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Abstract

Conditionally comonotonic risk vectors have been proved in Bernard

et al. (2017) to yield worst case dependence structures maximizing the risk

of the portfolio sum in partially speci�ed risk factor models. In this paper

we investigate the question how risk bounds depend on the speci�cation

of the pairwise copulas of the risk components Xi with the systemic risk

factor. As basic tool we introduce a new ordering based on sign changes

of the derivatives of copulas. This together with discretization by n-grids

and the theory of supermodular transfers allows us to derive concrete or-

dering criteria for the maximal risks.

Keywords products of copulas, supermodular ordering, risk bounds,

conditionally comonotonic distributions, mass transfer theory, elliptical

distributions, Archimedean copulas

1 Introduction

In recent years a lot of e�ort has been undertaken to base the evaluation of risk

bounds for the joint portfolio S =
∑d
i=1Xi of a risk vector X = (X1, . . . , Xd)

on reliable information on the marginals Fi of Xi and on the joint dependence

structure of X . Considering law-invariant convex risk measures Ψ it is well-

known that Ψ is consistent with respect to the convex order, i.e.

S1 ≤cx S2 =⇒ Ψ(S1) ≤ Ψ(S2) (1)

assuming generally that Si ∈ L1(P ) are integrable and de�ned on a non-atomic

measure space (Ω,A, P ) . Thus it is su�cient to determine (sharp) upper bounds

w.r.t. ≤cx in order to determine (sharp) upper risk bounds for
∑d
i=1Xi .

In the case that there is only marginal information but no further dependence

information on the risk vectorX available, an upper bound for the joint portfolio

S =
∑d
i=1Xi in convex order is given by the comonotonic sum Sc =

∑d
i=1X

c
i =∑d

i=1 F
−1
i (U) with U ∼ U(0, 1) uniformly distributed on (0, 1) ,

S ≤cx Sc . (2)

For many applications, the comonotonic upper bound Ψ(Sc) of the risk Ψ(S)

is too wide to be useful. Therefore, in recent years various approaches have
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been investigated to introduce additional dependence information and structural

information in order to tighten the risk bounds.

A promising approach in this direction, the partially speci�ed risk factor

models, have been introduced in Bernard et al. (2017). It is assumed in this

approach that the risk vector X is described by a factor model

Xi = fi(Z, εi) , 1 ≤ i ≤ d ,

for functions fi , where Z is a systemic risk factor and εi are individual risk

factors. It is assumed that the joint distributions Hi of (Xi, Z) , 1 ≤ i ≤ d ,

are known. The joint distributions of (εi) and Z however are not speci�ed,

in contrast to the usual independence assumption in factor models. This means

that both the copulas CXi,Z of (Xi, Z) and the marginal distributions ofXi ∼ Fi
and Z ∼ G are known, but the dependence structure of (X1, . . . , Xd)|Z = z is

not speci�ed.

The common systemic risk factor Z however can be used to reduce the depen-

dence uncertainty (DU). It has been shown in Bernard et al. (2017, Proposition

3.2) that in the partially speci�ed risk factor model a sharp upper bound in

convex order is given by the conditionally comonotonic sum, i.e. for U ∼ U(0, 1)

independent of Z holds

S ≤cx ScZ :=

d∑
i=1

F−1
Xi|Z(U) . (3)

Furthermore, ScZ is an improvement of the comonotonic sum Sc , i.e.

ScZ ≤cx Sc . (4)

In this paper, we assume that Z is a real-valued random variable. Then, the

upper bound ScZ depends only on the speci�ed marginals Fi and G and on the

bivariate copulas Ci = CXi,Z ∈ C2 , where Cd denotes the set of d-copulas. The
conditionally comonotonic sum ScZ thus solves the optimization problem

ScZ = max

{
d∑
i=1

Xi , Xi ∼ Fi , Z ∼ G , CXi,Z = Ci

}
, (5)

where the max is w.r.t. convex order ≤cx .

In the following, we investigate how the solution in (5) varies in dependence

on the constraints Ci . More generally, we aim to determine criteria for copula

classes Si ⊂ C2 of bivariate copulas and classes Fi of univariate distribution

functions such that a solution of the maximization problem

max

{
d∑
i=1

Xi , Xi ∼ Fi , Z ∼ G , CXi,Z ∈ Si
}

w.r.t. ≤cx (6)

exists and can be determined for all Fi ∈ Fi and for all continuous distribution
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functions G . Equivalently, maximization problem 6 can be formulated as

max

{
d∑
i=1

fi(Ui) , Ui ∼ U(0, 1) , Z ∼ G , CUi,Z ∈ Si
}

w.r.t. ≤cx (7)

for classes Si of copulas, transformation functions fi ∈ Gi = {F−1
i |Fi ∈ Fi} and

continuous distribution functions G .

After the problem formulation and motivation we introduce in Section 2 the

upper product of bivariate copulas which describes the dependence structure

of conditionally comonotonic random vectors. We develop several tools for ap-

proximation of these products. In particular, we deal with the approximation

by n-grid copulas. In Section 3 we reduce ordering properties of the portfolio

sums in partially speci�ed factor models by approximation to ordering proper-

ties on n-grid models. As a basic new tool, we introduce the ordering ≤∂∆ of

sign changes of the derivatives of the copulas. In our main result, Theorem 3.10,

we show that the ≤∂∆-ordering is su�cient for ordering upper products and

thus for ordering risk bounds in factor models. For the ordering of the n-grid

copulas we make essential use of the ordering results by mass transfer theory

as developed in Müller (2013). The partially quite technical proofs are deferred

to the appendix. In Section 4, we give an application to �nancial data. We im-

prove the standard DU interval for the Average Value-at-Risk of a portfolio of

European options on di�erent assets by up to 30% .

2 The upper product of bivariate copulas

A d-copula is a distribution function on the d-dimensional unit cube [0, 1]d with

uniform univariate margins. Due to Sklar's Theorem, the distribution of a ran-

dom vector can be separated in its univariate margins and a copula which com-

pletely describes the dependence structure of the random vector. Some speci�c

copulas that we need in the following are the copulas Md ∈ Cd , Πd ∈ Cd and

W 2 ∈ C2 which model comonotonicity, independence and countermonotonicity,

respectively. For an introduction to copulas, we refer to Nelsen (2006).

Since the univariate margins are �xed, a solution of (5) and (6) only depends

on the copula of (X1, . . . , Xd) . Varying the solution in dependence on the con-

straints Ci ∈ C2 motivates to introduce upper products of bivariate copulas

which are the copulas of conditionally comonotonic distributions.

For a family C = {Ct}t∈[0,1] ⊂ C2 of bivariate copulas and A,B ∈ C2 ,
Durante et al. (2007) de�ne the C-product A ∗C B : [0, 1]2 → [0, 1] of A and B

through

(A ∗C B)(u1, u2) :=

∫ 1

0

Ct

(
∂

∂t
A(u1, t),

∂

∂t
B(t, u2)

)
dt (8)

which again is a bivariate copula (see Durante et al. (2007, Proposition 3.1).
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In the case that Ct = Π2 for all t , where Π2 denotes the bivariate independence

copula, there is a correspondence of the C-product with Markov processes (see

Darsow et al. (1992, Theorem 3.2 and Theorem 3.3). For our purposes, we are

interested in a d-dimensional extension of the case that Ct = M2 for all t .

An extension of (8) to the case of d-fold products as needed in the partially

speci�ed factor model is given as follows.

Proposition 2.1 Let C = {Ct}t∈[0,1] ⊂ Cd be a family of d-copulas. Then, for

C1, . . . , Cd ∈ C2 , the C-product ∗C(C1, . . . , Cd) given through

∗C(C1, . . . , Cd)(u1, . . . , ud) :=

∫ 1

0

Ct
(
∂2C

1(u1, t), . . . , ∂2C
d(ud, t)

)
dt

for (u1, . . . , ud) ∈ [0, 1]d is a d-copula, where ∂2 denotes the �rst partial deriva-

tive with respect to the second argument.

Proof: Let Ui, Z ∼ U(0, 1) with CUi,Z = Ai . Then,∫ v

0

∂2A
i(ui, t) dt = Ai(ui, v) = P (Ui ≤ ui, Z ≤ v) =

∫ v

0

FUi|Z=t(ui) dt (9)

Since FUi|Z=t can be considered as a distribution function for all t , Lebesgue's

di�erential theorem shows that ∂2A
i(ui, t) = FUi|Z=t(ui) , and ∂2A

i( · , t) can

also be considered as a distribution function for almost all t . From Sklar's Theo-

rem it follows that Ct(∂2C
1( · , t), . . . , ∂2C

d( · , t)) de�nes a distribution function

for almost all t . Thus also the mixture ∗C(C1, . . . , Cd) de�nes a distribution

function. Since ∂2C
i(1, t) = 1 for all t , ∗C(C1, . . . , Cd) has uniform margins

and thus is a d-copula. �

Note that copulas are almost surely partially di�erentiable (see Nelsen (2006,

Theorem 2.2.7)) and the integral is de�ned as a Lebesgue-integral.

Remark 2.2 Let (X1, . . . , Xd, Z) be a (d+ 1)-dimensional random vector such

that FZ is continuous. Then, from Sklar's Theorem, the transformation formula

and Proposition 2.1 it follows that

(X1, . . . , Xd) ∼ ∗C(C1, . . . , Cd)(FX1 , . . . , FXd
) ,

where Ci = CXi,Z and C = {Ct}t∈(0,1) for Ct = CX1,...,Xd|Z=F−1
Z (t) being the

copula of the conditional vector (X1, . . . , Xd)|Z = F−1
Z (t) .

2.1 De�nition of the upper product and elementary prop-

erties

For application to risk bounds in partially speci�ed risk factor models we con-

sider the special case of the ∗C-product with C = Md := {Md}0≤t≤1 leading

to the notion of the upper product. Due to Proposition 2.1 the operator
∨

in

the following de�nition is well-de�ned.
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De�nition 2.3 (Upper product) The upper product
∨

of bivariate copulas

C1, . . . , Cd is de�ned through
∨d
i=1 C

i := C1∨· · ·∨Cd := ∗Md(C1, . . . , C
d) , i.e.

d∨
i=1

Ci(u1, . . . , ud) :=

∫ 1

0

min
1≤i≤d

{
∂2C

i(ui, t)
}
dt

for all (u1, . . . , ud) ∈ [0, 1]d .

The following proposition gives some elementary properties of the upper

product. Point (i) explains the choice of the name �upper� product. Point (ii)

explains that the upper product describes the case of conditionally comonotonic

copulas and thus gives the connection to risk bounds in partially speci�ed factor

models (see also Remark 2.5 (a)).

Proposition 2.4 For C = {Ct}t∈(0,1) ⊂ Cd , for A1, . . . , Ad, D ∈ C2 and for a

random vector (U1, . . . , Ud) on (Ω,A, P ) holds:

(i) ∗C(A1, . . . , Ad) ≤sm
∨d
i=1A

i .

(ii) U = (U1, . . . , Ud) ∼
∨d
i=1A

i ⇐⇒ ∃Z ∼ U(0, 1) and V = (V1, . . . , Vd)

such that V
d
= U , CVi,Z = Ai and V |Z = z is comonotonic for all z .

(iii) In general, the upper product is neither commutative nor associative.

(iv) Marginalization property: For J ⊂ (1, . . . , d) , the J-margin of
∨d
i=1Ai is

given by
∨
i∈J A

i .

(v)
∨d
i=1A

i = Md if and only if Ai = Aj for all i 6= j .

(vi) D ∨M2 = D and M2 ∨D = D∗ , where D∗(u, v) = D(v, u) .

