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Abstract

This paper is concerned with a modification of the classical formulation of
the free boundary problem for the optimal stopping of integral functionals in
nonregular one-dimensional diffusions. This modification was introduced in a
recent paper of Rüschendorf and Urusov (2007). As main result of that paper
a verification theorem was established. Solutions of the modified free boundary
problem imply solutions of the optimal stopping problem. The main contribution
of this paper is to establish the converse direction. Solutions of the optimal
stopping problem necessarily also solve the modified free boundary problem.
Thus the modified free boundary problem is also necessary and does not ‘lose’
solutions. In the final part of this paper we discuss related questions for the
viscosity approach and describe an advantage of the modified free boundary
formulation.
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1 Introduction

An effective method for solving optimal stopping problems for regular diffusions is to
develop a connection with some related free boundary problems of Stefan type. A
verification theorem implies that solving the free boundary problem with smooth fit
(or related conditions) allows to establish explicit solutions of the optimal stopping
problem in certain cases. Many examples of this type are presented in Peskir and
Shiryaev (2006). In the other direction for some classes of optimal stopping problems
for regular diffusion processes with smooth coefficients general existence and regularity
results for the corresponding free boundary problems have been established. Some of
the results in this direction are quite recent.

The present paper is concerned with optimal stopping problems for integral func-
tionals in nonregular one-dimensional diffusions with discontinuous coefficients. More
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precisely we consider the following situation. Let X = (Xt)t∈[0,∞) be a (possibly, ex-
plosive) one-dimensional diffusion with state space J = (ℓ, r), −∞ ≤ ℓ < r ≤ ∞, that
is a weak solution of the SDE

dXt = µ(Xt) dt+ σ(Xt) dWt (1)

and with Px(X0 = x) = 1, x ∈ J . Here W is a Brownian motion and µ and σ are
Borel functions J → R specified below. We adopt the convention that X stays in the
additional state ∆ after the explosion time ζ , i.e., ζ is a [0,∞]-valued random variable
and
(i) X is J-valued and continuous on [0, ζ);
(ii) if ζ <∞, then X ≡ ∆ on [ζ,∞) and either limt↑ζ Xt = ℓ or limt↑ζ Xt = r.

We consider optimal stopping problems of integral functionals of the form

V ∗(x) = sup
τ∈M

Ex

[∫ τ

0

e−Λuf(Xu) du

]
, x ∈ J. (2)

Here Ex denotes the expectation under the measure Px,

Λt =

∫ t

0

λ(Xu) du, t ∈ [0,∞), (3)

f (resp., λ) is a Borel function J → R (resp., J → [0,∞)) specified below, and M is
the class of stopping times τ of X satisfying

Ex

[∫ τ

0

e−Λuf+(Xu) du

]
<∞ or Ex

[∫ τ

0

e−Λuf−(Xu) du

]
<∞. (4)

We use the following convention. For any function g : J → R, we define g(ℓ) = g(r) = 0.
In particular, this concerns the functions f and λ in (2) and (3).

One encounters concrete stopping problems of type (2) in the literature. For exam-
ple, Graversen, Peskir, and Shiryaev (2000) reduce the problem of stopping a Brownian
motion as close as possible to its maximum to a problem of type (2). In order to solve a
stochastic control problem Karatzas and Ocone (2002) study a stopping problem, that
can be reduced to a problem of integral type. It is interesting to note that in Karatzas
and Ocone (2002) the diffusion X is explosive.

In Rüschendorf and Urusov (2007) (in the following denoted RU (2007)) problem (2)
is studied via a suitable free boundary approach for functions f having the following
form (see Figure 1): there exist points x1ℓ ≤ x1r < x2ℓ ≤ x2r in J such that f = 0 on
[x1ℓ, x1r]∪ [x2ℓ, x2r], f > 0 on (x1r, x2ℓ), and f < 0 on (ℓ, x1ℓ)∪ (x2r, r). In what follows,
we say that f has a two-sided form for such functions f . For many stopping problems
of type (2) in the literature, f has a two-sided form. This is e.g. the case for the
problems of Graversen, Peskir, and Shiryaev (2000) and of Karatzas and Ocone (2002)
mentioned above whenever their parameters belong to some domain (see Remark (ii)
in Section 2.1 of RU (2007) for a more detailed discussion).

For a, b ∈ J , a < b, we denote by τa,b the stopping time

τa,b = inf{t ∈ [0,∞) : Xt ≤ a or Xt ≥ b} (5)

(as usual, inf ∅ := ∞). If f has a two-sided form, one may expect that problem (2)
has a two-sided optimal stopping time, i.e., an optimal stopping time of the form τα∗,β∗.
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x1ℓ x1r x2ℓ x2rℓ r

Figure 1: f has a two-sided form

One can formulate a classical free boundary problem on the triplet (V ∗, α∗, β∗) in order
to find the value function in (2) and the boundaries α∗ and β∗ of the stopping region.
However, in our situation the functions µ, σ, f , and λ are allowed to be irregular
(e.g. discontinuous), hence, the standard free boundary formulation can lose a two-
sided solution of the stopping problem in the following sense: it can happen that there
exists a two-sided optimal stopping time but the related free boundary problem has no
solutions.

