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Abstract

In this paper an extension is established of the method to approximate
optimal discrete time stopping problems by related limiting stopping prob-
lems for Poisson type processes. The extension allows to apply this method
to a larger class of examples as arising f.e. from point process convergence
results in extreme value theory. The second main point in this paper is the
development of new classes of solutions of the differential equations which
characterize optimal threshold functions. As particular application we give
a fairly complete discussion of the approximative optimal stopping behavior
of i.i.d. sequences with discount and observation costs.
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1 Introduction

The theory of optimal stopping of independent and dependent sequences
X1, . . . , Xn is a classical subject of probability theory which still has a lot of open
problems and new applications as for instance in the area of financial mathematics.
In a series of papers an approximation method has been developed in order to solve
approximatively optimal stopping problems for X1, . . . , Xn by some limiting stop-
ping problems for Poisson and related point processes (see [KR]1 (2000a; 2000b;
2003; 2004). The basic assumption in this approach is convergence of the imbedded
planar point process

Nn =
∑
i=1

δ( i
n
,Xn
i )

d→ N (1.1)

1Kühne and Rüschendorf is abbreviated within this paper with [KR], Faller with [F], Faller
and Rüschendorf with [FR].
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to some Poisson (or related) point process N . Here Xn
i = Xi−bn

an
is a normalization

of Xi induced typically from the central limit theorem for maxima. For the limiting
Poisson type process N , which has accumulation points along a lower boundary
curve, an optimal stopping problem in continuous time can be formulated.

The optimal solution for this limiting stopping problem is given by a threshold
stopping time. The threshold function is determined by a differential equation of
first order. This is in analogy to stopping problems for diffusion processes which
typically lead to free boundary value problems with differential equations of second
order for the stopping curve (Stefan free boundary problem). The differential equa-
tion for the optimal threshold function in the Poisson case can be solved in several
cases explicitly or numerically. Under some uniform integrability and separation
conditions, a differentiability condition for the intensity measure of N as well as
an asymptotic independence condition in the dependent case the optimal stopping
problem for X1, . . . , Xn can be approximated by the optimal stopping problem for
the limiting Poisson type process.

In this paper we establish some relevant extensions of interest for this approxi-
mation method. In Section 2 we give a new and simplified derivation of the optimal
stopping curve u for the optimal stopping problem for continuous time Poisson pro-
cesses as above. These curves solve a differential equation of the form

u′(t) = −
∫ ∞
u(t)

G(t, y) dy, t ∈ [0, 1), u(1) = c (1.2)

with some guarantee value c ∈ R ∪{−∞}. Here G is defined explicitly via the
intensity measure of N and is called ‘intensity function’. For c ∈ R (1.2) has a
unique solution and thus characterizes the optimal stopping curve. For c = −∞
there may exist several solutions of (1.2). While the finite case in c ∈ R1 has been
dealt with in [KR] (2000a) the case where c = −∞ has been left mostly open in the
previous literature and has been dealt with only under an uniqueness assumption
on equation (1.2). Based on our new derivation of the approximation result we
characterize the optimal stopping curve for c = −∞ as the maximal solution of
(1.2). We also establish some uniqueness criteria for (1.2) in the case c = −∞.
There are several interesting applications with c = −∞ (see e.g. the examples
in Section 5 of this paper) which can be solved with our new extension of the
approximation method.

The second main contribution of this paper concerns the differential equation
(1.2), which characterizes optimal stopping boundaries. The classical results from
differential equations for equation (1.2) concern the so-called separable case where
G(t, y) = a(t)b(y). But even in this case the known characterization results for solu-
tions are typically not explicit but need numerical tools. In this paper we introduce
two interesting new classes of intensity functions G – not leading to the case of
separate variables in (1.2) – which allow us to solve the differential equation (1.2)
in ‘explicit’ form. For these classes of intensity functions the so-called ‘separation
condition’, which is needed in our approximation approach to optimal stopping
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problems, can be verified. In Section 4 we state an extension of the approxima-
tion theorem in [KR] (2004, Theorem 2.1) for the optimal stopping of dependent
sequences. This is the second main ingredient of the approximation method. Our
version gives a precise uniform integrability condition which allows us to treat also
the case c = −∞ (which was not included in previous results) and allows for more
general filtrations.

As application of our extensions we are able in Section 5 to discuss in fairly
complete form the optimal stopping of i.i.d. sequences (Zi) with discount factors
(ci) and observation costs (di), i.e. of

Xi = ciZi + di. (1.3)

Here ci, di fulfill some criteria to ensure point process convergence, (Zi) is an i.i.d.
sequence in the max-domain of an extreme value distribution Γ, Φα, Ψα. The new
results on the solution of the optimality equation in (1.2) and the inclusion of
the case c = −∞ allow us to complete some partial results on this problem in
[KR] (2000b). This kind of stopping problem was first considered in the i.i.d. case
without discount and observation cost in Kennedy and Kertz (1990, 1991).

It has been observed in several papers in the literature that optimal stopping
problems may have an easier solution in a related form for Poisson numbers of points
as for instance in the classical house selling problem (see Chow et al. (1971); Bruss
and Rogers (1991), and Gnedin and Sakaguchi (1992)). The approach extended in
this paper makes this method applicable to a wider class of examples. Based on the
new results in this paper an interesting extension to multistopping problems has
been given recently in [FR] (2010). Several details and proofs in this paper have
been omitted for the reason of space and concentration. For them we refer to the
dissertation of Faller (2009) on which this paper is based.

2 Optimal stopping of Poisson processes

We consider optimal stopping of a Poisson process N =
∑

k δ(τk,Yk) in the plane
restricted to some set

Mf = {(t, x) ∈ [0, 1]×R : x > f(t)}

where f : [0, 1]→ R∪{−∞} is a continuous function describing the lower boundary
of N . We consider Poisson processes restricted to Mf which may have infinite
intensity along the lower boundary f . We assume that the intensity measure µ
of N is a Radon measure on Mf with the topology on Mf induced by the usual
topology on [0, 1] × R. Thus any compact set A ⊂ Mf has only finitely many

points. By convergence in distribution ‘Nn
d→ N on Mf ’ we mean convergence in

distribution of the restricted point processes.

We generally assume the boundedness condition
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(B) E(supk Yk)
+ <∞. (2.1)

Let At = σ(N(· ∩ [0, t] × R ∩Mf )), t ∈ [0, 1], denote the relevant filtration of
the point process N . A stopping time T : Ω→ [0, 1] for N is a stopping time w.r.t.
filtration (At), i.e. {T ≤ t} ∈ At, t ∈ [0, 1]. In general N may have multiple points.
Denote by Y T := sup{Yk : T = τk}, sup ∅ := −∞, the reward w.r.t. stopping time
T . For any guarantee value x ∈ [c,∞], c := f(1), define the optimal stopping curve
w.r.t. x by

u(t, x) := sup{E[Y T ∨ x] : T > t a stopping time}, t ∈ [0, 1),

u(1, x) := E[Y 1 ∨ x].
(2.2)

In comparison to [KR] (2000a) we consider stopping times T > t in this paper and
introduce a guarantee value. This has some technical advantages w.r.t. continuity
properties and leads to some changes in the optimal stopping time formulas. For
notational convenience we write

u(t) := u(t, c), t ∈ [0, 1].

