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Abstract

We consider the optimal stopping of independent, discrete time sequences
X1, . . . , Xn where m stops are allowed. The payoff is the sum of the stopped
values. Under the assumption of convergence of related imbedded point pro-
cesses to a Poisson process in the plane we derive approximatively optimal
stopping times and stopping values. The solutions are obtained via a system
of m differential equations of first order. As application we consider the case
that Xi = ciZi + di with (Zi) i.i.d. in the domain of attraction of an ex-
treme value distribution. We obtain explicit results for stopping values and
approximative optimal stopping rules.
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1 Introduction

For discrete time sequences X1, . . . , Xn we consider the optimal stopping problem
with m allowed stops 1 ≤ T1 < · · · < Tm ≤ n. The aim is to choose the stopping
times Ti such that the expectation of the sum of the stopped values is maximized,
i.e.

E

m∑
i=1

XTi = supE
m∑
i=1

Xτi (1.1)

over all stopping times 1 ≤ τi < · · · < τm ≤ n.

It is essential to assume that τ1 < τ2 < · · · < τm. The case where inequality
constraints τ1 ≤ · · · ≤ τm are assumed, reduces this problem to the one-stopping
problem. The optimal stopping times are then given by T1 = · · · = Tm, where T1
is optimal for the one stopping problem.
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In some instances problem (1.1) has been solved in Saario (1992); Stadje (1985,
1990); Saario and Sakaguchi (1992) while an extension of the problem to vector
offers is considered in Sakaguchi (1973, 1978); Stadje (1985); Bruss and Ferguson
(1997); Bruss (2010). A solution of problem (1.1) as proposed in our paper is so
far not available in the literature. Applications of multiple stopping problems as
considered in this paper and some variations of them with additional constraints
are of interest in recent work on multi-exercise options as e.g. for swing options in
energy markets (see, e.g., Bender (2010)).

Our aim in this paper is to obtain approximative optimal solutions for gen-
eral independent sequences. We shall make use of the approach developed in [KR]
(2000a) and extended in [FR] (2011a).1 The basic assumption in this approach is
the convergence of the imbedded 2-dimensional point processes

Nn =
n∑
i=1

δ( i
n
,Xn
i )

d→ N (1.2)

to some Poisson process N in the plane, where Xn
i = Xi−an

bn
is a scaled version of Xi.

The scalings typically arise from the central limit theorem for maxima or related
point process convergence results. It is shown in these papers that the optimal one-
stopping problem of the (Xi) can be approximatively obtained from the optimal
solution in the limit case of a Poisson process. The solution for the limit case is
given by a differential equation of first order.

This approach has been extended to m-stopping problems with max-payoff
where the aim is to maximize the expected value of the max of the stopped values,
i.e.

Emax(XT1 , . . . , XTm) = sup (1.3)

over all stopping sequences 1 ≤ Tn < · · · < Tm in [FR] (2011b). Note that for
the max stopping problem we could also admit stopping times with inequality
constraints of the form Ti ≤ Ti+1.

For the max case an approximation result has been stated even for dependent
sequences. The present paper is concerned with a development of this method for
the sum case. Due to some technical problems with an extension of the discretiza-
tion technique – which was used in the max case – to the sum case for dependent
variables, we restrict in this paper to independent sequences.

In Section 2 we start with a necessary recursive formulation (optimality princi-
ple) for the optimal multiple stopping in the sum case. In Section 3 we describe the
solution of the m-stopping problem in the Poisson case. In Section 4 we establish
convergence of the discrete time m-stopping problem to the optimal m-stopping
of the continuous time Poisson process. As application we consider in Section 5
the case where Xi = ciZi + di with (Zi) an i.i.d. sequence and with discount and
observation cost factors ci, di. We obtain explicit solutions in the case that the
distribution F of Zi is in the domain of attraction of a max-stable law.