For this class of stopping problems in nonregular diffusions a modified version of
the free boundary has been introduced in the recent paper RU (2007). The main result
in that paper is a verification theorem for this version stating as in the classical regular
case the sufficiency of the modified free boundary version. A result in the converse
(necessary) direction is announced there. The main contribution of this paper is a
general result stating the necessity of the modified free boundary formulation, i.e. the
modified free boundary problem does not ‘lose’ solutions of the stopping problem.
The proof of this result is technically involved and needs to develop some new tools
and techniques which might be of use in further extensions. Both directions together
imply that as in the case of regular diffusions the modified free boundary problem
is completely adequate for this type of stopping problems in nonregular diffusions.
As important practical consequence it is without loss to concentrate on the modified
PDE formulation for the solution of this kind of stopping problems. For some explicit
examples and a general class of explicitly solvable cases we refer to RU (2007).

The literature on optimal stopping for diffusions is very rich, even for the one-
dimensional case that we consider here. We mention the monographs Shiryaev (1973),
Krylov (1980), and Peskir and Shiryaev (2006) for the general theory. We would like
also to mention some related papers of Salminen (1985), Beibel and Lerche (2000),
Dayanik and Karatzas (2003), Dayanik (2003), and Lamberton and Zervos (2006),
where stopping problems of the form “supτ Ex[e

−Λτ g(Xτ)I(τ <∞)]” are studied. These
authors allow the coefficients of X as well as the payoff function to be irregular (e.g.
discontinuous). In the first four of these papers different approaches are introduced,
some general results are obtained, and several examples are treated explicitly. Nei-
ther of these approaches is based on the free boundary method—the one we use here.
Another difference with our paper is that we consider optimal stopping of integral func-
tionals. Lamberton and Zervos (2006) prove that the value function in their problem
is the difference of two convex functions and satisfies a certain variational inequality.
In our situation the value function is even more regular (though the functions µ, σ,
f , and λ can be irregular): it is differentiable and its derivative is absolutely con-
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tinuous (see Theorem 2.1). This agrees with the intuition: the integral functionals
Ex[

∫ τ

0
e−Λuf(Xu) du] are “more regular” than the functionals Ex[e

−Λτg(Xτ)I(τ < ∞)].
Hence, it is natural to expect that value functions for integral functionals should also
be “more regular”.

This paper has the following structure. In Section 2 we introduce our assumptions,
formulate the main result (Theorem 2.1), and describe its relation to some results of
RU (2007). Related issues on the viscosity approach are discussed in Section 4. Loosely
speaking, the standard free boundary formulation understood in the viscosity sense is
not “no-loss” in our setting, which is due to possible discontinuities in the functions µ,
σ, f , and λ. If we weaken the notion of viscosity solution a bit (we call this ∗-viscosity
solution), then we obtain the “no-loss” property but the verification theorem is not
true for ∗-viscosity solutions (cp. this with the fact that for our modified free boundary
formulation we have both the “no-loss” property and the verification theorem; see
Theorems 2.1 and 2.2 below). Finally, Theorem 2.1 is proved in Section 3. In the
appendix we prove a technical lemma used in the proof of that theorem.

2 Main result

At first we describe our assumptions on the functions µ, σ, f , and λ.

Assumption 1. The coefficients µ and σ of the SDE (1) satisfy the Engelbert–Schmidt
conditions

σ(x) 6= 0 ∀x ∈ J,

1 + |µ|

σ2
∈ L1

loc(J),

where L1
loc(J) denotes the class of functions J → R that are locally integrable on J ,

i.e., integrable on compact subintervals of J .

Assumption 2. The functions f : J → R in (2) and λ : J → [0,∞) in (3) satisfy the
conditions

f/σ2 ∈ L1
loc(J),

λ/σ2 ∈ L1
loc(J).

