with K1 < K2 ∈ R+ we have maxK∈[K1,K2] `r(K) = `r(K1), or equivalently

K1 ∈ argmaxK∈[K1,K2] `r(K). Since c(XPut
T ) is an increasing function of K it holds that

for all K1 < K2 ∈ R+ the cost of the efficient put c(XPut
T ) is minimal at K1, or equivalently

for all K1 < K2 ∈ R+ we have

K1 ∈ argmin
K∈[K1,K2]

c(XPut
T ) = argmin

K∈[K1,K2]

(
c(XPut

T )− `(K)
)

= argmax
K∈[K1,K2]

( `(K)

c(XPut
T )

)
= argmax

K∈[K1,K2]
`r(K).

Also, for K1 < K2 ∈ R+ it yields that maxK∈[K1,K2] `r(K) = `r(K1), since `r is decreasing
in K. Thus, the assertion is proven. �

The latter result reveals that potential greater savings in buying an efficient option
with higher strike could be annihilated by the higher cost one has to pay for. The reverse
holds true for the relative efficiency loss.
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Remark 4.2

a) Total savings vs. higher distribution w.r.t ≤st

Consider an investor with budget B ∈ R+ who aims to buy a put option which generates
a payoff XPut

T at maturity T > 0. Further, consider put options XPut,i
T with strike

Ki > 0, i = 1, 2 and the efficient counterparts XPut,i
T with cost denoted by ci respectively

ci. We compute that

B =
B

ci
· ci =

B

ci

(
ci + (ci − ci)

)
=
B

ci
· ci +

B

ci
(ci − ci), i = 1, 2,

that is, B
ci

(ci − ci) = B · `r(Ki) denotes the total savings when buying B
ci

shares of
the efficient put option. By Theorem 4.1 we see that B`r(K2) ≤ B`r(K1) if K1 <
K2, i.e. the total savings decrease in the strike, when buying the associated efficient
put option. In other words, when choosing the put option with the higher strike K2

which generates a stochastically larger distribution one has to pass on the amount of
B · (`r(K1)− `r(K2)) ≥ 0 of potential savings.

b) Bounds for efficiency loss
The proof of Theorem 4.1 also establishes the following bound for the efficiency loss of
a long put option in bullish markets.

0 ≤ `(XPut
T ) ≤ S0Eθ̄[e

F−1
LT

(1−FLT (LT ))−rT − 1]. (4.2)

Efficiency loss in %

Allianz K1 = 92 K2 = 95 K3 = 98

NIG 24.01 20.89 18.09

VG 23.86 20.73 17.92

Normal 23.84 20.83 18.10

Volkswagen K1 = 130 K2 = 133 K3 = 135

NIG 54.94 51.33 48.95

VG 55.09 51.48 49.10

Normal 54.92 51.35 49.01

Table 9: Relative efficiency loss for a long put option on Allianz and Volkswagen S0 = 93.42, T = 23 for
Allianz and S0 = 130.55, T = 23 for Volkswagen; from Table 1.

Some concrete results on the relative efficiency loss for put options with different strikes
on the Allianz and Volkswagen stock can be found in Table 9. These show the decrease of
the relative efficiency loss in the strike K for Allianz and Volkswagen. We give analogous
results for the long call and the self-quanto call option. The results confirm that the
efficiency loss in case of the plain call and self-quanto call option is decreasing and the
relative efficiency loss is increasing in the strike, thus, has a reverse behavior as for the put
option. For these examples comparison of the relative efficiency loss are given in Tables 10
and 11. Although the payoff profile of a plain vanilla call considerably differs from the
profile of the self-quanto option, the monotonicity of the relative efficiency loss does not
exhibit substantial differences.
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Efficiency loss in %

E.ON K1 = 17.24 K2 = 19.48 K3 = 20.72

NIG 6.45 11.04 13.75

VG 6.83 11.66 14.53

Normal 6.32 10.61 13.15

ThyssenKrupp K1 = 16.5 K2 = 18.5 K3 = 20.5

NIG 5.90 8.74 11.74

VG 6.07 8.96 11.99

Normal 6.33 9.27 12.35

Table 10: Relative efficiency loss for a long call op-
tion on E.ON and ThyssenKrupp S0 =
17.48, T = 23 for E.ON and S0 = 16.73,
T = 23 for ThyssenKrupp.