1[KR] is the abbreviation for Kühne and Rüschendorf, [FR] the one for Faller and Rüschendorf.
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2 Multiple stopping of finite sequences

For a finite discrete time sequence X1, . . . , Xn of not necessarily independent ran-
dom variables a version of the optimality equation can be stated as follows for the
m-stopping problem with payoff given by the sum.

Define by backwards induction for m ∈ N the sequence of optimal thresholds
inductively w.r.t. the underlying filtration (Fi)1≤i≤n−m+1 by

Wm
n−m+1 := −∞
Wm
i := E[(Xi+1 +Wm−1

i+1 ) ∨Wm
i+1 | Fi], i = n−m, . . . , 0

(2.1)

and define the corresponding threshold stopping times Tm` (k) for 1 ≤ m ≤ n,
0 ≤ k ≤ n−m by

Tm1 (k) := min{k < i ≤ n−m+ 1 | Xi +Wm−1
i > Wm

i } (2.2)

Tm` (k) := min{Tm`−1(k) < i ≤ n−m+ ` | Xi +Wm−`
i > Wm−`+1

i }, 2 ≤ ` ≤ m.

Then, as in the one-stopping problem it holds that (Tmi (k)) are optimal stopping
times.

Proposition 2.1 (Multiple stopping, sum case) (Tm` (k)) are optimal m-
stopping times in the sum case in the sense that for all stopping times k < T1 <
· · · < Tm ≤ n it holds that

E

[
m∑
`=1

XTm` (k) | Fk

]
= E

[
XTm1 (k) +Wm−1

Tm1 (k) | Fk
]

(2.3)

= Wm
k ≥ E

[
m∑
`=1

XT` | Fk

]
P a.s.

Proof: The proof is by induction in m. Our extended induction hypothesis is that
for any F -stopping time S ≤ n−m it holds that

E

[
m∑
`=1

XTm` (k) | FS

]
= E

[
XTm1 (S) +Wm−1

Tm1 (S) | FS
]

(2.4)

= Wm
S ≥ E

[
m∑
`=1

XT` | FS

]
Pa.s.

for all stopping times S < T1 < · · · < Tm ≤ n.

In the xase m = 1 (2.4) is proved in [FR] (2011b, Remark 2.2). For the induction
step m→ m+ 1 let S < T1 < · · · < Tm+1 ≤ n. By induction hypothesis we obtain

E[XT1 + · · ·+XTm+1 | FS] = E[XT1 | FS] + E[E[XT2 + · · ·+XTm+1 | FT1 ] | FS]
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≤ E[XT1 | FS] + E[XTm1 (T1) + · · ·+XTmm (T1) | FS]

= E[XT1 +Wm
T1
| FS].

This is maximized by choosing T1 to be the optimal one-stopping time of the
process (Xi + Wm

i ). This optimal stopping time is given from the case m = 1
by T1 = Tm+1

1 (S). In consequence the optimal stopping times for 1 ≤ ` ≤ m are
obtained by Tm` (Tm+1

1 (S)) = Tm+1
`+1 (S) and the maximizing value is given by Wm+1

S .
2

3 Optimal m-stopping of Poisson processes

We consider optimal m-stopping of a Poisson process N =
∑
δ(τk,yk) in the plane

restricted to some set Mc = {(t, x) ∈ [0, 1] × R;x > c}. For the applications in
mind it is essential to consider the case where the intensity of N may be infinite
along the lower boundary of Mc.

As in [KR] (2000a) resp. [FR] (2011a) who consider the case m = 1 we assume
that the intensity measure µ of N is a Radon measure on Mc with the topology
on Mc induced by the usual topology on [0, 1]×R. Thus any compact set A ⊂Mc

has only finitely many points. By convergence in distribution ‘Nn
d→ N on Mc’ we

mean convergence in distribution of the restricted point processes.

We generally assume the boundedness condition

(B) E[(supk Yk)
+] <∞. (3.1)

Let At = σ(N(· ∩ [0, t] × R ∩ Mf )), t ∈ [0, 1], denote the relevant filtration
of the point process N . A stopping time for N or N -stopping time is a mapping
T : Ω→ [0, 1] with {T ≤ t} ∈ At for each t ∈ [0, 1]. Denote by

Y T := sup{Yk : 1 ≤ k ≤ N(Mf ), T = τk}, sup ∅ := −∞,

the reward w.r.t. stopping time T .