Every instance of u without arguments is to be understood as u(·, c). The critical
point of N for x is given by

t0(x) := inf{t ∈ [0, 1] : N((t, 1]× (x,∞] ∩Mf ) = 0 P -a.s.}, inf ∅ := 1. (2.3)

The following lemma gives some basic properties of the optimal stopping
curve u.

Lemma 2.1 (a) For any x ∈ [c,∞] the optimal stopping curve u(·, x) is right
continuous on the interval {t ∈ [0, 1] : u(t, x) > −∞}.

(b) For x, y ∈ R, x ≤ y holds

0 ≤ u(t, y)− u(t, x) ≤ y − x, t ∈ [0, 1].

(c) For x ∈ [c,∞], x > −∞ holds

t0(x) = inf{t ∈ [0, 1] : u(t, x) = x}, inf ∅ := 1.

Proof: For the proof see [F] (2009). 2

In order to identify the optimal stopping curve u for the stopping of the Poisson
process N we generally assume in the following: t0(c) = 1 and that the intensity
measure µ of N is a Radon measure on Mf and Lebesgue-continuous with density
g.

An important condition is the separation condition:
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(S) Assume that u > f on [0, 1).

If c = −∞, then (S) implies right-continuity of u on [0, 1] and the validity of
Lemma 2.1c) also for x = −∞. By our general assumption t0(c) = 1, the separation
condition (S) is fulfilled generally for c ∈ R if f ≤ c.

With the additional guarantee parameter x, Theorem 2.5 a) in [KR] (2000a) in
our slightly modified form can be formulated as

Theorem 2.2 (Existence and uniqueness of an optimal stopping time)
Let N fulfill (B) and (S). Then for any x ≥ c the optimal stopping curve
u(·, x) : [0, 1]→ [x,∞) is continuous on [0, 1]. Furthermore,

u(t, x) = E[Y T (t,x) ∨ x], t ∈ [0, 1], (2.4)

where the optimal stopping time T (t, x) at time t is given by

T (t, x) = inf{τk > t : Yk > u(τk, x)}, inf ∅ := 1. (2.5)

Thus T (0, x) is an optimal stopping time for N, x at time 0. It is P -a.s. unique.

Note that by condition (S) in case c = −∞ we have P (T (t, c) < 1) = 1 or
equivalently µ((t, 1]×R ∩Mu) =∞ for all t ∈ [0, 1).

In the following we want to characterize the optimal stopping curve u by a
differential equation. The following lemma will be needed in the case c = −∞.

Lemma 2.3 Let N fulfill the boundedness condition (B) and define

v(t) := lim
x↓c

u(t, x), t ∈ [0, 1].

If for some continuous function w : [0, 1) → R holds v ≥ w > f on [0, 1), then
v = u. In particular the separation condition (S) is fulfilled.

Proof: For t ∈ [0, 1] let Tv(t) := inf{τk > t : Yk > v(τk)}, inf ∅ := 1 denote the
threshold stopping time of v. This is a stopping time forN since v ≥ w > f on [0, 1).
Then u ≤ v ≤ u(·, x) and thus Tv(t) ≤ T (t, x). Further Y T (t,x) ∨ x → Y Tv(t) ∨ c
P-a.s. for x ↓ c. This follows from our modified definition of T (t, x) = inf{τk >
t : Yk > u(τk, x)} (in comparison to the usual ‘≥’ definition) and using that the
thresholds u(·, x) converge to v. Thus by Fatou’s Lemma it follows

u(t) ≤ v(t) = lim
x↓c

u(t, x) = lim
x↓c

E[Y T (t,x) ∨ x] ≤ E[Y Tv(t) ∨ c] ≤ u(t). 2

For any continuous function v : [0, 1]→ R∪ {−∞} with v > f on [0, 1) and its
threshold stopping times

Tv(t) := inf{τk > t : Yk > v(τk)}, inf ∅ := 1,

for t ∈ [0, 1), the Poisson assumption allows us to calculate the joint distribution
of (Tv(t), Y Tv(t)). By standard arguments for Poisson processes we obtain
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Lemma 2.4 Let N satisfy (B). Then the distribution of (Tv(t), Y Tv(t)) has on
[0, 1)×R the Lebesgue density

Ft(s, z) :=

{
e−µ((t,s]×R∩Mv)g(s, z)χMv(s, z), if s ∈ (t, 1),

0, if s ∈ [0, t].
(2.6)

In the sequel we will need the following differentiability condition on the density
g of µ:

(D) Assume that there exists a version of the density g of µ on Mf such that the
intensity function

G(t, y) :=

∫ ∞
y

g(t, z) dz (2.7)

is continuous on Mf∩[0, 1)×R. Furthermore we assume that lim
y→∞

y G(t, y) = 0

for all t ∈ [0, 1).

Based on Lemma 2.4 we next prove that for x ∈ [c,∞) the optimality equation
for a threshold function v

v(t) = E[Y Tv(t) ∨ x], t ∈ [0, 1),

v(1) = x,
(2.8)

which by Theorem 2.2 is fulfilled in particular for the optimal stopping curve u(·, x)
is essentially equivalent to a differential equation of first order:

v′(t) = −
∫ ∞
v(t)

G(t, y) dy, t ∈ [0, 1),

v(1) = x.

(2.9)

To be able to apply the differentiation and integration rules needed in the proof
of this equivalence we assume the differentiability condition (D). In the following we
give a simpliefied proof of Theorem 2.5 in [KR] (2000a) and add essential informa-
tion on the important case that c = −∞. In this case a solution of the differential
equation (2.9) does not need to satisfy the optimality equation (2.8), but we give a
formula for the difference between v(t) and the expected value EY Tv(t), which will
later be used to derive uniqueness results for the differential equation (2.9).

Proposition 2.5 (Equivalence of optimality equation and differential
equation) Let N fulfill (B) and (D), let v : [0, 1] → R ∪ {−∞} be continuous
with v > f on [0, 1) and x ∈ [c,∞).

(a) If v satisfies the optimality equation (2.8), then it satisfies also the differential
equation (2.9).

(b) If x ∈ R and v satisfies the differential equation (2.9), then v satisfies the
optimality equation (2.8).



Approximative solutions 7

(c) If x = −∞ and v satisfies the differential equation (2.9), then for t ∈ [0, 1)

v(t)− lim
s ↑ 1

v(s)e−µ((t,s]×R∩Mv) = EY Tv(t). (2.10)

As v is assumed to be continuous and v(1) = −∞, this implies v(t) ≤ EY Tv(t).

Proof: We shall make use of the partial integration formula stating for p ≥ 0
measurable and satisfying

∫∞
a
zp(z) dz < ∞ and lim

y→∞
y
∫∞
y
p(z) dz = 0 for a ∈ R

that ∫ ∞
a

zp(z) dz = a

∫ ∞
a

p(z) dz +

∫ ∞
a

∫ ∞
y

p(z) dz dy. (2.11)

(a) For t < 1 holds with T (t) := Tv(t)

v(t) = E[Y T (t) ∨ x] = E[Y T (t)χ{T (t)<1}] + xP (T (t) = 1). (2.12)

Since v(t) > −∞ for t < 1 we obtain P (T (t) = 1) = 0 if x = −∞. W.l.g. in
case x > −∞ we can assume that x = 0 (by shifting the point process and v
by −x). In consequence we obtain by (2.11)

v(t) = E[Y T (t)χ{T (t)<1}] =

∫ 1

t

∫ ∞
v(s)

zg(s, z) dze−µ((t,s]×R∩Mv) ds

=

∫ 1

t

(
v(s)h(s) +

∫ ∞
v(s)

∫ ∞
y

g(s, z) dz dy

)
e−µ((t,s]×R∩Mv) ds,

(2.13)

where h(s) :=
∫∞
v(s)

g(s, z) dz = G(s, v(s)).