Efficiency loss in %

E.ON K1 = 17.24 K2 = 19.48 K3 = 20.72

NIG 6.68 11.17 13.85

VG 7.05 11.80 14.67

Normal 6.53 10.72 13.20

ThyssenKrupp K1 = 16.5 K2 = 18.5 K3 = 20.5

NIG 6.17 8.91 11.86

VG 6.33 9.13 12.11

Normal 6.58 9.43 12.46

Table 11: Relative efficiency loss for a long
self-quanto call option on E.ON and
ThyssenKrupp. S0 = 17.48, T = 23
for E.ON and S0 = 16.73, T = 23 for
ThyssenKrupp.

Proposition 4.3 (Efficiency loss vs. relative efficiency loss for XCall
T ) Let (Lt)t≥0

be a Lévy process with continuous and strictly increasing distribution function FLT at
maturity T > 0. Let XCall

T be the payoff of a long call option with strike K > 0 and let θ̄
be an Esscher parameter.

1. The efficiency loss, as a function of the strike, `(K) := c(XCall
T )−c(XCall

T ) is decreasing
in K.

2. ∂
∂K c(X

Call
T ) ≤ ∂

∂K c(X
Call
T ) and the cost of the standard and efficient call are decreasing

in K.

3. The relative efficiency loss `r(K) := `(K)

c(XCall
T )

increases in K.

As for the put option, the latter findings immediately implies the following bound for the
efficiency loss of a long call option in bearish markets.

0 ≤ `(XCall
T ) ≤ S0Eθ̄[1− e

F−1
LT

(1−FLT (LT ))−rT
] . (4.3)

Remark 4.4 (monotonicity for self-quanto calls) The monotonicity results in The-
orem 4.1, Propositions 4.3 also hold true in the same way for the efficiency loss of
self-quanto calls. For details see Wolf (2014).

5 Delta hedging of cost-efficient strategies in Lévy models

In the following we discuss the delta hedge, i.e. the derivative of the cost of a strategy
with respect to the underlying for the cost-efficient payoff. Furthermore, concrete hedging
simulation schemes are provided for the standard and the cost-efficient put, long call
butterfly spread and self-quanto put in the NIG model. Our delta hedging simulation
schemes are inspired by the approach of Hull (1997, Section 14.5). Moreover, we demon-
strate that delta hedging of cost-efficient puts can be efficiently applied in practice and
that the obtained hedge errors are usually not greater, but often even smaller that those
of the corresponding vanilla puts. Also an alternative delta hedging approach based on a
rollover strategy is introduced. The delta hedging strategies obtained by this alternative
hedging technique have the potential to outperform the classical ones in this context.
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5.1 Introduction to Delta hedging

The Greek delta measures the exposure of a derivative to changes in the value of the
underlying. By delta hedging we mean the process of keeping the delta of a portfolio
which consists of related financial securities as close to zero as possible. Thus, by delta
hedging investors attempt to make their portfolio immune to small changes in the price
of the underlying asset in the next small interval of time. If the underlying asset is traded
sufficiently liquid in the market, delta hedging is a simple, but nevertheless fairly effective
way to cover a risky position and is therefore widely used in practice.

For puts XPut
T = (K − ST )+ and calls XCall

T = (ST −K)+ with strike K hedging of
cost-efficient options with maturity T has already been investigated in Hammerstein et al.
(2014). We first restate the main findings in this paper. Recall that the payoff function

ωPut(y) = (K − S0e
F−1
LT

(1−FLT (ln( y
S0

)))
)+ of the cost-efficient long put (and call as well)

is kept fixed within the trading period [0, T ]. For θ̄ < 0 the price at time t < T of a
cost-efficient long put with maturity T is given by

ct(X
Put
T ) = e−r(T−t)E

[
Z θ̄T−t

(
K − S0e

F−1
LT

(1−FLT
(

ln( y
S0

)+LT−t)
))

+

] ∣∣∣
y=St

. (5.1)

For θ̄ > 0 the price of the cost-efficient call option is given by

ct(X
Call
T ) = e−r(T−t)E

[
Z θ̄T−t

(
S0e

F−1
LT

(1−FLT
(

ln( y
S0

)+LT−t)
)
−K

)
+

] ∣∣∣
y=St

. (5.2)