Analogously to the multiple stopping in the max case (see [FR] (2011b)) we
define the optimal m-stopping curves with guarantee c by

um(t) := sup
{
E
[
Y T1 ∨ c+ · · ·+ Y Tm ∨ c

]
| t < T1 < · · · < Tm ≤ 1

}
, t ∈ [0, 1)

(3.2)

um(1) := mc

the supremum being over all stopping sequences. The order restrictions are inter-
preted as Ti−1 < Ti on {Ti−1 < 1} and Ti = 1 on {Ti−1 = 1}.

As in the previous work we also need the following conditions:

(S) Separability condition: um(t) > c for t ∈ [0, 1). (3.3)
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(D) Differentiability condition:
There exists a version of the density g of µ on Mc, such that the intensity
function

G(t, y) :=

∫ ∞
y

g(t, z)dz (3.4)

is continuous on Mc ∩ [0, 1]×R.

Theorem 3.1 Let the Poisson process satisfy the boundedness condition (B) and
the separation condition (S).

a) If c ∈ R, then it holds for m ∈ N and t ∈ [0, 1) that c < um(t)−um−1(t) ≤ u1(t).
Further

um(t) = E
[
YTm1 (t) ∨ c+ · · ·+ YTmm (t) ∨ c

]
(3.5)

= E
[
YTm1 (t) ∨ c+ um−1(Tm1 (t))

]
with optimal stopping times given by

Tm1 (t) := inf{τk > t | Yk + um−1(τk) > um(τk)},
Tml (t) := inf{τk > Tml−1(t) | Yk + um−l(τk) > um−l+1(τk)}, inf ∅ := 1,

for 2 ≤ l ≤ m. um is the optimal stopping curve of the point process

Nm :=
∑
k

δ(τk,Yk+um−1(τk)) in Mc+um−1

with guarantee value mc. Under the differentiability condition (D) for N , um

solves the differential equation

∂

∂t
um(t) = −

∫ ∞
um(t)−um−1(t)

G(t, y)dy for t ∈ [0, 1),

um(1) = mc.

(3.6)

b) If c = −∞ and if (S) also holds for Nk, 0 ≤ k ≤ m, then the statements in a)
extend to this case.

Proof: The proof is by induction in m. The induction hypothesis is extended to

E[Y Tm1 (S) ∨ c+ · · ·+ Y Tmm (S) ∨ c] = Eum(S) ≥ E[Y T1 ∨ c+ · · ·+ Y Tm ∨ c]

for all S < T1 < · · · < Tm. The case m = 1 is proved in [FR] (2011b, Prop. 3.1).
For the induction step m → m + 1 let S be an N stopping time. Then for S <
T1 < · · · < Tm+1 ≤ 1 holds by the induction hypotheses

E[Y T1 ∨ c+ . . .+ Y Tm+1 ∨ c]
= E[Y T1 ∨ c] + E[Y T2 ∨ c+ · · ·+ Y Tm+1 ∨ c]
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≤ E[Y T1 ∨ c] + EY Tm1 (T1) ∨ c+ · · ·+ Y Tmm (T1) ∨ c]
= E[Y T1 ∨ c+ um(T1)]. (3.7)

To solve the one-stopping problem in (3.7) we apply Proposition 3.1 from [FR]
(2011a) with v(t, z) := z + u(t), Z := c. We have to establish for t ∈ [0, 1) the
separation condition i.e. the existence of a stopping time T > t with

E[Y T ∨ c+ um(T )] > c+ um(t). (3.8)

For c = −∞ this is fulfilled by the separation condition for Nm.

