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University of Freiburg

Abstract

We consider multistopping problems for discrete time sequences as well
as for continuous time Poisson processes which serve as limiting models for
the discrete time problem. The choice of m-stopping times is allowed and
the aim is to maximize the expected value of the best of the m stops. The
optimal m-stopping curves of the Poisson process are determined by differ-
ential equations of first order and allow the construction of approximative
solutions of the discrete time m-stopping problem.

Keywords: optimal stopping, best choice problem, extreme values, Poisson process

Mathematics Subject Classification 2000: 60G40, 62L15

1 Introduction

In this paper we consider multistopping problems for discrete time sequences
X1, . . . , Xn. In comparison to the usual stopping problem there are m choices of
stopping times 1 ≤ T1 < · · · < Tm ≤ n allowed. The aim is to determine these
stopping times in such a way that

E[ max
1≤i≤m

XTi
] = E[XT1 ∨ · · · ∨XTm ] = sup . (1.1)

Thus the gain of a stopping sequence (Ti)i≤m is the expected maximal value of the
m choices XTi

.

In order to solve approximatively problem (1.1) we introduce at first the m-
stopping problem for continuous time Poisson processes which by point process
convergence serve as approximative limit model for the discrete time model. This
limiting Poisson process has in a typical case infinite intensity along a lower bound-
ary of its support. The solution of the m-stopping problem in the Poisson process
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case can be described by an increasing sequence of stopping curves with their re-
lated threshold stopping times. These curves solve usual one-stopping problems for
transformed Poisson processes and are characterized by differential equations of
first order. We then establish convergence of the discrete time m-stopping problem
to the stopping problem in the limiting case given some regularity conditions. For
some classes of intensity functions the limiting problem can be solved in explicit
form. We discuss in extensive form the m-stopping of iid sequences with discount
and observation costs.

Multistopping problems were introduced in Haggstrom (1967) who derived some
structural results corresponding roughly to Theorem 2.3. Compare also some ex-
tensions in Nikolaev (1999). The two stopping problem has been considered in the
case of Poissonian streams in Saario and Sakaguchi (1992). In this paper differen-
tial equations were derived corresponding to the one-stopping problems as in Karlin
(1962), Siegmund (1967), and Sakaguchi (1976). In [KR]1 (2002) a particular class
of 2-stopping problems was treated based on the approximative approach in [KR]
(2000a). In this paper we extend this approach to a general framework. Based on
the recent paper in [FR] (2009) we obtain as a result in particular a fairly complete
treatment of optimal multistopping problems for the stopping of iid sequences with
discount and observation costs. For several details and proofs in this paper we refer
to the dissertation of Faller (2009) on which this paper is based.

2 m-stopping problems for finite sequences

Given a discrete time sequence (Xi,Fi)1≤i≤n in a probability space (Ω,A, P ) with
filtration F = (Fi)0≤i≤n the m-stopping problem (1 ≤ m ≤ n) is to find stopping
times 1 ≤ T1 < T2 < · · · < Tm ≤ n w.r.t. the filtration (Fi)1≤i≤n such that

E[ max
1≤i≤m

XTi
] = E[XT1 ∨ · · · ∨XTm ] = sup . (2.1)

In case m = 1 (2.1) is identical to the usual (one-)stopping problem. A well
known recursive solution of this problem (see Chow et al. (1971, Theorem 3.2)) is
given by threshold curves Wi = WF (Xi+1, . . . , Xn) of the optimal stopping time
defined by

Wn := −∞,

Wi := E[Xi+1 ∨Wi+1 | Fi] for i = n− 1, . . . , 0.
(2.2)

We need a version of this classical result where the beginning time point is given
by a stopping time (for details see [F] (2009)).

1Kühne and Rüschendorf is abbreviated within this paper with [KR], Faller with [F], and
Faller and Rüschendorf with [FR].
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Theorem 2.1 (Recursive solution of one-stopping problems) a) For any
time point 0 ≤ k ≤ n− 1 the F-stopping time

T (k) := min{k < i ≤ n : Xi > Wi}

is optimal in the sense that for any F-stopping time T > k we have

E[XT (k) | Fk] = Wk ≥ E[XT | Fk] P -a.s. (2.3)

b) For any F-stopping time S the F-stopping time

T (S) = min{S < i ≤ n : Xi > Wi}

is optimal in the sense that for any F-stopping time T with S < T on {S < n}
and S = T on {S = n} we have

E[XT (S) | FS] = WS ≥ E[XT | FS] P -a.s. (2.4)

Remark 2.2 For m stopping problems also the following variant of Theorem 2.1
will be needed:

Let Y1, . . . , Yn : (Ω,A, P ) → E random variables taking values in a measurable
space E and F := (Fi)0≤i≤n a filtration in A such that σ(Yi) ⊂ Fi for all 1 ≤
i ≤ n. Let S be an F-stopping time, let Z : (Ω,A, P ) → R be FS-measurable and
h : E × R → R be measurable and Eh(Yi, Z)+ < ∞. Also define recursively for
z ∈ R

Wn(z) := h(Yn, z),

Wi(z) := E[h(Yi+1, z) ∨Wi+1(z) | Fi] for i = n− 1, . . . , 0.

Then the F stopping time

T (S, Z) := min{S < i ≤ n : h(Yi, Z) > Wi(Zi)}

where Zi := Zχ{S≤ i} is optimal in the sense that for any further F-stopping time
T with S < T on {S < n} and S = T on {S = n} we have

E
[
h(YT (S,Z), Z)|FS

]
= WS(ZS) ≥ E

[
h(YT , Z)|FS

]
P -a.s.

Similar as in the one-stopping problems the idea of solving (2.1) is simple.
The `-th stopping time T` should be i if the (m − `)-stopping value past i with
guarantee value Xi is in expectation larger than the (m−`+1)-stopping value past
i and with guarantee value reached before time i. This idea leads to the following
construction. Define W 0

i (x) := x for x ∈ R and inductively for 1 ≤ m ≤ n, x ∈ R
define thresholds Wm

k (x) by

Wm
n−m+1(x) := x,

Wm
i (x) := E[Wm−1

i+1 (Xi+1) ∨Wm
i+1(x) | Fi] for i = n−m, . . . , 0.

(2.5)
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The related threshold stopping times are defined recursively for k ≤ n−m by

Tm
1 (k, x) := min{k < i ≤ n−m + 1 : Wm−1

i (Xi) > Wm
i (x)}, (2.6)

Tm
` (k, x) := min{Tm

`−1(k, x) < i ≤ n−m + ` : Wm−l
i (Xi) > Wm−l+1

i (x ∨M`−1, i)}

for 2 ≤ ` ≤ m and Mj,i := XT m
j (k,x)χ{T m

j (k,x)≤i}.

(2.6) corresponds to a sequence of m one-stopping problems for (more com-
plicated) transformed sequences of random variables. The following result extends
the classical recursive characterization of optimal stopping times for one-stopping
problems in Theorem 2.1 to the case m ≥ 1. Related structural results can be found
in the papers of Haggstrom (1967), Saario and Sakaguchi (1992), Nikolaev (1999),
and [KR] (2002).

Theorem 2.3 (Recursive characterization of m-stopping problems) The
F-stopping times (Tm

` (k, x))1≤`≤m are optimal in the sense that for all F-stopping
times (T`)1≤`≤m with k < T1 < · · · < Tm ≤ n we have

E[x ∨XT m
1 (k,x) ∨ . . . ∨XT m

m (k,x) | Fk] = E[Wm−1
T m
1 (k,x)(x ∨XT m

1 (k,x)) | Fk] = Wm
k (x)

≥ E[x ∨XT1 ∨ . . . ∨XTm | Fk] P -a.s.

The proof of Theorem 2.1 follows by induction in m similarly as in the case
m = 1. For details see [F] (2009, Satz 2.1) or [KR] (2002, Proposition 2.1). In
general the recursive characterization of optimal m-stopping times and values is
difficult to evaluate. Our aim is to prove that one can construct optimal stopping
times and values approximatively by considering related limiting stopping problems
for Poisson processes in continuous time.

3 m-stopping of Poisson processes

We consider optimal m-stopping of a Poisson process N =
∑

k δ(τk,Yk) in the plane
restricted to some set

Mf = {(t, x) ∈ [0, 1]×R; x > f(t)}

where f : [0, 1] → R ∪ {−∞} is a continuous lower boundary function of N . The
intensity of N may be infinite along the lower boundary f . As in [KR] (2000a) resp.
[FR] (2009) who consider the case m = 1 we assume that the intensity measure µ
of N is a Radon measure on Mf with the topology on Mf induced by the usual
topology on [0, 1] × R. Thus any compact set A ⊂ Mf has only finitely many

points. By convergence in distribution ‘Nn
d→ N on Mf ’ we mean convergence in

distribution of the restricted point processes.