Note that under Assumption 1 we have Ex

∫ τa,b

0
|g(Xu)| du < ∞, x, a, b ∈ J , a < b,

whenever g : J → R is a Borel function such that g/σ2 ∈ L1
loc(J). In particular,

τa,b ∈ M for all a, b ∈ J , a < b. For the proof of this, see Lemma A.3 in RU (2007).
Assumption 1 guarantees that the SDE (1) has a unique in law (possibly, explosive)
J ∪ {∆}-valued weak solution for any starting point X0 = x ∈ J (see Engelbert and
Schmidt (1985, 1991) or Karatzas and Shreve (1991, Ch. 5, Th. 5.15)). The Engelbert–
Schmidt conditions are reasonable weak conditions. For example, if µ is locally bounded
on J and σ is locally bounded away from zero on J , then they are satisfied. Further we
note that due to local integrability of the function 1/σ2 Assumption 2 holds whenever
f and λ are locally bounded on J . Set Ft =

∫ t

0
f(Xu) du. Using the occupation

times formula (see Revuz and Yor (1999, Ch. VI, Cor. (1.6))) one can prove that
f/σ2 ∈ L1

loc(J) (resp., λ/σ2 ∈ L1
loc(J)) if and only if the process (Ft) (resp., (Λt)
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defined in (3)) is well defined and finite a.s. on the stochastic interval [0, ζ). Therefore,
Assumption 2 is reasonable.

In what follows, νL denotes the Lebesgue measure on J . The main subject in this
paper is the following modified free boundary problem, which was introduced in RU
(2007).

Modified free boundary problem (MFBP):

V ′ is absolutely continuous on [α, β]; (6)

σ2(x)

2
V ′′(x) + µ(x)V ′(x) − λ(x)V (x) = −f(x) for νL-a.a. x ∈ (α, β); (7)

V (x) = 0, x ∈ J \ (α, β); (8)

V ′
+(α) = V ′

−(β) = 0. (9)

We say that a triplet (V, α, β) is a solution of (6)–(9) if α, β ∈ J , α < β, V ∈ C1([α, β]),
and the triplet (V, α, β) satisfies (6)–(9). In (9), V ′

+ and V ′
− denote respectively right

and left derivatives of V . Formally, under V ′(α) and V ′(β) in (6) one should understand
respectively right and left derivatives. However, (8) and (9) imply that the two-sided
derivatives exist at both points.

The main contribution of this paper is the following theorem, which is proved in the
next section. It implies that the modified free boundary formulation is also necessary
and does not ‘lose’ two-sided solutions. It is of interest to note that this theorem does
not need the assumption that the gain function f is of two-sided form.

Theorem 2.1. Suppose that Assumptions 1 and 2 hold. If there exist α∗, β∗ ∈ J ,
α∗ < β∗, such that the stopping time τα∗,β∗ is optimal in (2), then (V ∗, α∗, β∗) is a
solution of the modified free boundary problem (6)–(9).

In the sequel, we denote by Bloc(x) the class of functions that are bounded in
a sufficiently small neighborhood of x and by Bloc(J) the class of locally bounded
functions on J . Theorem 2.1 above complements the following verification theorem,
which extends Theorem 2.1 in RU (2007), who consider the case of constant functions
λ. Introducing the condition that λ ∈ Bloc(J) all arguments of proof in that paper can
be extended to this more general case.

Theorem 2.2 (Verification theorem). Suppose that Assumptions 1 and 2 hold and
that f has a two-sided form (see Figure 1). Additionally assume that λ ∈ Bloc(J) and
1/f ∈ Bloc(x) for all x ∈ J \ ([x1ℓ, x1r]∪ [x2ℓ, x2r]). If (V, α, β) is a non-trivial solution
of the modified free boundary problem (6)–(9) (i.e., V 6≡ 0), then it is the unique non-
trivial solution, V is the value function in (2), i.e., V = V ∗, and τα,β is the unique
optimal stopping time in (2).

Remarks. (i) The assumption that f has a two-sided form is essential for Theorem 2.2;
see the remark after Theorem 2.3 in RU (2007). As in RU (2007), Theorem 2.3, also
an extended version of the verification Theorem 2.2 for ‘four-sided’ functions with
two positivity intervals and corresponding stopping times with two disjoint stopping
intervals can be proved for the more general case of discounting as in Theorem 2.2. We
remark that Theorem 2.1 of this paper was announced (without proof and details) for
the special case of constant discounts λ in RU (2007).
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(ii) If x1ℓ < x1r or x2ℓ < x2r, then (6)–(9) has trivial solutions (0, α, β) for α < β
belonging to [x1ℓ, x1r] or to [x2ℓ, x2r]. Therefore, we deal only with non-trivial solutions
of (6)–(9) in Theorem 2.2.

(iii) It is interesting to note that we have always strict inequalities α < x1ℓ and β > x2r

no matter how large negative values the function f takes to the left from x1ℓ or to the
right from x2r (see Proposition 2.9 in RU (2007)).

3 Proof of Theorem 2.1

At first we need several lemmas.

Lemma 3.1. Let α, β ∈ J , α < β. There exists a function U : [α, β] → R such that
U ∈ C1([α, β]), U ′ is absolutely continuous on [α, β],

σ2(x)

2
U ′′(x) + µ(x)U ′(x) − λ(x)U(x) = −f(x) for νL-a.a. x ∈ [α, β], (10)

and U(α) = U(β) = 0.

This lemma is proved in the appendix. Let in the following Ly
t denote the local

time of X at time t and level y.