For c ∈ R1 we choose T := Tm1 (t) and obtain by induction hypothesis

E[Y T ∨ c+ um(T )] = E[Y T ∨ c+ um−1(T )] + E[um(T )− um−1(T )]

= um(t) + E[um(T )− um−1(T )].

Since by induction hypothesis um(s) − um−1(s) > c for s ∈ [0, 1) we just have to
show that P (T < 1) > 0. To this aim note that

P (T < 1) = P (∃τk > t : Yk > um(τk)− um−1(τk))
= P (N(Mum−um−1 ∩ (t, 1]×R) ≥ 1)

= 1− exp(−µ(Mum−um−1 ∩ (t, 1]×R)) > 0

if and only if µ(Mum−um−1 ∩ (t, 1]×) > 0. Since um − um−1 ≤ u and µ(Mu ∩ (t, 1]×
R) > 0 this is the case. From µ(Mu∩ (t, 1]×R) =

∫ 1

t

∫∞
u(s)

g(s, y)dyds = 0 we could

conclude that u′(s) = 0 for all s ∈ [t, 1] in contradiction to (S).

Thus we can apply Proposition 3.1 in [FR] (2011a) for the casem = 1 and obtain
that the optimal stopping time in (3.7) is given by Tm+1

1 (S). The optimality of the
stopping times Tm+1

` (S) then follows from the recursive equation Tm` (Tm+1
1 )(S)) =

Tm+1
`+1 (S), see Proposition 2.1. 2

Remark 3.2 The differential equations in (3.6) for the optimal stopping curves
have been derived in the special case that G(t, y) = λ(1 − F (y)) in Saario (1992).
This concerns the case where an i.i.d.-sequence of random variables with d.f. F is
observed at random time points from a homogeneous Poisson process with inten-
sity λ. In our general case we have to deal with the problem that we have infinitely
many points along the lower boundary points.

Remark 3.3 (Calculation of optimal m-stopping curves) In the case that
the intensity function G is separable i.e. of the form G(t, y) = a(t)H(y) explicit so-
lutions of the optimality differential equations in (3.6) can be obtained from classical
results on differential equations in separate variables (see [KR] (2000a, Prop. 2.6)).
In [FR] (2011a) explicit solutions of (3.6) in the case m = 1 have been found for
intensity functions of the form

G(t, y) = H

(
y

v(t)

)
v′(t)

v(t)
(3.9)
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and G(t, y) = H(y − v(t))v′(t). (3.10)

This observation extends also to m-stopping problems and yields the following
explicit results:

a) Let G satisfy (3.9) and consider the case C1) in [FR] (2011b) with v monoton-
ically nonincreasing, v(1) = 0 and with R(x) := x −

∫∞
x
H(y)dy = 0 for some

x ≥ 0. Then it holds that c = 0 and we obtain for m ∈ N
um(t) = rmv(t), (3.11)

where rm > rm−1 ≥ 0 solve the equation

rm =

∫ ∞
rm−rm−1

H(y)dy, with r0 := 0. (3.12)

Thus the system of differential equations in (3.6) reduces to the much simpler
equations in (3.12).

b) If G satisfies (3.9) and consider the case C2) in [FR] (2011b) with v monotoni-
cally nondecreasing, v(1) =∞ and assume that R(r) = 0 for some −∞ < r < 0,
where

R(x) := x+

∫ ∞
x

H(y)dy, x ∈ (−∞,∞)

R(−∞) := lim
x↓−∞

R(x).

Then it holds that c = −∞ and

um(t) = rmv(t), m ∈ N.
Here rm < rm−1 ≤ 0 are solutions of the equations

rm = −
∫ 0

rm−rm−1

H(y)dy, r0 := 0. (3.13)

c) Let G satisfy (3.10) and consider the case C3) in [FR] (2011b) with a = −∞.
Then c = −∞ and

um(t) = rmv(t), (3.14)

where rm < rm−1 ≤ 0 solve the equations

rm =

∫ ∞
rm−rm−1

H(y)dy, r0 := 0. (3.15)

d) Also the case of intensity functions of the form

Gc,d(t, y) =

{
0 if y

v(t)
≥ t,

1
t
(− y

v(t)
+ d)2 if y

v(t)
< t,

(3.16)

with v(t) := tc−
1
α as treated in Example 3.5 in [FR] (2011a) allows a solution

in the m-stopping case since the processes Nm = Nm
c,d satisfy the separation

condition. This case will also appear in our examples in Section 5. For details
see Faller (2009).
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4 Approximation of m-stopping problems