Assuming strictly increasing distribution functions FLt the Greek delta of a cost-efficient

payoff XT with differentiable payoff-function wX such that ∂wX

∂St

(
Ste

LT−t
)
∈ L1(Z θ̄+1

T−tP ),

where θ̄ is an Esscher parameter, then is given for t < T by

∆X
t =

∂

∂St
ct(ω

X(ST )) = Eθ̄+1

[
∂ωX

∂St
(Ste

LT−t))

]
. (5.3)

For the basic vanilla payoffs the assumptions on wXT are fulfilled and lead to more concrete
formulas in the Lévy models considered in this paper; for example for cost-efficient puts
one gets

∆Put
t = S∗

∫ ∞
K∗

e
θ̄x+F−1

LT
(1−FLT (ln(

St
S0

)+x)) dLT (ln( StS0
) + x)

dLT (1− FLT (ln( StS0
) + x))

dLT−t(x) dx , (5.4)

where K∗ := ln(S0
St

) + F−1
LT

(1 − FLT (ln(KS0
))) and S∗ := S0

St·MLT−t (θ̄+1)
. In cases where

the payoff function ωX of the cost-efficient payoff XT is not explicitly given, as for all
options XT with non-monotone payoff function, the latter result becomes impractical.
In such circumstances we utilize the standard approximation ∆X = ∆c

∆S for the Greek
delta associated to a payoff XT , where ∆S indicates a small change in the stock price and
∆c expresses the corresponding change in the option price. In Figure 23 the relationship
between the cost-efficient self-quanto put price and the underlying stock price is illustrated
for Volkswagen in the NIG model at time t = 0. The Greek delta ∆sqP

0 of the cost-efficient
self-quanto put is the slope of the dotted line.
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Figure 23: The relationship between the cost-efficient long self-quanto put price with strike K = 135, and
the underlying stock price at initial time t = 0 for the Volkswagen stock in the NIG model,
T = 23 days. The vertical dotted line marks the actual initial value S0 = 130.55.

Using the representation of the NIG density we get from the formula for the cost of
the vanilla put option in (3.5). we obtain

∆Put
t =

∂c(XPut
T−t)

∂St
= −Ke

−r(T−t)

St
dNIG(α,β+θ̄,δ(T−t),µ(T−t))

(
ln
(
K
St

))
(5.5)

−FNIG(α,β+θ̄+1,δ(T−t),µ(T−t))
(
ln
(
K
St

))
+dNIG(α,β+θ̄+1,δ(T−t),µ(T−t))

(
ln
(
K
St

))
= −Ke

−r(T−t)

St
dNIG(α,β+θ̄,δ(T−t),µ(T−t))

(
ln
(
K
St

))
−FNIG(α,β+θ̄+1,δ(T−t),µ(T−t))

(
ln
(
K
St

))
+
Ke−r(T−t)

St
dNIG(α,β+θ̄,δ(T−t),µ(T−t))

(
ln
(
K
St

))
= −FNIG(α,β+θ̄+1,δ(T−t),µ(T−t))

(
ln
(
K
St

))
.

Example 5.1 (Simulation of Delta hedging) We investigate the following example:
A financial institution has sold for 40 871d a cost-efficient long put option on 10 000
shares of Volkswagen (cf Table 3 for prices of a cost-efficient put). We assume that this is
a non-dividend paying stock. The trading period is October 2012, thus S0 = 130.55d and
T = 23 days. Further, the exercising price is K = 135d and the riskless interest rate equals
the continuously compounded daily Euribor rate at October 1, 2012, r = 4.2027 · 10−6.
The hedge is supposed to be adjusted every three trading days, i.e. at October 1st, 4th,
8th, 11th and so on. Table 12 provide a delta hedging scheme for a cost-efficient long
put. Initially, the delta equals ∆Put

0 = 0.4082. This means that as soon as the option is
written, 532 905.10d must be borrowed to buy 4 082 shares at a price of S0. The financial
institution encounters interest cost of 6.72d for the first three trading days. If the delta
declines, shares are sold to maintain the hedge implying a reduced cumulative and interest
cost. Note, towards the end of the life of the option it is not necessary that the delta
of a cost-efficient long put approaches 1.0 when it is apparent that the option will be
exercised, since this is typically the case for a standard call only. The optimal long put
behaves like an modified call and its corresponding payoff function strongly distinguishes
from its vanilla counterpart (compare Figure 5).
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Days stock
price