Lemma 3.2. Let µ ≡ 0, ε > 0, x ∈ J , aε := x− ε ∈ J , and bε := x+ ε ∈ J . Then we
have

ExL
y
τaε,bε

= ε− |x− y|, y ∈ (aε, bε), (11)

and

Ex(L
x
τaε,bε

)2 ≤ c0 ε
2 (12)

for some constant c0 that does not depend on ε and x.

Proof. Since (Xt∧τaε,bε
) is a bounded Px-martingale, it follows ExXτaε,bε

= x. Applying
the fact that τaε,bε

<∞ Px-a.s., we get

Px(Xτaε,bε
= aε) = Px(Xτaε,bε

= bε) =
1

2
.

For any y ∈ (aε, bε), the Tanaka formula under Px implies

|Xτaε,bε
− y| = |x− y| +

∫ τaε,bε

0

sgn(Xu − y)σ(Xu) dWu + Ly
τaε,bε

Px-a.s., (13)

where

sgn y =

{
1 if y > 0,

−1 if y ≤ 0.

The process Mt :=
∫ t∧τaε,bε

0
sgn(Xu−y)σ(Xu) dWu is a Px-square integrable martingale.

Indeed,

[M ]∞ =

∫ τaε,bε

0

σ2(Xu) du = [X]τaε,bε
Px-a.s.
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and Ex[X]τaε,bε
<∞ because (Xt∧τaε,bε

) is a bounded Px-martingale. Hence, ExMτaε,bε
=

0 and (11) follows by computing the expectations in (13). Further, it follows from (13)
and the Burkholder–Davis–Gundy inequality that

Ex(L
x
τaε,bε

)2 = ε2 + ExM
2
τaε,bε

= ε2 + Ex[X]τaε,bε

≤ ε2 + c1Ex sup
t≤τaε,bε

|Xt − x|2 = (1 + c1)ε
2

for some universal constant c1. We obtain (12) with c0 = 1 + c1.

In the sequel, we shall often use the following observation without further explana-
tions: if A ⊆ J with νL(A) = 0, then

νL({t ∈ [0,∞) : Xt ∈ A}) = 0 Px-a.s., x ∈ J.

This can be easily proved using the occupation times formula.

Proof of Theorem 2.1. 1) At first we additionally assume that µ ≡ 0. Let U : [α∗, β∗] →
R be a solution of (10) as in Lemma 3.1 with α = α∗ and β = β∗ and denote

V (x) =

{
U(x) if x ∈ (α∗, β∗),

0 if x ∈ J \ (α∗, β∗).

Our aim is to prove that V = V ∗. If x ∈ J \ (α∗, β∗), then V (x) = V ∗(x) = 0. Suppose
that x ∈ (α∗, β∗). Since U ′ is absolutely continuous (hence, of bounded variation), we
can apply the Itô–Tanaka formula to U(Xt∧τα∗,β∗

) (see Revuz and Yor (1999, Ch. VI,
Th. (1.5))). We obtain

U(Xt∧τα∗ ,β∗
) = U(x) +

∫ t∧τα∗,β∗

0

U ′(Xu)σ(Xu) dWu

+
1

2

∫

J

Ly
t∧τα∗ ,β∗

U ′(dy) Px-a.s., t ∈ [0,∞). (14)

Since U ′ is absolutely continuous, we have U ′(dy) = U ′′(y) dy. Applying the occupation
times formula to the last term at the right-hand side of (14), we obtain

U(Xt∧τα∗,β∗
) = U(x) +

∫ t∧τα∗,β∗

0

U ′(Xu)σ(Xu) dWu

+

∫ t∧τα∗,β∗

0

σ2(Xu)

2
U ′′(Xu) du Px-a.s., t ∈ [0,∞). (15)

By the product rule, this implies

e−Λt∧τα∗,β∗U(Xt∧τα∗,β∗
) = U(x) +Mt +

∫ t∧τα∗,β∗

0

e−Λu

[
σ2(Xu)

2
U ′′(Xu)

− λ(Xu)U(Xu)

]
du Px-a.s., t ∈ [0,∞), (16)

where

Mt =

∫ t∧τα∗,β∗

0

e−ΛuU ′(Xu)σ(Xu) dWu.

7



The function U ′ is continuous. We have

[M ]∞ ≤ const

∫ τα∗,β∗

0

σ2(Xu) du = const[X]τα∗,β∗
Px-a.s.

Since (Xt∧τα∗,β∗
) is a bounded Px-martingale, we get Ex[M ]∞ ≤ const Ex[X]τα∗,β∗

<∞.
Hence, ExMτα∗,β∗

= 0. Applying (10) and U(α∗) = U(β∗) = 0, we obtain from (16)
that

U(x) = Ex

∫ τα∗,β∗

0

e−Λuf(Xu) du.