The aim of this section is to prove that the discrete time m-stopping problem can be
approximated by the m-stopping problem of the limit model given by the Poisson

process N . The general assumption in this section is that Nn =
∑n

i=1 δ( in ,Xn
i )

d→ N

on Mc and also the separation condition (S) for the transformed Poisson processes
Nk, 0 ≤ k ≤ m−1, as defined in Theorem 3.1. The proof is based on a discretization
technique. Due to technical difficulties we assume in this section that (Xn

i )1≤i≤n
are independent – an extension to non independent sequences however seems to be
possible. Let Fn denote the canonical discrete filtrations.

Define W n,0
i := 0 and inductively for m ∈ N, W n,m

1 , . . . ,W n,m
n−m+1 the sequence

of optimal thresholds of the processes (Xn
i +W n,m−1

i )1≤i≤n−m+1. For t ∈ [0, 1] define

umn (t) :=

{
W n,m
btnc , if t ∈ [0, n+m−1

n
),

0, if t ∈ [n+m−1
n

, 1].

Thus for m ∈ N and t ∈ [0, n+m−1
n

)

umn (t) = sup

{
E[Xn

T1
+ · · ·+Xn

Tm ]

∣∣∣∣ tn < T1 < . . . < Tm ≤ n
Fn stopping times

}
= E[Xn

Tn,m1 (t) + · · ·+Xn
Tn,mm (t)]

with optimal m-stopping times given by

T n,m1 (t) := min{tn < i ≤ n−m+ 1 | Xn
i + um−1n ( i

n
) > umn ( i

n
)},

T n,ml (t) := min{T n,ml−1 (t) < i ≤ n−m+ l | Xn
i + um−ln ( i

n
) > um−l+1

n ( i
n
)}

for 2 ≤ l ≤ m. Then as in (2.3) the following recursive representation holds:

umn (t) = E
[
Xn
Tn,m1 (t) + um−1n

(
Tn,m1 (t)

n

)]
, t ∈ [0, 1), (4.1)

and umn is decreasing in m.

We need the following integrability conditions:

(U) Uniform integrability condition:
The (M+

n ) with Mn := maxi≤nX
n
i are uniformly integrable and

E lim supnM
+
n <∞.

(L+) Uniform integrability from below :
For any m ∈ N there exists a sequence vmn : [0, 1]→ R with vmn → um−um−1
pointwise, u0 := 0, such that the threshold stopping times

T̂ n,m1 (t) := min{tn < i ≤ n−m+ 1 | Xn
i > vmn ( i

n
)},

T̂ n,ml (t) := min{T̂ n,ml−1 (t) < i ≤ n−m+ l | Xn
i > vm−l+1

n ( i
n
)}, 2 ≤ l ≤ m,

satisfy that

lim
s↑1

lim sup
n→∞

E[(Xn
T̂n,m1 (t)

+ · · ·+Xn
T̂n,mm (t)

)χ{T̂n,mm (t)>sn}] = 0.
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For the m-stopping problem condition (L+) is not needed for all m ∈ N but
we need this uniform integrability condition for time points k ≤ m − 1. In fact

condition (L+) implies uniform integrability of
(
Xn
T̂n,m1 (t)

+ · · ·+Xn
T̂n,mm (t)

)
n∈N

(see

Faller (2009)). We denote by T n,m` := T n,m` (0) and Tm` := Tm` (0) the optimal m-
stopping times of (Xn

i ) resp.of N .

Theorem 4.1 (Convergence of m-stopping problems) Assume point pro-

cess convergence Nn
d→ N on Mc and the uniform integrability condition (U).