We generally assume the boundedness condition

(B) E[(supk Yk)
+] < ∞. (3.1)
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Let At = σ(N(· ∩ [0, t] × R ∩ Mf )), t ∈ [0, 1], denote the relevant filtration
of the point process N . A stopping time for N or N -stopping time is a mapping
T : Ω → [0, 1] with {T ≤ t} ∈ At for each t ∈ [0, 1]. Denote by

Y T := sup{Yk : 1 ≤ k ≤ N(Mf ), T = τk}, sup ∅ := −∞,

the reward w.r.t. stopping time T .

Let v : M f → R be a continuous transformation of the points of N such that

v(t, x) ≤ ax+ + b ∀ (t, x) ∈ Mf , with real constants a, b ≥ 0,

v(t, ·) is for each t a monotonically nondecreasing function,

v(·, x) is for each x a monotonically nonincreasing function.

 (3.2)

Define c := f(1) and for any guarantee value x ∈ [c,∞) and t ∈ [0, 1) the
optimal stopping curve û of the transformed Poisson process by

û(t, x) := sup{E[v(T, Y T ∨ x)] : T > t is an N -stopping time},
û(1, x) := v(1, x).

(3.3)

For the basic notions of stopping of point processes see [KR] (2000a) resp. [FR]
(2009). The following proposition is the analogue of Theorem 2.1 for continuous
time Poisson processes. It is essential for the solution of the m-stopping problem
of N .

Proposition 3.1 (Optimal stopping times > S) Let N satisfy (B) and v con-
dition (3.2) and assume the following separation condition for the optimal stopping
boundary û:

(Ŝ) û(t, c) > f̂(t) := v(t, f(t)), ∀ t ∈ [0, 1). (3.4)

Then

a) û is continuous on [0, 1]× [c,∞] and for all (t, x) ∈ [0, 1]× [c,∞]

û(t, x) = E[v(T (t, x), Y T (t,x) ∨ x)] = E[v(T (t, x), Y T (t,x) ∨ c) ∨ v(1, x)] (3.5)

with the optimal stopping time

T (t, x) := inf{τk > t : v(τk, Yk) > û(τk, x)}, inf ∅ := 1.

û(·, x) is for x ∈ [c,∞] the optimal stopping curve of the transformed Poisson
process N̂ :=

∑
k δ(τk, v(τk,Yk)) in Mf̂ for the guarantee value v(1, x).

b) Let S be an N-stopping time, let Z ≥ c be real AS-measurable with EZ+ < ∞
and T (S) the set of all N-stopping times T with T > S on {S < 1} and T = 1
on {S = 1}. Then T (S, Z) ∈ T (S) is optimal in the sense that

E[v(T (S, Z), Y T (S,Z)∨Z) | AS] = û(S, Z) ≥ E[v(T, Y T ∨Z) | AS] P -a.s. (3.6)

for all T ∈ T (S).
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Proof:

a) The statement in a) is proved by discretization as in the proof of Theorem
2.5 a) in [KR] (2000a). Since f̂ is continuous and û(·, c) is right continuous there
exists a monotonically nonincreasing, continuous function f̂2 : [0, 1] → [ĉ,∞),
ĉ := f̂(1) = v(1, c) such that f̂ < f̂2 < û(·, c) on [0, 1). Thus for t < 1 the sets
[0, t]×R ∩Mf̂2

are compact in Mf̂ .

For x ∈ [c,∞), n ∈ N and 1 ≤ i ≤ 2 define

Mn
i

2n
(x) := sup

τk∈( i−1
2

, i
2 ]

v(τk, Yk ∨ x).

Consider the filtration An = (A i
2n

)1≤i≤2n . Then Mn
i

2n
(x) is A i

2n
measurable and

A i
2n

, σ(Mn
i+1
2n

(x)) are independent. We define wn : [0, 1]× [c,∞) → R by

wn(t, x) := sup{E[Mn
T (x)] : T > t an An-stopping time} for t ∈ [0, 1),

wn(1, x) := v(1, x).
(3.7)

Then for t ∈ [0, 1) by Theorem 2.1 we have

wn(t, x) = E[Mn
Tn(t,x)(x)] = V n

b2ntc(x),

with the optimal An-stopping time

Tn(t, x) := min
{
t < i

2n ≤ 1 : Mn
i

2n
(x) > wn( i

2n , x)
}
, min ∅ := 1,

and

V n
2n(x) := v(1, x),

V n
i (x) := E[Mn

i+1
2n

(x) ∨ V n
i+1(x)], i = 2n − 1, . . . , 0.

(3.8)

The function wn(·, x) is monotonically nonincreasing and constant on the inter-
vals [0, 1

2n ), [ 1
2n , 2

2n ), . . . , [2
n−1
2n , 1). We also have

(1) wn(t, x) ≥ û(t, x) ∀ t ∈ [0, 1],

(2) wn(t, x) ≥ wn+1(t, x) ∀ t ∈ [0, 1].

For the proof of (1) note that for any stopping time T > t, Tn := dT2ne
2n is an

An-stopping time with Tn > t and Tn − 1
2n < T ≤ Tn. Therefore

Mn
Tn

(x) = sup
τk∈ (Tn− 1

2n , Tn]
v(τk, Yk ∨ x) ≥ v(T, Y T ∨ x). (3.9)

This implies wn(t, x) ≥ sup{E[v(T, Y T ∨x)] : T > t N -stopping time} = û(t, x).
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The proof of (2) is similar. If T > t is an An+1-stopping time, then T ′ := dT2ne
2n

is an An-stopping time with T ′ > t and T ′ − 1
2n < T ≤ T ′. Thus as above we

obtain wn(t, x) ≥ wn+1(t, x).

(1) and (2) imply the existence of a monotonically nonincreasing function
w(·, x) : [0, 1] → R ∪ {−∞} with w(·, x) ≥ û(·, x) and wn(·, x) ↓ w(·, x) point-
wise. It can be shown by our assumptions on v and N that w is continuous (see
[F] (2009)).

For ω ∈ Ω with N̂(ω,K) < ∞ for all compact K ⊂ Mf and for (t, x) ∈
[0, 1]× [c,∞] and tn ↓ t we have the convergence

Mn
Tn(tn,x)(x) → v(T (t, x), Y T (t,x) ∨ x) (3.10)

with the stopping time

T (t, x) := inf{τk > t : v(τk, Yk ∨ x) > w(τk, x)}
(∗)
= inf{τk > t : v(τk, Yk) > w(τk, x)}, inf ∅ := 1. (3.11)

For the proof note that monotone convergence of wn(·, x) and continuity of the
limit ω implies uniform convergence from above. Thus for x ∈ [c,∞) points of
N on the graph of w(·, x) are ignored by all stopping times Tn(t, x) and T (t, x).
The second equality (∗) holds since w(t, x) ≥ û(t, x) ≥ v(t, x) and since by
assumption v(t, ·) is strictly monotonically increasing. This implies by Fatou’s
Lemma the following sequence of inequalities:

û(t, x) ≤ w(t, x) = lim
n→∞

wn(t, x) = lim
n→∞

E[Mn
Tn(t,x)(x)]

≤ E[v(T (t, x), Y T (t,x) ∨ x)] ≤ û(t, x).

Thus û(·, x) = w(·, x) is continuous and û(t, x) = E[v(T (t, x), Y T (t,x) ∨ x)].
As w(t, x) ≥ v(t, x) implies that Y T (t,x) > x for T (t, x) < 1, we have û(t, x) =
E[v(T (t, x), Y T (t,x)∨c)∨v(1, x)], which means that û(·, x) is the optimal stopping

curve of the Poisson process N̂ with guarantee value v(1, x).

b) To prove optimality of the stopping time T (S, Z) set Sn := dS2ne
2n . Then Sn is

an An-stopping time and by (3.10) holds

Mn
Tn(Sn,Z)(Z) → v(T (S, Z), Y T (S,Z) ∨ Z) P -a.s. (3.12)

Let T (Sn) be the set of all An-stopping times Tn with Tn > Sn on {Sn < 1}
and Tn = Sn on {Sn = 1}. Let T ∈ T (S). By discretization T > S in general

does not imply dT2ne
2n > dS2ne

2n . Thus we modify the discretization and define

Tn := dT2ne
2n χ{ dT2ne

2n >Sn} + 1χ{ dT2ne
2n =Sn} ∈ T (Sn). Then analogously to (3.9)

v(T, Y T ∨ Z) ≤ Mn
Tn

(Z)χ{ dT2ne
2n >Sn} + v(T, Y T ∨ Z)χ{ dT2ne

2n =Sn}.
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This implies the inequalitites

E
[
v(T, Y T ∨ Z) | ASn

]
≤ E

[
Mn

Tn
(Z) | ASn

]
χ{ dT2ne

2n >Sn} + E
[
v(T, Y T ∨ Z) | ASn

]
χ{ dT2ne

2n =Sn}

(∗)
≤ E

[
Mn

Tn(Sn,Z)(Z) | ASn

]︸ ︷︷ ︸
=wn(Sn,Z)

χ{ dT2ne
2n >Sn} + E

[
v(T, Y T ∨ Z) | ASn

]
χ{ dT2ne

2n =Sn}.