∆Put
t shares pur-

chased/ sold
cost of shares pur-
chased/ sold

cumulative cost (in-
terest cost)

t = 1 130.55 0.4082 (+) 4082 +532 905.10 +532 905.10 (0.00)

t = 4 133.55 0.4765 (+) 683 + 91 009.75 +623 921.57 (6.72)

t = 7 133.58 0.4913 (+) 148 + 19 769.25 +643 698.70 (7.87)

t = 10 133.50 0.4971 (+) 58 + 7 743.00 +651 449.82 (8.21)

t = 13 134.60 0.545 (+) 479 + 64 473.40 +715 931.41 (9.03)

t = 16 138.00 0.6829 (+) 1379 +190 302.00 +906 242.44 (11.43)

t = 19 143.00 0.8197 (+) 1368 +195 624.00 +1 101 877.87 (13.89)

t = 22 149.84 0.8020 (−) 177 −26 521.68 +1 075 370.08 (9.04)

Table 12: Simulation of delta hedging for a cost-efficient long put on 10 000 Volkswagen shares in the NIG
model.

hedging cost: total cost at maturity = 1 075 379.00d

long position = −1 227 060.00d

payoff at maturity ωPut(ST ) = 181 069.50d

cost of hedging = 29 388.50d

On one hand, at maturity the total cost for the hedger adds up to 1 075 379d plus
the payoff ωPut(ST ) = 181 069.50d for the buyer of the optimal put. On the other hand,
by selling the long position on the Volkswagen stock the hedger earns 8 020 × 153d=
1 227 060d, thus the cost of the option to the writer equals 29 388.50dwhich is 11 482.50d
below the actual price of the option. The performance of the delta hedging gets steadily
better as the hedge is monitored more frequently.

The analogous simulation of delta hedging of a standard long put on 10 000 Volkswagen
stocks is presented in Table 13. Note that the option closes out of the money. The cost of
hedging of the standard long put sums up to 65 108.74d which is 14 955.26d below the
actual price (80 064d) of the option.

Days stock
price

∆Put
t shares pur-

chased/ sold
cost of shares pur-
chased/ sold

cumulative cost (inter-
est cost)

t = 1 130.55 −0.6050 (−) 6050 −789 827.50 −789 827.50 (0.00)

t = 4 133.55 −0.5320 (+) 730 +97 272.50 −692 545.04 (9.96)

t = 7 133.58 −0.5270 (+) 50 + 6 678.80 −685 857.51 (8.73)

t = 10 133.50 −0.5363 (−) 93 −12 415.50 −698 264.36 (8.65)

t = 13 134.60 −0.4988 (+) 375 +50 475.00 −647 780.56 (8.80)

t = 16 138.00 −0.3411 (+) 1577 +217 626.00 −430 146.39 (8.17)

t = 19 143.00 −0.1081 (+) 2330 +333 190.00 −96 950.97 (5.42)

t = 22 149.84 −0.0026 (+) 1055 +158 081.20 + 61 130.23 (1.22)

Table 13: Simulation of delta hedging for a long put on 10 000 Volkswagen shares in the NIG model.

hedging cost: total cost at maturity = 61 130.74d

short position = 3 978.00d

payoff at maturity ωPut(ST ) = 0.00d

cost of hedging = 65 108.74d

We see that delta hedging of cost-efficient options is as complex as for standard
options if the numerical techniques are present. From the hedgers point of view it is surely
beneficial to provide several (differently priced) delta-hedgeable options with identical
payoff distributions to its customers. Further hedging simulations of a long call butterfly
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spread and its cost-efficient counterpart for ThyssenKrupp and a delta hedging simulation
of a self-quanto put and its cost-efficient counterpart for Volkswagen in the NIG model
are given in Wolf (2014).

5.2 Alternative Delta hedging using cost-efficient strategies

While in Section 5.1 we used cost-efficient strategies at time t = 0 and kept the pay-
off profile fixed up to time T an alternative rollover strategy has been introduced in
Hammerstein et al. (2014). In this strategy the cost-efficient payoffs XT−t at time t are
hedged by a rollover strategy, i.e. an ∆-hedge which reproduces the evolution of the
efficient option prices c(XT−t). This can be regarded as an alternative way to hedge the
final payoff XT . We denote the corresponding hedging deltas by ∆ro

t .