If c ∈ R then assume that Xn
n−i

L1

→ c, as n → ∞ for i = 0, . . . ,m − 1. If c = ∞
then condition (L+) is assumed to hold. Then it holds:

(a) umn (t)→ um(t), t ∈ [0, 1].

(b) Convergence of optimal stopping times and values holds(Tn,ml

n
, Xn

Tn,ml

)
1≤l≤m

d→ (Tml , Y Tml
∨ c)1≤l≤m.

(c) If c ∈ R, then

T̂ n,m1 := min{1 ≤ i ≤ n−m+ 1 | Xn
i + um−1( i

n
) > um( i

n
)},

T̂ n,ml := min{T̂ n,ml−1 < i ≤ n−m+ l | Xn
i + um−l( i

n
) > um−l+1( i

n
)}, 2 ≤ l ≤ m,

define an asymptotically optimal sequence of m-stopping times, i.e.
E[Xn

T̂n,m1

+ · · ·+Xn
T̂n,mm

]→ um(0) for n→∞.

If c = −∞ the same holds true for

T̂ n,m1 := min{1 ≤ i ≤ n−m+ 1 | Xn
i > vmn ( i

n
)},

T̂ n,ml := min{T̂ n,ml−1 < i ≤ n−m+ l | Xn
i > vm−l+1

n ( i
n
)}, 2 ≤ l ≤ m,

with vmn the functions appearing in condition (L+).

Proof: We consider first the case c ∈ R. The proof is by induction in m. The case
m = 1 follows from [FR] (2011a). For the induction step m− 1→ m note that by
(4.1)

umn (t) = E
[
Xn
Tn,m1 (t) + um−1

(Tn,m1 (t)

n

)]
+ E

[
um−1n

(Tn,m1 (t)

n

)
− um−1

(Tn,m1 (t)

n

)]
.

Since by induction hypothesis um−1n → um−1 uniformly, the second term converges
to zero. The first term is smaller than or equal to the optimal stopping curve of∑n

i=1 δ( in ,Xn
i +u

m−1( i
n
)) in t. This however converges by the case m = 1 to the optimal
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stopping curve um of Nm =
∑

k δ(τk,Yk+um−1(τk)) with guarantee value mc which is
given in Theorem 3.1. In consequence we obtain

lim supumn (t) ≤ u(t).

For the converse direction note that

umn (t) ≥ E[Xn
T̂n,m1 (t)

+ · · ·+Xn
T̂n,mm (t)

]

with the stopping times

T̂ n,m1 (t) := min{tn < i ≤ n−m |Xn
i + um−1( i

n
) > um( i

n
)},

T̂ n,ml (t) := min{T n,ml−1 (t) < i ≤ n−m+ l |Xn
i + um−l( i

n
) > um−l+1( i

n
)}, 2 ≤ l ≤ m.

As in the convergence theorem for multiple threshold stopping times in the max
case (see Proposition 5.1. of [FR] (2011b)) we obtain convergence of the threshold
stopping times in the sum case

E[Xn
T̂n,m1 (t)

∨ c+ · · ·+Xn
T̂n,mm (t)

∨ c]

→ E[Y Tm1 (t) ∨ c+ · · ·+ Y Tmm (t) ∨ c] = um(t).

The assumption Xn
i
L1

→ c for i = n−m+ 1, . . . , n then implies that

E[Xn
T̂n,m1 (t)

+ · · ·+Xn
T̂n,mm (t)

] → um(t).

This implies convergence

umn (t)→ um(t).

In the case c = −∞, we denote for x > −∞ by

umn (t, x) := sup{E[Xn
T1
∨ x+ · · ·+Xn

Tm ∨ x] | t < T1 < · · · < Tm ≤ 1}

the optimal stopping curve with guarantee value x (instead of c). Analogously we
define um(t, x). Then from the first part of the proof

umn (t) ≤ umn (t, x)
n→∞→ um(t, x).

