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Abstract

We consider the full information best choice problem from a sequence
X1, . . . , Xn of independent random variables. Under the basic assumption
of convergence of the corresponding imbedded point processes in the plane
to a Poisson process we establish that the optimal choice problem can be
approximated by the optimal choice problem in the limiting Poisson process.
This allows to derive approximations to the optimal choice probability and
also to determine approximatively optimal stopping times. An extension of
this result to the best m-choice problem is also given.
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1 Introduction

The best choice problem of a random sequence X1, . . . , Xn is to find a stopping
time τ 6 n to maximize the best choice probability P (Xτ = Mn), where Mn =
max16i6nXi, under all stopping times τ 6 n. Thus we aim to find an optimal
stopping time Tn 6 n such that

P (XTn = Mn) = maxP (Xτ = Mn) (1.1)

over all stopping times τ 6 n.

Gilbert and Mosteller (1966) found the solution of the full information best
choice problem, where X1, . . . , Xn are iid with known continuous distribution func-
tion F . In this case the optimal stopping time is given by

Tn = min{k 6 n | Xk = Mk, F (Xk) > bn−k} (1.2)

∗On June 30, 2011 Andreas Faller died completely unexpected. He was an extraordinary tal-
ented young researcher.
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where b0 = 0,
∑i

j=1

(
i
j

)
(b−1i − 1)jj−1 = 1, i = 1, 2, . . .

The asymptotic behaviour of bi is described by bi ↑ 1, i(1−bi)→ c = 0.8043 . . .
The optimal probability vn = P (XTn = Mn) does not depend on F , is strictly
decreasing in n and has limiting value v∞

vn → v∞ = 0.580164 . . . (1.3)

A continuous time version of the problem with random number of points given
by a homogeneous Poisson process with intensity λ was studied in Sakaguchi (1976).
As λ → ∞ the same limit v∞ appears as limiting optimal choice probability as
observed in Berezovskĭı and Gnedin (1984) and Gnedin and Sakaguchi (1992). In
Gnedin (1996) this limiting optimal choice probability v∞ was identified as optimal
choice probability in an associated plane Poisson process on [0, 1] × (−∞, 0] with
intensity measure λ[0,1]⊗λ(−∞,0]. The link with the original problem was established
by an explicit imbedding of finite iid sequences in the Poisson process. Multistop
best choice problems for Poisson processes were considered in Sakaguchi (1991) and
Saario and Sakaguchi (1992).

The approach in Gnedin (1996) was extended in Kühne and Rüschendorf
(2000c) to the best choice problem for (inhomogeneous) discounted sequences
Xi = ciYi, where (Yi) are iid and ci are constants which imply convergence of
imbedded normalized point processes Nn =

∑n
i=1 E( i

n
,
Xi−bn

an
)

to some Poisson pro-

cess N in the plane. The proofs in that paper make use of Gnedin’s (1996) result
as well as of some general approximation results in [KR]1 (2000a). The aim of this
paper is to extend this approach to general inhomogeneous best choice problems for
independent sequences under the basic assumption of convergence of the imbedded
point processes Nn to some Poisson process N in the plane. Subsequently we also
consider an extension to the m-choice problem, where m choices described by stop-
ping times 1 6 T1 < · · · < Tm 6 n are allowed and the aim is to find m stopping
times Tm1 < · · · < Tmm 6 n with

P (XTm
1
∨ · · · ∨XTm

m
= Mn) = supP (

m∨
i=1

XTi = Mn) (1.4)

the sup being over all stopping times T1 < · · · < Tm 6 n.

For the corresponding generalized Moser problem of maximizing EXτ resp.
E
∨m
i=1Xτi a general approximation approach has been developed in [KR] (2000a),

[FR] (2009) for m = 1, resp. in [KR] (2002) and [FR] (2010) for m > 1; see also
Goldstein and Samuel-Cahn (2006). For a detailed history of this problem we refer
to Ferguson (2007) for m = 1 resp. to [FR] (2010) in case m > 1. Our results
for (1.3) are in particular applicable to sequences Xi = ciZi + di with iid random
sequences (Zi) and with discount and observation factors ci, di. The corresponding

1Kühne and Rüschendorf is abbreviated within this paper with [KR], Faller and Rüschendorf
with [FR].
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results for the Moser type problems for these sequences can be found in [FR] (2009;
2010).

There are further interesting types of choice problems as e.g. the expected rank
choicee problem (see Bruss and Ferguson, 1993; Saario and Sakaguchi, 1995), multi-
ple buying selling problems (Gnedin, 1981; Bruss and Ferguson, 1997; Bruss, 2010)
or multicriteria extensions (Gnedin, 1992) which are not dealt with in this paper.

2 Approximative optimal best choice solution

We consider the optimal best choice problem (1.1) for a sequence (Xi) of indepen-
dent random variables, i.e. to find optimal stopping times Tn 6 n such that

P (XTn = Mn) = sup
τ6n

P (Xτ = Mn), (2.1)

over all stopping times τ 6 n. The basic assumption in our approach is convergence
of the imbedded planar point process to a Poisson point process N ,

Nn =
n∑
i=1

δ( i
n
,Xn

i )
d→ N (2.2)

on Mc = [0, 1]×(c,∞). Here Xn
i = Xi−bn

an
is a normalization of Xi typically induced

from a form of the central limit theorem for maxima an > 0, bn ∈ R and c ∈
R ∪ {−∞}. For some general conditions to imply this convergence and examples
see [KR] (2000a,b) or [FR] (2009). We consider Poisson processes N restricted
on Mc which may have infinite intensity along the lower boundary [0, 1] × {c}.
We assume that the intensity measure µ of N is a Radon measure on Mc with the
topology induced by the usual topology on [0, 1]×R. Thus any compact set A ⊂Mc

has only finitely many points of N . Convergence in distribution ‘Nn
d→ N on Mc’

means convergence in distribution of the restricted point processes. We generally
assume that the intensity measure µ is Lebesgue-continuous with density denoted
as g(t, x). Thus the Poisson process

N =
∑
k>1

δ(τk,yk) on Mc (2.3)

does not have multiple points.

We consider also the best choice problem for the continuous time Poisson process
N . An N -stopping time T : Ω → [0, 1] is a stopping time w.r.t. the filtration
At := σ(N(· ∩ [0, t] × (c,∞])), t ∈ [0, 1. An N -stopping time T is called ‘optimal
best choice stopping time’ for N if

P (YT = sup
k
Yk) = supP (YS = sup

k
Yk) (2.4)

the supremum being taken over all N -stopping times S.
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In the following theorem we derive the optimal stopping time T for the contin-
uous time best choice problem for the Poisson process N . Further we show that
the best choice problem for X1, . . . , Xn is approximated by the best choice prob-
lem for N . This allows us to get approximations of the best choice probabilities
vn = P (XTn = Mn) and to construct asymptotically optimal best choice stopping
sequences T̂n. Our approximation result needs the following intensity condition,
which is not necessary, when dealing with the limiting best choice problem (see
Section 3).

(I) Intensity Condition: For all t ∈ [0, 1) let µ((t, 1]× (c,∞]) =∞.