By (D) and continuity of v we get that h is continuous. For f(s, t) differentiable
in s and continuous in t holds

d

dt

∫ 1

t

f(s, t) ds =

∫ 1

t

d

dt
f(s, t) ds− f(t, t).

Since −µ((t, s]×R∩Mv) = −
∫ s
t

∫∞
v(r)

g(r, z) dzdr = −
∫ s
t
h(r)dr is differentiable

in t with derivative h(t), we obtain

v′(t) = v(t)h(t)−
(
v(t)h(t) +

∫ ∞
v(t)

∫ ∞
y

g(t, z) dz dy

)
= −

∫ ∞
v(t)

G(t, y) dy.

(b) Let t < r ≤ 1. Similarly as in (a) and using condition (D) we obtain

E[Y T (t)χ{T (t)<r}]

=

∫ r

t

(
v(s)h(s) +

∫ ∞
v(s)

∫ ∞
y

g(s, z) dz dy
)
e−µ((t,s]×R∩Mv) ds
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=

∫ r

t

(
v(s)h(s)− v′(s)

)
e−µ((t,s]×R∩Mv) ds

=

∫ r

t

v(s)h(s)e−µ((t,s]×R∩Mv) ds

−
(

[v(s)e−µ((t,s]×R∩Mv)]rt +

∫ r

t

v(s)h(s)e−µ((t,s]×R∩Mv) ds

)
= v(t)− v(r)e−µ((t,r]×R∩Mv).

With r = 1 and using that P (T (t) = 1) = P (N((t, 1] × R ∩ Mv) = 0) =
e−µ((t,1]×R∩Mv) we obtain (b) as v(1) = x.

(c) For t < 1 we obtain as in (b) using the Fatou Lemma

−∞ < v(t) ≤ lim sup
r ↑ 1

E[Y T (t)χ{T (t)<r}] ≤ E[Y T (t)χ{T (t)<1}].

Thus Y T (t)χ{T (t)<1} is integrable. This implies uniform integrability of
{Y T (t)χ{T (t)<r} | 0 < r < 1}, and thus convergence of expectations. Further
from the proof of (b) follows by condition (B) that µ((t, 1] × R ∩Mv) = ∞
as v(r) ↓ −∞ for r ↑ 1. As P (T (t) = 1) = P (N((t, 1] × R ∩ Mv) = 0)

= e−µ((t,1]×R∩Mv) = 0 we obtain T (t) < 1 P -a.s. and thus

v(t) ≤ v(t)− lim
s↑1

v(s)e−µ((t,s]×R∩Mv) = EY Tv(t). 2

Based on the equivalence in Proposition 2.5 we now establish that the optimal
stopping curve can be described as solution of the differential equation (2.9) of first
order. We will see that the separation condition (S) is equivalent to the existence of
a solution v > f on [0, 1) with v(1) = c. This also holds true in the case c = −∞.
At first we treat the case of a finite guarantee value.

Proposition 2.6 Let x ∈ [c,∞) ∩R and let N satisfy (B) and (D).

(a) If v1, v2 : [0, 1] → R with vi > f on [0, 1) are solutions of the differential
equation (2.9), then v1 = v2.

(b) If a solution v : [0, 1] → R of (2.9) exists such that v > f on [0, 1), then
u(·, x) = v. In particular, if x = c, then the separation condition (S) is fulfilled.

Proof:

(a) see [KR] (2000a, p. 310)

(b) By Proposition 2.5 (b) v satisfies the optimality equation (2.8). By definition
of u(·, x) follows u(t, x) ≥ E[Y Tv(t) ∨ x] = v(t) > f(t) for all t ∈ [0, 1). By
Theorem 2.2 and Proposition 2.5 (a) u(·, x) solves (2.9) and by part (a) we
thus obtain u(·, x) = v. 2

In contrast to the case of a finite guarantee value x uniqueness of solutions
of (2.9) does not hold for x = −∞. The following theorem identifies the optimal
stopping curve in the set of all solutions of (2.9) as the largest one. It also gives a
criterion for uniqueness.
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Theorem 2.7 Let c = x = −∞ and let N satisfy (B) and (D). Also let v : [0, 1]→
R∪{−∞} be a solution of the differential equation (2.9) with v > f on [0, 1). Then

(a) v ≤ u. In particular, the separation condition (S) is fulfilled and so u is also a
solution of (2.9).

(b) If for some function b : [0, 1)→ R we have u ≤ b (as e.g. for b(t) := E[sup
τk>t

Yk])

and

lim inf
t ↑ 1

v(t)

b(t)
<∞, (2.14)

then u = v. If (2.14) holds true with v replaced by f , then the solution of (2.9)
is uniquely determined.

(c) Let us denote the optimal stopping curve of Ns := N(· ∩ [0, s] × R ∩Mf ), let
b : [0, 1)→ R satisfy u ≤ b and assume that for every s ∈ (1− ε, 1) with some
ε > 0 there exists a function as : [0, s) → R with f < as ≤ us on [0, s) such
that

lim inf
t ↑ 1

lim sups ↑ 1 as(t)

b(t)
<∞. (2.15)

Then the solution of (2.9) is unique.

Proof:

(a) follows from Proposition 2.5 (c).

(b) By Lemma 2.1 u is continuous and therefore u solves equation (2.9). If v 6= u
then as in the proof of Proposition 2.6 it follows that u > v and u′ ≥ v′ on
[0, 1). With w(s) := u(s)− v(s) for s ∈ [0, 1) we have

w′(s) = u′(s)− v′(s) =

∫ u(s)

v(s)

∫ ∞
y

g(s, x) dx dy ≥ w(s)

∫ ∞
u(s)

g(s, x) dx

and thus

∂

∂s
log(w(s)) =

w′(s)

w(s)
≥
∫ ∞
u(s)

g(s, x) dx.

By integration we get

w(t) ≥ w(0)eµ([0,t]×R∩Mu). (2.16)

Since for v = u equality holds in (2.10) we obtain

lim
t ↑ 1

u(t)e−µ([0,t]×R∩Mu) = 0 (2.17)

and thus

v(t)

u(t)
− 1 = −w(t)

u(t)
≥ w(0)

1

−u(t)e−µ([0,t]×R∩Mu)
→∞ for t ↑ 1.
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Since u(t) ≤ b(t) it follows that

v(t)

b(t)
≥ v(t)

u(t)
→∞ as t ↑ 1

contradicting our assumption. Thus v is the optimal stopping curve. If (2.14)
holds for f then it holds also for any solution v > f . Thus uniqueness follows.

(c) For the proof of (c) see [F] (2009). 2

To verify the separation condition (S) and thus the existence of a solution of
(2.9) (which is an assumption of Theorem 2.7) or to construct the functions as
used in part (c) of the theorem, one can use a comparison argument given in the
following proposition.

Proposition 2.8 Let N , N∗ be Poisson processes on Mf which satisfy (B), (D),
with intensity functions G, G∗ and optimal stopping curves u(t, x) and u∗(t, x).
Further let N∗ satisfy (S) and let u(·, x) > f for all x > c. Then for any s ∈ [0, 1),
G ≥ G∗ on [s, 1)×R∩Mf implies that u(t, x) ≥ u∗(t, x) for all (t, x) ∈ [s, 1]×[c,∞].
In particular, if G ≥ G∗, then (S) is also satisfied for N .