Then V (x) = V ∗(x) because V (x) = U(x) and τα∗,β∗ is an optimal stopping time in (2).

2) We continue to work under the assumption µ ≡ 0. It remains to prove that the
boundary condition (9) is fulfilled for V = V ∗. Note that the dynamic programming
principle implies that for any x, a, b ∈ J , a < b, we have

V (x) ≥ Ex

[
e−Λτa,bV (Xτa,b

) +

∫ τa,b

0

e−Λuf(Xu) du

]
. (17)

Alternatively, one can prove (17) directly using the strong Markov property. The right
derivative V ′

+(α∗) exists and is finite because V = U on [α∗, β∗]. Since V (α∗) = 0 ≤
V ∗(x) = V (x), x ∈ J , we obtain V ′

+(α∗) ≥ 0. Assuming that V ′
+(α∗) > 0 we will show

that we obtain a contradiction to (17).
For ε > 0, we set aε = α∗−ε, bε = α∗+ε and work below with sufficiently small ε so

that aε ∈ J and bε < β∗. Applying the Itô–Tanaka formula under Pα∗ and proceeding
as in (14)–(16), we obtain (note that V (α∗) = 0)

e−Λτaε,bεV (Xτaε,bε
) = Mτaε,bε

+ c

∫ τaε,bε

0

e−Λu dLα∗

u +

∫ τaε,bε

0

e−Λu

[
σ2(Xu)

2
V ′′(Xu)

− λ(Xu)V (Xu)

]
du Pα∗-a.s., (18)

where c = V ′
+(α∗)/2 > 0 and

Mτaε,bε
=

∫ τaε,bε

0

e−ΛuV ′
−(Xu)σ(Xu) dWu.

As earlier, Eα∗Mτaε,bε
= 0. The term c

∫ τaε,bε

0
e−Λu dLα∗

u in (18) appears due to the fact
that the function V ′ has discontinuities at α∗ and β∗. Hence, the measure V ′(dy) (with
the distribution function V ′

+) appearing in the Itô–Tanaka formula has the form

V ′(dy) = V ′′(y) dy + V ′
+(α∗)δα∗ − V ′

−(β∗)δβ∗ ,

where δx denotes the unit measure concentrated at the point x. Note that the local
time at level β∗ does not appear in (18) because Lβ∗

. = 0 Pα∗-a.s. on [0, τaε,bε
] due to

bε < β∗.
We have (σ2/2)V ′′ −λV = −fI(α∗,β∗) νL-a.e. on J . Hence, it follows from (18) that

Eα∗

[
e−Λτaε,bεV (Xτaε,bε

) +

∫ τaε,bε

0

e−Λuf(Xu) du

]

= Eα∗

[
c

∫ τaε,bε

0

e−Λu dLα∗

u +

∫ τaε,bε

0

e−Λuh(Xu) du

]
, (19)
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where h := fIJ\(α∗,β∗). Putting g := |h|, we get

∫ τaε,bε

0

e−Λuh(Xu) du ≥ −

∫ τaε,bε

0

g(Xu) du = −

∫ bε

aε

g(y)

σ2(y)
Ly

τaε,bε
dy Pα∗-a.s.,

where the last equality follows from the occupation times formula. It follows from (19),
g ≥ 0, and Lemma 3.2 that

Eα∗

[
e−Λτaε,bεV (Xτaε,bε

) +

∫ τaε,bε

0

e−Λuf(Xu) du

]

≥ cEα∗

[
e−Λτaε,bεLα∗

τaε,bε

]
−

∫ bε

aε

g(y)

σ2(y)
Eα∗Ly

τaε,bε
dy

≥ c ε− cEα∗

[
(1 − e−Λτaε,bε )Lα∗

τaε,bε

]
− ε

∫ bε

aε

g(y)

σ2(y)
dy

=

(
c−

∫ bε

aε

g(y)

σ2(y)
dy

)
ε− cEα∗

[
(1 − e−Λτaε,bε )Lα∗

τaε,bε

]
. (20)

Now we fix an arbitrary δ ∈ (0, 1) and define

Tδ = inf{t ∈ [0,∞) : Λt > − ln(1 − δ)}

(inf ∅ := ∞). By the occupation times formula,

Λt =

∫ t

0

λ(Xu) du =

∫

J

λ(y)

σ2(y)
Ly

t dy <∞ Pα∗-a.s. on {t < ζ}

because λ/σ2 ∈ L1
loc(J) and Pα∗-a.s. on {t < ζ} the function y 7→ Ly

t has a compact
support in J and is bounded due to the fact that it is càdlàg (recall that ζ denotes
the explosion time of X). Since ζ > 0 Pα∗-a.s., we obtain that for Pα∗-a.a. elementary
outcomes ω there exists t0 = t0(ω) such that Λt0 < ∞. Due to the continuity of
(Λu)u∈[0,t0] we get Λt ↓ 0 Pα∗-a.s. as t ↓ 0, hence, Tδ > 0 Pα∗-a.s..