Theorem 2.1 Let the imbedded point process Nn converge in distribution to the
Poisson process N on Mc and let the intensity condition (I) hold true. Then we
get:

(a) The optimal best choice stopping time T for N is given by

T = inf{τk | Yk = sup
τj∈[0,τk]

Yj, Yk > v(τk)}, (2.5)

where the threshold v : [0, 1]→ [c,∞) is a solution of the integral equation∫ 1

t

∫ ∞
v(t)

eµ((r,1]×(v(t),y])µ(dr, dy) = 1 ∀t ∈ [0, 1),

v(1) = c

(2.6)

v is monotonically nonincreasing and can be chosen right continuous. The op-
timal probability for the best choice problem for N is given by

s := P (YT = sup
k
Yk)

=

∫ 1

0

e−µ([0,r]×(c,∞])

∫ ∞
v(r)

e−µ((r,1]×(y,∞])µ(dr, dy) (2.7)

+

∫ 1

0

∫ v(r′)

c

∫ 1

r′
e−µ([0,r]×(y

′,∞])

∫ ∞
y′∨v(r)

e−µ((r,1]×(y,∞])µ(dr, dy)µ(dr′, dy′).

(b) Approximation of the optimal best choice probabilities holds true:

lim
n→∞

vn = lim
n→∞

P (XTn = Mn) = s.

(c) T̂n := min{1 6 i 6 n | Xi = Mi, Xi > anv( i
n
) + bn} defines an asymptotically

optimal sequence of stopping times, i.e.

lim
n→∞

P (XT̂n
= Mn) = s.
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Proof: For (t, x) ∈ [0, 1) × [c,∞) we want to determine optimal stopping times
Tn(t, x) > tn for Xn

j , 1 6 j 6 n, which maximize

P (Xn
T = x ∨ max

tn<j6n
Xn
j )

under all stopping times τ > tn. Define for i > tn

Zn
i (t, x) = P

(
Xn
i = x ∨ max

tn<j6n
Xn
j | Xn

1 , . . . , X
n
i

)
.

Then we have to maximize EZn
τ (t, x) = P

(
Xn
τ = x ∨ maxtn<j6nX

n
j

)
. By the

classical recursive equation for optimal stopping of finite sequences the optimal
stopping times Tn(t, x) are given by (see e.g. Proposition 2.1 in [FR] (2010))
Tn(t, x) := T>tnn (t, x) where T>nn (t, x) := n and

T>kn (t, x) = min
{
k < i 6 n | P (Xn

i = x ∨ max
tn<j6n

Xn
j | Xn

1 , . . . , X
n
i )

> P (Xn
T>i
n (t,x)

= x ∨ max
tn<j6n

Xn
j | Xn

1 , . . . , X
n
i ), Xn

i = x ∨ max
tn<j6i

Xn
j

}
= min

{
k < i 6 n | P (Xn

i > max
i<j6n

Xn
j | Xn

i )

> P (Xn
T>i
n (t,x)

= Xn
i ∨ max

i<j6n
Xn
j | Xn

1 , . . . , X
n
i ), Xn

i = x ∨ max
tn<j6i

Xn
j

}
.

By backward induction in l = n − 1, . . . , btnc we obtain for tn < i 6 l that
T>ln (t, x) = T>ln ( i

n
, Xn

i ) on {Xn
i = x ∨maxtn<j6iX

n
j } and further that T>ln (t, x) is

independent of σ(Xn
1 , . . . , X

n
btnc. Thus

Tn(t, x) = min
{
tn < i 6 n | P (Xn

i > max
i<j6n

Xn
j | Xn

i )

> P (Xn
Tn(

i
n
,Xn

i )
= Xn

i ∨ max
i<j6n

Xn
j | Xn

i ), Xn
i = x ∨ max

tn<j6i
Xn
j

}
= min

{
tn < i 6 n | hn( i

n
, Xn

i ) > gn( i
n
, Xn

i ), Xn
i = x ∨ max

tn<j6i
Xn
j

}
where

gn(t, x) := P (Xn
Tn(t,x) = x ∨ max

tn<j6n
Xn
j )

hn(t, x) := P ( max
tn<j6n

Xn
j 6 x).

(2.8)

hn is monotonically nondecreasing in (s, t) and converges uniformly in compact sets
in [0, 1]× (c,∞] to

h∞(t, x) := P (N((t, 1]× (x,∞]) = 0) = e−µ((t,1]×(x,∞]).

To prove that gn(t, x) also converges uniformly on compact sets in [0, 1] × (c,∞]
we decompose gn into two monotone components.

gn(t, x) = sup
τ>tn

stopping times

P (Xn
τ = x ∨ max

tn<j6n
Xn
j )

= sup
τ>tn

stopping times

P (Xn
τ = x ∨ max

tn<j6n
Xn
j , max

tn<j6n
Xn
j > x)
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= sup
τ>tn

stopping times

P (Xn
τ ∨ x = max

tn<j6n
(Xn

j ∨ x), max
tn<j6n

Xn
j > x)

= sup
τ>tn

stopping times

P (Xn
τ ∨ x = max

tn<j6n
(Xn

j ∨ x))− P ( max
tn<j6n

Xn
j 6 x)

=: g̃n(t, x)− hn(t, x). (2.9)

For the second equality we use that by assumption P (Xn
i = x) = 0. g̃n(t, x) is

monotonically nondecreasing in (t, x) and thus converges pointwise to some func-
tion g̃∞(t, x). We next prove that g̃∞ is continuous which then implies uniform
convergence. On one hand side we have for s < t and x > c

g̃n(s, x) 6 sup
τ>sn

stopping times

P (Xn
τ ∨ x > max

tn<j6n
(Xn

j ∨ x))

6 sup
τ>sn

stopping times

P (Xn
τ ∨ x > max

tn<j6n
(Xn

j ∨ x), max
sn<j6tn

(Xn
j ∨ x) 6 max

tn<j6n
(Xn

j ∨ x))

+ P ( max
sn<j6tn

(Xn
j ∨ x) > max

tn<j6n
(Xn

j ∨ x))

6 g̃n(t, x) + P ( max
sn<j6tn

Xn
j > x).

On the other hand

g̃n(s, x) > sup
τ>sn

stopping times

P (Xn
τ ∨ x > max

sn<j6n
(Xn

j ∨ x))

> sup
τ>sn

stopping times

P (Xn
τ ∨ x > max

tn<j6n
(Xn

j ∨ x))

− P ( max
sn<j6tn

(Xn
j ∨ x) > max

tn<j6n
(Xn

j ∨ x))

> g̃n(t, x)− P ( max
sn<j6tn

Xn
j > x).

This implies
|g̃n(s, x)− g̃n(t, x)| 6 P ( max

sn<j6tn
Xn
j > x).

and thus continuity of g̃∞(t, x) in t.

To prove continuity of g̃∞ in x let x < y. Then

0 6 g̃n(t, y)− g̃n(t, x)

6 sup
τ>sn

stopping times

P (Xn
T ∨ y = max

tn<j6n
(Xn

j ∨ y), Xn
T ∨ x < max

tn<j6n
(Xn

j ∨ x))

6 P (x < max
tn<j6n

Xn
j 6 y).

In consequence g̃∞(t, x) is continuous and gn → g∞ uniformly on compact subsets
of [0, 1] × (c,∞). Point process convergence and the representation in (2.8) imply
that

g∞(t, x) = P
(
YT (t,x) = x ∨ sup

t<τk61
Yk
)
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with the N -stopping time

T (t, x) = inf
{
τk > t | Yk = x ∨ sup

t<τj6τk
Yj, h∞(τk, Yk) > g∞(τk, Yk)

}
.

The argument above also applies to the modified random variables

X̃n
i := sup

i−1
n
<τk6

i
n

Yk.