For a cost-efficient put at time t with time to maturity T -t we have

XPut
T−t =

(
K − Ste

F−1
LT−t

(1−FLT−t (LT−t))
)

+

. (5.6)

We find
XPut
T−t → XPut

T and c
(
XPut
T−t
)
− c

(
XPut
T−t
)
→ 0 as t→ T .

For θ̄ < 0 we have for the alternative delta ∆roP
t of the long vanilla put XPut

T at time t

∆roP
t = − 1

MLT−t(θ̄)

∫ FLT−t

(
ln
(
K
St

))
0

e
θ̄F−1
LT−t

(1−y)+F−1
LT−t

(y)−r(T−t)
dy. (5.7)

For θ̄ > 0, the alternative delta ∆roC
t of the long vanilla call XCall

T at time t is

∆roC
t =

1

MLT−t(θ̄)

∫ 1−FLT−t

(
ln
(
K
St

))
0

e
θ̄F−1
LT−t

(y)+F−1
LT−t

(1−y)−r(T−t)
dy. (5.8)

Equations (5.7) and (5.8) imply that the alternative deltas ∆roP
t ,∆roC

t for the vanilla puts
and calls have the same sign as their classical counterparts ∆Put

t ,∆Call
t , which is in line

with the intuition. The absolute values of the rollover deltas for calls are smaller then the
classical deltas of calls while this is also the case typically for puts.

Comparison of deltas:

1) For a vanilla call and if θ̄ > 0, then for each t ∈ [0, T ): 0 ≤ ∆roC
t ≤ ∆Call

t . (5.9)

2) In the put case if θ̄ < 0 and FLT−t

(
ln
(
K
St

))
≤ q∗ where q∗ ∈

(
1
2 , 1
]

is the unique
positive root of

DP (q) =
1

MLT−t(θ̄)

∫ q

0
e
θ̄F−1
LT−t

(y)+F−1
LT−t

(y) − eθ̄F
−1
LT−t

(1−y)+F−1
LT−t

(y)
dy (5.10)

in [0, 1], then ∆Put
t ≤ ∆roP

t ≤ 0.

For details see Hammerstein et al. (2014). The proof makes use of monotonicity properties of

DC(q) =
1

MLT−t(θ̄)

∫ q

0
e
θ̄F−1
LT−t

(1−y)+F−1
LT−t

(1−y) − eθ̄F
−1
LT−t

(y)+F−1
LT−t

(1−y)
dy
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and

DP (q) =
1

MLT−t(θ̄)

∫ q

0
e
θ̄F−1
LT−t

(y)+F−1
LT−t

(y) − eθ̄F
−1
LT−t

(1−y)+F−1
LT−t

(y)
dy .

More precisely it holds under the conditions specified above

1) For θ̄ > 0, DC ≥ 0 in [0, 1], DC is increasing on
[
0, 1

2

]
and decreasing on

[
1
2 , 1
]
.

2) For θ̄ < 0, DP ≥ 0 in [0, q∗], DP is increasing on
[
0, 1

2

]
and decreasing on

[
1
2 , 1
]
.

As consequence we obtain for cost-efficient bull resp. bear spread options.

Corollary 5.2 Under the assumptions above we have:

a) For cost-efficient and vanilla bull spreads with strikes 0 < K1 < K2, holds:
If θ̄ > 0, then 0 ≤ ∆ro-bull

t ≤ ∆bull
t for FLT−t(ln(K1

St
)) > 1

2 and

0 ≤ ∆bull
t ≤ ∆ro-bull

t for FLT−t(ln(K2
St

)) < 1
2 .

For θ̄ < 0 we have ∆ro-bull
t = ∆bull

t .

b) In the bear spread case, we have ∆ro-bear
t = ∆bear

t for θ̄ > 0.
If θ̄ < 0, then ∆ro-bear

t ≤ ∆bear
t ≤ 0 for FLT−t(ln(K1

St
)) > 1

2 and

∆bear
t ≤ ∆ro-bear

t ≤ 0 for FLT−t(ln(K2
St

)) < 1
2 .

Proof:
a) Since the vanilla and cost-efficient bull spread coincide for θ̄ < 0, the equation
∆ro-bull
t = ∆bull

t is obvious. Let θ̄ > 0 and denote by Ci a call option with strike Ki, i = 1, 2,
then from the definition of a bull spread we easily arrive at

c(Xbull
T−t) = c(XC1

T−t)− c(X
C2
T−t) and c(Xbull

T−t) = c(XC1
T−t)− c(X

C2
T−t) .