(vii) D ∨W 2(u, v) = D(u, 1− v) and W 2 ∨D(u, v) = D∗(1− u, v) .

(viii) A1 ∨ · · · ∨Ad(u) = 1 −
∫

maxi{∂2A
i(ui, t)} dt , where F denotes the sur-

vival function of a distribution function F .

Proof: (i) follows from Ct ≤sm Md (see Tchen (1980, Theorem 5) or Rüschen-

dorf (1983, Corollary 3a)) and the closure of the supermodular ordering under

mixtures (see Shaked and Shanthikumar (2007, Theorem 9.A.9.(d))).

(ii): Assume that (U1, . . . , Ud) ∼
∨
iA

i . Consider bivariate random vectors

(Wi, Z) ∼ Ai . De�ne Vi := F−1
Wi|Z(ξ) for ξ ∼ U(0, 1) independent of Z .

Then, V |Z = z is comonotonic for all z by construction. Further, it holds that

Vi|Z = z ∼ FWi|Z=z . But this means that

P (Vi ≤ ui, Z ≤ z) =

∫ z

0

P (Vi ≤ ui|Z = t) dt

=

∫ z

0

FWi|Z=t(ui) dt = Ai(ui, z) .
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Further, we obtain

P (Vi ≤ ui ∀i) =

∫ 1

0

P (F−1
Wi|Z(U) ≤ ui ∀i |Z = t) dt

=

∫ 1

0

P (U ≤ FWi|Z(ui) ∀i |Z = t) dt

=

∫ 1

0

min
i

{
FWi|Z=t(ui)

}
dt (10)

=

∫ 1

0

min
i

{
∂2A

i(ui, t)
}
dt =

d∨
i=1

Ai(u1, . . . , ud) ,

where the fourth equality holds with an argument as in (9). Hence, it holds

V
d
= U . The reverse direction follows from the equations in (10).

(iii): From (vi) follows that
∨

is not commutative if D is not symmetric.

(iv): Let u ∈ [0, 1]d with ui = 1 for all i /∈ J . Then,

d∨
i=1

Ai (u) =

∫ 1

0

min
1≤i≤d

{
∂2A

i(ui, t)
}
dt

=

∫ 1

0

min
i∈J

{
∂2A

i(ui, t)
}
dt =

∨
i∈J

Ai(uJ)

where uJ := (ui1 , . . . , uik) for J = (i1, . . . , ik) .

(v): If Ai = Aj for all i 6= j , then

∨
i

Ai(u1, . . . , ud) =

∫ 1

0

min
i

{
∂2A

1(ui, t)
}
dt

=

∫ 1

0

∂2A
1(min

i
{ui}, t) dt = min

i
{ui}

for all (u1, . . . , ud) ∈ [0, 1]d .

Assume without loss of generality that A1 6= A2 . Due to the continuity of

copulas there exist (v1, v2) ∈ (0, 1)2 and ε > 0 such that ∂2A
1(u, t) > ∂2A2(u, t)

for all (u, t) ∈ Bε((v1, v2)) ⊂ (0, 1)2 . This yields for u1 = u2 = u that

M2(u1, u2) = u1 =

∫ 1

0

∂2A
1(u1, t) dt

>

∫ 1

0

min
{
∂2A

1(u1, t), ∂2A
2(u2, t)

}
dt

= A1 ∨A2(u1, u2) .

Then, the assertion follows from (iv).
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(vi) and (vii): For all (u1, u2) ∈ [0, 1]2 holds

D ∨M2(u1, u2) =

∫ 1

0

min
{
∂2D(u1, t),1{u2≥t}

}
dt

=

∫ u2

0

∂2D(u1, t) dt = D(u1, u2) .

The other cases follow similarly.

(viii): Due to (ii) assume that (U1, . . . , Ud) ∼
∨
iA

i and Z ∼ U(0, 1) such that

(U1, . . . , Ud)|Z = t is comonotonic for all t . Then, we obtain

A1 ∨ · · · ∨Ad(u) = P (Ui > ui ∀i)

=

∫ 1

0

P (Ui > ui ∀i |Z = t) dt

=

∫ 1

0

min
i
{P (Ui > ui|Z = t)} dt

= 1−
∫ 1

0

max {P (Ui ≤ ui|Z = t)} dt

= 1−
∫ 1

0

max
{
∂2A

i(ui, t)
}
dt ,

where the third equality holds due to the conditional comonotonicity. �

Remark 2.5 (a) From Proposition 2.4 (ii) and Sklar's Theorem it follows that

for Z ∼ U(0, 1) the upper product describes the dependence structure of the

solution of (5), i.e.

(F−1
Xi|Z(U))1≤i≤d ∼

d∨
i=1

Ci(F1, . . . , Fd) (11)

for Xi ∼ Fi and CXi,Z = Ci . More generally, applying the transformation

formula yields that (11) holds true for all Z with continuous distribution

function G = FZ .

(b) The continuity of G is decisive for (11). Assume for example that G follows

a Dirac distribution. Then, any arbitrary copula Ci describes the dependence

structure of (Xi, Z) , Z ∼ G , and hence, knowledge of CXi,Z is no infor-

mation. Thus, the worst case distribution in (5) must be given through the

comonotonic random vector Xc (which coincides with Xc
Z in this case). But

from Proposition 2.4 (v) we obtain that
∨
i C

i 6= Md if not all Ci coincide.

(c) Point (v) of Proposition 2.4 induces that the upper product should take

pointwise large values if the arguments are close to each other.

The de�nition of the upper product yields an invariance property under

Lebesgue-measure preserving transformations of the integrand.
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Let λ be the Lebesgue measure on B([0, 1]) . Denote by T the set of measur-

able transformations T : ((0, 1),B((0, 1)), λ)→ ((0, 1),B((0, 1)), λ) that are mea-

sure preserving, i.e. T ∗λ = λ , where T ∗λ(A) := λ(T−1(A)) for all A ∈ B((0, 1))

denotes the distribution of the image of λ under T . Let TP be the set of all

T ∈ T such that T is bijective and its inverse T−1 is measure preserving. Then,

elements of TP are denoted shu�es, see Durante and Sánchez (2012).

The following statement shows that the upper product is invariant under

joint shu�es of the factor variable.

Proposition 2.6 For all T ∈ TP and C ∈ C2 , the function ST (C) : [0, 1]2 →
[0, 1] given through

ST (C)(u, v) :=

∫ v

0

∂2C(u, T−1(t)) dt

is a bivariate copula. Furthermore, it holds that

d∨
i=1

Ci =

d∨
i=1

ST (Ci) .

Proof: For f1, f2 ∈ T de�ne the function Cf1,f2 : [0, 1]2 → [0, 1] through

Cf1,f2
(u1, u2) := λ(f−1

1 ([0, u1]) ∩ f−1
2 ([0, u2])) .

Let µC be the probability measure induced by C and denote by KC the corre-

sponding Markov kernel such that µC( ds, dt) = KC( ds, t) dt . Then, from the

disintegration theorem it follows that ∂2C(u, s) = KC([0, u], s) almost surely.

Denote by (g1, g2) ∈ T × T the measure-preserving decomposition of C accord-

ing to Kolesárová et al. (2008, Theorem 3.1) such that Cg1,g2
= C . Then, for

all (u, v) ∈ [0, 1]2 holds

ST (C)(u, v) =

∫
[0,v]

∂2C(u, T−1(t)) dλ(t) =

∫
[0,v]

∂2C(u, T−1(t)) dλT (t)

=

∫
T−1([0,v])

∂2C(u, s) dλ(s) =

∫
T−1([0,v])

KC([0, u], s) ds

= µC([0, u], T−1([0, v])) = (g1, g2) ∗ λ
(
[0, u] ∩ T−1([0, v])

)
= (g1, T ◦ g2) ∗ λ([0, u] ∩ [0, v])

= λ
(
g−1

1 ([0, u]) ∩ (T ◦ g2)−1([0, v])
)

= Cg1,T◦g2
(u, v) ,

where the second equality is true because T is λ-preserving, the third equality

holds by the transformation formula, the �fth equality holds due to the disinte-

gration theorem. The sixth equality holds because C = Cg1,g2
. From Kolesárová

et al. (2008, Theorem 3.1) we also get that Cg1,T◦g2
de�nes a copula because

T ◦ g2 is measure preserving. This proves the �rst statement.

Since ST (Ci) ∈ C2 for all i , the upper product
∨
ST (Ci) is well-de�ned.
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Hence, the second statement follows from

d∨
i=1

ST (Ci) (u1, . . . , ud) =

∫ 1

0

min
{
∂2C

i(ui, T
−1(t))

}
dt

=

∫
[0,1]

min
{
∂2C

i(ui, T
−1(t))

}
dλT (t)

=

∫
[0,1]

min
{
∂2C

i(ui, s)
}
dλ(s)

=

d∨
i=1

Ci (u1, . . . , ud)

for all (u1, . . . , ud) ∈ [0, 1]d . �

2.2 Approximation of upper products of copulas

The ordering properties developed in this paper depend strongly on the approx-

imation of the upper products by upper products of discrete grid copulas. In the

second part of this section we derive this kind of approximations. In the �rst

part of this section we give some continuity results.

The upper product of copulas depends on the partial derivatives of its ar-

guments. So, approximating the upper product also means approximating the

partial derivatives. As we show in the following example uniform convergence

of (Di
n)n ⊂ C2 is not su�cient for uniform convergence of (

∨
iD

i
n)n .

Example 2.7 Let (Tn)n∈N ⊂ TP be a shu�e-of-min approximation of Π2 , i.e.

STn
(M2) → Π2 pointwise (and thus from Arzelà�Ascoli's Theorem also uni-

form), see Mikusinski et al. (1992, Theorem 3.1). Since ST (Π2) = Π2 for all

T ∈ TP , it follows that(
lim
n→∞

STn
(M2)

)
∨
(

lim
n→∞

STn
(Π2)

)
= Π2 ∨Π2 = M2

6= Π2 = M2 ∨Π2

= lim
n→∞

(
STn

(M2) ∨ STn
(Π2)

)
,

where the last equality follows from Proposition 2.6. Thus uniform convergence

of (Di
n)n does not imply in general (uniform) convergence of the upper products.

To establish continuity properties of upper products we consider the follow-
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ing metrics on C2 (see Trutschnig (2011, Lemma 4)).

D1(A,B) : =

∫ 1

0

∫ 1

0

|∂2A(u, t)− ∂2B(u, t)| dt du , (12)

D2(A,B) : =

(∫ 1

0

∫ 1

0

|∂2A(u, t)− ∂2B(u, t)|2 dt du
) 1

2

,

D∞(A,B) : = sup
u∈[0,1]

∫ 1

0

|∂2A(u, t)− ∂2B(u, t)| dt .

Let dsup be the supremum metric on Cd . Then, the following continuity result
holds true.

Proposition 2.8 Let D be one of the metrics D1 , D2 , and D∞ . Then, the

upper product
∨

: (C2, D)d → (Cd, dsup) is continuous in each place and also

jointly continuous.