Defining g∞, h∞ as above we obtain in this case gn(t, x) ↓ g∞(t, x) since the
discrete stopping problems majorize the continuous time stopping problem. In con-
sequence T (t, x) are the optimal stopping times for N , i.e.

g∞(t, x) = sup
τ>t

N -stopping time

P
(
Yτ = x ∨ sup

t<τk61
Yk
)
,

As a result we get the following estimate

gn(t, x) > P (Xn
T̂n(t,x)

= x ∨ max
tn<j6n

Xn
j )→ g∞(t, x),

with the stopping times

T̂n(t, x) := min
{
tn < i 6 n | Xn

i = x ∨ max
tn<j6i

Xn
j , h∞( i

n
, Xn

i ) > g∞( i
n
, Xn

i )
}
.

Thus the limit g∞(t, x) is the same for (Xn
i ) and for (X̃n

i ).

The arguments above in the case x > c can also be extended to the case x = c.
Note that for x > c

g∞(t, x) 6 P
(
YT (t,x) = sup

t<τk61
Yk
)

6 sup
T>t

N -stopping time

P
(
YT = sup

t<τk61
Yk
)
6 g∞(t, x) + h∞(t, x).

From the intensity assumption (I) and since h∞(t, c) = 0 we obtain

g∞(t, c) := lim
x↓c

g∞(t, x) = P
(
YT (t,c) = sup

t<τk61
Yk
)

= sup
τ>t

N -stopping time

P
(
Yτ = sup

t<τk61
Yk
)
.

Since for x > 0
gn(t, x) 6 gn(t, c) 6 gn(t, x) + hn(t, x)

it follows that
lim
n→∞

gn(t, c) = g∞(t, c).

By assumption (I) P (N((t, 1]× (c,∞]) > 1) > 0 for t ∈ [0, 1). Thus g∞(t, x) is
monotonically nonincreasing in x with g∞(t, c) > 0 and g∞(t,∞) = 0. Also by (I)
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h∞(t, x) is monotonically nondecreasing in x with h∞(t, c) = 0 and h∞(t,∞) = 1.
In consequence there exists v(t) ∈ (c,∞) with

h∞(t, v(t)) = g∞(t, v(t)). (2.10)

This implies the representation

T (t, x) = inf
{
τk > t | Yk = x ∨ sup

t<τj6τk
Yj, Yk > v(τk)

}
.

We next prove that v is monotonically nonincreasing. Since g∞(t, x)− h∞(t, x)
is monotonically nonincreasing in x for any t it is sufficient to show that for s < t

g∞(s, v(t))− h∞(s, v(t)) > 0. (2.11)

To that aim we get for s < t

g∞(t, x)− g∞(s, x) 6 P (YT (t,x) = x ∨ sup
τk>t

Yk)− P (YT (t,x) = x ∨ sup
τk>s

Yk)

6 P (x ∨ sup
s<τk6t

Yk > YT (t,x) = x ∨ sup
τk>t

Yk)

6 P ( sup
s<τk6t

Yk > x)g∞(t, x).

On the other hand

h∞(t, x)− h∞(s, x) = P ( sup
s<τk6t

Yk > x)h∞(t, x),

which yields with x := v(t) the claim in (2.11).

Monotonicity of v allows us to determine g∞(t, x). Note that for x > v(t)

g∞(t, x) := P
(
∃n0 : ∀n > n0 : ∃ i

2n
∈ (t, 1] : ∃ j

2n
> x : N(( i−1

2n
, i
2n

]× ( j−1
2n
, j
2n

]) = 1,

N((t, i−1
2n

]× (x,∞]) = 0, and N(( i
2n
, 1]× ( j

2n
,∞]) = 0

)
=

∫ 1

t

e−µ((t,r]×(x,∞])

∫ ∞
x

e−µ((r,1]×(y,∞])µ(dr, dy),

and in case x 6 v(t)

g∞(t, x) = P (∃n0 : ∀n > n0 : ∃ i
2n
∈ (t, 1] : ∃ j

2n
> x :

N(( i−1
2n
, i
2n

]× ( j−1
2n
, j
2n

]) = 1 for j
2n
> v( i

2n
), N((t, i−1

2n
]× (x,∞]) = 0,

and N(( i
2n
, 1]× ( j

2n
,∞]) = 0)

+ P (∃n0 : ∀n > n0 : ∃t < i′

2n
< i

2n
6 1,∃x < j′

2n
< j

2n
:

N(( i−1
2n
, i
2n

]× ( j−1
2n
, j
2n

]) = 1 for j
2n
> v( i

2n
),

N(( i
′−1
2n
, i
′

2n
]× ( j

′−1
2n
, j
′

2n
]) = 1 for j′

2n
< v( i

′

2n
),

N((t, i−1
2n

]× ( j
′

2n
,∞]) = 0, and N(( i

2n
, 1]× ( j

2n
,∞]) = 0)
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=

∫ 1

t

e−µ((t,r]×(x,∞])

∫ ∞
x∨v(r)

e−µ((r,1]×(y,∞])µ(dr, dy)

+

∫ v−1(x)

t

∫ v(r′)

x

∫ 1

r′
e−µ((t,r]×(y

′,∞])

∫ ∞
y′∨v(r)

e−µ((r,1]×(y,∞])µ(dr, dy)µ(dr′, dy′).

This implies

g∞(t, v(t)) =

∫ 1

t

e−µ((t,r]×(v(t),∞])

∫ ∞
v(t)

e−µ((r,1]×(y,∞])µ(dr, dy).

From condition (2.10) this is equal to h∞(t, v(t)) = e−µ((t,1]×(v(t),∞]), and as conse-
quence we obtain equality from (2.6). 2

In general the optimal best choice probability s in (2.7) has to be evaluated
numerically. Certain classes of intensity functions however allow an explicit evalu-
ation.

Example 2.1 Consider densities of the intensity measure µ of the form

g(t, y) = −a(t)F ′(y), (2.12)

where a : [0, 1]→ [0,∞] is continuous and integrable, a is not identical zero in any
neighbourhood of 1 and F : [c,∞] → R monotonically nonincreasing, continuous

with limx↓c F (x) =∞ and F (∞) = 0. Defining A(t) :=
∫ 1

t
a(s)ds, we obtain∫ 1

t

∫ ∞
x

eµ((r,1]×(x,y])µ(dr, dy) =

∫ A(t)F (x)

0

ey − 1

y
dy.

In consequence v solves the equation

F (v(t)) =
d

A(t)
, (2.13)

where d = 0.8043522 . . . is the unique solution of∫ d

0

ey − 1

y
dy = 1. (2.14)

The asymptotic optimal choice probability can be obtained from (2.7) by some cal-
culation as

s = e−d + (ed − 1− d)

∫ ∞
d

e−y

y
dy = 0.5801642 . . .

This is identical to the asymptotic optimal choice probability in the iid case
(see (1.3)). In particular in case of the three extreme value distribution types Λ,
Φα, and Ψα, one gets for the limiting Poisson processes intensities with densities
g(t, x) of the form g(t, x) = −F ′(y) with F (x) = e−x in case Λ, F (x) = x−α, x > 0
in case Ψα, α > 0, and F (x) = (−x)α for x 6 0, F (x) = 0, x > 0 in case Ψα, α > 0.
Thus, these cases fit the form in (2.12). Also the example of a best choice problem
for Xi = ciYi for some iid sequence dealt with in [KR] (2000c) fits this condition.
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3 Poisson processes with finite intensities

Gnedin and Sakaguchi (1992) considered the best choice problem for iid sequence
(Yk) with distribution functions F arriving at Poisson distributed time points. For
continuous F this can be described by a planar Poisson process N with density
g(t, y) = a(t)F ′(y) where a : [0, 1] → [0,∞] is continuous integrable. N does not
fulfill the infinite intensity condition (I) in Section 2. For the best choice problem
in Poisson processes our method of proof can be modified to deal also with the case
of finite intensity.