The corresponding deltas are known and equal

∆bull
t = ∆C1

t −∆C2
t and ∆ro-bull

t = ∆roC1
t −∆roC2

t .

From equations (5.1) and (5.2) for T − t it is easily seen that both ∆Ci
t and ∆roCi

t are
decreasing functions in the strike Ki, i.e. ∆C1

t ≥ ∆C2
t and ∆roC1

t ≥ ∆roC2
t . Thus, we have

∆bull
t ≥ 0 and ∆ro-bull

t ≥ 0. Now, consider the difference of the deltas for cost-efficient and
vanilla bull spread which equals

∆bull
t −∆ro-bull

t = (∆C1
t −∆C2

t )− (∆roC1
t −∆roC2

t )

= (∆C1
t −∆roC1

t )− (∆C2
t −∆roC2

t )

= DC1(q1)− DC2(q2)

where qi = 1−FLT−t(ln(KiSt )). Since q1 > q2 we obtain, using the above stated monotonicity
properties of DC , DP ,

∆bull
t −∆ro-bull

t ≥ 0 for q1 <
1

2
and ∆bull

t −∆ro-bull
t ≤ 0 for q2 >

1

2
.

This proves the assertion.
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b) Again, the vanilla and cost-efficient bear spread coincide for θ̄ > 0, the equation
∆ro-bear
t = ∆bear

t is clear. Let θ̄ < 0 and denote Pi a put option with strike Ki, i = 1, 2,
then we obtain from the equations (5.1) and (5.2) that both ∆Pi

t and ∆roPi
t are decreasing

functions in the strike Ki. This implies completely analogous to the bull spread case that
∆bear
t = ∆P2

t −∆P1
t ≤ 0 and ∆ro-bear

t = ∆roP2
t −∆roP1

t ≤ 0.

Moreover, rearranging the difference yields

∆ro-bear
t −∆bear

t = (∆roP2
t −∆roP1

t )− (∆P2
t −∆P1

t )

= (∆roP2
t −∆P2

t )− (∆roP1
t −∆P1

t )

= DP1(q2)− DP2(q1)

where qi = FLT−t(ln(KSt ). Since q2 > q1 we obtain,as above that,

∆ro-bear
t −∆bear

t ≥ 0 for q2 <
1
2 and ∆ro-bear

t −∆bear
t ≤ 0 for q1 >

1
2 .

Thus, the statement is proven. �

5.3 Application to real market data

In the following we illustrate the hedging results by some examples for the put case. We
first consider the price evolution (c(XPut

T−t))0≤t≤T of a vanilla put and a cost-efficient put

ct(X
Put
T )0≤t≤T on the Allianz and the Volkswagen stock which are assumed to be issued

on October 1, 2012, and to mature on November 1, 2012. which are assumed to be issued
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Figure 24: Left: Stock price of Allianz and the prices of the associated vanilla resp. efficient put.
Right: Comparison of the deltas of the vanilla and the efficient put on Allianz.

on October 1, 2012, and to mature on November 1, 2012. Figure 24 shows the prices of the
Allianz stock and the corresponding puts with strike K = 98 within the aforementioned
time period, as well as the values of the deltas (∆Put

t )0≤t≤T resp. (∆Put
t )0≤t≤T associated

to both puts. Here, all calculations are based on the NIG model; the NIG parameters for
Allianz can be found in Table 1. As is obvious from Figure 24, the price of the cost-efficient
put evolves almost exactly in the opposite way as that of the vanilla put. This reflects the
fact that the payoff profiles of both puts are, in some sense, reversed to each other (see
Figure 5); the efficient put roughly behaves like a vanilla call. However, the efficient put
ends in the money although the price of the Allianz stock remains below the strike price
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at maturity because its payoff function already takes positive values for some ST < K.
The opposite behavior of the efficient and the vanilla put is also mirrored in the values of
the associated deltas. Because the values of the deltas at maturity are not relevant for
hedging purposes anymore, Figure 24 only shows the deltas up to one day to maturity,
that is, from October 1, 2012, to October 31, 2012. The results obtained for the other
two Lévy models (normal and VG) look quite similar and therefore are not plotted here
separately. Since the risk-neutral Esscher parameter roughly are of the same size for all
three models (see Table 1) and also the put prices and efficiency losses in Table 3 are
almost identical, one should not expect greater differences here.
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Figure 25: Left: Stock price of Volkswagen and the prices of the associated vanilla resp. efficient put.
Right: Comparison of the deltas of the vanilla and the efficient put on Volkswagen.