Proof: Since the metricsD1 , D2 , andD∞ are equivalent (see Trutschnig (2011,

Theorem)) assume WLOG that D = D∞ . Let Ein, E
i ∈ C2 be bivariate cop-

ulas for n ∈ N and 1 ≤ i ≤ d such that D∞(Ein, E
i) → 0 for all i . De�ne

f in(t) := ∂2E
i
n(ui, t) and f

i(t) := ∂2E
i(ui, t) . Then, f

i
n → f i in L1 . Using the

representation min(x, y) = 1
2 (x+ y − |x− y|) it holds for d = 2 that

2

∫
|min{f1

n, f
2
n} −min{f1, f2}| dt

=

∫
|(f1

n + f2
n)− (f1 + f2)− (|f1

n − f2
n| − |f1 − f2|)| dt

≤
∫
|f1
n − f1|+ |f2

n − f2|+
∣∣|f1

n − f2
n| − |f1 − f2|

∣∣ dt
≤ 2

(∫
|f1
n − f1| dt+

∫
|f2
n − f2| dt

)
→ 0 ,

and thus E1
n ∨ E2

n(u1, u2) → E1 ∨ E2(u1, u2) . If d > 2 , assume that g1
n :=

mini=1,...,d−1{f in} → mini=1,...,d−1{f i} =: g1 in L1 . With g2
n(t) := ∂2E

d
n(ud, t)

and g2(t) := ∂2E
d(ud, t) it holds as above that∫

|min{g1
n, g

2
n} −min{g1, g2}| dt→ 0 ,

hence
∨d
i=1E

i
n(u1, . . . , ud)→

∨d
i=1E

i(u1, . . . , ud) .

The assertion follows from Arzelà�Ascoli's Theorem with the equicontinuity

of the set of copulas. �

For n ∈ N and d ≥ 1 denote by

Gdn : =
{

( i1n , . . . ,
id
n )|ik ∈ {1, . . . , n}, k ∈ {1, . . . , d}

}
resp.

Gdn,0 : =
{

( i1n , . . . ,
id
n )|ik ∈ {0, . . . , n}, k ∈ {1, . . . , d}

}
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the (extended) uniform unit n-grid of dimension d with edge length 1
n .

Let C ∈ Cd be a d-copula with associated probability measure µC . Let βn
be the probability measure on [0, 1]d which distributes to each cell [u − 1

n , u] ,

u ∈ Gdn , the mass µC([u− 1
n , u]) uniformly to the cell. Let Cn be the cumulative

distribution function associated with βn , i.e.

Cn(u1, . . . , ud) = βn([0, u1]× · · · × [0, ud]) , u ∈ [0, 1]d .

Then, it holds that Cn is a copula for all n , Cn(u) = C(u) for all u ∈ Gdn,0 and

Cn → C uniformly. The sequence (Cn)n is called the checkerboard approximation

of C and Cn is the n-checkerboard copula of C .

Corollary 2.9 For 1 ≤ i ≤ d , let (Di
n)n be the checkerboard approximation of

Di ∈ C2 . Then, it holds
∨d
i=1D

i
n →

∨d
i=1D

i uniformly.

Proof: De�ning ∂-convergence as in Mikusi«ski and Taylor (2010, De�nition

3) it is shown in Trutschnig (2011, p. 695) that the topology of ∂-convergence

is strictly �ner than the topology of D1 . Then, the statement follows from

Proposition 2.8 with the ∂-convergence of the checkerboard approximations as

shown in Mikusi«ski and Taylor (2010, Theorem 5). �

Similar results hold also true for checkmin approximations and Bernstein

approximations of copulas (see Mikusi«ski and Taylor (2010, Theorem 6 and

Theorem 7))

In the following, we make essential use of discrete approximations of the

upper product by so-called grid copulas.

De�nition 2.10 For d ∈ N , a (signed) n-grid d-copula (shortly grid copula)

D is the (signed) distribution function of a (signed) probability distribution on

Gdn,0 with uniform univariate margins, i.e. for all i = 1, . . . , d holds D(u) = k
n ,

for all k = 0, . . . , n , if ui = k
n and uj = 1 for all j 6= i .

Denote by Cd,n (Csd,n) the set of all (signed) d-dimensional n-grid copulas.

An 1
n -scaled doubly stochastic matrix is de�ned as an n×n-matrix with non-

negative entries and row resp. column sums equal to 1
n . By an signed 1

n -scaled

doubly stochastic matrix we mean an 1
n -scaled doubly stochastic matrix where

also negative entries are allowed.

The following statement is immediate.

Lemma 2.11 There is a one-to-one correspondence between the set of (signed)

n-grid 2-copulas and the set of (signed) 1
n -scaled doubly stochastic matrices.

Note that also bivariate n-checkerboard copulas can be represented by 1
n -scaled

doubly stochastic matrices.

For a bivariate (signed) n-grid copula E ∈ C2,n (∈ Cs2,n) let e , de�ned through

e(u, v) := ∆1
n∆2

nE(u, v) , (u, v) ∈ G2
n ,

11



be its corresponding (signed) probability mass function, where ∆i
n denotes the

di�erence operator of length 1
n with respect to the i-th variable, i.e. ∆i

ng(u) :=

g(u)− g((u− 1
nei)∨ 0) for u ∈ Gdn,0 and ei being the unit vector with value 1 in

the i-th component. Further, de�ne its corresponding (signed) 1
n -scaled doubly

stochastic matrix (ekl)1≤k,l≤n by

ekl = e(1− k−1
n , ln ) . (13)

For every copula D ∈ Cd denote by Gn(D) its canonical n-grid copula de�ned

through

Gn(D)(u) := D( dnuen )

for u ∈ [0, 1]d , where d · e denotes the componentwise ceiling function. Further,

every Dn ∈ Cd,n (∈ Csd,n) can be extended to a (signed) distribution function D

on [0, 1]d via

D(u) := Dn( dnuen ) (14)

for u ∈ [0, 1]d .

De�ne the upper product
∨

: (C2,n)d → Cd,n for grid copulas D1
n, . . . , D

d
n ∈

C2,n through

d∨
i=1

Di
n(u1, . . . , ud) :=

n∑
k=1

min
1≤i≤d

{
∆2
nD

i(ui,
k
n )
}
.

A version for signed grid copulas is de�ned analogously.

We show that the upper product of bivariate copulas can be uniformly ap-

proximated by the upper product of the corresponding grid copula approxima-

tions in the extended version given by (14).

Proposition 2.12 (Grid copula approximation of the upper product)

Let D1, . . . , Dd ∈ C2 be copulas. Then

d∨
i=1

Gn(Di)
D−−−−→

d∨
i=1

Di for n→∞ .

Proof: We need to show that
∨d
i=1 Gn(Di)( dnuen ) →

∨d
i=1D

i(u) for all u ∈
[0, 1]d and n→∞ . De�ne

Dn(u1, . . . , ud) :=

n∑
k=1

min
1≤i≤d

{
∆2
nD

i(ui,
k
n )
}
.

12



It can be shown that Dn is a copula for all n . We need to show that

Dn(u)
n→∞−−−−→

d∨
i=1

Di(u) (15)

for all u = (u1, . . . , ud) ∈ [0, 1]d . Then, the statement follows from

d∨
i=1

Gn(Di)( dnuen ) = Dn( dnuen )→
d∨
i=1

Di(u)

for all u ∈ [0, 1]d with the equicontinuity of (Dn)n∈N . The proof of the conver-

gence in (15) is given in the appendix. �

3 Ordering risk bounds for
∑

Xi in partially spec-

i�ed factor models

To solve maximization problem (6) for suitable sets Si we aim to order solutions

of the maximization problem (5) w.r.t. ≤cx for all marginal distributions Fi
and in dependence on the constraints Ci . We �rst demonstrate that the usual

ordering conditions (like supermodular ordering) for the constraints Ci ∈ C2
do not imply ordering of the upper product

∨
i C

i . We are, therefore, led to

introduce a new type of orderings de�ned by the sign changes of the copula

derivatives. The main result in this paper, Theorem 3.10, states that these new

ordering conditions imply the desired ordering properties of the upper products.

It turns out that the supermodular ordering ≤sm of random vectors is su�-

cient for convex ordering of the sums independent of the marginal distributions

whereas the weaker concordance ordering ≤c may lack this property. For an

overview on stochastic orderings, see Müller and Stoyan (2002, Example 3.9.7)

and Shaked and Shanthikumar (2007). Hence, the aim is to �nd conditions on

the constraints Ci, Di ∈ C2 , 1 ≤ i ≤ d , such that

d∨
i=1

Ci ≤sm
d∨
i=1

Di (16)

because this implies

d∑
i=1

F−1
Xi|Z(U) ≤cx

d∑
i=1

F−1
Yi|Z(U)

for CXi,Z = Ci , CYi,Z = Di and for all Xi ∼ Yi and FZ continuous.

A necessary condition for (16) is the lower orthant ordering, i.e.∫ 1

0

min
i
{∂2C

i(ui, t)} dt ≤
∫ 1

0

min
i
{∂2D

i(ui, t)} dt ∀u ∈ [0, 1]d . (17)
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Ordering the constraints with respect to the supermodular ordering is not suf-

�cient to obtain (16) as the following example illustrates.

Example 3.1 (a) The upper product is not componentwise increasing w.r.t.

the supermodular ordering, i.e. A <sm B for A,B ∈ C2 does not imply

C∨A <sm C∨B for all C ∈ C2 , because C = A yields C∨A = M2 >sm C∨B
using Proposition 2.4(v).

(b) Consider the following bivariate 4-checkerboard copulas A1, A2, A3 ∈ C2
given through the 1

n -scaled doubly stochastic matrices

a1 =
1

16
·


0 2 0 2

1 1 1 1

1 1 1 1

2 0 2 0

 , a2 =
1

16
·


0 1 1 2

1 1 1 1

1 1 1 1

2 1 1 0

 ,

a3 =
1

16
·


0 0 2 2

1 1 1 1

1 1 1 1

2 2 0 0


as in (13). Then, it holds

Π2 <sm A1 <sm A2 <sm A3 . (18)

De�ne the functions hiu1,u2
: (0, 1)→ [−1, 1] for i = 1, 2, 3 by

h1
u1,u2

(t) : = ∂2A
1(u2, t)− ∂2Π2(u1, t)

= u2 + 1{t< 1
4}∪{

1
2<t<

3
4}

[u2 ∨ 1
4 − (u2 − 3

4 ) ∨ 0]

+ 1{ 1
4<t<

1
2}∪{

3
4<t}

[(u2 − 3
4 ) ∨ 0− u2 ∨ 1

4 ]− u1 ,

h2
u1,u2

(t) : = ∂2A
2(u2, t)− ∂2Π2(u1, t)

= u2 + 1{t< 1
4}

[u2 ∨ 1
4 − (u2 − 3

4 ) ∨ 0]

+ 1{t> 3
4}

[(u2 − 3
4 ) ∨ 0− u2 ∨ 1

4 ]− u1 ,

h3
u1,u2

(t) : = ∂2A
3(u2, t)− ∂2Π2(u1, t)

= u2 + 1{t< 1
2}

[u2 ∨ 1
4 − (u2 − 3

4 ) ∨ 0]

+ 1{t> 1
2}

[(u2 − 3
4 ) ∨ 0− u2 ∨ 1

4 ]− u1 .

We observe that h2
u1,u2

≺S h1
u1,u2

=S h3
u1,u2

for all u1, u2 ∈ [0, 1] , where

≺S denotes the Schur-ordering for functions. This implies with the Hardy-

14



Littlewood-Polya-Theorem (see Rüschendorf (2013, Theorem 3.21)) that

Π2 ∨Aj(u1, u2) =

∫
min{hju1,u2

(t), 0} dt+ u1

≥
∫

min{h2
u1,u2

(t), 0} dt+ u1

= Π2 ∨A2(u1, u2) ,

for j = 1, 3 and for all (u1, u2) ∈ [0, 1]2 . Further, the inequality is strict,

e.g. for u1 = u2 = 1
4 . Hence, we obtain

Π2 ∨A1 = Π2 ∨A3 >sm Π2 ∨A2 .

In consequence, the supermodular ordering of the constraints in (18) does

not yield ordering of the risk bounds in the natural way as described in

Remark 2.5(c).