Let N =
∑

k = δτk,Yk be a Poisson process on [0, 1]× (c,∞] with finite Lebesgue
continuous intensity measure, i.e. µ satisfies

(If) Finite Intensity Condition: µ([0, 1)× (c,∞]) <∞.

Then the following modifications of the proof of Theorem 2.1 allow to solve this
case. Note that under condition (If) no longer h∞(t, c) = 0 and thus in general no
longer one can find to any t ∈ [0, 1) an x > c such that h∞(t, x) < g∞(t, x). This
property holds true only in [0, t0) with

t0 := sup

{
t ∈ [0, 1] |

∫ 1

t

∫ ∞
c

eµ((r,1]×(c,y])µ(dr, dy) > 1

}
. (3.1)

This can be seen as follows: For t ∈ [0, t0) and for x close to c holds

g∞(t, x) > P (YT̃ (t,x) = sup
τk>t

Yk ∨ x) > h∞(t, x)

with stopping time T̃ (t, x) := inf{τk > t | Yk > x}. If for some t 6∈ [0, t0) there
would exist some v(t) ∈ (c,∞) with h∞(t, v(t)) = g∞(t, v(t)), then v(t) = c would
give a contradiction.

So far we have obtained optimality of the stopping times T (t, x) for x > c. We
next consider the case x = c. Since N has only finitely many points in [0, 1]×(c,∞)
it follows that

g∞(t, x) = P (YT (t,x) = sup
τk>t

Yk > x)

x↓c−→ P (YT (t,c) = sup
τk>t

Yk > c) = P (YT (t,c) = sup
τk>t

Yk)− h∞(t, c).

The inequality

sup
T>t

N -stopping time

P (YT = sup
τk>t

Yk)

6 sup
τ>t

N -stopping time

P (YT ∨ x = sup
τk>t

Yk ∨ x) = g∞(t, x) + h∞(t, x)

then implies optimality of T (t, c) and we obtain the following result.
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Theorem 3.1 Let the Poisson process satisfy the finite intensity condition (If ).
Then the optimal choice stopping time for N is given by

T = inf
{
τk | Yk = sup

τj∈[0,τk]
Yj, Yk > v(τk)

}
,

where v : [0, 1]→ [c,∞) is a solution of the integral equation∫ 1

t

∫ ∞
v(t)

eµ((r,1]×(v(t),y])µ(dr, dy) = 1 ∀t ∈ [0, t0),

v(t) = c ∀t ∈ [t0, 1].

v is monotonically nonincreasing and can be chosen right continuous. The optimal
choice probability is given by

s := P (YT = sup
k
Yk, T < 1)

=

∫ 1

0

e−µ([0,r]×(c,∞])

∫ ∞
v(r)

e−µ((r,1]×(y,∞])µ(dr, dy)

+

∫ t0

0

∫ v(r′)

c

∫ 1

r′
e−µ([0,r]×(y

′,∞])

∫ ∞
y′∨v(r)

e−µ((r,1]×(y,∞])µ(dr, dy)µ(dr′, dy′).

Example 3.1 In case of the finite intensity measure µ with density g(t, y) =

a(t)F ′(y) as in Gnedin and Sakaguchi (1992) let F (c) = 0 and A(t) :=
∫ 1

t
a(s)ds.

Then we obtain∫ 1

t

∫ ∞
x

eµ((r,1]×(x,y])µ(dr, dy) =

∫ A(t)(1−F (x))

0

ey − 1

y
dy.

Thus we get t0 = 0 and v ≡ c if A(0) 6 d where d is the constant given in (2.14).

If A(0) > d, then t0 is the smallest point satisfying A(t0) = d, and for t ∈ [0, to)
v(t) is a solution of the equation

F (v(t)) = 1− d

A(t)
,

Some detailed calculations yield in this case the optimal choice probability s as

s =


e−A(0)

∫ A(0)

0

ey − 1

y
dy, if A(0) 6 d,

e−d + (ed − 1− d)

∫ A(0)

d

e−y

y
dy, if A(0) > d.

This coincides with the results obtained in Gnedin and Sakaguchi (1992).
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4 The optimal m-choice problem

In this section we consider the optimal m-choice problem (1.4) for independent
sequences (Xi). Let Xn

i = Xi−bn
an

denote the normalized version as in Section 2.
Similarly we consider the optimal m-choice problem for continuous time Poisson
processes in the plane defined by

P
( m∨
i=1

YTm
i

= sup
k
Yk
)

= sup
06T1<···<Tm61

Ti,N -stopping times

P
( m∨
i=1

YTi = sup
k
Yk
)

(4.1)

and call (Tmi ) = (T n,mi ) optimal m-choice stopping times. The condition t 6 T1 <
· · · < Tm 6 1 means that Ti−1 < Ti on {Ti−1 < 1} and Ti = 1 on {Ti−1 = 1}.

The following lemma gives a characterization of optimal m-choice stopping
times in the discrete case.

Lemma 4.1 Define for (t, x) ∈ [0, 1)× [c,∞)

gmn (t, x) := sup
tn<T1<···<Tm6n
stopping times

P (Xn
T1
∨ · · · ∨Xn

Tm = x ∨ max
tn<j6n

Xn
j )

and

h1n(t, x) := P ( max
tn<j6n

Xn
j 6 x),

hmn (t, x) := gm−1n (t, x) + h1n(t, x).

Then
gmn (t, x) = P (Xn

Tn,m
1 (t,x) ∨ · · · ∨X

n
Tn,m
m (t,x) = x ∨ max

tn<j6n
Xn
j )

with optimal stopping times given by

T n,m1 (t, x) := min{tn < i 6 n−m+ 1 |
hmn ( i

n
, Xn

i ) > gmn ( i
n
, Xn

i ), Xn
i = x ∨ max

tn<j6i
Xn
j },

T n,ml (t, x) := min{T n,ml−1 (t, x) < i 6 n−m+ l |
hm−l+1
n ( i

n
, Xn

i ) > gm−l+1
n ( i

n
, Xn

i ), Xn
i = x ∨ max

tn<j6i
Xn
j }

(4.2)

for 2 6 l 6 m.

Proof: Let tn < S 6 n − m + 1 be a stopping time and Z 6 maxtn<j6S X
n
j

be a random variable. Furthermore let for 1 6 i 6 n, Mn
i be σ(Xn

i+1, . . . , X
n
n )

measurable with Mn
i 6 Xn

i+1 ∨Mn
i+1 and P (Mn

i = x) = 0 for all x > c. In order
to maximize P (Z ∨ Xn

T ∨ Mn
T = x ∨ maxtn<j6nX

n
j ) w.r.t. all stopping times T ,

S < T 6 n−m+ 1 we define

Yi := P (Z ∨Xn
i ∨Mn

i = x ∨ max
tn<j6n

Xn
j | Xn

1 , . . . , X
n
i ).