Figure 25 shows the evolution of the prices of the Volkswagen stock and the cost-
efficient and vanilla puts on it with strike K = 135 as well as the corresponding deltas.
Again, the results do not differ much between all three Lévy models under consideration,
thus we only show the plots for the VG case. The delta of the vanilla put in this model
can be derived analogously as above to be

∆Put
t =

∂c(XPut
T−t)

∂St
= −FVG(λ(T−t),α,β+θ̄+1,µ(T−t))

(
ln
(
K
St

))
.

Note that in this example we have ST > K, therefore the vanilla put expires worthless, and
the corresponding delta converges to zero, whereas the efficient put ends deep in the money.

However, computing the put deltas is only one side of the coin, market participants
will surely be more interested in how well the hedging strategies based on them work in
practice. The NIG and VG models are incomplete, so one cannot expect perfect hedging
there, but also the Samuelson model is only complete in theory. Since in reality just
discrete hedging is feasible, one will encounter hedge errors within this framework, too.
The magnitude of these errors is, of course, relevant for practical applications. Therefore,
we also calculate and compare the hedge errors that occur in delta hedging of the vanilla
and efficient puts on Allianz and Volkswagen considered before.

Delta hedging strategy The hedge portfolios are rebalanced daily, hence the portfolio
weights δt (amount of stock at time t) and bt (amount of money on the savings account at
t) just have to be calculated at the discrete times t = 0, 1, . . . , T − 1. For the vanilla puts
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δt = ∆Put
t , and in case of the efficient puts we have δt = ∆Put

t . Depending on the put type
under consideration, we analogously set ct = c(XPut

T−t) or ct = ct(X
Put
T ), respectively. At

the initial time t = 0, the hedge portfolio is set up with the weights δ0 and b0 = −δ0S0 +c0

since the writer of the put obtains c0 from the buyer, shorts |δ0| stocks and deposits all
income on his savings account. At time t > 0, the value of the portfolio before rebalancing
is δt−1St + erbt−1, and we define the corresponding hedge error by

et := ct − δt−1St − erbt−1,

so positive hedge errors mean losses and negative gains. At the end of the trading day,
the new weights δt and bt = ct − δtSt are chosen to ensure that the value of the portfolio
again exactly coincides with the present put price. Using the above definition of et, we
can alternatively represent bt in the form

bt = et + erbt−1 + St(δt−1 − δt).

This means that the hedge error is nothing but the amount of money one has to additionally
inject in or withdraw from the savings account after adapting the stock position to make
the value of the hedge portfolio congruent with the current put price.

Remark 5.3 In general, the size of the hedge error also depends on the rebalancing
frequency and the continuity properties of the payoff function. Our empirical results below
show that for standard and efficient puts a daily rebalancing of the portfolio already is
sufficient to get a fairly precise approximation to the current option prices. A thorough
theoretical analysis of the behavior of hedge errors resulting from delta and quadratic
hedging strategies in exponential Lévy models can be found in Brodén and Tankov (2011).
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Figure 26: Delta hedge errors of the efficient and vanilla puts on Allianz with strike K = 98 and Volkswagen
with strike K = 135.
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The upper graphs of Figure 26 display the hedge errors obtained from delta hedging
of the different puts on Allianz and Volkswagen. At the beginning, the hedge errors of the
efficient and the vanilla puts behave fairly similarly, but with time passing the distinctions
increase. This might again be explained by the different shapes of the payoff profiles and
the different signs of the corresponding deltas which lead to more pronounced differences
in the hedge errors as the time to maturity becomes smaller. The sums