Note that also a pointwise ordering of the integrands in (17) is not possible.

This demands to obtain ordering criteria for the whole integral. The identity∫ 1

0

min{h1(t), h2(t)} dt =

∫ 1

0

min{h2(t)− h1(t), 0} dt+

∫ 1

0

h2(t) dt

motivates the following lemma.

Lemma 3.2 Let f, g : [0, 1]→ R be integrable functions with the properties that

(i)
∫ 1

0
f dλ =

∫ 1

0
g dλ ,

(ii) f, g have no (−,+)-sign change,

(iii) g − f has no (−,+)-sign change.

Then it holds that∫ 1

0

f− dλ ≥
∫ 1

0

g− dλ and

∫ 1

0

f+ dλ ≤
∫ 1

0

g+ dλ , (19)

where h− resp. h+ denotes the negative resp. positive part of a function h .

Further, every change of the sign sequence in (ii) or in (iii) produces a change

of the inequality signs in (19).

Proof: Conditions (i) and (iii) provide that there exists a point s ∈ (0, 1) such

that f ≤ g on (0, s) and f ≥ g on (s, 1) . This implies f+ ≤ g+ on (0, s) and

f+ ≥ g+ on (s, 1) .

If g(s) < 0 , we obtain from condition (ii) that f+ = g+ = 0 on (0, s) , hence∫
f+ dλ ≥

∫
g+ dλ .

If g(s) ≥ 0 , then condition (ii) provides g+ = g and thus f+ = f on (s, 1) .

Hence, it follows that∫ 1

s

(f+ − g+) dλ =

∫ 1

s

(f − g) dλ =

∫ s

0

(g − f) dλ ≥
∫ s

0

(g+ − f+) dλ
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using Condition (i), and because f ≤ g on (0, s) the inequality holds true due

to

{(x, y)|0 ≤ x ≤ s, f(x) ≤ y ≤ g(x)} ⊃ {(x, y)|0 ≤ x ≤ s, f(x) ≤ y ≤ g(x), y ≥ 0} .

If the sign sequence in condition (iii) is (+,−) , then the statement follows

from the above one by changing the roles of f and g . The other cases follow by

symmetry. �

On the basis of the previous lemma, we introduce a new ordering on C2 and

show in the sequel that this ordering provides supermodular ordering criteria

for the upper product of bivariate copulas.

De�nition 3.3 (Sign sequence ordering of derivative di�erences)

Let D,E ∈ C2 be bivariate copulas. Consider for u, v ∈ [0, 1] the function

fu,v(t) := ∂2E(v, t)− ∂2D(u, t) for almost all t ∈ (0, 1) ,

1. De�ne that E is greater than D in the sign sequence relation of derivative

di�erences, written D ≤∂∆ E , if for all u, v ∈ (0, 1) holds that

fu,v has λ-almost surely no (−,+)-sign change . (20)

2. A family (Cα)α∈I ⊂ C2 , I ⊂ R , of bivariate copulas is increasing with

respect to the ≤∂∆-ordering if α1 < α2 , α1, α2 ∈ I , implies Cα1 ≤∂∆

Cα2 .

3. For copulas B1, . . . , Bd ∈ C2 the d-order relation B1 ≤∂∆ B2 ≤∂∆ · · · ≤∂∆

Bd is de�ned by Bi ≤∂∆ Bj for all 1 ≤ i < j ≤ d .

4. Analogously, de�ne the symmetric sign sequence relation of derivative dif-

ferences D ≤s∂∆ E if (20) holds for all u = v .

For bivariate grid copulas, the relations ≤∂∆ and ≤s∂∆ are de�ned in the

same way.

The ≤∂∆-relation is a relation that is strictly stronger than the ≤sm-relation.
It can easily be veri�ed that the reverse directions in the following result do not

hold.

Proposition 3.4 For D,E ∈ C2 holds that

(i) D ≤∂∆ E implies D ≤s∂∆ E ,

(ii) D ≤s∂∆ E implies D ≤sm E .

Proof: Statement (i) is trivial. Statement (ii) follows from

E(u, v)−D(u, v) =

∫ v

0

(∂2E(u, t)− ∂2D(u, t)) dt ≥ 0

because the integrand has no (−,+)-sign change in t and the integral vanishes

for v = 1 . �
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Example 3.5 (a) Elliptical copulas: Let (Xi, Z)
d
= RU (2)Ai ∼ EC2(0,Σi, φ) ,

i = 1, 2 , be elliptically distributed with ATi Ai = Σi =
( 1 ρi
ρi 1

)
. Assume that

the radial part R has a continuous distribution function. Then the copula

CXi,Z of (Xi, Z) is uniquely determined. Assume that −1 < ρ1 < ρ2 < 1 .

Then, from Cambanis et al. (1981, Corollary 5) we obtain

FXi|Z=z(xi) = FR±z

(
xi − ρiz√

1− ρ2
i

)
,

where R±z
d
= RzU

(1) , with Rz
d
=
(√
R2 − z2|Z = z

)
, does not depend on

ρi , U
(1) ∼ U({−1, 1}) , and Rz, U (1) are independent for all z . This implies

for all x1, x2 that

FX2|Z=z(x2)− FX1|Z=z(x1) ≥ 0

⇐⇒ x2 − ρ2z√
1− ρ2

2

≥ x1 − ρ1z√
1− ρ2

1

⇐⇒ z(ρ1

√
1− ρ2

2 − ρ2

√
1− ρ2

1) ≥
√

1− ρ2
2x1 −

√
1− ρ2

1x2

⇐⇒ z ≤
√

1− ρ2
2x1 −

√
1− ρ2

1x2

ρ1

√
1− ρ2

2 − ρ2

√
1− ρ2

1

,

where the last equivalence holds because ρ1 < ρ2 . Hence, we obtain

fu1,u2
(t) : = ∂2CX2,Z(u2, t)− ∂2CX1,Z(u1, t) ≥ 0

⇐⇒ t ≤ FR±
(√

1− ρ2
2F
−1
R±(u1)−

√
1− ρ2

1F
−1
R±(u2)

ρ1

√
1− ρ2

2 − ρ2

√
1− ρ2

1

)
,

where FR± = FXi = FZ is the distribution function of R± := RU (1) . But

this means that CX1,Z ≤∂∆ CX2,Z .

(b) Archimedean copulas: As shown in Nelsen (2006, Section 4.4) the Clay-

ton family (4.2.1), the Gumbel-Hougaard family (4.2.4), the Frank family

(4.2.5) and the families (4.2.2) and (4.2.19) in Nelsen (2006) are ordered

in concordance. Numerical results suggest that these families are even ≤∂∆-

increasing.

In the following, we show that the ≤∂∆-ordering of the constraints implies

the ≤sm-ordering of the upper product if we substitute the greatest or smallest

element in the ≤∂∆-increasing sequence of constraints, see Theorem 3.10. For

the proof, we approximate the upper product by grid-copulas and use the lower

orthant ordering result given in the following proposition.

Proposition 3.6 Let A1, . . . , Ad, B1, B2 ∈ C2 be bivariate copulas such that

Aj ≤∂∆ B1, B2 and B1 ≤s∂∆ B2 , 1 ≤ j ≤ d .
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Then, it holds that

A1 ∨ · · · ∨Ad ∨B1 ≥c A1 ∨ · · · ∨Ad ∨B2 . (21)

Proof: Each function f ijui,v(t) := ∂2B
j(v, t)−∂2A

i(ui, t) , i = 1, . . . , n , j = 1, 2 ,

has no (−,+)-sign change. Hence, also the pointwise de�ned functions gj :=

mini{f ijui,v} , j = 1, 2 , have no (−,+)-sign change. Assumption B1 ≤s∂∆
B2

ensures that the function g1 − g2 has no (+,−)-sign change. Since
∫
g1 dλ =∫

g2 dλ , we obtain from Lemma 3.2 that
∫
g1
− dλ ≥

∫
g2
− dλ , hence

A1 ∨ . . . ∨Ad ∨B1(u1, . . . , ud, v)

=

∫
min

{
0, ∂2B

1(v, t)−min
i
{∂2A

i(ui, t)}
}
dt+

∫
min
i
{∂2A

i(ui, t)} dt

=

∫
g1
−(t) dt+

∫
min
i
{∂2A

i(ui, t)} dt

≥
∫
g2
−(t) dt+

∫
min
i
{∂2A

i(ui, t)} dt

=

∫
min

{
0, ∂2B

2(v, t)−min
i
{∂2A

i(ui, t)}
}
dt+

∫
min
i
{∂2A

i(ui, t)} dt

= A1 ∨ . . . ∨Ad ∨B2(u1, . . . , ud, v) .

This holds for all (u1, . . . , ud, v) ∈ (0, 1)d+1 , and thus A1∨. . .∨Ad∨B1 ≥lo A1∨
. . .∨Ad∨B2 . The upper orthant ordering follows analogously with Proposition

2.4 (viii). �

To show the ≤sm-ordering of the upper product it su�ces to order the grid

copula approximations w.r.t. ≤sm as the following result states.

Proposition 3.7 Let D1, . . . , Dd, E1, . . . , Ed ∈ C2 be bivariate copulas. Then,

it holds

d∨
i=1

Gn(Di) ≤sm
d∨
i=1

Gn(Ei) ∀n ∈ N =⇒
d∨
i=1

Di ≤sm
d∨
i=1

Ei .

Proof: Proposition 2.12 yields
∨
iGn(Di)

D−→
∨
iD

i and
∨
iGn(Ei)

D−→
∨
Ei .

Since the supermodular ordering is closed with respect to weak convergence (see

Müller and Scarsini (2000, Theorem 3.5)), the statement follows. �

The grid-copula approximations de�ne distributions with �nite support. But

the supermodular ordering of distributions with �nite support has been charac-

terized by supermodular transfers in Müller (2013, Theorem 2.5.4). It is clear

that this result also holds for �nite signed distributions with �nite support:

Proposition 3.8 Let µ and ν be �nite signed distributions on Gdn . Then, µ ≤sm
ν if and only if there exist a �nite number m ∈ N0 , weights qi > 0 and points
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xi, yi ∈ Gdn , 1 ≤ i ≤ m, such that

µ+

m∑
i=1

ηi = ν , where ηi = qi
(

1
2δxi∧yi + 1

2δxi∨yi − ( 1
2δxi + 1

2δyi)
)

The signed measures ηi are called supermodular transfers and are indicated by

qi
(

1
2δxi + 1

2δyi
)
→ qi

(
1
2δxi∧yi + 1

2δxi∨yi
)
,

i.e. mass of size qi is transferred from xi and yi to xi ∧ yi and xi ∨ yi .

The following result states that (21) even holds w.r.t. the ≤sm-ordering in

the case of grid copulas. The technical proof is given in the appendix.

Proposition 3.9 Let A1, . . . , Ad, B1, B2 ∈ C2,n be bivariate grid copulas such

that

Aj ≤∂∆ Bl and B1 ≤s∂∆ B2 , 1 ≤ j ≤ d , l = 1, 2 .

Then, there exists a �nite sequence (Ei)0≤i≤m of signed probability distribution

functions on G2
n such that E0 = B1 , Em = B2 and

(i) for all 0 ≤ i ≤ m− 1 , PEi+1 − PEi is a simple supermodular transfer,

(ii) Ei ≤s∂∆ Ei+1 for all 0 ≤ i ≤ m− 1 ,

(iii) Aj ≤∂∆ Ei f.a. 1 ≤ j ≤ d and 0 ≤ i ≤ m, and

(iv) A1 ∨ · · · ∨Ad ∨ Ei ≥sm A1 ∨ · · · ∨Ad ∨ Ei+1 for all 0 ≤ i ≤ m− 1 .