Approximative solutions of best choice problems 13

Thus we have to maximize EYT = P (Z ∨ Xn
T ∨ Mn

T = x ∨ maxtn<j6nX
n
j ). The

optimal stopping times are given by Tn(t, x) = T>tnn (t, x) with

T>kn (t, x)

= min{k < i 6 n−m+ 1 | P (Z ∨Xn
i ∨Mn

i = x ∨ max
tn<j6n

Xn
j | Xn

1 , . . . , X
n
i )

> P (Z ∨Xn
T>i
n (t,x)

∨Mn
T>i
n (t,x)

= x ∨ max
tn<j6n

Xn
j | Xn

1 , . . . , X
n
i ),

Xn
i = x ∨ max

tn<j6i
Xn
j }

= min{k < i 6 n−m+ 1 | P (Xn
i ∨Mn

i = Xn
i ∨ max

i<j6n
Xn
j | Xn

i )

> P (Xn
T>i
n (t,x)

∨Mn
T>i
n (t,x)

= Xn
i ∨ max

i<j6n
Xn
j | Xn

i ),

Xn
i = x ∨ max

tn<j6i
Xn
j }.

For the second equality we use that P (Xn
i = Xn

j > c) = 0 for i 6= j and thus
Xn
i = x ∨ maxtn<j6iX

n
j > x is strictly larger than Z. Thus Z can not be the

maximum. In consequence we get for k > S

T>kn (t, x) = min{k < i 6 n−m+ 1 | ĥn( i
n
, Xn

i ) > ĝn( i
n
, Xn

i ), Xn
i = x ∨ max

tn<j6i
Xn
j }

(4.3)
where

ĥn(t, x) := P (x ∨Mn
btnc = x ∨ max

tn<j6n
Xn
j )

= P (Mn
btnc = x ∨ max

tn<j6n
Xn
j ) + h1n(t, x),

ĝn(t, x) := P (Xn
Tn(t,x) ∨M

n
Tn(t,x) = x ∨ max

tn<j6n
Xn
j ).

By induction we obtain from (4.3) the representation in (4.2). Define for m = 1:
Mn

i := −∞, for m = 2: Mn
i := Xn

T>i
n (t,x)

, etc. 2

Theorem 4.2 (Approximative solution of the best m-choice problem)

Let Nn
d→ N on Mc = [0, 1]× (c,∞] and let N satisfy the intensity condition (I).

a) The optimal m-choice stopping times for N are given by Tm1 (0, c), . . . , Tmm (0, c),
where

Tm1 (t, x) = inf{τk > t | Yk = x ∨ sup
τj∈(t,τk]

Yj, Yk > vm(τk)},

Tml (t, x) = inf{τk > Tml−1(t, x) | Yk = x ∨ sup
τj∈(t,τk]

Yj, Yk > vm−l+1(τk)},

for 2 6 l 6 m. The thresholds vm(t) are solutions of the equations

gm∞(t, vm(t)) = hm∞(t, vm(t)) for t ∈ [0, 1) (4.4)

vm(1) = c,
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with
gm∞(t, x) := P (YTm

1 (t,x) ∨ · · · ∨ YTm
m (t,x) = x ∨ sup

t<τk61
Yk)

and

h1∞(t, x) := e−µ((t,1]×(x,∞]) for m = 1,

hm∞(t, x) := gm−1∞ (t, x) + h1∞(t, x) for m > 2.

vm : [0, 1] → [c,∞) is monotonically nonincreasing and can be chosen right
continuous. Furthermore, vm(t) 6 vm−1(t) for t ∈ [0, 1] (m > 2).

b) lim
n→∞

P (XTn,m
1
∨ · · · ∨XTn,m

m
= Mn) = sm = gm∞(0, c)

c) The stopping times T̂ml = T̂ n,ml defined by

T̂ n,m1 := min{1 6 i 6 n−m+ 1 | Xi = Mi, Xi > anv
m( i

n
) + bn},

T̂ n,ml := min{T̂ n,ml−1 < i 6 n−m+ l | Xi = Mi, Xi > anv
m−l+1( i

n
) + bn}

(4.5)

for 2 6 l 6 m are approximative optimal m-choice stopping times, i.e.

lim
n→∞

P (XT̂n,m
1
∨ · · · ∨XT̂n,m

m
= Mn) = sm. (4.6)

Proof: The proof of b), c) is similar to the corresponding part in Theorem 2.1. We
therefore concentrate on the proof of a).

As in the proof of Theorem 2.1 we obtain

gm∞(t, x) = sup
t<T1,...,Tm61

N -stopping times

P (YT1 ∨ · · · ∨ YTm = x ∨ sup
t<τk61

Yk). (4.7)

Furthermore we note that vm is continuous in 1, limt↑1 v
m(t) = c. If not, then

vm(tn)→ d > c for some sequence tn ↑ 1 and thus gm∞(tn, v
m(tn))→ 0. The inequal-

ity hm∞(tn, v
m(tn)) > h1∞(tn, v

m(tn))→ e−0 = 1 > 0 then yields a contradiction.

We have to show that for m > 2, vm 6 vm−1. Using the characterization of vm

in (4.4) this inequality follows from

gm∞(t, x)− hm∞(t, x) 6 gm−1∞ (t, x)− hm−1∞ (t, x). (4.8)

for x = vm(t). For m = 2 we obtain from (4.7)

g2∞(t, x) 6 2g1∞(t, x),

which implies (4.8). For m > 3 (4.8) is equivalent to

gm∞(t, x)− gm−1∞ (t, x) 6 gm−1∞ (t, x)− gm−2∞ (t, x). (4.9)
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We prove (4.9) by induction. By induction hypothesis we assume that vm−1 6
vm−2 6 . . . 6 v1 and all of the vi are monotonically nonincreasing. Also we
have limt↑1 v

m(t) = c. Assume that vm(s) > vm−1(s) for some s ∈ [0, 1). Since
limt↑1 v

m(t) = limt↑1 v
m−1(t) = c and since vm−1 is monotonically nonincreasing,

there exists some t ∈ [s, 1) with vm(t) > vm−1(t) and vm(t) > vm(r) for all r > t.
We establish (4.9) for x = vm(t).

From the definition of the thresholds follows Tmk (t, x) 6 Tm−1k (t, x) 6 Tm−2k (t, x)
for all 1 6 k 6 m− 2 . We define the stopping time

T̂ (t, x) := Tm1 (t, x)χ{Tm
1 (t,x)<Tm−2

1 (t,x)}

+
m−2∑
i=2

Tmi (t, x)χ{Tm
1 (t,x)=Tm−2

1 (t,x)}∩···∩{Tm
i−1(t,x)=T

m−2
i−1 (t,x)}∩{Tm

i (t,x)<Tm−2
i (t,x)}

+ Tmm−1(t, x)χ{Tm
1 (t,x)=Tm−2

1 (t,x)}∩···∩{Tm
m−2(t,x)=T

m−2
m−2 (t,x)}

.

T̂ (t, x) only stops at time points Tm1 (t, x), . . . , Tmm (t, x) but not at time points
Tm−21 (t, x), . . . , Tm−2m−2 (t, x) when these are < 1. We now obtain from (4.7) the in-
equality

gm∞(t, x)− gm−1∞ (t, x)

6 P (YTm
1 (t,x) ∨ · · · ∨ YTm

m (t,x) = x ∨ sup
t<τk61

Yk)

− P (YTm−2
1 (t,x) ∨ · · · ∨ YTm−2

m−2 (t,x)
= x ∨ sup

t<τk61
Yk)− P (YT̂ (t,x) = x ∨ sup

t<τk61
Yk)

= P (YTm
1 (t,x) ∨ · · · ∨ YTm

m (t,x) = x ∨ sup
t<τk61

Yk, YT̂ (t,x) < x ∨ sup
t<τk61

Yk)− gm−2∞ (t, x)

6 P (YT1(t,x) ∨ · · · ∨ YTm−1(t,x) = x ∨ sup
t<τk61

Yk)− gm−2∞ (t, x)

6 gm−1∞ (t, x)− gm−2∞ (t, x),

with the stopping times

T1(t, x) := Tm1 (t, x)χ{Tm
1 (t,x)6=T̂ (t,x)} + Tm2 (t, x)χ{Tm

1 (t,x)=T̂ (t,x)}

Ti(t, x) := Tmi (t, x)χ{Tm
1 (t,x)6=T̂ (t,x)}∩···∩{Tm

i (t,x) 6=T̂ (t,x)}

+ Tmi+1(t, x)χ{Tm
1 (t,x)=T̂ (t,x)}∪···∪{Tm

i (t,x)=T̂ (t,x)}

for i = 2, . . . ,m− 1.