(∗) holds by Remark 2.2. Since we have Mn
i

2n
(Z) = h(Yi, Z), where Yi := N(· ∩

( i−1
2n , i

2n ] × R ∩ Mf ) and with h : NR(Mf ) × [c,∞) → R, h(
∑

k δ(tk,yk), x) :=
supk v(tk, yk ∨ x).

As AS ⊂ ASn we conclude

E
[
v(T, Y T ∨ Z) | AS

]
≤ E

[
Mn

Tn(Sn,Z)(Z)χ{ dT2ne
2n >Sn} | AS

]
+ E

[
v(T, Y T ∨ Z)χ{ dT2ne

2n =Sn} | AS

]
= wn(Sn, Z)E

[
χ{ dT2ne

2n >Sn} | AS

]
+ E

[
v(T, Y T ∨ Z)χ{ dT2ne

2n =Sn} | AS

]
,

and by the Lemma of Fatou we have by (3.12)

E
[
v(T, Y T ∨ Z) | AS

]
≤ E

[
v(T (S, Z), Y T (S,Z) ∨ Z) | AS

]
= û(S, Z).

As T > S was choosen arbitrary this implies b). 2

In the sequel we need the following differentiability condition to be fulfilled

(D) Assume that there is a version of the density g of µ on Mf such that the
intensity function

G(t, y) =

∫ ∞

y

g(t, z)dz

is continuous on Mf∩[0, 1]×R. Furthermore we assume that limy→∞ yG(t, y) =
0 for all t ∈ [0, 1].

The following proposition determines the intensity function of transformed Pois-
son processes.

Proposition 3.2 (Intensity function of transformed Poisson processes)
Let N =

∑
δ(τk,Yk) be a Poisson process with intensity function G satisfying

the boundedness condition (B). Let v : M f → R, v = v(t, x) be a C1-function
monotonically nonincreasing in t and monotonically nondecreasing in x with
v(t,∞) = ∞ for all t ∈ [0, 1]. Define R(t, x) := (t, v(t, x)) and fv(t) := v(t, f(t)).
Then R(Mf ) = Mfv , R−1(t, y) = (t, ξ(t, y)) with a C1-function ξ : Mfv → R.

N̂ :=
∑

k δ(τk,v(τk,Yk)) is a Poisson process on Mfv with intensity measure µ̂ =

µ ◦R−1 and intensity fuction Ĝ(t, y) := G(t, ξ(t, y)), (t, y) ∈ Mfv .
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Proof: By Resnick (1987, Prop. 3.7) N̂ is a Poisson process with intensity measure
µ̂ = µ ◦ R−1. The transformation formula implies that the density ĝ of µ̂ is given
by

ĝ(t, y) = g(R−1(t, y))
∣∣det J(R−1)(t, y)

∣∣
= g(t, ξ(t, y))

∂

∂y
ξ(t, y) = − ∂

∂y
G(t, ξ(t, y)). 2

After this preparation we now consider the m-stopping problem for Poisson
processes. The aim is to solve

E[Y T1 ∨ . . . ∨ Y Tm ] = sup (3.13)

where the supremum is over all N -stopping times2 0 ≤ T1 < · · · < Tm ≤ 1.

This problem has been considered for Poisson processes on [0, 1]×(c,∞) already
in Saario and Sakaguchi (1992) in the special case of intensity functions of the form

G(t, y) = λ(1− F (y)) (3.14)

with λ > 0 and F a continuous distribution function with F (c) = 0. (3.14) models
the case of iid random variables arriving at Poisson distributed arrival times. Saario
and Sakaguchi (1995) derive for this case differential equations for the optimal stop-
ping curves. Explicit solutions are however not given in any case. In the following
we extend these results to the case of general intensities. We subsequently also
identify classes of examples of intensity functions which allow essentially explicit
solutions.

In order to guarantee the existence of optimal m-stopping times we restrict
ourselves in the following to the case where the lower boundary is constant, f ≡ c.
Define optimal m-stopping curves for guarantee value x ∈ [c,∞), m ∈ N, and
t ∈ [0, 1) by2

um(t, x) := sup
{

E[Y T1 ∨ . . . ∨ Y Tm ∨ x] :

t < T1 < . . . < Tm ≤ 1 N -stopping times
}

,

um(1, x) := x.

(3.15)

Further let u0(t, x) := x for (t, x) ∈ [0, 1]× [c,∞] and um(t) := um(t, c) for t ∈ [0, 1].

um(·, x) is called optimal m-stopping curve of N for guarantee value x. Define
the inverse function ξm : Mum → R by

ξm(t, um(t, x)) = x for (t, x) ∈ [0, 1]× [c,∞]. (3.16)

2T1 < . . . < Tm ≤ 1 signifies that Ti−1 < Ti for each i on {Ti−1 < 1} and Ti = 1 on
{Ti−1 = 1}.
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Further define γm : [0, 1]× [c,∞] → R by

γm(t, x) := ξm−1(t, um(t, x)) (3.17)

as well as
γm(t) := γm(t, c) = ξm−1(t, um(t)). (3.18)

Then γm(t, x) > x iff um(t, x) > um−1(t, x) and further

y > γm(t, x) ⇔ um−1(t, y) > um(t, x).

The optimal m-stopping for Poisson processes can be reduced by the previous
structural results to m 1-stopping problem for transformed Poisson processes. The
transformations are given by the optimal stopping curves um or equivalently by the
inverses γm – both sequences of curves are defined recursively. Thus we consider
the transformed Poisson processes

Nm :=
∑

k

δ(τk,um−1(τk,Yk)) on Mum−1 . (3.19)

Define the (optimal) stopping times Tm
` (t, k) with guarantee value x by

Tm
1 (t, x) := inf

{
τk > t : Yk > γm(τk, x)

}
,

Tm
` (t, x) := inf

{
τk > Tm

`−1(t, x) : Yk > γm−`+1(τk, Y T m
`−1(t,x) ∨ x)

}
.

(3.20)

Then we have the following solution to the m-stopping problem for Poisson
processes.

Theorem 3.3 (Optimal m-stopping of Poisson processes) Let f ≡ c and N
satisfy the boundedness condition (B) and the separation condition (S), i.e. u1(t) >
c for t ∈ [0, 1). Let t0(x) := inf{t ∈ [0, 1] : µ((t, 1]× (x,∞]) = 0}.

a) Then for m ∈ N, (t, x) ∈ [0, 1)× [c,∞) holds

um(t, x) = E
[
Y T m

1 (t,x) ∨ . . . ∨ Y T m
m (t,x) ∨ x

]
= E

[
um−1(Tm

1 (t, x), Y T m
1 (t,x) ∨ x)

]
,

with optimal stopping times (Tm
` (t, x))1≤`≤m defined in (3.20).

b) For (t, x) ∈ A := {(t, x) ∈ (0, 1]× [c,∞) : t < t0(x)} holds um(t, x) > um−1(t, x)
while um(t, x) = um−1(t, x) = x else. In particular um(t) > um−1(t) for t ∈ [0, 1)
and um(·, x) is the optimal stopping curve of the transformed Poisson process
Nm.

c) Under the differentiability condition (D) um(·, x) solves the differential equation

∂

∂t
um(t, x) = −

∫ ∞

um(t,x)

G(t, ξm−1(t, y)) dy, t ∈ [0, 1),

um(1, x) = x.

(3.21)
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d) For x > −∞ (3.21) has a unique solution. If c = −∞ and if

lim inf
s↑1

u(s)

b(s)
< ∞, (3.22)

where b(s) := E[supτk>s Yk], then also in this case um = um(·,−∞) for m ≥ 2
is uniquely determined by (3.21).

Proof: The proof is by induction in m. Our induction hypothesis is that the state-
ment of Theorem 3.3 holds and moreover that for any n-stopping time S and any
AS-measurable Z ≥ c with EZ+ < ∞ we have P -a.s.

E[Z ∨ Y T m
1 (S,Z) ∨ . . . ∨ Y T m

m (S,Z) | AS] = um(S, Z) ≥ E[Z ∨ Y T1 ∨ . . . ∨ Y Tm | AS]

for all N -stopping times S < T1 < . . . < Tm ≤ 1. Further,

A = {(t, x) ∈ [0, 1]× [c,∞) : um(t, x) > um−1(t, x)}. (3.23)

For the one-stopping problem m = 1 the statement of Theorem 3.3 is contained in
[FR] (2009). Proposition 3.1 with v(t, x) := x implies the first part of the induction
hypothesis while the second part follows from [FR] (2009, Lemma 2.1 (c)).

For the induction step m → m + 1 we obtain for all stopping times S < T1 <
T2 < · · · < Tm+1 ≤ 1 and Z ≥ c AS-measurable by the induction hypothesis (note
that AS ⊂ AT1):

E[(Z ∨ Y T1) ∨ Y T2 ∨ . . . ∨ Y Tm+1 | AS]

≤ E[(Z ∨ Y T1) ∨ Y T m
1 (T1,Z∨Y T1

) ∨ . . . ∨ Y T m
m (T1,Z∨Y T1

) | AS] (3.24)

= E[um(T1, Z ∨ Y T1) | AS].