It follows that

(v) A1 ∨ · · · ∨Ad ∨B1 ≥sm A1 ∨ · · · ∨Ad ∨B2 .

Now, we can formulate the main result of this article which provides some

important properties of the ≤∂∆-ordering. In contrast to the ≤sm-ordering on C2
(see Example 3.1(b)), the ≤∂∆-ordering on C2 is su�cient for the supermodular

ordering of the upper product.

Theorem 3.10 Let A1, . . . , Ad, B1, B2 ∈ C2 be bivariate copulas such that ei-

ther

(i) Aj ≤∂∆ Bi and B1 ≤s∂∆ B2 , 1 ≤ j ≤ d , i = 1, 2 , or

(ii) Aj ≥∂∆ Bi and B1 ≥s∂∆ B2 , 1 ≤ j ≤ d , i = 1, 2 .

Then, it holds that

A1 ∨ · · · ∨Ad ∨B1 ≥sm A1 ∨ · · · ∨Ad ∨B2 . (22)
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Proof: Assume that (i) holds. Then, we obtain Gn(Aj) ≤∂∆ Gn(Bi) and

Gn(B1) ≤s∂∆ Gn(B2) for all 1 ≤ j ≤ d , i = 1, 2 and n ∈ N . Thus, the
statement follows from Proposition 3.9 (v) and Proposition 3.7.

If (ii) holds, then the statement follows from (i) and Proposition 2.6 with

T (t) = 1− t . �

It can be shown analogously that (22) can be generalized to

A1 ∨ · · · ∨Ad ∨B1 ∨ · · · ∨B1︸ ︷︷ ︸
δ-times

≥sm A1 ∨ · · · ∨Ad ∨B2 ∨ · · · ∨B2︸ ︷︷ ︸
δ-times

(23)

for every δ ∈ N0 . Applying (23) repeatedly, we obtain together with Proposition

3.4 the following corollary.

Corollary 3.11 Let C1, . . . , Cd ∈ C2 be bivariate copulas such that C1 ≤∂∆

· · · ≤∂∆ Cd . Then, for 1 ≤ d1 ≤ d2 ≤ d holds

d∨
i=1

Ci ≤sm
d∨
i=1

Di

where Di := Cd1 for 1 ≤ i ≤ d1 , D
i := Ci for d1 < i < d2 and Di := Cd2 for

d2 ≤ i ≤ d .

Remark 3.12 (a) Theorem 3.10 and Corollary 3.11 indicate: The closer the

elements are together w.r.t the ≤∂∆-ordering the greater is their upper prod-

uct w.r.t. the supermodular ordering. Note that we only modify the most

extreme elements keeping the others �xed.

(b) Corollary 3.11 is a generalization of Ansari and Rüschendorf (2016, Corol-

lary 3 and Proposition 6) to general classes of copulas and to the supermod-

ular ordering.

Coming back to the comparison of solutions of (5) w.r.t. the constraints Ci

we get the following result.

Corollary 3.13 Let W1, . . . ,Wd, Z be real random variables such that the se-

quence of copulas (CWi,Z)1≤i≤d is ≤∂∆-increasing. Assume that Z has a con-

tinuous distribution function. Let Xi := gi(Wi) for gi increasing. Then, for

1 ≤ d1 ≤ d2 ≤ d holds

d∑
i=1

Xi ≤cx Y1 +

d2−1∑
i=d1+1

gi(ξi) + Y3 , (24)

where Y1 =
∑d1

i=1 gi(F
−1
Wd1
|Z(U)) , ξi = F−1

Wi|Z(U) for i = d1 + 1, . . . , d2 − 1 , and

Y3 =
∑d
i=d2

gi(F
−1
Wd2
|Z(U)) , U ∼ U(0, 1) independent of Z .
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If d1 = d2 , then (24) simpli�es to

d∑
i=1

Xi ≤cx Y1 + Y3 .

Proof: This follows from Remark 2.2, Proposition 2.4 (i) and Corollary 3.11.

�

Remark 3.14 (a) In Corollary 3.13, both Y1 and Y3 are comonotonic sums,

but Y1 + Y3 is only conditionally comonotonic.

(b) Let (Cγ)γ∈R ⊂ C2 be a ≤∂∆-increasing family of bivariate copulas. Denote

by F1 the set of all univariate distribution functions and by F↑ the set

of all increasing functions. As a consequence of Corollary 3.13 we obtain

solutions of maximization problem (6) resp. (7) for Fi = F1 resp. Gi = F↑
for all continuous G if we choose the sets Si = {Cγ |γ ≤ a} for i ≤ d1 ,

Si = {Cγ |γ = bi} for d1 < i < d2 and Si = {Cγ |γ ≥ c} for i ≥ d2 where

1 ≤ d1 ≤ d2 ≤ d and a ≤ b1 ≤ . . . ≤ bd2−d1−1 ≤ c .

4 Application

As application we consider a portfolio Σt :=
∑6
i=1 Y

i
t of calls and puts on

di�erent assets. More speci�cally, let Y it := (Sit − Ki)+ be calls for i = 1, 2, 3

and Y it := (Ki − Sit)+ be puts for i = 4, 5, 6 , on assets Sit for di�erent strikes

Ki > 0 , where (Sit)t≥0 denotes the asset price process of Allianz (i = 1), Daimler

(i = 2), Siemens (i = 3), Deutsche Bank (i = 4), SAP (i = 5) resp. Adidas

(i = 6). For times to maturity T = 15 trading days resp. T = 50 trading days

resp. T = 100 trading days , we aim to get improved risk bounds (w.r.t the

standard comonotonic risk bound) for ΣT applying Corollary 3.13 where daily

historical data are given. Denote by (S0
t )t≥0 the risk factor process which is the

DAX in our case.

We model St = (S0
t , . . . , S

6
t ) by an exponential process St = S0 exp(Lt) , t in

trading days, under the following assumptions.

Let 0 = t0 < t1 < t2 < . . . with ti − ti−1 = T for all i .

(I) The component processes (Lit)t≥0 are Lévy processes for all i .

(II) The time T -increments (ξ0
k, ξ

i
k) := (L0

tk
− L0

tk−1
, Litk − L

i
tk−1

) , 1 ≤ k ≤ n

are identically distributed in k and independent in k for all 1 ≤ i ≤ 6 .

(III) There exists a ≤∂∆-increasing family (Cα)α∈I of bivariate copulas such

that for all 1 ≤ i ≤ 6 , Cξi1,ξ0
1
∈ {Cα|α ∈ Ii} for some intervals Ii ⊂ I

(which are speci�ed later).

Assumptions (I) � (III) are consistent. Assumption (I) is a standard assump-

tion on the log-increments of (Sit)t≥0 while Assumption (II) generalizes the de-

pendence assumptions for multivariate Lévy models because neither multivari-

ate stationarity nor independence for all increments is claimed. Assumption (III)
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describes the dependence structure of (ξi1, ξ
0
1) by subfamily of a ≤∂∆-increasing

family of copulas (see Example 3.5) which can be chosen arbitrarily.

For the estimation of the distribution of SiT , we distinguish between the

following two speci�cations of Assumption (I):

1. (a) Each (Sit)t≥0 , i = 0, . . . , 7 , follows a geometric Brownian motion, i.e.

Sit = Si0 exp(Lit) , Lit = σiB
i
t + (µi − σ2

i

2 )t , t ≥ 0

where (Bit)t≥0 is a Brownian motion, Si0 > 0 , σi > 0 , µi ∈ R .

(b) Each (Sit)t≥0 , i = 0, . . . , 7 , follows an exponential NIG process, i.e.

Sit = Si0 exp(Lit) t ≥ 0 ,

where each (Lit)t≥0 is an NIG process, Si0 > 0 .

For the estimation of upper bounds for the time T -increments (ξ1
1 , . . . , ξ

7
1)

in supermodular ordering, we specify Assumption (III) as follows:

3. For �xed ν ∈ (2,∞] , the dependence structure of (ξi1, ξ
0
1) is described by

a family (Cρν )ρ∈Ii of t-copulas with unknown correlation parameter ρ ∈ Ii
and ν degrees of freedom for some intervals Ii ⊂ [−1, 1] (which we specify

later), i.e. Cξi1,ξ0
1
∈ (Cρν )ρ∈Ii for all 1 ≤ i ≤ 6 .

For the estimation of the intervals Ii , we use the i.i.d. assumption in As-

sumption (II) to determine (one-sided) con�dence intervals for the correlation

of (ξi1, ξ
0
1) from historical log-return data.

Compared to the basic assumptions underlying multivariate exponential

Lévy models the above assumptions are quite weak. The dependence struc-

ture among the components is not uniquely determined. For larger values of T

(which we consider in this application), the set of historical data is too small to

determine the unknown correlation parameter reliably. Thus, we need to solve

maximization problem (6) instead of maximization problem (5).

Such solutions lead to improved risk bounds for the portfolio ΣT given the

observed starting values (S1
0 , . . . , S

7
0) and constraints Si .We speak aboutModel

Gauss if ST is modeled by Assumptions (1a),(II) and (3) and about Model NIG

if ST is modeled by Assumptions (1b),(II) and (3).

The normal inverse Gaussian (NIG) distribution has density

dNIG(α,β,δ,ν)(x) =
αδ

ν

K1(α
√
δ2 + (x− ν)2)√

δ2 + (x− ν)2
eδ
√
α2−β2+β(x−ν) , x ∈ R

and convolution property for the characteristic functions given through

ϕNIG(α,β,δ,ν)(ts) = ϕNIG(α,β,tδ,tν)(s), t > 0 , s ∈ R

where K1 denotes the modi�ed Bessel function of third kind of order 1 .
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i = 0 i = 1 i = 2 i = 3

Ki 180 60 105
Si0 12540.5 193.5399 65.12 108.3

µi −0.0001370 −0.0001442 −0.0000121 −0.0001247
σi 0.0143478 0.0210187 0.0221977 0.0187162
αi 50.7164 26.015486 32.6959583 42.06498
βi 4.9547093 1.0846819 1.0591878 −0.6504885
δi 0.0103575 0.0110434 0.0157737 0.0131712
νi −0.0012570 −0.0008272 −0.0007756 −0.0000870

i = 4 i = 5 i = 6

Ki 13 90 230
Si0 11.5740 86.5199 212.1999
µi 0.0009175 −0.0003305 −0.0005275
σi 0.0286615 0.0150850 0.0187999
αi 25.37659 57.057185 44.6539402
βi 0.3022331 4.0909649 −3.2505242
δi 0.0202047 0.0120536 0.0151163
νi 0.0002623 −0.0013079 0.0004002

Table 1: Strikes Ki (chosen), initial values Si0 = si2540 (observed) and param-
eters µi , σi , αi , βi , δi , νi describing the daily log-increments of (Sit)t under
Assumption (1a) resp. (1b) (estimated).

Note that for ν →∞ the t-copula passes into a Gaussian copula. In contrast

to Gaussian copulas, t-copulas exhibit tail-dependencies with equal coe�cients

of lower resp. upper tail dependence

λl = λu = 2tν+1

(
−
√
ν + 1

√
1− ρ/

√
1 + ρ

)
(25)

where tν denotes the standard univariate Student's t-distribution function with

ν degrees of freedom (see Demarta and McNeil (2005)).