We have
(1 − e−Λτaε,bε )Lα∗

τaε,bε
≤ δLα∗

τaε,bε
+ Lα∗

τaε,bε
I(τaε,bε

> Tδ).

Hence, by Lemma 3.2,

Eα∗

[
(1 − e−Λτaε,bε )Lα∗

τaε,bε

]
≤ δε+ Eα∗

[
Lα∗

τaε,bε
I(τaε,bε

> Tδ)
]
. (21)

By the Cauchy–Bunyakovski–Schwarz inequality and (12),

{
Eα∗

[
Lα∗

τaε,bε
I(τaε,bε

> Tδ)
]}2

≤ c0 ε
2
Pα∗(τaε,bε

> Tδ). (22)

It follows from (21), (22), τaε,bε
↓ 0 Pα∗-a.s. as ε ↓ 0, and Tδ > 0 Pα∗-a.s. that

Eα∗

[
(1 − e−Λτaε,bε )Lα∗

τaε,bε

]
≤ 2δε

for sufficiently small ε > 0. Since δ ∈ (0, 1) is arbitrary and g/σ2 ∈ L1
loc(J), the right-

hand side of (20) is strictly positive for sufficiently small ε > 0. This contradicts (17)
with x = α∗. Hence, V ′

+(α∗) = 0. Similarly, V ′
−(β∗) = 0.
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3) In the final step we prove the result without the assumption µ ≡ 0. For some fixed
c ∈ J we consider the scale function of the process X

p(x) =

∫ x

c

exp

(
−

∫ y

c

2µ(z)

σ2(z)
dz

)
dy, x ∈ J.

We define the process X̃t = p(Xt), p(∆) := ∆, with the state space J̃ ∪ {∆}, J̃ =

(ℓ̃, r̃) := (p(ℓ), p(r)). Then we have

dX̃t = σ̃(X̃t) dWt

with σ̃(x) = (p′σ) ◦ p−1(x), x ∈ J̃ . We shall use the alternative notation P̃x for the

measure Pp−1(x) so that P̃x(X̃0 = x) = 1. Consider now the stopping problem

Ṽ ∗(x) = sup
τ∈M

Ẽx

[∫ τ

0

e−
eΛu f̃(X̃u) du

]
, x ∈ J̃ ,

where f̃ = f ◦ p−1, λ̃ = λ ◦ p−1, and Λt =
∫ t

0
λ̃(X̃u) du. This stopping problem is a

reformulation of problem (2) in the sense that Ṽ ∗ = V ∗ ◦ p−1, and a stopping time τ ∗

is optimal in problem V ∗(x) if and only if it is optimal in problem Ṽ ∗(p(x)). Note that

Assumptions 1 and 2 for the functions µ̃ ≡ 0, σ̃, f̃ , and λ̃ are satisfied (one should

replace J with J̃ in these conditions). One can easily verify that the triplet (V, α, β)

is a solution of (6)–(9) if and only if the triplet (Ṽ , α̃, β̃) := (V ◦ p−1, p(α), p(β)) is a
solution of the modified free boundary problem

Ṽ ′ is absolutely continuous on [α̃, β̃];

σ̃2(x)

2
Ṽ ′′(x) − λ̃(x)Ṽ (x) = −f̃(x) for νL-a.a. x ∈ (α̃, β̃);

Ṽ (x) = 0, x ∈ J̃ \ (α̃, β̃);

Ṽ ′
+(α̃) = Ṽ ′

−(β̃) = 0.

Now the result follows from parts 1) and 2).

4 Viscosity approach

The reason why we consider the modification (6)–(9) of the classical free boundary
problem is that we want to allow discontinuous µ, σ, f , and λ. Hence, the value
function in (2) is not enough regular to be a solution of the free boundary problem in
the classical form. A usual approach to handle this problem is to consider viscosity
solutions (see Crandall, Ishii, and Lions (1992)). It is usually proved that value func-
tions of certain classes of (multidimensional) stopping problems satisfy corresponding
variational inequalities in the viscosity sense (see e.g. Øksendal and Reikvam (1998)
or Øksendal and Sulem (2005)). However, the diffusion coefficients and the payoff are
usually assumed to be continuous. In this paper, we consider a modified free bound-
ary formulation rather than variational inequalities. So it is interesting to see, what
we obtain for our stopping problem (2), when we consider viscosity solutions for the
classical free boundary problem.
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Thus, we consider the following free boundary problem

σ2(x)

2
V ′′(x) + µ(x)V ′(x) − λ(x)V (x) = −f(x), x ∈ (α, β); (23)

V (x) = 0, x ∈ J \ (α, β); (24)

V ′
+(α) = V ′

−(β) = 0 (25)

and define its viscosity solution as follows (cp. with Definition 2.1 in Øksendal and
Reikvam (1998) for the case of variational inequalities).