This expression is maximized by Proposition 3.1 by T1 = Tm+1
1 (S, Z) where

Tm+1
1 (t, x) := inf{τk > t : um(τk, Yk) > û(τk, x)}, inf ∅ := 1.

The maximizing value is given by û(S, Z).

For the proof we need to show that û(t, c) > um(t) for t ∈ [0, 1). We shall do
this and at the same time show (3.23) for m + 1.

Note that for x ∈ [c,∞)

û(t, x)
Def.
= sup

{
E[um(T, Y T ∨ x)] : T > t N -stopping time

}
≥ E[um(Tm

1 (t, x), Y T m
1 (t,x) ∨ x)]

(∗)
≥ E[um−1(Tm

1 (t, x), Y T m
1 (t,x) ∨ x)]

= um(t, x), by induction hypothesis.
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By (3.23) we have strict inequality in (∗) if and only if P ((Tm
1 (t, x), Y T m

1 (t,x)) ∈
A) > 0. Using Lemma 2.4 in [FR] (2009) we see that this is equivalent to µ(A ∩
Mγm(·,x) ∩ (t, 1]×R) > 0. This in turn is equivalent to

A ∩Mγm(·,x) ∩ (t, 1]×R 6= ∅ (3.25)

(since γm(·, x) is monotonically nonincreasing and by definition of A). We are going
to show that this is fulfilled for all points (t, x) ∈ A.

So let (t, x) ∈ A and thus by induction hypothesis um(t, x) > um−1(t, x) or
equivalently γm(t, x) > x. Under the assumption that Mγm(·,x) ∩ (t, 1]×R ⊂ Ac we
obtain that also (t, γm(t, x)) ∈ Ac since Ac is closed. This implies that

um(t, γm(t, x)) = um−1(t, γm(t, x)) = um(t, x).

Since um(t, ·) is strictly increasing it follows that γm(t, x) = x, which is a contra-
diction. Thus (3.25) holds true.

With the choice S := t, Z := x further we obtain

û(t, x) = E[um(Tm+1
1 (t, x), Y T m+1

1 (t,x) ∨ x)] = um+1(t, x).

Finally, in (3.24) holds

Tm
l

(
Tm+1

1 (S, Z), Z ∨ Y T m+1
1 (S,Z)

)
= Tm+1

l+1 (S, Z).

By Proposition 3.1 um+1(·, x) is the optimal stopping curve of the Poisson process
Nm+1 =

∑
k δ(τk,um(τk,Yk)) on Mum at the guarantee value x. We already proved that

the separation condition is fulfilled for the stopping of Nm+1 and by Proposition
3.2 Nm+1 has the intensity function Gm+1(t, y) := G(t, ξm(t, y)). The existence
and uniqueness results for the differential equation (3.21) therefore follow with our
assumption from the corresponding result in [FR] (2009) for the case m = 1. 2

4 Explicit calculation of

optimal m-stopping curves

For the case of one-stopping problems some classes of intensity functions G(t, y)
have been introduced in [FR] (2009) which allow to determine optimal stopping
curves in explicit form. Solving the optimality equations in (3.21) for the sequence
of optimal stopping curves for the m-stopping problem is in general much more
demanding. However for some of the classes considered in [FR] (2009) explicit
solutions can be given also in the m-stopping case.

We consider intensity functions G(t, y) of the form

G(t, y) = H

(
y

v(t)

)
|v′(t)|
v(t)

(4.1)
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or G(t, y) = H(y − v(t))|v′(t)| (4.2)

as in [FR] (2009) with v(1) = 0 or v(1) = ∞ in case (4.1) and v(1) = −∞ in case
(4.2). For the general motivation of these classes and these conditions we refer to
[FR] (2009). In particular we will see that the main application considered in this
paper to m-stopping of iid seqences is covered by these classes.

We first state the results in the three cases mentioned and then give the proof.

Case 1: G satisfies (4.1) with v monotonically nonincreasing, v(1) = 0.
Here c = 0. H : (0,∞] → [0,∞) is monotonically nonincreasing continuous,∫ ∞

0
H(x)dx > 0 and we assume that v : [0, 1] → [0,∞) is a C1-function with

v > 0 on [0, 1).

We define

R1(x) := x−
∫ ∞

x

H(y) dy, x ∈ (0,∞). (4.3)

and assume that there exists some r > 0 with R1(r) = 0. Define r0 := 0, Φ0(x) := x.
Then for m ≥ 1 by induction holds:

The function Rm : (rm−1,∞) → R given by

Rm(x) := x−
∫ ∞

x

H(Φm−1(y)) dy (4.4)

has exactly one zero rm ∈ (rm−1,∞) and the optimal m-stopping curves are given
for (t, x) ∈ [0, 1)× [0,∞] by

um(t, x) = φm

(
x

v(t)

)
v(t), (4.5)

where φm : [0,∞] → [rm,∞] is the inverse function of Φm : [rm,∞] → [0,∞],

Φm(x) := x exp

(
−

∫ ∞

x

(
1

Rm(y)
− 1

y

)
dy

)
.

The system of functions (Rm, Φm) resp. (um, φm) is by (4.5) recursively defined. In
particular it holds that

um(t) = rmv(t). (4.6)

Case 2: G satisfies (4.1) with v monotonically nondecreasing, v(1) = ∞.
Here c = −∞. H : (−∞,∞] → [0,∞) is monotonically nonincreasing continuous,∫ 0

−∞ H(x) dx > 0,
∫ ∞

0
H(x) dx = 0 and

∫ 0

y
H(x)
−x

dx < ∞ for y < 0. Further, we

assume that v : [0, 1] → [0,∞] is a C1-function with v < ∞ on [0, 1).

We define

R1(x) := x +

∫ ∞

x

H(y) dy, x ∈ (−∞,∞).

and assume that there exists some r < 0 with R1(r) = 0. Define r0 := −∞,
Φ0(x) := x. Then for m ≥ 1 by induction holds:
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The function Rm : (rm−1, 0) → R defined by

Rm(x) := x +

∫ 0

x

H(Φm−1(y)) dy

has exactly one zero rm ∈ (rm−1, 0) and the optimal m-stopping curves are given
for (t, x) ∈ [0, 1)×R by

um(t, x) =

{
x, if x ≥ 0,

φm
(

x
v(t)

)
v(t), if x < 0,

(4.7)

where φm : [−∞, 0] → [rm, 0] is the inverse of Φm : [rm, 0] → [−∞, 0],

Φm(x) := x exp

(∫ 0

x

(
1

y
− 1

Rm(y)

)
dy

)
.

In particular, um(t) = rmv(t).

Case 3: G satisfies (4.2) with v monotonically nonincreasing v(1) = −∞.
Then c = −∞. H : (−∞,∞] → [0,∞) is monotonically nonincreasing continuous,∫ ∞
−∞ H(x) dx > 0 and

∫ ∞
z

∫ ∞
y

H(x) dx dy < ∞ for z ∈ R. Further, we assume that

v : [0, 1] → [−∞,∞) is a C1-function with v > −∞ on [0, 1).

We define

R1(x) := 1−
∫ ∞

x

H(y) dy, x ∈ R.

and assume that there exists some r ∈ R such that R1(r) = 0. Define r0 := −∞,
Φ0(x) := x. Then for m ≥ 1 by induction holds:

The function Rm : (rm−1,∞) → R defined by

Rm(x) := 1−
∫ ∞

x

H(Φm−1(y)) dy

has exactly one zero rm ∈ (rm−1,∞). The optimal m-stopping curves are given for
(t, x) ∈ [0, 1)×R by

um(t, x) = φm(x− v(t)) + v(t), (4.8)

where φm : R→ [rm,∞] is the inverse of Φm : [rm,∞] → R,

Φm(x) := x−
∫ ∞

x

(
1

Rm(y)
− 1

)
dy.

We have um(t) = rm + v(t).

Proof: We only give the proof of case 2. The proof of both other cases is similar.
The proof is by induction in m where we additionally include that Rm ≥ Rm−1 and
thus Φm ≥ Φm−1.
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In the case m = 1 the statement has been shown in [FR] (2009) (with r0 := −∞,
Φ0(x) := x, R0(x) := x).

Induction step m → m + 1 : um+1(·, x) is the optimal stopping curve of Nm+1

at the guarantee value x. Nm+1 has the intensity function

Gm+1(t, y) = H

(
Φm

(
y

v(t)

))
v′(t)

v(t)
for (t, y) ∈ Mum

Thus Gm+1 again is of type (4.1) and we have to check the conditions of Case 2
in [FR] (2009), who deal with optimal one-stopping w.r.t. this type of intensity
functions. First we note that Rm+1 has a zero in (rm, 0) since Φm(x) ≥ Φm−1(x)
and thus Rm+1 ≥ Rm. Further by substitution we have∫ 0

y

H(Φm(x))

−x
dx

Subst.
=

∫ 0

Φm(y)

H(z)

−z

−z

φm(z)
(φm)′(z) dz < ∞,

as lim
z→0

−z
φm(z)

= 1 and lim
z→0

(φm)′(z) = 1. Thus the conditions hold true and the result

follows. 2

For intensity functions G not of the form as in (4.1), (4.2) the optimality differ-
ential equations in Theorem 3.3 typically can only be solved numerically. In some
cases however one can derive bounds for the optimal stopping curves um(t, x).