Application to real market data

As data set, we take the daily adjusted close data from yahoo �nance from

23/04/2008 to 20/04/2018. It contains the values of 2540 trading days for 7 as-

sets (with some missing data) which we denote by (s0
k, s

1
k, . . . , s

6
k)1≤k≤2540 , see

Figure 1. More precisely, (s0
k)k are the adjusted close data of �DAX PERFORMANCE-

INDEX (GDAXI)�, (s1
k)k of �Allianz SE (ALV.DE)�, (s2

k)k of �Daimler AG

(DAI.DE)�, (s3
k)k of �Siemens Aktiengesellschaft (SIE.DE)�, (s4

k)k of �Deutsche

Bank Aktiengesellschaft (DBK.DE)�, (s5
k)k from �SAP SE (SAP.DE)� and (s6

k)k
of �adidas AG (ADS.DE)�.

Denote by (xik)k , x
i
k := log si2540−tk−1

− log si2540−tk , the historical time T -

log-returns of the i-th asset (see Figure 1 in the case T = 1). Hence, for T = 15

resp. T = 50 resp. T = 100 , the sequence (xik, x
0
k)k consists of 169 resp. 50 resp.
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Figure 1: Daily adjusted close data resp. the log-returns of the underlying as-
sets from 23/04/2008 to 20/04/2018; x-axis: n-th trading day beginning with
23/04/2008; y-axis: adjusted closing price resp. log-return of the underlying as-
set. 24



i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

ρ̂15
i 0.8225 0.8808 0.8573 0.7595 0.7193 0.6466
ρ15
i

0.7767 0.8487 0.8196 0.7000 0.6519 0.5661

ρ̂50
i 0.8308 0.8827 0.8264 0.6445 0.7545 0.6246
ρ50
i

0.7401 0.8171 0.7338 0.4823 0.6312 0.4563

ρ̂100
i 0.8437 0.9317 0.8217 0.7374 0.7320 0.5716
ρ100
i

0.7081 0.8671 0.6703 0.5328 0.5244 0.2905

Table 2: Empirical Pearson correlation ρ̂Ti between the T -days log-returns of
the i-th underlying asset and the DAX estimated from log-return data (xik, x

0
k)k

over T days for T = 15 , T = 50 resp. T = 100 trading days; ρT
i
denotes the

lower bound of the 95%-con�dence interval for ρ̂Ti under a bivariate normality
assumption.

25 pairs of data. Table 2 shows the empirical correlation ρ̂Ti of (xik, x
0
k)k (which

estimates the correlation of (ξi1, ξ
i
0)) and a lower bound ρT

i
for the one-sided

95%-con�dence interval for ρ̂Ti . This justi�es a determination of Ii := [ρT
i
, 1]

for the unspeci�ed intervals Ii in Assumption (3).

Since Y iT is an increasing resp. decreasing transformation of SiT we can choose

CY i
T ,S

0
T

= CSi
T ,S

0
T

= Cξi1,ξ0
1

for i = 1, 2, 3 resp.

CY i
T ,S

0
T

= C−Si
T ,S

0
T

= C−ξi1,ξ0
1

for i = 4, 5, 6 .

Note that the copula CY i
T ,S

0
T
may not be uniquely determined. This leads to the

sets of constraints Si for CY i
T ,S

0
T
given by

Si = {Cρν |ρ ≥ ρT } for i = 1, 2, 3 , resp.

Si = {Cρν |ρ ≤ ρT } for i = 4, 5, 6 ,

where ρT := mini=1,2,3 ρ
T
i
and ρT := maxi=4,5,6−ρTi .

Now, Corollary 3.13 and (2) yield

ΣT ≤cx
6∑
i=1

F−1
Y i
T

(fi(Z, ε)) =: Σc
T,ρT ,ρT ,ν

≤cx
6∑
i=1

F−1
Y i
T

(U) =: ΣcT

(26)

for U ∼ U(0, 1) where

F−1
Y i
T

(z) =


(
Si0 exp

(
F−1
Li

T

(z)
)
−Ki

)
+

for i ∈ {1, 2, 3} ,(
Ki − Si0 exp

(
F−1
Li

T

(1− z)
))

+
for i ∈ {4, 5, 6}
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Figure 2: Histograms of the daily log-returns and �tted Gaussian (dashed) and
NIG (solid) density with estimated parameters given in Table 1.
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Figure 3: Plots of the empirical copulas between the T -day log-returns of each
asset and the DAX for T = 15 trading days.
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are the quantile functions of the calls resp. puts Y iT . Further, (fi(Z, ε))i given

by

fi(Z, ε) := f(ηi, ν, Z, ε) := tν

ηi t−1
ν (Z) +

√
(ν + t−1

ν (Z)2)(1− η2
i )

ν + 1
t−1
ν+1(ε)


with ηi = ρT if i = 1, 2, 3 and ηi = ρT if i = 4, 5, 6 is the conditionally on

Z comonotonic random vector for random variables Z, ε ∼ U(0, 1) that are

independent. Note that the distribution function of (f(ρ, ν, Z, ε), Z) is the t-

copula with correlation ρ and ν degrees of freedom (see Aas et al. (2009)).

Further, the marginalization property of elliptical distributions implies that

(f(ρ1, ν, Z, ε), f(ρ2, ν, Z, ε)) follows a t-copula with correlation parameter

M(ρ1, ρ2) := ρ1ρ2 +
√

1− ρ2
1

√
1− ρ2

2

and ν degrees of freedom. Hence, (fi(Z, ε), fj(Z, ε)) is comonotonic if 1 ≤ i, j ≤ 3

or 4 ≤ i, j ≤ 6 (cp. Remark 3.14(a)). Otherwise, it follows a t-copula with

correlation M(ρT , ρT ) .

As a consequence of (1) and (26) we obtain

Ψ(ΣT ) ≤ Ψ(ΣcT,ρT ,ρT ,ν) ≤ Ψ(ΣcT ) . (27)

More speci�cally, let Ψ be the Average Value-at-Risk at level λ (also known

as Expected Shortfall) de�ned by

AVaRλ(S) :=
1

1− λ

∫ 1

λ

F−1
S (t) dt , λ ∈ (0, 1) .

It is well-known that AVaRλ is a convex, law-invariant risk measure. In Tables

3, (4) resp. (5), we compare the improved risk bound AVaRλ(ΣcT,Z,(ηi),ν) given

by (27) with the standard comonotonic bound AVaRλ(ΣcT ) in Models Gauss

and NIG (7million simulated points) for di�erent λ and ν and for T = 15 resp.

T = 50 resp. T = 100 trading days.

We observe that both the improved and the standard portfolio risk bounds

AVaRλ(Σc
T,ρT ,ρT ,ν

) resp. AVaRλ(ΣcT ) depend for high levels λ on the model for

the univariate margins of the summands and their tails. The fatter tails of the

NIG distribution yield higher risks. But for larger times T to maturity, we see

that the di�erences are less signi�cant. This can be explained by the fact that

the parameters δ′i = Tδi and α
′
i = αi (see Table 1) of L

i
T are quite large for large

T and thus FLi
T
is approximately normal with variance δ′i/α

′
i (see Barndor�-

Nielsen (1978, p.153)). In our application, Model NIG �ts the data better than

Model Gauss (see Figure 2). In contrast, for levels λ ≤ 0.95 the results in this

application nearly coincide for Models Gauss and NIG.

Further, we observe that the improvement of the risk bounds depends on
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Model Gauss AVaRλ

(
Σc15,ρ15,ρ15,ν

)
AVaRλ(Σc15)

E[Σ15] = 51.5 ν = 3 ν = 10 ν =∞

λ = 0.5 76.3 (29.0%) 76.7 (28.1%) 76.8 (27.7%) 86.5
λ = 0.8 99.2 (28.1%) 99.4 (27.5%) 99.4 (27.5%) 117.5
λ = 0.9 114.8 (25.2%) 113.8 (26.3%) 113.3 (26.9%) 136.1
λ = 0.95 129.6 (22.5%) 126.9 (25.2%) 125.6 (26.5%) 152.3
λ = 0.99 161.9 (17.0%) 154.3 (22.6%) 150.1 (25.8%) 184.4
λ = 0.995 174.8 (15.0%) 165.3 (21.6%) 159.4 (25.6%) 196.6
λ = 0.999 202.4 (11.8%) 189.3 (19.5%) 179.4 (25.2%) 222.6

Model NIG AVaRλ

(
Σc15,ρ15,ρ15,ν

)
AVaRλ(Σc15)

E[Σ15] = 51.1 ν = 3 ν = 10 ν =∞

λ = 0.5 75.2 (28.7%) 75.6 (27.7%) 75.8 (27.1%) 85.0
λ = 0.8 98.0 (27.6%) 98.2 (27.4%) 98.3 (27.2%) 115.9
λ = 0.9 114.2 (25.5%) 113.2 (26.6%) 112.8 (27.0%) 135.7
λ = 0.95 130.0 (23.2%) 127.3 (25.8%) 126.2 (27.0%) 153.9
λ = 0.99 167.0 (18.5%) 159.0 (24.1%) 155.0 (26.9%) 193.4
λ = 0.995 183.1 (16.8%) 172.6 (23.4%) 167.2 (26.9%) 209.8
λ = 0.999 221.2 (13.6%) 205.1 (21.8%) 195.9 (26.5%) 248.0

Table 3: Comparison of the improved risk bound AVaRλ(Σc15,ρ15,ρ15,ν) with the

standard comonotonic risk bound AVaRλ(Σc15) for AVaRλ(Σ15) in Model Gauss
resp. NIG for T = 15 trading days for di�erent levels λ , for di�erent ν and
for �xed ρ15 = .7767 and ρ15 = −0.5661 . The relative DU-improvement given
by 1 − (AVaRλ(Σc15,ρ15,ρ15,ν) − E[Σ15])/(AVaRλ(Σc15) − E[Σ15]) is displayed in

brackets.

Model Gauss AVaRλ

(
Σc50,ρ50,ρ50,ν

)
AVaRλ(Σc50)

E[Σ50] = 67.1 ν = 3 ν = 10 ν =∞

λ = 0.5 110.1 (21.9%) 110.4 (21.3%) 110.5 (21.1%) 122.1
λ = 0.8 154.4 (22.1%) 154.6 (22.0%) 154.6 (21.9%) 179.2
λ = 0.9 185.0 (19.6%) 183.7 (20.5%) 182.9 (21.0%) 213.7
λ = 0.95 213.8 (17.2%) 210.2 (19.2%) 208.3 (20.3%) 244.3
λ = 0.99 275.7 (12.6%) 266.0 (16.7%) 260.3 (19.1%) 306.0
λ = 0.995 300.1 (11.1%) 288.4 (15.8%) 280.8 (18.7%) 329.9
λ = 0.999 354.8 (8.5%) 338.1 (13.8%) 325.4 (17.8%) 381.4

Model NIG AVaRλ

(
Σc50,ρ50,ρ50,ν

)
AVaRλ(Σc50)

E[Σ50] = 66.2 ν = 3 ν = 10 ν =∞

λ = 0.5 108.4 (21.8%) 108.7 (21.2%) 108.7 (21.1%) 120.1
λ = 0.8 152.1 (22.1%) 152.3 (21.9%) 152.3 (21.9%) 176.4
λ = 0.9 182.8 (19.7%) 181.5 (20.6%) 180.8 (21.1%) 211.4
λ = 0.95 212.2 (17.4%) 208.6 (19.4%) 206.7 (20.5%) 242.9
λ = 0.99 277.4 (13.0%) 267.4 (17.1%) 261.7 (19.5%) 309.1
λ = 0.995 304.5 (11.6%) 291.9 (16.3%) 284.3 (19.1%) 335.8
λ = 0.999 366.0 (9.2%) 349.1 (14.3%) 336.0 (18.3%) 396.5