Definition 4.1. A viscosity solution of (23)–(25) is a triplet (V, α, β) such that α, β ∈
J , α < β, V is a continuous function J → R satisfying (24) and (25), and V is both a
viscosity subsolution and a viscosity supersolution of (23) in the sense of the following
definition.

Definition 4.2. Let α, β ∈ J , α < β. Set I = (α, β). A continuous function V : I → R

is a viscosity subsolution of (23) if for each ψ ∈ C2(I) and each y0 ∈ I such that ψ ≥ V
on I and ψ(y0) = V (y0) we have

−
σ2(y0)

2
ψ′′(y0) − µ(y0)ψ

′(y0) + λ(y0)ψ(y0) − f(y0) ≤ 0. (26)

A continuous function V : I → R is a viscosity supersolution of (23) if for each φ ∈
C2(I) and each y0 ∈ I such that φ ≤ V on I and φ(y0) = V (y0) we have

−
σ2(y0)

2
φ′′(y0) − µ(y0)φ

′(y0) + λ(y0)φ(y0) − f(y0) ≥ 0. (27)

Now we consider the following question.
Question 1. Is it true that under the assumptions of Theorem 2.1 the triplet
(V ∗, α∗, β∗) is a viscosity solution of (23)–(25)?

The answer is No. The reason for that are possible discontinuities in µ, σ, f ,
and λ. Indeed, if we change the functions µ, σ, f , and λ on sets of νL-measure 0, then
X remains a solution of (1) and problem (2) does not change. A viscosity solution
of (23)–(25), however, can lose this property under such a transformation (see (26)
and (27)). Suppose that the answer to Question 1 is Yes. Then considering any µ, σ,
f , and λ such that there exists a two-sided optimal stopping time τα∗,β∗ in (2), we obtain
that (V ∗, α∗, β∗) is a viscosity solution of (23)–(25). Then we take any appropriate pair
(ψ, y0) of Definition 4.2 and modify f only at point y0 in order to violate (26). Hence,
(V ∗, α∗, β∗) is no more a viscosity solution of (23)–(25) with the modified function f .
This contradicts our assumption that the answer to Question 1 is Yes.

Thus, in order to obtain a positive result in this direction it is natural to de-
fine ∗-viscosity solutions of (23)–(25) through ∗-viscosity subsolutions and ∗-viscosity
supersolutions as in Definition 4.1. Here ∗-viscosity subsolutions and ∗-viscosity super-
solutions are defined as follows:

Definition 4.3. Let α, β ∈ J , α < β. Set I = (α, β). A continuous function V : I → R

is a ∗-viscosity subsolution of (23) if for νL-a.a. y0 ∈ I the following condition holds:
For each ψ ∈ C2(I) such that ψ ≥ V on I and ψ(y0) = V (y0), condition (26) is
satisfied.

A ∗-viscosity supersolution of (23) is defined in a symmetric way.
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Now the positive answer to the modification of Question 1 with ∗-viscosity solutions
instead of viscosity solutions follows directly from Theorem 2.1.

Corollary 4.4. Suppose that Assumptions 1 and 2 hold. If there exist α∗, β∗ ∈ J ,
α∗ < β∗, such that the stopping time τα∗,β∗ is optimal in (2), then (V ∗, α∗, β∗) is a
∗-viscosity solution of (23)–(25).

Then it is natural to pose the following question.
Question 2. Suppose that the assumptions of Theorem 2.2 are satisfied and (V, α, β)
is a non-trivial ∗-viscosity solution of (23)–(25).
(a) Does this imply that V = V ∗?
(b) Does this imply that τα,β is an optimal stopping time in (2)?

In the case of positive answers one could use the standard free boundary (23)–(25)
(understood in the ∗-viscosity sense) to solve (2) even with irregular (e.g. discontinu-
ous) functions µ, σ, f , and λ. Unfortunately, the answer is No both to (a) and to (b)
as the following examples show.

Example 4.5. We set µ ≡ 0, λ ≡ 0 and consider σ and f satisfying the assumptions
of Theorem 2.2 such that there exists a non-trivial solution (V, α, β) of (6)–(9) (see
Section 3 of RU (2007) for necessary and sufficient conditions). Then by Theorem 2.2,
V is the value function in (2), i.e., V = V ∗. We take any continuous function h : J → R

such that

h = 0 on J \ (α, β),

h′+(α) = h′−(β) = 0,

h′ = 0 νL-a.e. on (α, β),
∫ β

α

h(x) dx = 0,

and h is not absolutely continuous on [α, β] (such a function h can be easily constructed
through the Cantor staircase function) and set

Ṽ (y) = V (y) +

∫ y

ℓ

h(x) dx, y ∈ J.