Thus (4.9) holds true for x = vm(t) and, therefore, vm(t) 6 vm−1(t), a contra-
diction. This implies the statement vm 6 vm−1.

In the final step we prove that vm is monotonically nonincreasing. Since
gm∞(t, x) − hm∞(t, x) is monotonically nonincreasing in x for any t, it suffices to
prove that for s < t

gm∞(s, vm(t))− hm∞(s, vm(t)) > 0. (4.10)

We define for (s, x) ∈ [0, 1)× (c,∞]

A(s,x) := {YTm
1 (s,x) ∨ · · · ∨ YTm

m (s,x) = x ∨ sup
s<τk61

Yk, YTm−1
1 (s,x)

∨ · · · ∨ YTm−1
m−1 (s,x)

< x ∨ sup
s<τk61

Yk}.
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Then

gm∞(s, x)− gm−1∞ (s, x) = P (A(s,x))

and for s < t

P (A(t,x))− P (A(s,x))

= P (A(s,x), N((s, t]× (x,∞]) = 0) + P (A(t,x))P (N((s, t]× (x,∞]) > 1)

− P (A(s,x))

= −P (A(s,x), N((s, t]× (x,∞]) > 1) + P (A(t,x))(1− e−µ((s,t]×(x,∞]))

6
P (A(t,x))

h1∞(t, x)
(h1∞(t, x)− h1∞(s, x)).

With x = vm(t) we obtain the inequality in (4.10) and thus monotonicity of
vm. 2

To calculate the optimal thresholds we need to calculate the densities of record
stopping times with general threshold v.

Lemma 4.3 Let v : [0, 1] → [c,∞) be monotonically nonincreasing, right con-
tinuous with v > c on [0, 1). Define the record stopping time associated to v for
(t, x) ∈ [0, 1)× (c,∞) by

T (t, x) := inf{τk > t | Yk = x ∨ sup
τj∈(t,τk]

Yj, Yk > v(τk)},

(a) If x > v(t), then (T (t, x), YT (t,x))χ{T (t,x)<1} has Lebesgue density

F(t,x)(s, y) :=

{
e−µ((t,s]×(x,∞])g(s, y), if s ∈ (t, 1), y > x,

0, if s ∈ [0, t] or y 6 x
(4.11)

on [0, 1)×R.

(b) For x < v(t), (T (t, x), YT (t,x))χ{T (t,x)<1} has Lebesgue density

F(t,x)(s, y) (4.12)

:=


(

1 +

∫ s∧v−1(x)

t

∫ y∧v(r)

x

eµ((t,s]×(x,z])µ(dr, dz)

)
· e−µ((t,s]×(x,∞])g(s, y)χMv(s, y), if s ∈ (t, 1), y > x,

0, if s ∈ [0, t] or y 6 x,

on [0, 1)×R.
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Proof:

(a) If x > v(t), then for s ∈ (t, 1) and z ∈ (x,∞)

P (T (t, x) 6 s, YT (t,x) 6 z)

= P (∃n0 : ∀n > n0 : ∃ i
2n
∈ (t, s] : ∃ j

2n
∈ (x, z] :

N((t, i−1
2n

]× (x,∞]) = 0, N(( i−1
2n
, i
2n

]× ( j
2n
,∞]) = 0,

N(( i−1
2n
, i
2n

]× (x, j−1
2n

]) = 0, and N(( i−1
2n
, i
2n

]× ( j−1
2n
, j
2n

]) = 1)

=

∫ s

t

∫ z

x

e−µ((t,r]×(x,∞])µ(dr, dy).

(b) If x < v(t) then for s ∈ (t, 1) and z ∈ (x,∞) holds with Mv = {t, x) : x > v(t)}

P (T (t, x) 6 s, YT (t,x) 6 z) = A1 + A2

where

A1 = P (∃n0 : ∀n > n0 : ∃ i
2n
∈ (t, s] : ∃ j

2n
∈ (x, z] :

N((t, i−1
2n

]× (x,∞]) = 0, N(( i−1
2n
, i
2n

]× ( j
2n
,∞]) = 0,

N(( i−1
2n
, i
2n

]× (x, j−1
2n

]) = 0, and N(( i−1
2n
, i
2n

]× ( j−1
2n
, j
2n

] ∩Mv) = 1)

=

∫ s

t

∫ z

x

e−µ((t,r]×(x,∞])χMv(r, y)µ(dr, dy)

and

A2 = P (∃n0 : ∀n > n0 : ∃t < i′

2n
< i

2n
6 s : ∃x < j′

2n
< j

2n
6 z :

N(( i
′−1
2n
, i
′

2n
]× ( j

′−1
2n
, j
′

2n
]) = 1 for j′

2n
6 v( i

′

2n
) and i′

2n
6 v−1(x),

N((t, i−1
2n

]× ( j
′

2n
,∞]) = 0, N(( i−1

2n
, i
2n

]× ( j
2n
,∞]) = 0,

and N(( i−1
2n
, i
2n

]× ( j−1
2n
, j
2n

] ∩Mv) = 1)

=

∫ s

t

∫ z

x

∫ r∧v−1(x)

t

∫ y∧v(r′)

x

e−µ((t,r]×(y
′,∞])µ(dr′, dy′)χMv(r, y)µ(dr, dy). 2

Conditioning by (Tm1 (t, x), YTm
1 (t,x))χ{Tm

1 (t,x)<1} we obtain for x > vm(t) as con-
sequence a formula for gm∞(t, x) using that vm is monotonically nonincreasing

gm∞(t, x) =

∫ 1

t

∫ ∞
x

hm∞(s, y)e−µ((t,s]×(x,∞])g(s, y)dyds.

This allows to calculate the optimal threshold vm. Finally we can calculate gm∞(t, x)
for x < vm(t) using that

gm∞(t, x) =

∫ 1

t

∫ ∞
x

hm∞(s, y)e−µ((t,s]×(x,∞])g(s, y)dyds.
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Here Fm
(t,x) is the density of (Tm1 (t, x), YTm

1
(t, x))χ{Tm

1 (t,x)<1} from Lemma 4.3 involv-
ing the optimal thresholds vm.

For certain densities g(t, x) the optimal stopping curves can be determined
directly. To that purpose define constants dm and functions Hm in the following
way: Let for m ∈ N dm be the uniquely determined constant with

e−dm
∫ dm

0

ex

x

∫ x

0

Hm(y)dydx = Hm(dm). (4.13)

Here the functions Hm for z > 0 are inductively defined by H1(z) := e−z and

Hm(z) :=


e−z + e−z

∫ z

0

ex

x

∫ x

0

Hm−1(y)dydx, z 6 dm−1,

e−z +

∫ 1

0

∫ z∧
(

dm−1
x

)
0

Hm−1(xy)R(x, y, z, dm−1)dydx, z > dm−1

for m > 2, where

R(x, y, z, d) :=



1

1− x
e−(1−x)y +

x ∨ (dz−1)− x
1− x

e−(1−x)z

− x ∨ (dz−1)

1− x
e
− 1−x

x∨(dz−1)
d − d

∫ 1−x

x∨(dz−1)
d

(1−x)y

e−u

u
du, if y > d,

d

∫ 1−x

x∨(dz−1)
d

(1−x)d

e−u

u2
du+

x ∨ (dz−1)− x
1− x

e−(1−x)z, if y 6 d.