Table 4: Comparison of the improved risk bound AVaRλ(Σc50,ρ50,ρ50,ν) with the

standard comonotonic risk bound AVaRλ(Σc50) for AVaRλ(Σ50) in Model Gauss
resp. NIG for T = 50 trading days for di�erent levels λ , for di�erent ν and
for �xed ρ50 = .7338 and ρ50 = −0.4563 . The relative DU-improvement given
by 1 − (AVaRλ(Σc50,ρ50,ρ50,ν) − E[Σ50])/(AVaRλ(Σc50) − E[Σ50]) is displayed in

brackets. 28



Model Gauss AVaRλ

(
Σc100,ρ100,ρ100,ν

)
AVaRλ(Σc100)

E[Σ100] = 83.8 ν = 3 ν = 10 ν =∞

λ = 0.5 145.1 (14.0%) 145.3 (13.6%) 145.5 (13.4%) 155.1
λ = 0.8 213.7 (14.6%) 214.0 (14.4%) 214.2 (14.3%) 235.9
λ = 0.9 260.5 (12.5%) 259.5 (13.0%) 259.0 (13.3%) 285.8
λ = 0.95 304.1 (10.7%) 301.2 (11.9%) 299.5 (12.5%) 330.4
λ = 0.99 397.2 (7.5%) 389.4 (9.8%) 384.5 (11.3%) 422.7
λ = 0.995 434.8 (6.7%) 425.1 (9.1%) 418.5 (10.8%) 459.2
λ = 0.999 518.0 (4.7%) 504.6 (7.7%) 494.4 (9.9%) 539.5

Model NIG AVaRλ

(
Σc100,ρ100,ρ100,ν

)
AVaRλ(Σc100)

E[Σ100] = 82.5 ν = 3 ν = 10 ν =∞

λ = 0.5 142.6 (14.0%) 142.9 (13.6%) 143.0 (13.4%) 152.4
λ = 0.8 210.1 (14.6%) 210.5 (14.4%) 210.6 (14.3%) 231.9
λ = 0.9 256.7 (12.5%) 255.7 (13.0%) 255.0 (13.3%) 281.6
λ = 0.95 300.5 (10.7%) 297.6 (11.9%) 295.7 (12.6%) 326.6
λ = 0.99 395.7 (7.6%) 388.2 (9.9%) 382.7 (11.5%) 421.6
λ = 0.995 435.1 (6.7%) 425.7 (9.1%) 418.7 (11.0%) 460.2
λ = 0.999 524.4 (5.1%) 513.2 (7.5%) 501.1 (10.1%) 548.3

Table 5: Comparison of the improved risk bound AVaRλ(Σc100,ρ100,ρ100,ν) with

the standard comonotonic risk bound AVaRλ(Σc100) for AVaRλ(Σ100) in Model
Gauss resp. NIG for T = 100 trading days for di�erent levels λ , for di�erent ν
and for �xed ρ100 = .6703 and ρ100 = −0.2905 . The relative DU-improvement
given by 1 − (AVaRλ(Σc100,ρ100,ρ100,ν) − E[Σ100])/(AVaRλ(Σc100) − E[Σ100]) is

displayed in brackets.

the degree of freedom ν of the constraining t-copula families Si . The smaller

the parameter ν the higher is the tail-dependence of the (t-)copula of(
3∑
i=1

F−1
Y i
T

(fi(Z, ε)),
6∑
i=4

F−1
Y i
T

(fi(Z, ε))

)
, (28)

see(25). This means that extreme tail events occur more often simultaneously

in the components which leads to higher risks. The empirical data exhibit tail-

dependencies, see Figure 3. Thus, a t-copula with degree of freedom ν not too

large should be preferred to a Gaussian copula in this application.

We see that the improvement of the standard DU-interval [EΣT ,AVaRλ(ΣcT )]

is largest for T = 15 trading days (about 20% to 30%) and smallest for T =

100 trading days (about 10% to 15%). A large improvement means a small

correlation parameter for (28) which is achieved if T is small, i.e.

M
(
ρ15, ρ15

)
= 0.0795 < M

(
ρ50, ρ50

)
= 0.2697 < M

(
ρ100, ρ100

)
= 0.5154 ,

because in this case the underlying data sets (xik)k are larger such that the lower

bounds ρT
i
for the 95%-con�dence intervals for ρ̂Ti are larger. Thus, the intervals

Ii could be chosen tighter for smaller T .
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5 Appendix

Proof of the convergence in (15): By some technical but standard arguments

of integration theory one can show that

n∑
k=1

min

{∫
(
k−1
n ,

k
n )

h(t) dλ(t), 0

}
n→∞−−−−→

∫
(0,1)

min{h(t), 0} dλ(t) (29)

for any B((0, 1))-measurable function h with −1 ≤ h ≤ 1 . Then, we deduce

the statement in (15) by induction as follows: Consider measurable functions

h1, . . . , hd with 0 ≤ hi ≤ 1 . For the base case d = 2 set h = h2 − h1 . Due to

the convergence in (29) it holds

n∑
k=1

min

{∫
(
k−1
n ,

k
n )

h1(t) dt,

∫
(
k−1
n ,

k
n )

h2(t) dt

}

=

n∑
k=1

min

{∫
(
k−1
n ,

k
n )

h(t) dt, 0

}
+

∫ 1

0

h1(t) dt

n→∞−−−−→
∫ 1

0

min{h(t), 0} dt+

∫ 1

0

h1(t) dt =

∫ 1

0

min{h1(t), h2(t)} dt .

For the induction step set h = hd −min{h1, . . . , hd−1} . Then, we obtain again

with (29) and the induction hypothesis that∫ 1

0

min
1≤i≤d

{hi(t)} dt ≤
n∑
k=1

min
1≤i≤d

{∫
(
k−1
n ,

k
n )

hi(t) dt

}

≤
n∑
k=1

min

{∫
(
k−1
n ,

k
n )

h(t) dt, 0

}
+

n∑
k=1

min
1≤i≤d−1

{∫
(
k−1
n ,

k
n )

hi(t) dt

}
n→∞−−−−→

∫ 1

0

min{h(t), 0} dt+

∫ 1

0

min
1≤i≤d−1

{hi(t)} dt =

∫ 1

0

min
1≤i≤d

{hi(t)} dt ,

where both inequalities hold true due to Jensen's inequality. �

Proof of Proposition 3.9: Denote by bι = (bιkl)1≤k,l≤n the corresponding 1
n -

scaled doubly stochastic matrix of Bι , ι = 1, 2 . Consider the following algorithm

that constructs the sequence (Ei)1≤i≤m adjusting in each step the 1
n -scaled dou-

bly stochastic matrix b1 to b2 by a simple supermodular transfer that preserves

the ≤∂∆-relation with respect to each Aj .

1. De�ne E0 = B1 with 1
n -scaled doubly stochastic matrix e0 = b1 . Set i = 0

and k = n .

2. Mass compensation in line k : If eikl = b2kl for all 1 ≤ l ≤ n , go to step (3).

Otherwise let l∗ := min{l|eikl < b2kl} , l∗ := max{l|eikl > b2kl} , t∗ := l∗
n ,
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t∗ := l∗

n , v∗ := 1− k−1
n . De�ne u∗ := (u∗j)1≤j≤d and u

∗ := (u∗j )1≤j≤d by

u∗j : = min{uj ∈ G1
n|∆2

nE
i(v∗, t

∗) ≤ ∆2
nA

j(uj , t
∗)} , (30)

u∗j : = max{uj ∈ G1
n|∆2

nE
i(v∗, t∗) ≥ ∆2

nA
j(uj , t∗)}+ 1

n . (31)

De�ne the transferred mass

η : = η(eikl∗ , e
i
kl∗ , b

2
kl∗ , b

2
kl∗ , (∆

2
nA

j(u∗j , t∗))j , (∆
2
nA

1(u∗1 − 1
n , t
∗))j ,

∆2
nE

i(v∗, t∗),∆
2
nE

i(v∗, t
∗))

: = min

{
b2kl∗ − e

i
kl∗ , e

i
kl∗ − b2kl∗ ,min

j
{∆2

nA
j(u∗j , t∗)} −∆2

nE
i(v∗, t∗),

∆2
nE

i(v∗, t
∗)−max

j
{∆2

nA
j((u∗j − 1

n ) ∨ 0, t∗)}
}

De�ne Ei+1 via the 1
n -scaled doubly stochastic matrix

ei+1
ικ =


eiικ − η if (ι, κ) ∈ {(k, l∗), (k − 1, l∗)} ,
eiικ + η if (ι, κ) ∈ {(k, l∗), (k − 1, l∗)} ,
eiικ else

(32)

for ι, κ ∈ {1, . . . , n} . Set i = i+ 1 . Repeat step (2).

3. If k = 2 set m = i and stop the algorithm. Otherwise set k = k − 1 and

go to step (2).

First, we show that η > 0 . From the de�nition of l∗ resp. l
∗ it holds b2kl∗ −

eikl∗ > 0 resp. eikl∗ − b2kl∗ > 0 . Further, since for κ > k holds eiκl = b2κl for all

1 ≤ l ≤ n , we obtain

∆2
nE

i(v∗, t
∗) > ∆2

nB
2(v∗, t

∗) ≥ 0 and

∆2
nE

i(v∗, t∗) < ∆2
nB

2(v∗, t∗) ≤ 1 .

This yields with the de�nition of u∗j resp. u∗j

∆2
nA

j(u∗j , t∗)−∆2
nE

i(v∗, t∗) > 0 resp.

∆2
nE

i(v∗, t
∗)−∆2

nA
j((u∗j − 1

n ) ∨ 0, t∗) > 0

for all 1 ≤ j ≤ d .
Secondly, we observe that for each (u, t) ∈ G2

n \ {(v∗, t∗), (v∗, t∗)} holds by
construction of Ei+1 that

∆2
nE

i+1(u, t) =
∑
u′≤u

ei+1(u′, t) =
∑
u′≤u

ei(u′, t) = ∆2
nE

i(u, t) . (33)

Thirdly, we show

Ei ≤s∂∆ B2 (34)
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for 0 ≤ i ≤ m by induction. For i = 0 , the statement is given by the assumption

that B1 ≤s∂∆ B2 . Suppose that Ei ≤s∂∆ B2 for an i ∈ {0, 1, . . . ,m − 1} . We

obtain with (33) that

∆2
nB

2(u, t)−∆2
nE

i+1(u, t) = ∆2
nB

2(u, t)−∆2
nE

i(u, t) = 0 for u < v∗ .

(35)

The last equality holds because the lines of (eiκι) are for κ > k , i.e. u < v∗ ,

already adjusted to the lines of (b2κι) .

For u > v∗ we obtain from (33) that ∆2
nB

2(u, t)−∆2
nE

i+1(u, t) = ∆2
nB

2(u, t)−
∆2
nE

i(u, t) where the latter has no (−,+)-sign change as assumed.

Consider the case u = v∗ . Then ∆2
nB

2(u, t) − ∆2
nE

i(u, t) = b2kl − eikl with
l = tn has exactly one sign change in t which is from + to − as assumed. Hence,

it follows

l∗ < l∗ resp. t∗ < t∗ (36)

and ∆2
nB

2(u, t∗)−∆2
nE

i(u, t∗) > 0 resp. ∆2
nB

2(u, t∗)−∆2
nE

i(u, t∗) < 0 . Since

η ≤ min{b2kl∗ − e
i
kl∗
, eikl∗ − b2kl∗} we get together with (35) and (32) that

∆2
nB

2(u, t∗)−∆2
nE

i+1(u, t∗) = b2kl∗ − e
i+1
kl∗

= b2kl∗ − e
i
kl∗ − η ≥ 0

and

∆2
nB

2(u, t∗)−∆2
nE

i+1(u, t∗) = b2kl∗ − ei+1
kl∗ = b2kl∗ − eikl∗ + η ≤ 0 .