Example 4.1 We consider intensity functions on [0, 1)×R of the form

Gc,d(t, y) =

{
0, if y

v(t)
≥ d,

1
t

(
− y

v(t)
+ d

)α
, if y

v(t)
< d,

(4.9)

with v(t) := tc−
1
α , where α > 0 and c, d ∈ R with c 6= 1

α
as considered in [FR]

(2009, Example 3.5). We treat at first the case d = 0. Then

Gc,0(t, y) =

{
0, if y ≥ 0,

t−αc(−y)α, if y < 0,

}
= H̃

(
y

ṽ(t)

)
ṽ′(t)

ṽ(t)

with H̃(x) := (α + 1)(−x)α for x < 0 and H̃(x) := 0 for x ≥ 0, and

ṽ(t) := −uc,0(t) =
(

α
α+1

1
1−cα

(1− t1−cα)
)− 1

α .

Gc,0 thus satisfies (4.1) with these functions, too. Note that H̃ in this case is inde-
pendent of c. H̃, ṽ satisfy the conditions of Case 2. With Φm−1, rm as introduced
in Case 2 we obtain for m ∈ N

γm
c,0(t) = ξm−1

c,0 (t, um
c,0(t)) = Φm−1(rm)ṽ(t), t ∈ [0, 1]. (4.10)
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For general d ∈ R we next derive as in Example 3.5 in [FR] (2009) the optimal
m-stopping curve um

c,d of the Poisson process with intensity function Gc,d in case

m ≥ 1. In the cases c > 1
α
, d > 0 and c < 1

α
, d < 0, we have for all t ∈ [0, 1], x ∈ R

um
c,0(t, x− dv(t)) + dv(t) ≤ um

c,d(t, x) ≤ um
c,0(t, x− d) + d. (4.11)

In both further cases c > 1
α
, d < 0 and c < 1

α
, d > 0, we have

um
c,0(t, x− d) + d ≤ um

c,d(t, x) ≤ um
c,0(t, x− dv(t)) + dv(t). (4.12)

In particular in all four cases we obtain

lim
t↑1

um
c,d(t)− um

c,0(t) = d.

Furthermore, it can be shown that

lim
t ↑ 1

γm
c,d(t)− γm

c,0(t) = d. (4.13)

We give the proof in case c > 1
α
, d > 0 or c < 1

α
, d < 0. The other cases are

similarly. The proof of (4.11) is by induction in m. For the case m = 1 compare
[FR] (2009, Example 3.5).

For the induction step m → m + 1 we assume that (4.11) holds for m and any
t, x. This is easily seen to be equivalent to

ξm
c,0(t, y − d) + d ≤ ξm

c,d(t, y) ≤ ξm
c,0(t, y − dv(t)) + dv(t) (4.14)

for any t, y. This implies by definition and the case m = 1

Gm+1
c,d (t, y)

Def.
= Gc,d(t, ξ

m
c,d(t, y))

≤ Gc,d(t, ξ
m
c,0(t, y − d) + d) ≤ Gc,0(t, ξ

m
c,0(t, y − d)) = Gm+1

c,0 (t, y − d)

and

Gm+1
c,d (t, y) ≥ Gc,d(t, ξ

m
c,0(t, y − dv(t)) + dv(t)) = Gc,0(t, ξ

m
c,0(t, y − dv(t)))

Def.
= Gm+1

c,0 (t, y − dv(t)).

From [FR] (2009) (Proposition 2.8 and Remark 3.4) we conclude

um+1
c,0 (t, x− dv(t)) + dv(t) ≤ um+1

c,d (t, x) ≤ um+1
c,0 (t, x− d) + d,

which is (4.11) for m + 1.

We next prove (4.13). By the calculation of the optimal stopping curves in (4.7),
Case 2 we obtain that

um
c,0(t) = rmṽ(t),
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ξm−1
c,0 (t, y) = Φm−1

(
y

ṽ(t)

)
ṽ(t).

By (4.14) for m− 1 and (4.11) for x = −∞ we obtain

γm
c,d(t)− γm

c,0(t) = ξm−1
c,d (t, um

c,d(t))− ξm−1
c,0 (t, um

c,0(t))

≤ ξm−1
c,0 (t, um

c,d(t)− dv(t)) + dv(t)− ξm−1
c,0 (t, um

c,0(t))

≤ ξm−1
c,0 (t, um

c,0(t) + d− dv(t))− ξm−1
c,0 (t, um

c,0(t)) + dv(t)

= Φm−1

(
rm + d

1− v(t)

ṽ(t)

)
ṽ(t)− Φm−1 (rm) ṽ(t) + dv(t)

=
Φm−1

(
rm + d1−v(t)

ṽ(t)

)
− Φm−1 (rm)

d 1−v(t)
ṽ(t)

d(1− v(t)) + dv(t)

t↑1−→
(
Φm−1

)′
(rm) · 0 + d = d.

Similarly, we obtain the estimate from below.

5 Approximation of m-stopping problems

In this section an extension of the approximation results in [KR] (2004, Theorem
2.1) and [FR] (2009, Theorem 4.1) for optimal one-stopping problems for dependent
sequences is given to the class of m-stopping problems. For the special case of
iid sequences with distribution function F in the domain of the Gumbel extreme
value distribution Λ a corresponding approximation result was given in the case
m = 2 in [KR] (2002). The following result concerns the dependent case and needs
a new technique of proof which is based on discretization. The main result of
this section states that under some conditions convergence of the finite imbedded
point processes Nn to a Poisson process N implies approximation of the stopping
behaviour.

We use the same general assumptions as in Section 4 of [FR] (2009) as well as
the notation in Section 2 for the Poisson process N . In particular γ1, . . . , γm are
the functions defined in (3.17). Further the lower boundary curve f of N is given
by f ≡ c, N is a Poisson process on [0, 1] × (R \ {c}) and Fn are the canonical
filtrations.

The first result is an extension of Proposition 2.4 in [KR] (2000a) on the con-
vergence of threshold stopping times to the case m ≥ 1.

Proposition 5.1 (Convergence of multiple threshold stopping times)
Let (t, x) ∈ [0, 1] × [c,∞) be fixed and let vm

n : [0, 1] → R be functions such that
vm

n → γm(·, x) uniformly on any interval [0, s] with s < 1. Define the corresponding
threshold stopping times

T̂ n,m
1 (t, x) := min

{
tn < i ≤ n−m + 1 : Xn

i > vm
n

(
i
n

)}
,
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T̂ n,m
` (t, x) := min

{
T̂ n,m

`−1 (t, x) < i ≤ n−m + ` : Xn
i > γm−`+1

(
i
n
, Xn

T̂ n,m
`−1 (t,x)

∨ x
)}

for 2 ≤ ` ≤ m. If Nn
d→ N on Mc, we obtain convergence(

T̂ n,m
` (t,x)

n
, Xn

T̂ n,m
` (t,x)

∨ x
)

1≤`≤m

d−→ (Tm
` (t, x), Y T m

` (t,x) ∨ x)1≤`≤m. (5.1)

Proof: By the Skorohod theorem we can assume w.l.g. that Nn(· ∩Mc) → N(· ∩
Mc) P -a.s. By our general differentiability assumption (D) on the intensity of the
Poisson process N a.s. no point of N lies on a given graph of a function.

We will establish P -a.s. convergence in (5.1). Let (tp)p∈N be a sequence of points
in [0, 1) with tp ↑ 1. Choose ω ∈ Ω such that N has no points on the following
graphs, in Ac (see Theorem 3.3 for notation), on {tp} × (c,∞] or on {1} × (c,∞]
and such that Nn(ω) → N(ω).

For the proof it will be important that γk(t, x) > x for (t, x) ∈ A as shown in
Theorem 3.3. In particular γk(t, x) ≥ γk(t, c) > c for all t ∈ [0, 1). The proof is now
given by induction in ` = 1, . . . ,m. The induction hypothesis is(

T̂ n,m
` (t,x)

n
, Xn

T̂ n,m
` (t,x)

∨ x
)
→ (Tm

` (t, x), Y T m
` (t,x) ∨ x).

` = 1: 1. Case: N has no points in (t, 1]×R∩Mγm(·,x), i.e. N((t, 1]×R∩Mγm(·,x)) = 0.

Then (Tm
1 (t, x), Y T m

1
(t, x) ∨ x) = (1, x). Let p ∈ N be a fixed number. Since

N has no points on the graph of γm(·, x) there exists ε > 0 with N((t, tp] × R ∩
Mγm(·,x)−ε) = 0. Thus by our assumptions vn

m converges uniformly on [0, tp] and

thus Nn((t, tp] × R ∩ Mvn
m
) = 0, i.e.

T̂ n,m
1 (t,x)

n
≥ tp for n ≥ n0. In conseqeunce

lim
T̂ n,m
1 (t,x)

n
= 1. Since N({1}× (c,∞]) = 0 we obtain Xn

T̂ m,n
1 (t,x)

∨ x → x. This also

is true for the further stopping times and thus finishes the proof.