Proof: Assume first that x ∈ R. For any t ∈ [s, 1) with u(t, x) < u∗(t, x) holds
u′(t, x) ≤ u′∗(t, x) since

u′(t, x) = −
∫ ∞
u(t,x)

G(t, y) dy ≤ −
∫ ∞
u∗(t,x)

G(t, y) dy

≤ −
∫ ∞
u∗(t,x)

G∗(t, y) dy = u′∗(t, x).

Assume that for some r ∈ [s, 1) holds u(r, x) < u∗(r, x).

Since u(1, x) = u∗(1, x) = x, there exists a t0 ∈ (r, 1] such that u(t0, x) =
u∗(t0, x) and u(t, x) < u∗(t, x) for all t ∈ [r, t0). This implies

u(t0, x)− u(r, x) =

∫ t0

r

u′(t, x)dt ≤
∫ t0

r

u′∗(t, x)dt = u∗(t0, x)− u∗(r, x),

and thus u(r, x) ≥ u∗(r, x).

In case x = −∞ we obtain from Lemma 2.3 u ≥ u∗ > f on [s, 1). 2

For some applications of this comparison principle see [F] (2009).

Example 2.9 Let the intensity function be of the form G(t, y) = A(t)e−B(t)y on
[0, 1) × (−∞,∞] with continuous functions A,B : [0, 1) → R such that A ≥ 0,

A(t) > 0 for t large,
∫ 1

0
A(t)dt <∞, and B > 0 bounded such that lim inft ↑ 1B(t) >

0. Then we can compare G, G∗

G(t, y) ≥ G∗(t, y) :=

{
A(t)e−My, if y ≥ 0,

A(t)e−my, if y < 0,
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where M := supB, m := inf B. Thus by Proposition 2.8 and using the terminology
of Theorem 2.7 (c) we obtain

us(t) ≥ as(t) := u∗,s(t) =
1

m
log

(
1

d

(
1− e−d

R s
t A(r)dr

))
with d := 1− m

M
> 0 for t < s large enough. Similarly by estimating G from above

u(t) ≤ b(t) :=
1

M
log

(
1

d′

(
1− e−d′

R 1
t A(r)dr

))
with d′ := 1−M

m
< 0. This implies condition (2.15) as limx↓0 log(1−e−x)/ log(eυx−

1) <∞ for any υ > 0. As consequence uniqueness of the solutions of (2.9) follows.

With w(t) := eu(t) we obtain as a particular consequence that the differential
equation

w′(t) = −A(t)w(t)1−B(t), t ∈ [0, 1),

w(1) = 0
(2.18)

has a unique solution w such that w > 0 on [0, 1).

3 Explicit solutions of the optimality equation

In Section 2 the optimal threshold function has been characterized by the dif-
ferential equation (2.9), which by the results in Section 2 we therefore also call
optimality equation. In the case that the intensity function G is separable, i.e.
G(t, y) = a(t)H(y) a characterization and existence of solutions is given by a clas-
sical result on differential equations in separate variables (see [KR] (2000a, Prop.
2.6)). Note however that even in this case the characterization is in general far from
giving an ‘explicit’ form of the solution. The second main point in this paper is
the introduction of some new classes of intensity functions G(t, y) which allow to
establish ‘explicit’ solutions of the optimality equation (2.7). An important class
of applications of this development is given in Section 5 of this paper to optimal
stopping of i.i.d. sequences with discount and observation costs. Further interesting
applications of this development to a general treatment of multistopping problems
are given in [FR] (2010).

In the following we will introduce two classes of intensity functions, which allow
to give an explicit form of the solutions of (2.9). These intensity functions are of
form

G(t, y) = H

(
y

v(t)

)
v′(t)

v(t)
(3.1)

resp.
G(t, y) = H(y − v(t))v′(t). (3.2)

with functions H, v. It should be noted that the functions v used here are different
from the threshold functions used in the last paragraph. The function v in the rep-
resentation of G(t, y) is in general not unique. The main point of exhibiting these
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kind of representations in (3.1), (3.2) is that they imply that v is up to a normal-
ization concerning the boundary value a solution of the optimality equation (2.9).
Thus (3.1), (3.2) are a particular useful representation of G concerning solutions of
(2.9). To see this connection note that the optimality equation for u can be written
by substitution in the equivalent forms:

u′(t) = −
∫ ∞
u(t)

G(t, y) dy = −
∫ ∞

1

G(t, yu(t))u(t) dy

= −
∫ ∞

0

G(t, y + u(t)) dy.

In both representations (3.1), (3.2) v is therefore verified to be up to a normalizing
constant and up to the boundary condition a solution of equation (2.9). This crucial
observation motivates the representation in (3.1), (3.2). We will see in the following
that for both forms (3.1), (3.2) under some conditions on H, v explicit solutions of
the essential differential equation (2.9) can be found for any boundary value. This
needs a detailed study of several cases.

Let f : [0, 1] → R ∪ {−∞} be a continuous lower boundary function and as
before c := f(1). Let N be a Poisson process on Mf with intensity function G
which fulfils (B), (D).

3.1 First class of intensity functions

Let f = av on [0, 1) with a ∈ R∪{−∞} and a monotone C1-function v : [0, 1)→ R,
v > 0, and assume that G is of the form

G(t, y) = H

(
y

v(t)

)
|v′(t)|
v(t)

(3.3)

with some monotone nonincreasing continuous function H : (a,∞] → R, H ≥ 0.
Assume that

∫∞
a
H(y) dy > 0 and let v be not constant in (1−ε, 1) for some ε > 0,

so that 1 is the critical point for c. Define v(1) := lim
t ↑ 1

v(t) ∈ R. The following

example shows how the case of separate variables fits into the form in (3.3).

Example 3.1 Let a : [0, 1] → [0,∞] be continuous and integrable and define

A(t) :=
∫ 1

t
a(s) ds.

(a) For α > 1 the intensity function G(t, y) = a(t)y−αon [0, 1) × (0,∞] is of the

form in (3.3) with H(y) = (α− 1)y−α, v(t) =
(

α
α−1

A(t)
) 1
α .

(b) For α > 0 the intensity function G(t, y) = a(t)(−y)α for y ≤ 0 and G(t, y) = 0
for y > 0 on [0, 1)× (−∞,∞] is of the form in (3.3) with H(y) = 0 for y > 0

and H(y) = (α + 1)(−y)α for y ≤ 0, v(t) =
(

α
α+1

A(t)
)− 1

α .
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Representation (3.3) is in general even for fixed H not unique since v only
has to satisfy a differential equation without initial value. It depends on H for
which initial values solutions can be found. We distinguish three cases2: v(1) = 0,
v(1) = 1, and v(1) = ∞. The cases v(1) = 0 and v(1) = ∞ lead to a simpler
structure of solutions.

For v monotonically nonincreasing we define

R(x) := x−
∫ ∞
x

H(y) dy, x ∈ [a,∞). (3.4)

Then R : [a,∞)→ R is concave, monotonically nondecreasing.

For v monotonically nondecreasing we define

R(x) := x+

∫ ∞
x

H(y) dy, x ∈ (a,∞)

R(a) := lim
x ↓ a

R(x).
(3.5)

In this case R : [a,∞)→ R is convex.