In the following theorem we given an application to the case where the intensity
measure µ of the Poisson process N has a density of the form

g(t, y) = −a(t)F ′(y)

with a continuous integrable function a : [0, 1] → [0,∞] not identical zero in any
neighbourhood of 1 and F : [c,∞] → R monotonically nonincreasing, continuous
with limx↓c F (x) =∞ and F (∞) = 0.

In this situation we get the following result for the optimal m-choice problem
for N .

Theorem 4.4 Under the conditions stated above the optimal threshold vm(t) for
t ∈ [0, 1) is a solution of

F (vm(t)) =
dm
A(t)

with A(t) :=

∫ 1

t

a(s)ds. (4.14)

Further hm∞(t, x) = Hm(A(t)F (x)) and the optimal m-choice probability is given by

sm = Hm+1(∞).
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Proof: At first let v(t), t ∈ [0, 1) be a solution of

F (v(t)) =
d

A(t)

where d > 0 and T (t, x) is the record stopping time associated to v. Let v : [0, 1]→
[c,∞) be chosen right continuous. To calculate F(t,x) the density of (T (t, x), YT (t,x))
in case x < v(t) we have to calculate∫ s∧v−1(x)

t

∫ y∧v(r)

x

eµ((t,s]×(x,z])µ(dr, dz).

For y ∈ (x, v(t)] holds∫ s∧v−1(y)

t

∫ y

x

eµ((t,s]×(x,z])µ(dr, dz)

= −
∫ s∧v−1(y)

t

a(r)

∫ y

x

e(A(t)−A(s))(F (x)−F (z))F ′(z)dzdr

=

∫ s∧v−1(y)

t

a(r)dr

∫ y

x

1
A(t)−A(s)

∂
∂z
e−(A(t)−A(s))F (z)dze(A(t)−A(s))F (x)

=
A(t)−A(s)∨( d

F (y)
)

A(t)−A(s) e(A(t)−A(s))F (x)
(
e−(A(t)−A(s))F (y) − e−(A(t)−A(s))F (x)

)
=

A(t)−A(s)∨( d
F (y)

)

A(t)−A(s)

(
e(A(t)−A(s))(F (x)−F (y)) − 1

)
.

Using some substitutions we obtain further∫ s∧v−1(x)

s∧v−1(y)

∫ v(r)

x

eµ((t,s]×(x,z])µ(dr, dz) =

∫ s∧v−1(x)

s∧v−1(y)

a(r)

∫ v(r)

x

1
A(t)−A(s)

∂
∂z

=

∫ s∧v−1(x)

s∧v−1(y)

a(r)
(
e−(A(t)−A(s))

d
A(r) − e−(A(t)−A(s))F (x)

)
dr e

(A(t)−A(s))F (x)

A(t)−A(s)

=

∫ 1

A(s)∨( d
F (x)

)

1

A(s)∨( d
F (y)

)

1
z2
e−(A(t)−A(s))dzdz e

(A(t)−A(s))F (x)

A(t)−A(s) −
A(s)∨( d

F (y)
)−A(s)∨( d

F (x)
)

A(t)−A(s) .

With the substitution z′ = (A(t)− A(s))z this is identical to

∫ A(t)−A(s)

A(s)∨( d
F (x)

)
d

A(t)−A(s)

A(s)∨( d
F (y)

)
d

e−z

z2
dzde(A(t)−A(s))F (x) −

A(s)∨( d
F (y)

)−A(s)∨( d
F (x)

)

A(t)−A(s)

=

{[
−1
z
e−z
]...
...
−
∫ ...

...

e−z

z
dz

}
de(A(t)−A(s))F (x) −

A(s)∨( d
F (y)

)−A(s)∨( d
F (x)

)

A(t)−A(s)

=

{
−
A(s)∨( d

F (x)
)

A(t)−A(s) e
− A(t)−A(s)

A(s)∨( d
F (x)

)
d

+
A(s)∨( d

F (y)
)

A(t)−A(s) e
− A(t)−A(s)

A(s)∨( d
F (y)

)
d
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− d
∫ A(t)−A(s)

A(s)∨( d
F (x)

)
d

A(t)−A(s)

A(s)∨( d
F (y)

)
d

e−z

z
dz

}
e(A(t)−A(s))F (x) −

A(s)∨( d
F (y)

)−A(s)∨( d
F (x)

)

A(t)−A(s) .

Together we obtain for s ∈ (t, 1) and y ∈ (x, v(t)]

F(t,x)(s, y) =

{
−
A(s)∨( d

F (x)
)

A(t)−A(s) e
− A(t)−A(s)

A(s)∨( d
F (x)

)
d

+
A(s)∨( d

F (x)
)−A(s)

A(t)−A(s) e−(A(t)−A(s))F (x)

+ A(t)
A(t)−A(s)e

−(A(t)−A(s))F (y) − d
∫ A(t)−A(s)

A(s)∨( d
F (x)

)
d

(A(t)−A(s))F (y)

e−z

z
dz

}
· a(s)(−F ′(y))χMv(s, y)

= R
(
A(s)
A(t)

, A(t)F (y), A(t)F (x), d
)
a(s)(−F ′(y)), χMv(s, y).

Similarly we obtain for y > v(t)∫ s∧v−1(x)

t

∫ v(r)

x

eµ((t,s]×(x,z])µ(dr, dz)

=

∫ A(t)−A(s)

A(s)∨( d
F (x)

)
d

A(t)−A(s)
A(t)

d

e−z

z2
dzde(A(t)−A(s))F (x) −

A(t)−A(s)∨( d
F (x)

)

A(t)−A(s) .

In consequence also in this case for s ∈ (t, 1) and y ∈ [v(t),∞) (thus A(t)F (y) 6 d)
holds

F(t,x)(s, y) = R

(
A(s)

A(t)
, A(t)F (y), A(t)F (x), d

)
a(s)(−F ′(y))χMv(s, y).

This representation of F(t,x) allows to prove the statement by induction. The case
m = 1 has already been given in Example 3.1.

For the induction step m − 1 → m we get for x > vm−1(t) (thus A(t)F (x) 6
dm−1) using the induction hypothesis

gm−1∞ (t, x) =

∫ 1

t

∫ ∞
x

hm−1∞ (s, y)e−µ((t,s]×(x,∞])µ(ds, dy)

=

∫ 1

t

∫ ∞
x

Hm−1(A(s)F (y))e−(A(t)−A(s))F (x)a(s)(−F ′(y))dyds

=

∫ 1

t

a(s)

A(s)
eA(s)F (x)

∫ A(s)F (x)

0

Hm−1(z)dzdse−A(t)F (x)

=

∫ A(t)F (x)

0

ey

y

∫ y

0

Hm−1(z)dzdye−A(t)F (x).