2. Case: N has points in (t, tp]×R∩Mγm(·,x) for some tp. Let the number of these
points be s. Since N has no points on the graph of γm(·, x) there exists ε > 0 such
that N has no points in

⋃
s∈(t,tp]{s} × [γm(s, x) − ε, γm(s, x] + ε]. By Proposition

3.13 in Resnick (1987) there exist for n ≥ n0 representations of the form

Nn(· ∩ (t, tp]×R ∩Mγm(·,x)−ε) =
s∑

r=1

δ( ir
n

,Xn
ir

)

with i1 < i2 < . . . < is and

N(· ∩ (t, tp]×R ∩Mγm(·,x)−ε) =
s∑

r=1

δ(τkr ,Ykr )

with τk1 < τk2 < . . . < τks , such that the points converge. By uniforme convergence
of vm

n on (t, tp] it follows for n ≥ n1 that(
T̂ n,m
1 (t,x)

n
, Xn

T̂ n
1

)
=

(
i1
n
, Xn

i1

)
→ (τk1 , Yk1) = (Tm

1 (t, x), Y T m
1 (t,x)).
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The induction step `−1 → ` uses similar arguments but is somewhat technical.
For details we refer to [F] (2009, p. 60–61). 2

Let now W n,m
k (x) be the stopping thresholds for the m stopping of Xn

1 , . . . , Xn
n

and the filtration Fn (see Section 2). The optimal m-stopping curves w.r.t. Fn are
defined as follows. For t ∈ [0, n−m+1

n
) and x ∈ R let

um
n (t, x) := W n,m

btnc (x)

and um
n (t, x) := W n,m

n−m+1(x) for t ∈ [n−m+1
n

, 1].

More explicitly we have for t ∈ [0, n−m+1
n

)

um
n (t, x) = ess sup

{
E[Xn

T1
∨ . . . ∨Xn

Tm
∨ x | Fn

btnc] :
tn < T1 < · · · < Tm ≤ n

Fn-stopping times

}
= E[Xn

T n,m
1 (t,x)

∨ . . . ∨Xn
T n,m

m (t,x)
∨ x | Fn

btnc] P -a.s. (5.2)

The corresponding optimal m-stopping times are given by

T n,m
1 (t, x) := min

{
tn < i ≤ n−m + 1 : um−1

n ( i
n
, Xn

i ) > um
n ( i

n
, x)

}
,

T n,m
` (t, x) := min

{
T n,m

`−1 (t, x) < i ≤ n−m + ` :

um−`
n ( i

n
, Xn

i ) > um−`+1
n ( i

n
, Mn,m

`−1,i ∨ x)
} (5.3)

for 2 ≤ ` ≤ m, where Mn,m
j, i := Xn

T n,m
j (t,x)

χ{T n,m
j (t,x)≤ i}.

um
n (·, x) is right continuous and piecewise curve in the space of random variables.

We have the iterative representation (see Theorem 2.3)

um
n (t, x) = E

[
um−1

n

(
T n,m
1 (t,x)

n
, Xn

T n,m
1 (t,x)

∨ x
) ∣∣∣ Fn

btnc

]
P -a.s.

Further, um
n are monotone in the sense that for 0 ≤ s ≤ t ≤ 1

um
n (s, x) ≥ E

[
um

n (t, x) | Fn
bsnc

]
P -a.s.

In the opposite direction we obtain for 0 ≤ s ≤ t ≤ 1

um
n (s, x) ≤ E

[
max

s< i
n
≤t

um−1
n ( i

n
, Xn

i ) ∨ um
n (t, x) | Fn

bsnc
]

P -a.s. (5.4)

This follows inductively from the recursive definition of the thresholds Wm
` (x).

We also need the following further conditions (for more details and motivation see
[FR] (2009)):

(A) Asymptotic independence condition
For 0 ≤ s < t ≤ 1

P
(

max
s< i

n
≤t

Xn
i ≤ x | Fn

bsnc

)
P−→ P

(
sup

s<τk≤t
Yk ≤ x

)
∀x ∈ (c,∞)
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(U) Uniform integrability condition
M+

n , with Mn := max
1≤i≤n

Xn
i , is uniformly integrable and E[lim sup

n→∞
M+

n ] < ∞.

(L) Uniform integrability from below
For some sequence (vn)n∈N of monotonically nonincreasing functions vn :
[0, 1] → R ∪ {−∞} with vn → u pointwise, for all t ∈ [0, 1) and the cor-
responding threshold stopping times

T̂n(t) := min{tn < i ≤ n : Xn
i > vn( i

n
)}

holds

lim
s↑1

lim sup
n→∞

E[Xn
T̂n(t)

χ{T̂n(t)>sn}] = 0. (5.5)

An extension of (L) is

(Lm) For m ∈ N there exists some sequence of monotonically nonincreasing func-
tions vm

n : [0, 1] → R such that vm
n → γm(·,−∞) pointwise and further the

corresponding threshold stopping times

T̂ n,m
1 (t) := min{tn < i ≤ n−m + 1 : Xn

i > vm
n ( i

n
)}

satisfy
lim
s↑1

lim sup
n→∞

E[Xn
T̂ n,m
1 (t)

χ{T̂ n,m
1 (t)>sn}] = 0.

Condition (Lm) in combination with (U) implies uniform integrability of
(Xn

T̂ n,m
1 (t)

)n∈N. Denote

T n,m
` := T n,m

` (0, c) and Tm
` := Tm

` (0, c).

Theorem 5.2 (Approximation of m-stopping problems) Assume that

Nn
d→ N on [0, 1] × (R \ {c}) and also assume conditions (A) and (U). In case

c = −∞ also assume the uniform integrability condition (Lm).

a) For all (t, x) ∈ [0, 1]× [c,∞) holds

um
n (t, x)

P−→ um(t, x).

If c ∈ R assume Xn
n

L1

→ c. Then we have in particluar

E
[
Xn

T n,m
1

∨ · · · ∨Xn
T n,m

m

]
→ um(0). (5.6)
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b) In case (Xn
i )1≤i≤n are independent random variables and if for c ∈ R we assume

that µ(Mγm) = ∞ or Xn
n−i

P−→ c for i = 0, . . . ,m− 1, then we obtain(
T n,m

`

n
, Xn

T n,m
`

)
1≤`≤m

d→ (Tm
` , Y T m

`
∨ c)1≤`≤m.

c) If c ∈ R and Xn
n

L1

→ c, then

T̂ n,m
1 := min

{
1 ≤ i ≤ n−m + 1 : Xn

i > γm( i
n
, c)

}
,

T̂ n,m
` := min

{
T̂ n,m

`−1 < i ≤ n−m + ` : Xn
i > γm−`+1( i

n
, Xn

T̂ n,m
`−1

∨ c)
}

, 2 ≤ ` ≤ m,

defines an asymptotically optimal sequence of m-stopping times, i.e. convergence
as in (5.6) holds for these stopping times. In case c = −∞

T̂ n,m
1 := min

{
1 ≤ i ≤ n−m + 1 : Xn

i > vm
n ( i

n
)
}

,

T̂ n,m
` := min

{
T̂ n,m

`−1 < i ≤ n−m + ` : Xn
i > γm−`+1( i

n
, Xn

T̂ n,m
`−1

)
}

, 2 ≤ ` ≤ m,

are asymptotically optimal stopping times, where vm
n are the threshold functions

from condition (Lm).

Proof: Since we use point process convergence on [0, 1]× (R \ {c}) and canonical
filtrations we can apply the Skorohod theorem and thus we assume P -a.s. conver-
gence of the point processes.

a) Consider at first the case c ∈ R. Let t ∈ [0, 1) be a fixed element. We introduce
at first discrete majorizing stopping problems. For m ≥ 1 and k > m define the
discrete time points

ak
i :=

(
1− i

k

)
t +

i

k
1, 0 ≤ i ≤ k,

and discrete time random variables

Xn,k
i := max

j
n
∈(ak

i−1,ak
i ]

Xn
j ∨ c for 1 ≤ i ≤ k,

and consider the filtration Fn,k := (Fn,k
i )0≤ i≤ k with Fn,k

i := Fn
bak

i nc. The corre-

sponding m-stopping curves are given inductively for m ≥ 1 by backwards induc-
tion for i = k, . . . , 0 by

m
W

n,k
k−m+1(x) := x,

m
W

n,k
i (x) := E[ m−1

W
n,k
i+1(X

n,k
i+1) ∨ m

W
n,k
i+1(x) | Fn,k

i ] for i = k −m, . . . , 0.