The form of solutions of the optimality equation (2.9) with boundary value x
depends critically on the existence and on the number of zero points of R. In the
following we reduce the problem of solving the optimality equation (2.9) for all
boundary values x to finding solutions Φ of the differential equation

Φ′(x) =
Φ(x)

R(x)
6= 0. (3.6)

Solutions of (3.6) are given e.g. by

Φ(x) = exp

(∫ x

x0

1

R(y)
dy

)
, (3.7)

with x0 chosen such that the integral exists. The inverse mapping φ of Φ exists and
solves the equation

φ′(z) =
R(φ(z))

z
. (3.8)

The definition of R in (3.4), (3.5) and solutions of (3.6), (3.8) will allow us in the
following to construct solutions of the optimality equation (2.9) for any boundary
values and to verify the separation condition (S).

In the following we omit some of the simple calculations. We distinguish four
cases:

2 If v(1) = d ∈ (0,∞), consider ṽ(t) := v(t)/d and absorb the d into H by considering
H̃(x) := H(x/d).
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C1) v monotonically nonincreasing, v(1) = 0
Then c = 0. Let a ≥ 0 and assume R(r) = 0 for some r > a. Then the separation
condition (S) is fulfilled and the optimal stopping curves are given by

u(t, x) = φ

(
x

v(t)

)
v(t), (t, x) ∈ [0, 1)× [0,∞), (3.9)

where φ : [0,∞)→ [r,∞) is the inverse to

Φ : [r,∞)→ [0,∞), Φ(x) = x exp

(
−
∫ ∞
x

(
1

R(y)
− 1

y

)
dy

)
.

In particular the optimal solution u is given explicitly as u(t) = rv(t).

Proof: Φ satisfies the differential equation (3.6), φ satisfies (3.8). We first establish
that u satisfies the optimality equation (2.9). By definition

u(t, x) = φ

(
x

v(t)

)
v(t)

x
· x t→1−→ x,

since limy→∞
φ(y)
y

= limx→∞
x

Φ(x)
= 1. Thus the boundary condition is fulfilled.

Further

∂

∂t
u(t, x) = φ′

(
x

v(t)

)
−xv′(t)
v(t)2

· v(t) + φ

(
x

v(t)

)
v′(t)

=
R(φ( x

v(t)
))

x
v(t)

−xv′(t)
v(t)

+ φ

(
x

v(t)

)
v′(t) (3.10)

=

(
−φ
(

x

v(t)

)
+

∫ ∞
φ( x

v(t))
H(y) dy

)
v′(t) + φ

(
x

v(t)

)
v′(t)

=

∫ ∞
φ( x

v(t))v(t)

H

(
y

v(t)

)
v′(t)

v(t)
dy = −

∫ ∞
u(t,x)

G(t, y) dy.

Thus u(·, x) solves the optimality equation (2.9).

It remains to show that
∫∞
x

(
1

R(y)
− 1

y

)
dy < ∞ for x ∈ (r,∞). With I(y) :=∫∞

y
H(x) dx we have

1

R(y)
− 1

y
=

I(y)

y(y − I(y))
=

1

y2

I(y)

1− I(y)
y

≤ C
1

y2

and thus the integral is finite. 2

C2) v monotonically nondecreasing, v(1) =∞
In this case we have c = −∞. Let a < 0 and assume R(r) = 0 for some a < r < 0.
We assume in this case also that∫ ∞

0

H(x) dx = 0 and

∫ 0

y

H(x)

−x
dx <∞ for y < 0.
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Under this assumption the separation condition (S) is fulfilled and the optimal
stopping curves are given for (t, x) ∈ [0, 1)×R by

u(t, x) =

x, if x ≥ 0,

φ

(
x

v(t)

)
v(t), if x < 0,

(3.11)

with φ : [−∞, 0]→ [r, 0] the inverse of

Φ : [r, 0]→ [−∞, 0], Φ(x) := x exp

(∫ 0

x

(
1

y
− 1

R(y)

)
dy

)
.

In particular, the optimal solution u is given by u(t) = rv(t).

Proof: Φ solves the differential equation (3.6), while the inverse φ solves (3.8).

We have to establish that
∫ 0

x
( 1
y
− 1

R(y)
) dy < ∞ for x ∈ (r, 0). Again with I(y) :=∫ 0

y
H(x) dx we obtain the estimate

1

y
− 1

R(y)
=

I(y)

y(y + I(y))
=

1

−y

I(y)
−y

1− I(y)
−y

≤ 1

−y
H(y)

1−H(y)
≤ C

H(y)

−y

for y < 0 with H(y) ≤ 1− 1
C
< 1. By assumption this is integrable. As in case C1)

we find by similar calculations that u(t, x) satisfies the optimality equation (2.9).
Thus the result follows. 2

The following cases are derived in a similar way as in C1) and C2). We therefore
only state the results.

C3) v monotonically nonincreasing, v(1) = 1
Then c = a. Let r > c such that R(r) = 0. We assume that

∫ x
c
R(y)−1 dy > −∞

for some x ∈ (c, r). This is e.g. the case when c ∈ R. Under this assumption the
separation condition (S) is fulfilled and the optimal stopping curves are given for
(t, x) ∈ [0, 1)× [c,∞) by

u(t, x) =


φ1

(
Φ1(x)
v(t)

)
v(t), if r < x <∞,

xv(t), if x = r,

φ2

(
Φ2(x)
v(t)

)
v(t), if c ≤ x < r,

(3.12)

where Φ1 : (r,∞)→ R and Φ2 : [c, r)→ R are solutions of (3.6) and φ1, φ2 are the
inverses. Φ2 can be chosen as Φ2(x) := exp

(∫ x
c
R(y)−1 dy

)
.

The boundary case x = r is particularly simple here.

C4) v monotonically nondecreasing, v(1) = 1
Then c = a. We have to distinguish three cases. In each of these cases the solution
is similar to C3) and will therefore be omitted.
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As result one sees that in the cases v(1) = 0 and v(1) = ∞ a solution of a
simpler structure compared to v(1) = 1 can be given. Thus a representation of G
as in (3.3) – which is not unique – is preferable if it leads to one of the first two
cases.

3.2 Second class of intensity functions

Let f = a+v on [0, 1) with a ∈ R∪{−∞} and a monotone C1-function v : [0, 1)→
R with v(1) := limt ↑ 1 v(t).

We consider intensity functions on Mf ∩ [0, 1)×R of the form

G(t, y) = H(y − v(t))|v′(t)| (3.13)

with a continuous monotonically nonincreasing function H : (a,∞] → R,H ≥ 0
such that

∫∞
a
H(y) dy > 0. We assume that v is not constant in (1− ε, 1) for some

ε > 0, so that 1 is the critical point of c.

As an example let a : [0, 1] → [0,∞] be continuous and integrable and let, as

in Example 3.1, A(t) :=
∫ 1

t
a(s) ds. Then the intensity function G(t, y) = a(t)e−y

on [0, 1)× (−∞,∞] is a case of separate variables. It fits into the form (3.13) with
H(y) = e−y, v(t) = logA(t).

If v is monotonically nonincreasing, then we define

R(x) := 1−
∫ ∞
x

H(y) dy for x ∈ [a,∞).

R : [a,∞) → [−∞, 1) is concave, monotonically nondecreasing. If v is monotoni-
cally nondecreasing, then define

R(x) := 1 +

∫ ∞
x

H(y) dy for x ∈ [a,∞).

In this case R : [a,∞)→ [1,∞) is convex and monotonically nonincreasing.