Hence, also ∆2
nB

2(u, t)−∆2
nE

i+1(u, t) has no (−,+)-sign change in t .

Fourthly, we observe from the proof of (34) that there exists a �nite i ∈ N
such that mass in the lines of (eikl)kl has been adjusted to (ckl)kl for all k =

n, . . . , 2 . Then, since both ei and b2 are (signed) 1
n -scaled doubly stochastic also

ei1l = b21l holds. Thus, it is su�cient to stop the algorithm setting m := i if k = 2

and eikl = b2kl for all 1 ≤ l ≤ n . This proves Em = B2 .

(i): For each i ∈ {0, . . . ,m} it follows by construction that
∑n
ι=1 e

i
ικ = 1

for all κ and
∑n
κ=1 e

i
ικ = 1 for all ι . Note that elements of ei can get neg-

ative. Thus PEi de�nes a signed probability measure on G2
n for all i . Since

0 6= PEi+1 − PEi(x) = ±η for exactly 4 points x ∈ G2
n and mass is transferred

from the o�-diagonal onto the diagonal, see (32) and (36), PEi+1−PEi indicates

a simple supermodular transfer.

(ii): For each u 6= v∗ holds due to (33) that ∆2
nE

i+1(u, t)−∆2
nE

i(u, t) = 0 ,

and the left hand-side trivially has as a function in t no sign change. Due to

(36) and the de�nition of Ei+1 in(32) it follows that

∆2
nE

i+1(v∗, t∗) = ∆2
nE

i(v∗, t∗) + η , and

∆2
nE

i+1(v∗, t
∗) = ∆2

nE
i(v∗, t

∗)− η .
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This means that ∆2
nE

i+1(v∗, t) −∆2
nE

i(v∗, t) has exactly one sign change in t

which is from + to − .

(iii): We show the statement by induction. For i = 0 there is nothing to show.

Let i ∈ {0, . . . ,m − 1} and suppose that Aj ≤∂∆ Ei . Then we immediately

obtain with (33) in the case u 6= v∗ that

∆2
nE

i+1(u, t)−∆2
nA

j(z, t) = ∆2
nE

i(u, t)−∆2
nA

j(z, t)

has no (−,+)-sign change in t for all z ∈ G1
n .

Consider the case u = v∗ . De�ne the functions

f(t) := f ju,z(t) : = ∆2
nB

2(u, t)−∆2
nA

j(z, t) ,

g(t) := gju,z(t) : = ∆2
nE

i+1(u, t)−∆2
nA

j(z, t)

h(t) := hju,z(t) : = ∆2
nE

i(u, t)−∆2
nA

j(z, t) ,

for t, z ∈ G1
n . Due to (36) and the de�nition of t∗ and t∗ mass in line k has

already been adjusted to b2 for t < t∗ and t > t∗ , i.e. eikl = ei+1
kl = b2kl for all

l < l∗ and l > l∗ . Hence, it holds

f(t) = g(t) = h(t) for t < t∗ or t > t∗ .

Since η ≤ min{ckl∗ −eikl∗ , e
i
kl∗ − ckl∗} we obtain due to the construction of Ei+1

that

f(t∗) ≥ h(t∗) + η = g(t∗) , and

f(t∗) ≤ h(t∗)− η = g(t∗) .
(37)

Again by construction, it holds that

g(t) = h(t) for all t∗ < t < t∗ .

We need to show that g has no (−,+)-sign change.

Assume that g has exactly one sign change immediately after s ∈ G1
n , i.e.

g(t) ≤ 0 for t ≤ s , g(t) < 0 for an t ≤ s , g(t) ≥ 0 for t > s and g(t) > 0 for

an t > s . If t∗ ≤ s < t∗ , then h(t∗) < g(t∗) ≤ 0 ≤ g(t∗) < h(t∗) , which is a

contradiction because h has no (−,+)-sign change.

If t∗ < t∗ ≤ s , then h(t∗) < g(t∗) ≤ 0 and 0 < g(t) = h(t) for an t > s ,

which again is a contradiction. The case s ≤ t∗ < t∗ is analogous. Hence, the

sign change of g cannot be from − to + .

Assume that g has (at least) two sign changes, say immediately after s resp.

s′ ∈ G1
n . Then there exist t1 ≤ s < t2 ≤ s′ < t3 such that

g(t1) < 0 < g(t2) > 0 > g(t3) or g(t1) > 0 > g(t2) < 0 < g(t3) . (38)

Consider the left case. Since h(t) = g(t) for all t 6= t∗, t
∗ and h has no (−,+)-

sign change, we obtain from (37) that t1 = t∗ or t2 = t∗ . If t1 = t∗ , then
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f(t1) ≤ g(t1) < 0 , but f(t2) = g(t2) > 0 which is a contradiction to the as-

sumption that f has no (−,+)-sign change. If t2 = t∗ , then f(t2) ≥ g(t2) > 0

and f(t1) = g(t1) < 0 , which again is a contradiction. The second case in (38)

follows analogously. This completes the prove of (iii).

(iv): De�ne F i := A1∨· · ·∨Ad∨Ei for 0 ≤ i ≤ m.We show that PF i+1−PF i

is indicated by a simple submodular transfer for all 0 ≤ i ≤ m − 1 . Consider

the set

Si :=
{

(u, ud+1) ∈ Gd+1
n |F i(u, ud+1) > F i+1(u, ud+1)

}
=

(u, ud+1)| 1

n

∑
t∈G1

n

min{ min
1≤j≤d

{∆2
nA

j(uj , t),∆
2
nE

i(ud+1, t)}

>
1

n

∑
t∈G1

n

min{ min
1≤j≤d

{∆2
nA

j(uj , t)},∆2
nE

i+1(ud+1, t)}


=

(u, ud+1)|
∑

t∈{t∗,t∗}

min{min
j
{∆2

nA
j(uj , t)},∆2

nE
i(ud+1, t)}

>
∑

t∈{t∗,t∗}

min{min
j
{∆2

nA
j(uj , t)},∆2

nE
i+1(ud+1, t)}


=

{
(u, ud+1)| ud+1 = v∗ , ∆2

nE
i+1(v∗, t∗) > min

j
{∆2

nA
j(uj , t∗)} , and

∆2
nE

i+1(v∗, t
∗) < min

j
{∆2

nA
j(uj , t

∗)}
}
(39)

=

{
(u, ud+1)| ud+1 = v∗ , ∆2

nE
i(v∗, t∗) ≥ min

j
{∆2

nA
j(uj , t∗)} , and

∆2
nE

i(v∗, t
∗) ≤ min

j
{∆2

nA
j(uj , t

∗)}
}
.

(40)

The �rst equality holds by the de�nition of the discrete upper product. For the

second equality we use that only the summands on the left and right hand-side

depending on t∗ and t
∗ di�er.

From (iii) and (ii) we obtain with Proposition 3.6 that F i(x)− F i+1(x) ≥ 0

for all x ∈ Gd+1
n , and furthermore holds Si 6= ∅ . Further, the set Si is restricted

to ud+1 = v∗ because ∆2
nE

i(v, t) = ∆2
nE

i+1(v, t) for all v 6= v∗ and for all t ,

see (33). Then, the third equality holds due to (iii) and due to the fact that on

the one hand ∆2
nE

i+1(v∗, t∗) + ∆2
nE

i+1(v∗, t
∗) = ∆2

nE
i(v∗, t∗) + ∆2

nE
i(v∗, t

∗) ,

and on the other hand ∆2
nE

i+1(v∗, t∗) > ∆2
nE

i(v∗, t∗) and ∆2
nE

i+1(v∗, t
∗) <

∆2
nE

i(v∗, t
∗) .
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For the fourth equality we show that

∆2
nE

i+1(v∗, t
∗) < min

j
{∆2

nA
j(uj , t

∗)}

⇐⇒ ∆2
nE

i(v∗, t
∗) ≤ min

j
{∆2

nA
j(uj , t

∗)}
(41)

and

∆2
nE

i+1(v∗, t∗) > min
j
{∆2

nA
j(uj , t∗)}

⇐⇒ ∆2
nE

i(v∗, t∗) ≥ min
j
{∆2

nA
j(uj , t∗)} .

(42)

Assume that the right side in (41) holds. Then the left side follows directly from

∆2
nE

i+1(v∗, t
∗) = ∆2

nE
i(v∗, t

∗) − η . Conversely, assume that there exist j and

uj such that ∆2
nE

i+1(v∗, t
∗) < ∆2

nA
j(uj , t

∗) < ∆2
nE

i(v∗, t
∗) . Then we obtain

∆2
nE

i(v∗, t
∗)−∆2

nA
j(uj , t

∗) ≥ ∆2
nE

i(v∗, t
∗)−∆2

nA
j(u∗,j − 1

n , t
∗)

≥ η = ∆2
nE

i(v∗, t
∗)−∆2

nE
i+1(v∗, t

∗) ,

which is a contradiction to the assumption. The �rst inequality follows from the

de�nition of u∗j using that ∆2
nA

j( · , t∗) is increasing, and the second inequality

follows from the choice of η .

Statement (42) can be shown analogously.

For u∗j de�ned in (31) holds u∗j ≤ 1 because otherwise, if uj = 1 for a j , we

would have that

1 ≥ ∆2
nE

i+1(v∗, t∗) = ∆2
nE

i(v∗, t∗) + η ≥ ∆2
nA

j(1, t∗) + η = 1 + η ,

which is a contradiction. Since the set Si is non-empty we obtain from (40) that

u∗ < u∗ .

Next, we observe that

F i+1(u)− F i(u) =

{
− η
n if u ∈ Si ,

0 else

holds by construction of Ei+1 . Hence, PF i+1 is obtained from PF i by a �nite

number of reverse ∆-antitone transfers, see Müller (2013, Theorem 2.5.7). We

show that these transfers can, in particular, be expressed by a reverse super-

modular transfer indicated by

η

n

(
δ(u∗,v∗) + δ(u∗,v∗)

)
→ η

n

(
δ(u∗,v∗) + δ(u∗,v∗)

)
.

De�ne µ := η
n (δ(u∗,v∗) + δ(u∗,v∗) − (δ(u∗,v∗) + δ(u∗,v∗))) . Then, we need to show

that µ([0, x]) = − η
n for all x ∈ S and µ([0, x]) = 0 for all x ∈ (Si)c ∩Gd+1

n .

Let y ∈ Si . Then, yd+1 = v∗ . Further, from (40) we see that yj ≥ uj,∗ for

all 1 ≤ j ≤ d , and there exists an j′ ∈ {1, . . . , d} such that yj′ < u∗j′ . Hence,

we calculate µ([0, y]) = − η
nδ(u∗,v∗)([0, y]) = − η

n .
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Now, assume that yd+1 = v∗ but y /∈ Si . If yj ≥ u∗j for all 1 ≤ j ≤ d ,

then µ([0, y]) = η
n

(
δ(u∗,v∗)([0, y])− δ(u∗,v∗)([0, y])

)
= 0 . If yj′ < u∗,j′ for a

j′ ∈ {1, . . . , d} , we obtain µ([0, y]) = 0 .

Suppose that yd+1 6= v∗ . If yd+1 < v∗ it immediately holds µ([0, y]) = 0 . If

yd+1 > v∗ , then yd+1 ≥ v∗ . But this also yields µ([0, y]) = 0 independent of yj ,

1 ≤ j ≤ d .
Now, since µ is a reverse supermodular transfer, the statement follows from

Proposition 3.8. �
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