These stopping problems majorize the original m-stopping problem.

m
W

n,k
0 (x)
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= ess sup{E[Xn,k
T ′
1
∨ . . . ∨Xn,k

T ′
m
∨ x : Fn,k

0 ] :

0 < T ′
1 < . . . < T ′

m ≤ k Fn,k-stopping times}
(∗)
= ess sup{E[Xn,k

T ′
1
∨ . . . ∨Xn,k

T ′
m
∨ x : Fn,k

0 ] :

0 < T ′
1 ≤ . . . ≤ T ′

m ≤ k Fn,k-stopping times}
≥ ess sup{E[Xn

T1
∨ . . . ∨Xn

Tm
∨ x | Fn

btnc] :

tn < T1 < . . . < Tm ≤ n Fn-stopping times}
= um

n (t, x) P -a.s.,

since for all Fn-stopping times tn < T1 < . . . < Tm ≤ n it holds that T ′
i :=

d 1
1−t

(Ti

n
− t)ke > 0 are Fn,k-stopping times with ak

T ′
i−1 < Ti

n
≤ ak

T ′
i
, thus Xn,k

T ′
i
≥ Xn

Ti
.

For the proof of (∗) define for Fn,k-stopping times 0 < T ′
1 ≤ . . . ≤ T ′

m ≤ k the
Fn,k-stopping times 0 < T ∗

1 < . . . < T ∗
m ≤ k by

T ∗
1 := T ′

1 ∧ (k −m + 1),

T ∗
` :=

(
(T ′

` + 1)χ{T ∗
`−1=T ′

`} + T ′
`χ{T ∗

`−1<T ′
`}

)
∧ (k −m + `), ` = 2, . . . ,m.

We will prove convergence as n →∞ to the stopping problem of

Y k
i := sup

τl∈(ak
i−1,ak

i ]

Yl ∨ c for 1 ≤ i ≤ k,

with filtrations Ak := (Ak
i )1≤i≤k, Ak

i := Aak
i

and optimal thresholds

muk
k−m+1(x) := x,

muk
i (x) := E[ m−1uk

i+1(Y
k
i+1) ∨ muk

i+1(x)] for i = k −m, . . . , 0.

By definition for i ≤ k −m holds

muk
i (x) = V ( m−1uk

i+1(Y
k
i+1) ∨ x, . . . , m−1uk

k−m+1(Y
k
k−m+1) ∨ x)

= sup{E[ m−1uk
T (Y k

T ) ∨ x] : i < T ≤ k −m + 1 Ak-stopping times}
= muk(ak

i , x),

where muk(·, x) are the optimal stopping curves of the processes

m
N

k :=
k−m+1∑

i=1

δ(ak
i , m−1u k

i (Y k
i )) =

k−m+1∑
i=1

δ(ak
i , m−1u k(ak

i ,Y k
i ))

at guarantee value x.

At first we establish that for any i the random variable Y k
i+1 is independent of

the σ-algebra Fk
i := σ(

⋃
n∈NF

n,k
i ).

For the proof note that by condition (A)

P (Xn,k
i+1 ∈ · | F

n,k
i )

P−→ P (Y k
i+1 ∈ ·).



Multistopping problems 23

Thus we obtain by the continuous mapping theorem that for any continuous f :
R→ [0, 1] we have

P (f(Xn,k
i+1) ∈ · | F

n,k
i )

P−→ P (f(Y k
i+1) ∈ ·).

This implies using uniform integrability that

E[f(Xn,k
i+1) | F

n,k
i ]

L1

−→ E[f(Y k
i+1)].

On the other hand by point process convergence it holds that Xn,k
i+1 → Y k

i+1P -a.s.

and thus also f(Xn,k
i+1)

L1

−→ f(Y k
i+1). This implies L1-convergence of conditional

expectations:

E[f(Xn,k
i+1) | F

n,k
i ]

L1

−→ E[f(Y k
i+1) | Fk

i ].

In consequence we obtain E[f(Y k
i+1)] = E[f(Y k

i+1) | Fk
i ] P -a.s. for all continuous

functions f : R→ [0, 1], and thus independence of Fk
i and σ(Y k

i+1).

The next point to extablish now is proved by induction in m. The induction
hypothesis is

1.) For all k > m, x ∈ [c,∞) and i = k −m + 1, . . . , 0

m
W

n,k
i (x)

P−→ muk
i (x), n →∞.

2.) For all s ∈ [t, 1] and all x ∈ [c,∞) we further have

muk(s, x) → um(s, x), k →∞.

We do the induction step for m − 1 → m: Assertion 1.) we shall prove by
backwards induction on i: For i = k − m + 1 the assertion is trivial. We now
consider the induction step from i+1 to i: From the induction hypothesis we know
that

m−1
W

n,k
i+1(x)

P−→ m−1uk
i+1(x), n →∞,

for all x ∈ [c,∞). From this, the monotonicity of m−1
W

n,k
i+1(x) in x and the conti-

nuity of m−1uk
i+1(x) in x we can conclude that

m−1
W

n,k
i+1(X

n,k
i+1)

P−→ m−1uk
i+1(Y

k
i+1), n →∞.

For details see [F] (2009). By the induction hypothesis for i we also know that

m
W

n,k
i+1(x)

P−→ muk
i+1(x), n →∞,

for x ∈ [c,∞), implying

m−1
W

n,k
i+1(X

n,k
i+1) ∨ m

W
n,k
i+1(x)

L1

−→ m−1uk
i+1(Y

k
i+1) ∨ muk

i+1(x), n →∞.
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From this we get

E[ m−1
W

n,k
i+1(X

n,k
i+1) ∨ m

W
n,k
i+1(x) | Fn,k

i ]
L1

−→ E[ m−1uk
i+1(Y

k
i+1) ∨ muk

i+1(x) | Fk
i ]

as n →∞. The expression on the left-hand side equals m
W

n,k
i (x), and since σ(Y k

i+1)
and Fk

i are independent as shown above, the right-hand side equals muk
i (x). This

completes the induction on i and the proof of assertion 1.).

For the proof of assertion 2.) observe that the process
∑k

i=1 δ(ak
i ,Y k

i ) converges
on [t, 1] × (c,∞] to N =

∑
j δ(τj ,Yj). Further, by induction hypothesis we have

uniform convergence of m−1uk(s, x) to um−1(s, x) as k → ∞. From this we obtain
convergence of the transformed point processes

m
N

k =
k∑

i=1

δ(ak
i , m−1u k(ak

i ,Y k
i ))

d−→ Nm =
∑

j

δ(τj ,um−1(τj ,Yj)), k →∞

on Mum−1 ∩ [t, 1]×R and thus convergence of the optimal stopping curves of these
processes, which proves 2.).

Based on 1.) and 2.) we obtain the estimate

P
(
um

n (t, x) ≥ um(t, x) + ε
)

≤ P
(

m
W

n,k
0 (x) ≥ muk(t, x)︸ ︷︷ ︸

muk
0(x)

+ ε
2

)
+ P

(
um(t, x) ≤ muk(t, x)− ε

2

)
.

The right-hand side converges for n →∞ and k →∞ to 0. Thus we have shown

lim
n→∞

P (um
n (t, x) ≥ um(t, x) + ε) = 0.

To obtain convergence in probability we next establish that
lim infn→∞ Eum

n (t, x) ≥ um(t, x). This however is implied by the inequality

Eum
n (t, x) ≥ E[Xn

T1
∨ . . . ∨Xn

Tm
∨ x]

holding true for all Fn-stopping times tn < T1 < . . . < Tm ≤ n, and in particluar
for

T̂ n,m
1 (t, x) := min{tn < i ≤ n−m + 1 : Xn

i > γm( i
n
, x)},

T̂ n,m
` (t, x) := min{T̂ n,m

`−1 (t, x) < i ≤ n−m + ` : Xn
i > γm−`+1( i

n
, Xn

T̂ n,m
`−1 (t,x)

∨ x)}

for 2 ≤ ` ≤ m. Proposition 5.1 then implies the above statement.

For c = −∞ we obtain similarly the convergence um
n (t, x)

P−→ um(t, x) for

x > −∞. Then the convergence of um
n (t,−∞)

P−→ um(t) results as follows:

um
n (t,−∞) ≤ um

n (t, x)
P−→ um(t, x) ↓ um(t) as x ↓ −∞.
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This implies that limn→∞ P (um
n (t,−∞) ≥ um(t) + ε) = 0 for all ε > 0. Let T̂ n,m

1 (t)
be the stopping times from condition (Lm) and let

T̂ n,m
` (t) := min{T̂ n,m

`−1 (t) < i ≤ n−m + ` : Xn
i > γm−`+1( i

n
, Xn

T̂ n,m
`−1 (t)

)}

for 2 ≤ ` ≤ m. Then we obtain by Proposition 5.1 and uniform integrability of
(Xn

T̂ n,m
1 (t)

)n∈N that

Eum
n (t,−∞) ≥ E[Xn

T̂ n,m
1 (t)

∨ . . . ∨Xn
T̂ n,m

m (t)
]

n→∞−→ E[Y T m
1 (t,−∞) ∨ . . . ∨ Y T m

m (t,−∞)] = um(t).