We construct optimal stopping curves by means of solutions of the equation

Φ′(x) =
1

R(x)
. (3.14)

(3.14) is solved e.g. by Φ(x) =
∫ x
x0

1
R(y)

dy, where x0 is chosen such that the integral
exists. The inverse function φ of Φ satisfies

φ′(z) = R(φ(z)). (3.15)

Similarly to the examples in C1)–C4) we obtain explicit forms of the solution
u(t, x) of the optimal stopping curves. The arguments are similar and we therefore
essentially only state the results.
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D1) v monotonically nonincreasing, v(1) = −∞
Then c = −∞. Assume that R(r) = 0 for some r > a. We further assume here that∫ ∞

z

∫ ∞
y

H(x) dx dy <∞ for z > r.

Then the separation condition (S) is fulfilled and the optimal stopping curves for
(t, x) ∈ [0, 1)×R are given by

u(t, x) = φ(x− v(t)) + v(t), (3.16)

where φ : R→ [r,∞] is the inverse of Φ : [r,∞]→ R

Φ(x) := x−
∫ ∞
x

( 1

R(y)
− 1
)
dy.

The optimal stopping curve u is given by u(t) = r + v(t).

For the proof note that Φ solves the differential equation Φ′(x) = 1
R(x)

, φ

solves φ′(z) = R(φ(z)). In consequence as in case C1) we find that u(·, x) solves
the optimality equation (2.9) with boundary value x. We still need to show that∫∞
x

(
1

R(y)
− 1
)
dy < ∞ for x ∈ (r,∞). With I(y) :=

∫∞
y
H(x) dx we obtain the

bound

1

R(y)
− 1 =

I(y)

1− I(y)
≤ CI(y).

The last term is integrable by assumption.

The next two cases allow similar explicit solutions but are not used in the
applications in Section 5 and therefore are not explicitly stated. For details see
[F] (2009).

D2) v monotonically decreasing, v(1) = 0
D3) v monotonically increasing, v(1) = 0

Remark 3.2 One can extend the class of intensity functions for which solutions
can be given in a simple way by translations. Let N satisfy conditions (B), (S), and
(D) with intensity function G on Mf . For d ∈ R consider the intensity function

Gd(t, y) := G(t, y − d), (t, y) ∈Mf+d.

Then the optimal stopping curves ud(·, x) w.r.t. Gd and cd := c+ d are given by

ud(t, x) = u(t, x− d) + d for (t, x) ∈ [0, 1]× [cd,∞]. (3.17)

For x ∈ R (3.17) follows by simple calculation. For x = −∞ this follows by
means of Lemma 2.3.

As application of Remark 3.2 we consider the following example which is rele-
vant in Section 5 for the stopping of i.i.d. sequences with discount and observation
costs.
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Example 3.3 In this example c ∈ R denotes a real constant and the guarantee
value is −∞. Consider on [0, 1)×R

Gc,d(t, y) =

 0, if y
v(t)
≥ d,

1
t

(
− y
v(t)

+ d
)α
, if y

v(t)
< d,

(3.18)

with v(t) := tc−
1
α , where α > 0 and c, d ∈ R with c 6= 1

α
. These intensity functions

fulfill (3.3) with

H(x) :=

{
0, if x ≥ d,
α

|1−cα|(−x+ d)α, if x < d.

By cases C3) and C4) the optimal stopping curve uc,d of the Poisson process N =
Nc,d with intensity function G = Gc,d where uc,d(t) := uc,d(t,−∞) is given by

uc,d(t) = φc,d

(
1

v(t)

)
v(t). (3.19)

Here φc,d is the inverse of

Φc,d(x) := exp

(∫ x

−∞

1

Rc,d(y)
dy

)
.

Φc,d is defined on [−∞, r], where r is the smallest zero point of

Rc,d(x) :=

{
x, if x ≥ d,

x− α
α+1

1
1−cα(−x+ d)α+1, if x < d,

resp. r := ∞, if no zeros exist. φc,d is defined on [0, 1], if c < 1
α

, and on [1,∞], if
c > 1

α
.

For d = 0 all functions can be calculated explicitly. The primitive of 1
y−c(−y)α+1

is given by − 1
α

log |1
c
(−y)−α + 1| and as consequence one obtains

uc,0(t) =−
(

α
α+1

1
1−cα(1− t1−cα)

)− 1
α ,

uc,0(t, x) =

{
x, if x ≥ 0,

−
(

α
α+1

1
1−cα(1− t1−cα) + (−x)−α

)− 1
α , if x < 0.

For d 6= 0 and general α, Φc,d and φc,d cannot be calculated explicitly. One can,
however, derive the following bounds (see [F] (2009) for details).

If c > 1
α

, d > 0 or if c < 1
α

, d < 0, then for all (t, x) ∈ [0, 1]×R holds:

uc,0(t, x− dv(t)) + dv(t) ≤ uc,d(t, x) ≤ uc,0(t, x− d) + d. (3.20)

In the other cases c > 1
α

, d < 0 or c < 1
α

, d > 0 holds:

uc,0(t, x− d) + d ≤ uc,d(t, x) ≤ uc,0(t, x− dv(t)) + dv(t). (3.21)
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In particular we obtain in all cases

lim
t↑1

(uc,d(t)− uc,0(t)) = d. (3.22)

Equation (3.22) opens up another way of calculating uc,d numerically. In the
first step one should solve the differential equation for uc,d−uc,0. This is relieved by
the fact that the initial value d is finite. In the second step we just add the explicitely
known constant uc,0 to obtain uc,d.

For the proof of (3.21) assume that d < 0 and c < 1
α

and thus that v is
monotonically nonincreasing. The other cases follow similarly. Choose t1 ∈ [0, 1).
Then for t ∈ [t1, 1), ε := v(t1) ≥ v(t) > 1 and we have

Gc,d(t, y) ≥ Gc,0(t, y − εd),

By the comparison result (Proposition 2.8) and Remark 3.2 we obtain for the opti-
mal stopping curves

uc,d(t, x) ≥ uc,0(t, x− εd) + εd for t ≥ t1.

This holds in particular for t = t1. In the opposite direction we have for all t

Gc,d(t, y) ≤ Gc,0(t, y − d),

and thus
uc,d(t, x) ≤ uc,0(t, x− d) + d.

4 Approximation of optimal stopping problems

In this section we state an extension of the approximation result in [KR] (2004,
Theorem 2.1) for optimal stopping problems for dependent sequences. In particular
we add essential information on the important case c = −∞. We also extend
the approximation result to general filtrations which is useful when dealing with
dependent sequences. In the subsequent Section 5 we give an application of this
extended approximation result and the development in the previous sections to the
optimal stopping of i.i.d. sequences with discount and observation costs.

Let N be as in Section 2 a Poisson process on Mf , let the intensity measure
µ have Lebesgue density g, let c := f(1) and t0(c) = 1. u(t, x), u(t) denote the
optimal stopping curves of N , T (t, x), Y T (t,x) denote the optimal stopping times
and rewards and generally we assume conditions (B), (S).