In the last equalities we used the substitutions z = A(s)F (y) resp. y = A(s)F (x).
Thus for x > vm−1(t) we have

hm∞(t, x) = Hm(A(t)F (x)).
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Similarly in the case x < vm−1(t):

gm−1∞ (t, x) =

∫ 1

t

∫ ∞
x

hm−1∞ (s, y)Fm−1
(t,x) (s, y)dyds

=

∫ 1

t

∫ ∞
x∨vm−1(s)

Hm−1(A(s)F (y))R
(
A(s)
A(t)

, A(t)F (y), A(t)F (x), dm−1

)
· a(s)(−F ′(y))dyds

=

∫ 1

t

∫ (A(t)F (x))∧
(
A(t)
A(s)

dm−1

)
0

Hm−1
(
A(s)
A(t)

z
)

·R
(
A(s)
A(t)

, z, A(t)F (x), dm−1

)
a(s)
A(t)

dzds

=

∫ 1

0

∫ (A(t)F (x))∧
(

dm−1
y

)
0

Hm−1(yz)R(y, z, A(t)F (x), dm−1)dzdy.

In the last equalities we used the substitutions z = A(t)F (y) resp. y = A(s)
A(t)

. Thus

for x < vm−1(t) (and, therefore, A(t)F (x) > dm−1) holds

hm∞(t, x) = Hm(A(t)F (x)).

Thus for x > vm(t) we have

gm∞(t, x) =

∫ A(t)F (x)

0

ey

y

∫ y

0

Hm(z)dzdye−A(t)F (x).

Equalizing this with hm∞(t, x) = Hm(A(t)F (x)) it follow that the optimal thresh-
old vm(t) is determined by

A(t)F (vm(t)) = dm (4.15)

with dm as determined in (4.12). This completes the induction. 2

We next will determine the solution of the optimal 2-choice problem for this
type of densities. The constant d1 is given by

d1 = 0.8043522 . . . , (4.16)

the unique solution of ∫ d1

0

ey

y
dy = 1. (4.17)

With some detailed calculations we obtain

H2(z) =

{
e−z + e−z

∫ z
0
ey−1
y
dy, if z 6 d1,

e−z + e−d1 + (ed1 − 1− d1)
∫ z
d1

e−y

y
dy, if z > d1.

This implies the optimal one-choice probability

s1 = H2(∞) = e−d1 + (ed1 − 1− d1)
∫ ∞
d1

e−y

y
dy = 0.5801642 . . . (4.18)
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The calculation of H3 is involved. We obtain

H3(z) =


H2(z) + e−z

{∫ z
0
ex

x

∫ x
0

1−e−y

y
dydx−

∫ z
0

1
x

∫ x
0
ey−1
y
dydx

}
, if z 6 d1,

H2(z) + e−z
{
K1

∫ z
d1

ey−1
y
dy +K2

}
, if d1 < z 6 d2,

where

K1 :=

∫ d1

0

1−e−y

y
dy = 0.6676616 . . .

K2 :=

∫ d1

0

ex

x

∫ x

0

1−e−y

y
dydx−

∫ d1

0

1
x

∫ x

0

ey−1
y
dydx = 0.2144351 . . .

The case d2 < z is left open. In consequence we obtain

d2 = 1.5817197 . . .

is that constant > d1, which solves the equation

K1

∫ d2

d1

ey

y
dy − log

(
d2
d1

)
+K2 = 1.

Numerical calculation yields the optimal two-choice probability

s2 = H3(∞) = 0.8443 . . .

The functions Hm, m > 4 seem to be too difficult to be calculated explicitly and
the corresponding optimal m-choice probability can only be calculated numerically
(and even that is a challenge).

Example 4.1 Let (Xi) be iid with continuous standard normal distribution func-
tion F = Φ. Then normalizing constants from extreme value theory are given by

an =
1√

2 log n
, bn =

√
2 log n− log log n+ log 4π

2
√

2 log n
.

Then we obtain that

(XTn,m
1
∨ · · · ∨XTn,m

m
= Mn)→ sm = Hm+1(∞).

T̂ n,m1 :=

{
1 6 i 6 n−m+ 1 | Xi = Mi, F (Xi) > Φ

(
an log

(
1− i

n
dm

)
+ bn

)}
,

T̂ n,ml :=

{
T̂ n,ml−1 < i 6 n−m+ l | Xi = Mi, F (Xi) > Φ

(
an log

(
1− i

n
dm−l+1

)
+ bn

)}
(4.19)

define for 2 6 l 6 m an asymptotically optimal sequence of m-choice stopping
times.
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As in Section 3 for one-choice problem the proof of optimality of the stopping
times Tm1 (t, x), . . . , Tmm (t, x) in Theorem 4.2 can be modified to hold true for Poisson
processes N with finite intensity measure µ. As result we obtain

Theorem 4.5 Let the Poisson process N on [0, 1]×(c,∞] fulfill the finite intensity
condition If .

a) The optimal m-choice stopping times for N are given by (Tm1 , . . . , T
m
m ) :=

(Tm1 (0, c), . . . , Tmm (0, c)) with

Tm1 (t, x) = inf{τk > t | Yk = x ∨ sup
τj∈(t,τk]

Yj, Yk > vm(τk)},

Tml (t, x) = inf{τk > Tml−1(t, x) | Yk = x ∨ sup
τj∈(t,τk]

Yj, Yk > vm−l+1(τk)},

for 2 6 l 6 m. The corresponding stopping thresholds vm are determined as
solutions of

gm∞(t, vm(t)) = hm∞(t, vm(t)) for t ∈ [0, tm0 ),

vm(t) = c for t ∈ [tm0 , 1],
(4.20)

where tm0 := sup{t ∈ [0, 1] | gm∞(t, c) > hm∞(t, c)}.
The functions gm∞, hm∞ are given by

gm∞(t, x) := P (YTm
1 (t,x) ∨ · · · ∨ YTm

m (t,x) = x ∨ sup
t<τk61

Yk)

and

h1∞(t, x) := e−µ((t,1]×(x,∞]) for m = 1,

hm∞(t, x) := gm−1∞ (t, x) + h1∞(t, x) for m > 2.

vm : [0, 1] → [c,∞] is monotonically nonincreasing and can be chosen right
continuous. Furthermore,

vm(t) 6 vm−1(t) for t ∈ [0, 1],m > 2.

b) The optimal m-choice probability is given by

sm := P (YTm
1
∨ · · · ∨ YTm

m
= sup

k
Yk, T

m
1 < 1) = lim

x↓c
gm∞(t, x).

Theorem 4.5 allows to generalize the optimal (one-)choice results in Gnedin and
Sakaguchi (1992) resp. Example 3.1 for iid sequences with distribution function F
arriving at Poisson distributed time points to the m-choice case. Let the intensity
measure µ of a Poisson process N have Lebesgue density

g(t, y) = a(t)F ′(y) (4.21)

with continuous and integrable function a : [0, 1] → [0,∞] and continuous dis-

tribution function F . Define A(t) :=
∫ 1

t
a(s)ds and let the constants dm and the

functions Hm be defined as in (4.13). The point tm0 is defined as for m = 1 in
Example 3.1.
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Theorem 4.6 Let N be a Poisson process with finite intensity (4.21). Then we
have

a) If A(0) 6 dm, then tm0 = 0 and vm ≡ c.

b) If A(0) > dm, then tm0 is the minimal solution of A(tm0 ) = dm. For t ∈
[0, tm0 )vm(t) is a solution of

F (vm(t)) = 1− dm
A(t)

. (4.22)

c) hm∞(t, x) = Hm(A(t)(1 − F (x))) for x > −∞ and the optimal m-choice proba-
bility is given by

sm = Hm+1(A(0))− e−A(0). (4.23)

Proof: The proof is similar to that of Theorem 4.4 replacing the decreasing function
F there by the decreasing function 1− F here. 2
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