By the separation condition (S) holding true for Nm we obtain convergence of
um(t, x) to um(t) for x → −∞ (compare the corresponding result in [FR] (2011a)
in the case m = 1). For the converse direction note that

umn (t) ≥ E[Xn
T̂n,m1 (t)

+ · · ·+Xn
T̂n,mm (t)

]

with the stopping times based on the approximative threshold sequences vmn in
condition (L+). By uniform integrability the right hand side converges to um(t).
Thus we obtain umn (t)→ um(t).

b) and c) follow from an extension of the proof of Proposition 2.4 in [KR]
(2000a). 2
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5 Optimal m-stopping of i.i.d. sequences with

discount and observation costs

As application we study in this section the optimal m-stopping of i.i.d. sequences
with discount and observation costs. In the case m = 1 this problem has been
considered in various degree of generality in Kennedy and Kertz (1990, 1991), [KR]
(2000b), and [FR] (2011a). m-stopping in the max case has been considered in [FR]
(2011b).

Let (Zi)i∈N be an i.i.d. sequence with d.f. F in the domain of attraction of an
extreme value distribution G, thus for some constants an > 0, bn ∈ R

n(1− F (anx+ bn))→ − logG(x), x ∈ R. (5.1)

Consider Xi = ciZi+di the sequence with discount and observation factors, ci > 0,
di ∈ R and both sequences monotonically nondecreasing or nonincreasing. For
convergence of the corresponding imbedded point processes

N̂n =
n∑
i=1

δ
( i
n
,
Xi−b̂n
ân

)
(5.2)

the following choices of ân, b̂n turn out to be appropriate:

ân := cnan, b̂n := 0 for F ∈ D(Φα) or F ∈ D(Ψα),

ân := cnan, b̂n := cnbn + dn for F ∈ D(Λ),
(5.3)

where Φα, Ψα, Λ are the Fréchet, Weibull, and Gumbel distributions and an, bn
are the corresponding normalizations in (5.1). We give further conditions on ci,
di to establish point process convergence in (5.2). Related conditions are given in
Haan and Verkaade (1987) in the treatment of i.i.d. sequences with trends resp. in
[KR] (2000b).

In the following c denotes some general constant and not as before the guarantee
value. The guarantee value of N is in case Φα given by 0 and in cases Ψα, Λ given
generally by −∞. We state the optimality results for all three cases. Based on
the characterization of optimal solutions for the limiting Poisson case and on the
approximation result we obtain explicit results for the optimal stopping curves
(using Remark 3.3) and also explicit approximative stopping sequences. We first
consider the case of Fréchet limits.

Theorem 5.1 Let F ∈ D(Φα) with α > 1 and F (0) = 0 (i.e. Zi > 0 P -a.s.). We
assume that bn = 0 and also assume

dn
cnan

→ d,
cbtnc
cn
→ tc ∀t ∈ [0, 1]
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with constants c, d ∈ R, and further that cn does not converge to 0. Also let c > − 1
α

and assume that the function R : (d,∞)→ R,

R(x) := x+
α

α− 1

1

1 + cα
(x− d)−α+1, x ∈ (d,∞), (5.4)

has no zero point.

a) Then

E[XTn,m1
+ · · ·+XTn,mm

]

ân
→ um(0) > 0, (5.5)

where um(t) is the optimal m-stopping curve of the Poisson process N̂ with
intensity function

Ĝ(t, y) = tcα(y − dtc+
1
α )−α = H

(
y

v(t)

)
v′(t)

v(t)
on Mf̂ ,

i.e. um are solutions of the differential equations in (3.6) (c.f. Remark 3.3).

Here v(t) := tc+
1
α , H(x) := α

αc+1
(x− d)−α and f̂(t) := dtc+

1
α .

b) T̂ n,m1 := min{ 1 ≤ i ≤ n−m+ 1 : Xi > ân(um( i
n
)− um−1( i

n
))},

T̂ n,m` := min{ T̂ n,m`−1 < i ≤ n−m+ ` : Xi > ân(um−l+1( i
n
)− um−l( i

n
))},

2 ≤ ` ≤ m, are asmptotically optimal m-stopping times, i.e. the limit in (5.5)
is attained also for these sequences.