Let for n ∈ N, Xn
1 , . . . , X

n
n be real random variables with E(Xn

i )+ <∞ adapted
to a filtration Fn = (Fni )0≤i≤n and such that Fnbtnc ⊂ F

n+1
bt(n+1)c. For the embedded

point process

Nn :=
n∑
i=1

δ( i
n
,Xn
i ) (4.1)
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in [0, 1] × R we define the optimal stopping curve w.r.t. Fn with guarantee value
x ∈ [c,∞] by

un(t, x) := WFn(Xn
btnc+1 ∨ x, . . . , Xn

n ∨ x), t ∈ [0, 1),

un(1, x) := x.
(4.2)

Here WFn denotes the optimal stopping value over all Fn-stopping times. In detail
(4.2) is given by

un(t, x) = ess sup
{
E[Xn

T ∨ x | Fnbtnc] : T > tn, T is an Fn-stopping time
}

= E[Xn
Tn(t,x) ∨ x | Fnbtnc] P -a.s.

with optimal stopping times

Tn(t, x) := min{tn < i ≤ n : Xn
i > un( i

n
, x)},

Tn(1, x) := n.

un(·, x) is a right-continuous piecewise constant curve. It is monotone in the sense
that for 0 ≤ s ≤ t ≤ 1

un(s, x) ≥ E
[
un(t, x) | Fnbsnc

]
P -a.s. (4.3)

In the other direction we get inductively by the recursive definition of optimal
thresholds for 0 ≤ s ≤ t ≤ 1

un(s, x) ≤ E
[

max
s< i

n
≤t
Xn
i ∨ un(t, x) | Fnbsnc

]
P -a.s. (4.4)

An important condition in the dependent case is the asymptotic independence con-
dition

(A) For 0 ≤ s < t ≤ 1

P ( max
s< i

n
≤t
Xn
i ∨ f(s) ≤ x | Fnbsnc)

P−→ P ( sup
s<τk≤t

Yk ∨ f(s) ≤ x) ∀x ∈ R.

We need the uniform integrability condition:

(U) M+
n , with Mn := max

1≤i≤n
Xn
i , is uniformly integrable and E[lim sup

n→∞
M+

n ] <∞.

The addition E[lim supnM
+
n ] < ∞ can be omitted when Fn is the canonical

filtration and Nn
d→ N on ([0, 1]×R)\graph(f). In this case the Skorohod theorem

is applicable and the above additional condition is a consequence of condition (B)
for N which is assumed throughout this paper. To ensure in case c = −∞ uniform
integrability, the following uniform integrability condition from below is postulated
which is a functional version of the corresponding condition in [KR] (2004):
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(L) For some sequence (vn)n∈N of monotonically nonincreasing functions vn :
[0, 1] → R ∪ {−∞} with vn → u pointwise, for all t ∈ [0, 1) and the cor-
responding threshold stopping times

T̂n(t) := min{tn < i ≤ n : Xn
i > vn( i

n
)}

holds

lim
s ↑ 1

lim sup
n→∞

E[Xn
T̂n(t)

χ{T̂n(t)>sn}] = 0. (4.5)

Conditions (L), (U) imply uniform integrability of (Xn
T̂n(t)

)n∈N (see [F] (2009,

p. 30)).

For notational convenience we write

Tn := Tn(0, c) and T := T (0, c).

Theorem 4.1 (Approximation of stopping problems) Assume Nn
d−→ N

on Mf and conditions (A) and (U). If c = −∞, then we additionally assume
condition (L).

1. For all (t, x) ∈ [0, 1]× [c,∞) holds

un(t, x)
P−→ u(t, x). (4.6)

If c ∈ R and assuming µ(Mu) =∞ or Xn
n

P−→ c then

(Tn
n
, Xn

Tn
)

d−→ (T, Y T ∨ c). (4.7)

2. If c ∈ R and Xn
n

L1

−→ c, then T̂n := min
{

1 ≤ i ≤ n : Xn
i > u

(
i
n

)}
is an asymp-

totically optimal sequence of stopping times, i.e.

EXn
T̂n
→ u(0).

If c = −∞, then T̂n := min
{

1 ≤ i ≤ n : Xn
i > vn

(
i
n

)}
, with vn from condition

(L) is an asymptotically optimal sequence of stopping times and EXn
T̂n
→ u(0).

For the detailed proof of this extended approximation result we refer to
[F] (2009, Satz 1.20).
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5 Optimal stopping of i.i.d. sequences with dis-

count and observation costs

Based on the results in Sections 2–4 we are able to give a fairly complete treatment
of the optimal stopping problem of i.i.d. sequences with discount and observation
costs. Some particular instances of this problem were established in [KR] (2000b).
The problem goes back to Kennedy and Kertz (1990) and Kennedy and Kertz
(1991) in the i.i.d. case.

Let (Zi) be an i.i.d. sequence with d.f. F in the domain of attraction of an
extreme value distribution G, thus for some constants an > 0, bn ∈ R

n(1− F (anx+ bn))→ − logG(x), x ∈ R. (5.1)

Consider Xi = ciZi+di the sequence with discount and observation factors, ci > 0,
di ∈ R and both sequences monotonically nondecreasing or nonincreasing. For
convergence of the corresponding imbedded point processes

N̂n =
n∑
i=1

δ
( i
n
,
Xi−b̂n
ân

)
(5.2)

the following choices of ân, b̂n turn out to be appropriate:

ân := cnan, b̂n := 0 for F ∈ D(Φα) or F ∈ D(Ψα),

ân := cnan, b̂n := cnbn + dn for F ∈ D(Λ),
(5.3)

where Φα, Ψα, Λ are the Fréchet, Weibull, and Gumbel distributions and an, bn
are the corresponding normalizations in (5.1). We give further conditions on ci,
di to establish point process convergence in (5.2). Related conditions are given in
de Haan and Verkaade (1987) in the treatment of i.i.d. sequences with trends resp.
in [KR] (2000b).

In the following c denotes some general constant and not as before the guarantee
value. The guarantee value of N is in case Φα given by 0 and in cases Ψα, Λ given
generally by −∞. This application shows the importance of treating the case with
lower boundary −∞ as in Sections 2–4 of this paper. We state the optimality results
for all three cases.

Theorem 5.1 Let F ∈ D(Φα) with α > 1 and F (0) = 0. Also let bn = 0 and
assume that

dn
cnan

→ d,
cbtnc
cn
→ tc ∀t ∈ [0, 1]
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for constants c, d ∈ R as well that cn does not converge to 0. Then

EXTn

ân
→



∞, if c ≤ − 1
α
,

d exp
(∫∞

d
1
x
− 1

R(x)
dx
)
, if c > − 1

α
, d > 0,(

α
α−1

1
1+cα

) 1
α , if c > − 1

α
, d = 0,

exp
(∫∞

1
1
x
− 1

R(x)
dx−

∫ 1

d
1

R(x)
dx
)
, if c > − 1

α
, d < 0, r =∞,

0, if c > − 1
α
, d < 0, r <∞,

(5.4)

where r > d is the smallest zero point of R(x) := x + α
α−1

1
1+cα

(x − d)−α+1 , x ∈
(d,∞), resp. r :=∞, if R has no zero point > d.

For the values of c, d where the limit in (5.4) is not 0 or ∞ we determine
asymptotically optimal sequences of stopping times: For c > − 1

α
define

u(t) := φ

(
1

v(t)

)
v(t) (5.5)

with v(t) := tc+1/a and φ the inverse of Φ : [d, r]→ [1,∞], given by

Φ(x) := exp

(∫ x

d

1

R(y)
dy

)
.

Then T̂n := min{1 ≤ i ≤ n : Xi > ânu( i
n
)} is an asymptotically optimal sequence

of stopping times, i.e. the sequence of normalized expectations has the same limit
as in (5.4).