∑22
t=0 |et| of the

absolute hedge errors for Allianz are 1.296 (efficient put) and 1.798 (vanilla put), for
Volkswagen we obtain 1.794 (efficient put) resp. 2.252 (vanilla put). This indicates that
cost-efficient options can be hedged at least as efficiently as standard options. However,
since the prices of vanilla and efficient puts can differ significantly over time, one should
not only look at the absolute hedge errors to confirm this assertion, but also take the
relative or percentage hedge errors ẽt := et

ct
into account. The values of ẽt for the Allianz

puts are shown in the lower graph of Figure 26 above. For the efficient put, we obtain∑22
t=0 |ẽt| = 0.299, and the corresponding value for the vanilla put is 0.438. Analogous

computations for the Volkswagen puts would not make much sense here because there
the vanilla put ends up deep out of the money, therefore the ẽt would tend to infinity as t
approaches T .
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Figure 27: Left: Stock price of Allianz and the prices of the associated vanilla resp. efficient puts.
Right: Comparison of the deltas ∆Put

t , ∆roP
t of the vanilla put on Allianz on the left.
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Figure 28: Left: Stock price of Volkswagen and the prices of the associated vanilla resp. efficient puts.
Right: Comparison of the deltas ∆Put

t , ∆roP
t of the vanilla put on Volkswagen on the left.

In the last part of this section, we compare the alternative hedging strategy for vanilla
puts based on the rollover-deltas ∆roP

t with its classical counterpart and investigate if it
can provide an efficient and more robust way to hedge the final put payoff (K − ST )+
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as expected from our comparison result. For this purpose, we again consider the vanilla
puts on Allianz and Volkswagen with the same strikes and maturity as before, but now
contrast the corresponding price processes (c(XPut

T−t))0≤t≤T with the series (c(XPut
T−t))0≤t≤T

of prices of efficient puts which are newly initiated at each day t. Figures 27 and 28 show
the stock and put price processes for Allianz in the NIG model and for Volkswagen in the
VG model, respectively, as well as a graphical comparison of the associated classical put
deltas ∆Put

t and rollover- deltas ∆roP
t . The condition of the comparison results in (5.9),

(5.10) is fulfilled for all 0 ≤ t ≤ T , the absolute values of the rollover-deltas are always
smaller than those of the classical deltas for both stocks.

This indicates that the hedging strategies based on the rollover-deltas may indeed
allow for a less expensive way to replicate the final put payoff. The advantage of lower
hedging costs might be annihilated by larger hedging errors though. Therefore one has to
take these into account before coming to a conclusion. Using some of the notations from
above, we define the hedge error for the alternative hedging strategy by

et := c(XPut
T−t)−∆roP

t St − erbt−1.

Observe that we do not use the price c(XPut
T−t) of the vanilla put at time t in the above

definition although we want to hedge its final payoff. Since the rollover-deltas ∆roP
t are

intended to replicate the prices c(XPut
T−t), and c(XPut

T−t) < c(XPut
T−t) for all 0 ≤ t < T

because θ̄ < 0 here, a comparison of the value of the hedge portfolio at time t with
c(XPut

T−t) would lead to a systematic overestimation of the hedge error. Moreover, we
only consider options of European type here. Therefore it is more important to look
at the hedge error at maturity which tells us how precise the hedging strategies can
reproduce the final obligation of the writer of the option. At time T , however, we have
c(XPut

T−T ) = c(XPut
T−T ) = (K − ST )+ as pointed out before, so there the hedge error is

defined without ambiguity.
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Figure 29: Left: Delta hedge errors of the vanilla put on Allianz with strike K = 98 in the NIG model.
Right: Delta hedge errors of the vanilla put on Volkswagen with strike K = 135 in the VG model.

We finally take a look at the hedge errors obtained from the two delta hedging
strategies for the vanilla puts on Allianz and Volkswagen which are visualized in Figure 29.
For Allianz, the hedge errors eT at maturity are −0.149 for the classical delta hedge and
−0.085 for the alternative rollover-delta hedge, and the sum

∑22
t=0 |et| of the absolute

hedge errors is 1.789 for the classical and 0.802 for the rollover hedge. The final hedge
errors eT for the Volkswagen put are zero for both hedging strategies (which is not so
surprising because the vanilla put expires worthless here), and the sums of the absolute
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hedge errors are 2.252 for the classical and 0.983 for the rollover hedge. This shows that
the latter can yield at least comparable and often even more accurate results than the
classical delta hedging strategy. In case of the Allianz put, the classical delta hedge tends
to superhedge the option, that is, the value of the hedge portfolio is always greater than
the option price. The rollover hedge does the same on most days, but produces smaller
absolute hedge errors. In view of the comparison results in (5.9), (5.10), we suppose that
analogous assertions will also hold for calls and probably also for more complex options.
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