Thus lim infn→∞ Eum
n (t,−∞) ≥ um(t). As consequence we obtain um

n (t,−∞)
P−→

um(t) which was to be shown.

b) For the proof ob b) see [F] (2009).

c) For c = −∞ we obtain the statement using uniform integrability and Proposi-
tion 5.1. For c ∈ R holds

E
[
Xn

T̂ n,m
1

∨ . . . ∨Xn
T̂ n,m

m

]
= E

[
Xn

T̂ n,m
1

∨ . . . ∨Xn
T̂ n,m

m
∨ c

]
−

∫
{Xn

T̂
n,m
1

∨...∨Xn
T̂

n,m
m

<c}

(
c−Xn

T̂ n,m
1

∨ . . . ∨Xn
T̂ n,m

m

)
dP.

The first term converges by Proposition 5.1 to the stated limit. The modulus of
the second term can be estimated from above by∫

{Xn
T̂

n,m
m

<c}

(
c−Xn

T̂ n,m
m

)
dP ≤

∫
{Xn

n<c}

(
c−Xn

n

)
dP ≤ E|Xn

n − c| → 0. 2

Remark 5.1 The reason for restricting in (b) to independent sequences is the
necessity to give estimates of un(t, x) from above (up the case m = 1 in [F] (2009)).
In the dependent case this amounts to (5.4). For m ≥ 2 in contrast to the case
m = 1 one has to consider the terms maxs< i

n
≤t u

m−1
n ( i

n
, Xn

i ). It seems however

difficult to establish the necessary point process convergence of
∑n

i=1 δ( i
n

,um−1
n ( i

n
,Xi))

.

6 Optimal m-stopping of iid sequences with dis-

count and observation costs

As application we study in this section the optimal m-stopping of iid sequences
with discount and observation costs. In the case m = 1 this problem has been
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considered in various degree of generality in Kennedy and Kertz (1990, 1991), [KR]
(2000b), and [FR] (2009).

Let (Zi)i∈N be an iid sequence with d.f. F in the domain of attraction of an
extreme value distribution G, thus for some constants an > 0, bn ∈ R

n(1− F (anx + bn)) → − log G(x), x ∈ R. (6.1)

Consider Xi = ciZi +di the sequence with discount and observation factors, ci > 0,
di ∈ R and both sequences monotonically nondecreasing or nonincreasing. For
convergence of the corresponding imbedded point processes

N̂n =
n∑

i=1

δ
( i

n
,
Xi−b̂n

ân
)

(6.2)

the following choices of ân, b̂n turn out to be appropriate:

ân := cnan, b̂n := 0 for F ∈ D(Φα) or F ∈ D(Ψα),

ân := cnan, b̂n := cnbn + dn for F ∈ D(Λ),
(6.3)

where Φα, Ψα, Λ are the Fréchet, Weibull, and Gumbel distributions and an, bn

are the corresponding normalizations in (6.1). We give further conditions on ci,
di to establish point process convergence in (6.2). Related conditions are given in
de Haan and Verkaade (1987) in the treatment of iid sequences with trends resp.
in [KR] (2000b).

In the following c denotes some general constant and not as before the guarantee
value. The guarantee value of N is in case Φα given by 0 and in cases Ψα, Λ given
generally by −∞. This application shows in particular the importance of treating
the case with lower boundary −∞ as in sections 2 and 3 of this paper resp. in [FR]
(2009). We state the optimality results for all three cases.

We first consider the case of Fréchet limits.

Theorem 6.1 Let F ∈ D(Φα) with α > 1 and F (0) = 0 (i.e. Zi > 0 P -a.s.). We
assume that bn = 0 and also convergence

dn

cnan

→ d,
cbtnc
cn

→ tc ∀t ∈ [0, 1]

with constants c, d ∈ R, as well that cn does not converge to 0.

a) If c > − 1
α

and if the function R : (d,∞) → R,

R(x) := x +
α

α− 1

1

1 + cα
(x− d)−α+1, x ∈ (d,∞) (6.4)

has no zero point, then

E[XT n,m
1

∨ . . . ∨XT n,m
m

]

ân

→ um(0) > 0, (6.5)
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where um(t) is the m-stopping curve of the Poisson process N̂ with intensity
function

Ĝ(t, y) = tcα(y − dtc+
1
α )−α = H

(
y

v(t)

)
v′(t)

v(t)
on Mf̂ .

Here v(t) := tc+
1
α , H(x) := α

αc+1
(x− d)−α and f̂(t) := dtc+

1
α .

b) Let γ1, . . . , γm be the functions defined in (3.17) for N̂ . Then

T̂ n,m
1 := min{ 1 ≤ i ≤ n−m + 1 : Xi > ânγ

m( i
n
, d)},

T̂ n,m
` := min{ T̂ n,m

`−1 < i ≤ n−m + ` : Xi > ânγ
m−`+1( i

n
,
(

1
ân

XT̂ n,m
`−1

)
∨ d)}

for 2 ≤ ` ≤ m are asmptotically optimal sequences of m-stopping times, i.e. the
limit in (6.5) is attained also for these sequences.

The next result concerns the Weibull limit case.

Theorem 6.2 Let F ∈ D(Ψα) with α > 0 and F (0) = 1 (i.e. Zi ≤ 0 P -a.s.).
Further let an ↓ 0 and bn = 0, and

dn

cnan

→ d,
cbtnc
cn

→ tc, ∀t ∈ [0, 1]

for constants c, d ∈ R. If dn > 0, then assume that either (dn)n∈N is monotonically
nondecreasing or cnan does not converge to 0.

a) If c < 1
α

and d ≤ 0, then it holds

E[XT n,m
1

∨ . . . ∨XT n,m
m

]

ân

→ um
c,d(0) < 0. (6.6)

b) If c > 1
α

and the function R : R→ R

R(x) :=

{
x, falls x ≥ d,

x − α
α+1

1
1−cα

(−x + d)α+1, falls x < d,
(6.7)

has no zero point then (6.6) holds with um
c,d(0) > 0. Here um

c,d(t) is the m-stopping

curve of the Poisson process N̂ = N̂c,d with intensity function Ĝ = Gc,d defined

in (4.9). γm
c,d are the corresponding functions for N̂c.d defined in (3.17) and

(3.18).

c) Let (wn) be an increasing sequence wn < 0 such that n(1− F (wn)) → α+1
α

(e.g.

wn = −
(

α+1
α

) 1
α an). Define functions vm

n by

vm
n (t) :=

γm
c,0(t)

u0,0(t)

wb(1−t)nc

an

+ γm
c,d(t)− γm

c,0(t),
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where by (4.10) γm
c,0(t) = −Φm−1(rm)uc,0(t). The m-stopping times defined by

T̂ n,m
1 := min{ 1 ≤ i ≤ n−m + 1 : Xi > ânv

m
n ( i

n
)},

T̂ n,m
` := min{ T̂ n,m

`−1 < i ≤ n−m + ` : Xi > ânγ
m−`+1
c,d ( i

n
, 1

ân
XT̂ n,m

`−1
)}

for 2 ≤ ` ≤ m, are asymptotically optimal, i.e. convergence as in (6.6) does also
hold for them.

The final result concerns the Gumbel case.

Theorem 6.3 Let F ∈ D(Λ) and assume

bn

an

(
1−

cbtnc
cn

)
→ c log(t),

dn − dbtnc
cnan

→ d log(t) ∀t ∈ [0, 1]

for some constants c, d ∈ R. Assume also that (cn)n∈N and (dn)n∈N monotonically
nondecreasing.

a) If c + d < 1, then

E[XT n,m
1

∨ . . . ∨XT n,m
m

]− b̂n

ân

→ um(0), (6.8)

where um(t) is the m-stopping curve of the Poisson process N̂ with intensity
function

Ĝ(t, y) = e−yt−(c+d) on [0, 1]×R.

b) Let γ1, . . . , γm be the functions for N̂ defined in (3.17) and (3.18), let (wn)n∈N
be an increasing sequence with limn→∞ n(1 − F (wn)) = 1 (e.g. wn := bn). Let
vm

n be defined as

vm
n (t) :=

wb(1−t)nc − bn

an

+ γm(t)− log(1− t).

Then

T̂ n,m
1 := min{ 1 ≤ i ≤ n−m + 1 : Xi > ânv

m
n ( i

n
) + b̂n},

T̂ n,m
` := min{ T̂ n,m

`−1 < i ≤ n−m + ` : Xi > ânγ
m−`+1

(
i
n
,

X
T̂

n,m
`−1

−b̂n

ân

)
+ b̂n}

define an asymptotic optimal sequence of m-stopping times, i.e. convergence as
in (6.8) holds for them.
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Proof: The proof can be given similarly to the proof of Theorems 5.1–5.3 in [FR]
(2009) in the case m = 1 using the approximation Theorem 5.2. To establish the
uniform integrability condition in case F ∈ D(Ψα) essential use is made of the limit
relation (see (4.13) in Example 4.1)

lim
t↑1

γm
c,d(t)− γm

c,0(t) = d.

In case F ∈ D(Λ) we make essential use of limt ↑ 1 γm(t)−log(1−t) = Φm−1(rm) (us-

ing γm(t) = Φm−1(rm)+log
(

1
1−(c+d)

(1− t1−(c+d))
)

with constants rm and functions

Φm as defined in the third case in (4.8). 2
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