Theorem 5.2 Let F ∈ D(Ψα) with α > 0 and F (0) = 1. Also let an ↓ 0 and
bn = 0, and assume that

dn
cnan

→ d,
cbtnc
cn
→ tc ∀t ∈ [0, 1]

for constants c, d ∈ R. If dn > 0, then assume that either (dn)n∈N is monotonically
nondecreasing or cnan does not converge to 0. Then

EXTn

ân
→



∞, if c < 1
α
, d > 0,

−
(

α
α+1

1
1−cα

)− 1
α , if c < 1

α
, d = 0,

d exp
(
−
∫ d
−∞

1
R(x)

dx
)
, if c < 1

α
, d < 0,

0, if c = 1
α
,

d exp
(
−
∫ d
−∞

1
R(x)

dx
)
, if c > 1

α
, r =∞(⇒ d > 0),

0, if c > 1
α
, r <∞,

(5.6)

where r is the smallest zero point of

R(x) :=

{
x, if x ≥ d,

x− α
α+1

1
1−cα(−x+ d)α+1, if x < d.
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resp. r :=∞, if R has no zero point.

For the values of c, d where the limit of (5.6) is not 0 or ∞ we can construct
asymptotically optimal sequences of stopping times: Let (wn)n∈N be monotonically
nondecreasing sequence of negative constants with limn→∞ n(1− F (wn)) = α+1

α
, as

e.g. wn := −
(
α+1
α

) 1
α an. For c 6= 1

α
let uc,d be the solutions derived in (3.19) and

define

vn(t) :=
uc,0(t)

u0,0(t)

wb(1−t)nc
an

+ uc,d(t)− uc,0(t) for t ∈ [0, 1), vn(1) := −∞,

where uc,0(t) = −
(

α
α+1

1
1−cα(1− t1−cα)

)− 1
α and u0,0(t) = −

(
α
α+1

(1− t)
)− 1

α .

Then T̂n := min{1 ≤ i ≤ n : Xi > ânvn( i
n
)} is an asymptotically optimal

sequence of stopping times.

Theorem 5.3 Let F ∈ D(Λ) and assume that

bn
an

(
1−

cbtnc
cn

)
→ c log(t),

dn − dbtnc
cnan

→ d log(t) ∀t ∈ [0, 1] (5.7)

for constants c, d ∈ R. Assume that (cn)n∈N and (dn)n∈N are monotonically non-
decreasing. Then

EXTn − b̂n
ân

→

{
∞, if c+ d ≥ 1,

log
(

1
1−(c+d)

)
, if c+ d < 1.

(5.8)

For c + d < 1 let (wn)n∈N be monotonically nondecreasing with limn→∞ n(1 −
F (wn)) = 1, as e.g. wn := bn. Let u(t) := log( 1

1−(c+d)
(1− t1−(c+d))) and

vn(t) :=
wb(1−t)nc − bn

an
+ u(t)− log(1− t).

Then T̂n := min{1 ≤ i ≤ n : Xi > ânvn
(
i
n

)
+ b̂n} is an asymptotically optimal

sequence of stopping times.

Remark 5.4 If F is the distribution function of the standard normal distribution
N(0, 1) then F ∈ D(Λ) and normalization constants fulfilling condition (5.7) are
given by

an =
1√

2 log n
, bn =

√
2 log n− log log n+ log 4π

2
√

2 log n
. (5.9)

Then possible choices of constants cn, dn which fulfill (5.7) are

cn := C(log n)A, dn := D(log n)B

with A, B, C, D ∈ R, A ≥ 0, C > 0, B ≤ A + 1
2
. The limit constants c, d from

(5.7) are given in this case by c = −2A and d = −
√

2BD
C

if B = A+ 1
2

resp. d = 0
if B < A+ 1

2
.
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Proof of Theorem 5.1: By rearrangement

Xi − b̂n
ân

=
ci
cn

(
Zi − bn
an

)
− bn
an

(
1− ci

cn

)
+

di
cnan

and thus

N̂n :=
n∑
i=1

δ„
i
n
,
Xi−b̂n
ân

« =
n∑
i=1

δ
Rn( in ,

Zi−bn
an

)

with the transformation

Rn(t, y) :=

(
t,
cbtnc
cn

y − bn
an

(1−
cbtnc
cn

) +
dbtnc
cnan

)
−→ R(t, y) :=

(
t, tcy + dtc+

1
α

)
(5.10)

For (5.10) note that
abtnc
an
→ t

1
α (see Resnick (1987, (0.18))) and thus

dbtnc
cnan

=
dbtnc

cbtncabtnc

cbtnc
cn

abtnc
an
−→ dtc+

1
α .

Monotonicity of the constants implies that Rn converges to R uniformly on
compact subsets in (0, 1]×R and R maps [0, 1]× (0,∞] to Mf̂ with f̂(t) := dtc+

1
d .

The continuous mapping principle implies convergence of the point processes N̂n

to a Poisson process N̂ on Mf̂ , where N̂ has the intensity function

Ĝ(t, z) = G(R−1(t, z)) = tcα(z − dtc+
1
α )−α on Mf̂ ,

where here G(t, y) = y−α for (t, y) ∈ [0, 1]× (0,∞].

Ĝ can be represented for c+ 1
α
6= 0 in the form

Ĝ(t, z) = H

(
z

v(t)

)
v′(t)

v(t)
(5.11)

with v(t) := tc+
1
α and H(x) := α

αc+1
(x − d)−α for x > d. Theorem 5.1 implies

convergence of the optimal stopping curves and stopping times of N̂n to those of
N̂ . The optimal stopping curve u of N̂ for the guarantee value has by the results
in Section 3 for c 6= − 1

α
the form in (5.5). Thus we obtain

u(0) = lim
t↓0

φ

(
1

v(t)

)
v(t) = lim

y↑r

y

Φ(y)
= lim

y↑r
y exp

(
−
∫ y

d

1

R(z)
dz

)
.

This implies Theorem 5.1 considering all cases one by one. 2

Proof of Theorem 5.2: As in the previous proof we calculate the intensity func-
tion of the limiting process as

Ĝ(t, z) = t−cα(−z + dtc−
1
α )α
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for z < dtc−
1
α and 0 else (which equals (3.18)).

To check the uniform integrability condition (L) we use the functions vn and
their associated threshold stopping times

T̂n(t) := min

{
tn < i ≤ n :

Xi

ân
> vn( i

n
)

}
, T̂n := T̂n(0).

Convergence of λn(t) :=
cbtnc
cn
→ tc and µn(t) :=

dbtnc
cnan

→ dtc+
1
α are by

the monotonicity conditions and by continuity of the limiting functions uni-
form on each interval [t, 1], t > 0. Further limt ↑ 1

uc,0(t)

u0,0(t)
= 1 and by (3.22)

limt ↑ 1 uc,d(t) − uc,0(t) = d. This is the basic tool for establishing the uniform
integrabilty condition (L). For details of the proof see [F] (2009). 2

Proof of Theorem 5.3: The proof is analogously to the previous proofs. With
the constants b̂n := cnbn + dn we obtain in the limit the transformation R(t, y) =
(t, y−c log t−d log t). Thus R−1(t, z) = (t, z+(c+d) log t) and the intensity function
of the limit process N̂ is given by

Ĝ(t, z) = G(R−1(t, z)) = e−zt−(c+d),

where here G(t, y) = e−y. The optimal stopping curve of N̂ is given by

u(t) = log
(

1
1−(c+d)

(1− t1−(c+d))
)

. For details of the proof of the uniform integra-

bility condition (L) we refer to [F] (2009). 2
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