The next result concerns the Weibull limit case.

Theorem 5.2 Let F ∈ D(Ψα) with α > 0 and F (0) = 1 (i.e. Zi ≤ 0 P -a.s.).
Further let an ↓ 0 and bn = 0, and

dn
cnan

→ d,
cbtnc
cn
→ tc, ∀t ∈ [0, 1]

for constants c, d ∈ R. If dn > 0, then assume that either (dn)n∈N is monotonically
nondecreasing or cnan does not converge to 0.

a) If c < 1
α

and d ≤ 0, then it holds

E[XTn,m1
+ · · ·+XTn,mm

]

ân
→ umc,d(0) < 0. (5.6)
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b) If c > 1
α

and the function R : R→ R

R(x) :=

{
x, if x ≥ d,

x− α
α+1

1
1−cα(−x+ d)α+1, if x < d,

(5.7)

has no zero point then (5.6) holds with umc,d(0) > 0. Here umc,d(t) is the optimal m-

stopping curve of the Poisson process N̂ = N̂c,d with intensity function Ĝ = Gc,d

given in (3.16).

c) Let (wn) be an increasing sequence wn < 0 such that n(1− F (wn))→ α+1
α

(e.g.

wn = −
(
α+1
α

) 1
α an). Define functions vmn by

vmn (t) :=
γmc,0(t)

u0,0(t)

wb(1−t)nc
an

+ γmc,d(t)− γmc,0(t),

with γmc,d(t) := umc,d(t)− um−1c,d (t). Then the m-stopping times defined by

T̂ n,m1 := min{ 1 ≤ i ≤ n−m+ 1 : Xi > ânv
m
n ( i

n
)},

T̂ n,m` := min{ T̂ n,m`−1 < i ≤ n−m+ ` : Xi > ânγ
m−`+1
c,d ( i

n
, 1
ân
XT̂n,m`−1

)}

for 2 ≤ ` ≤ m, are asymptotically optimal, i.e. convergence as in (5.6) does also
hold for them.

The final result concerns the Gumbel case.

Theorem 5.3 Let F ∈ D(Λ) and assume

bn
an

(
1−

cbtnc
cn

)
→ c log(t),

dn − dbtnc
cnan

→ d log(t) ∀t ∈ [0, 1]

for some constants c, d ∈ R. Assume also that (cn)n∈N and (dn)n∈N are monoton-
ically nondecreasing and that c+ d < 1. Then it holds:

a) E[XTn,m1
+ · · ·+XTn,mm

]− b̂n
ân

→ um(0), (5.8)

where um(t) is the optimal m-stopping curve of the Poisson process N̂ with
intensity function

Ĝ(t, y) = e−yt−(c+d) on [0, 1]×R.

(um) are solutions of the differential equations in (3.6) (c.f. Remark 3.3).
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b) Let (wn)n∈N be an increasing sequence with limn→∞ n(1 − F (wn)) = 1 (e.g.
wn := bn). Let (vmn ) be defined as

vmn (t) :=
wb(1−t)nc − bn

an
+ (um(t)− um−1(t))− log(1− t).

Then

T̂ n,m1 := min{ 1 ≤ i ≤ n−m+ 1 : Xi > ânv
m
n ( i

n
) + b̂n},

T̂ n,m` := min{ T̂ n,m`−1 < i ≤ n−m+ ` : Xi > ânv
m−`+1
n ( i

n
) + b̂n}

define an asymptotically optimal sequence of m-stopping times, i.e. convergence
as in (5.8) holds for them.

Proof: The proof can be given similarly to the proof of Theorems 3.1–3.3 in [FR]
(2011a) in the case m = 1 using the approximation Theorem 4.1. For details of the
proof of the uniform integrability condition we refer to Faller (2009, p. 101–107).

2
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