Then the triplet (Ṽ , α, β) satisfies (7)–(9), hence, (Ṽ , α, β) is a non-trivial ∗-viscosity

solution of (23)–(25) but Ṽ 6= V = V ∗. As consequence, we obtain a negative answer
to part (a) of Question 2.

Example 4.6. As earlier, we set µ ≡ 0, λ ≡ 0 and consider σ and f satisfying the
assumptions of Theorem 2.2 such that x1ℓ < x1r and that there exists a non-trivial
solution (V, α, β) of (6)–(9). Then by Theorem 2.2, τα,β is the unique optimal stopping

time in (2). However, for any α̃ < β̃ in [x1ℓ, x1r], we can construct a non-trivial ∗-

viscosity solution (Ṽ , α̃, β̃) of (23)–(25) using exactly the same idea as in the previous

example. We have α < α̃ < β̃ < β (see Remark (iii) after Theorem 2.2). Hence, the
stopping time τ

eα,eβ
is not optimal in (2). Thus, we obtain a negative answer also to

part (b) of Question 2.
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Appendix

Here we outline a probabilistic proof of Lemma 3.1. Without loss of generality we
assume that µ ≡ 0. First, we consider the homogenous ODE

σ2(x)

2
U ′′(x) − λ(x)U(x) = 0. (28)

Our aim is to prove that there exist two differentiable functions φ and ψ on [α, β]
with absolutely continuous derivatives that solve (28) νL-a.e. on [α, β] and satisfy the
inequality

ψ(α)φ(β) − ψ(β)φ(α) > 0. (29)

Under the additional assumption that X is non-explosive (and some technical assump-
tions on the function λ), this result can be found in Johnson and Zervos (2007) or
derived from Rogers and Williams (2000, Ch. V, Prop. (50.3)). Below we follow the
lines of Rogers and Williams (2000) and concentrate mostly on the part of the proof
that should be done differently (this difference occurs because X can explode). If λ = 0
νL-a.e. on [α, β], then we can put ψ(x) = 1 and φ(x) = x. Therefore, below we suppose
that νL({x ∈ [α, β] : λ(x) > 0}) > 0. We take two additional points α′ ∈ (ℓ, α) and
β ′ ∈ (β, r) and define

ψ(x) = Ex

[
e
−Λτ

α,β′

]
, x ∈ [α, β ′],

φ(x) = Ex

[
e
−Λτ

α′,β

]
, x ∈ [α′, β].

One can see that ψ and φ are continuous and satisfy (29). Consider now the function
ψ in more detail. For any x ∈ [α, β ′] the Markov property implies

Ex

[
e
−Λτ

α,β′

∣∣∣Ft

]
= e

−Λτ
α,β′ I(τα,β′ ≤ t) + Ex

[
e
−Λτ

α,β′ I(τα,β′ > t)
∣∣∣Ft

]

= e
−Λτ

α,β′ I(τα,β′ ≤ t) + I(τα,β′ > t)e−Λtψ(Xt)

= e
−Λτ

α,β′∧tψ(Xτα,β′∧t).

Hence, the process
Mt = e

−Λτ
α,β′∧tψ(Xτα,β′∧t) (30)

is a uniformly integrable Px-martingale, x ∈ [α, β ′]. Consequently, for any x, a, b ∈
[α, β ′] such that a < x < b it holds that ExMτa,b

= ψ(x). Now we are able to prove
convexity of ψ. Indeed,

ψ(x) = Ex

[
e−Λτa,bψ(Xτa,b

)
]
≤ Ex

[
ψ(Xτa,b

)
]

= ψ(a)
b− x

b− a
+ ψ(b)

x− a

b− a
.

Applying the Itô–Tanaka formula to (30), one derives that ψ is differentiable on [α, β ′]
and ψ′ is absolutely continuous on [α, β ′]. Moreover, it holds

σ2

2
ψ′′(x) − λ(x)ψ(x) = 0
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for νL-a.a. x ∈ [α, β ′]. The analogous result (with [α, β ′] replaced by [α′, β]) can be
proved for φ as well.

We turn to the inhomogeneous equation

σ2(x)

2
U ′′(x) − λ(x)U(x) = −f(x) (31)

considered νL-a.e. on [α, β]. One can see that the function ψ′φ − ψφ′ is constant on
[α, β] (cp. with formula (26) in Johnson and Zervos (2007)). We denote this constant
by A and note that A 6= 0. (Indeed, we can choose β ′ close enough to β so that ψ attains
its mimimum at a point c ∈ [α, β]. Then ψ′(c)φ(c) − ψ(c)φ′(c) = −ψ(c)φ′(c) 6= 0.) A
special solution of (31) can be found in the form

U0(x) =
2φ(x)

A

∫ x

α

ψ(y)f(y) dy

σ2(y)
+

2ψ(x)

A

∫ β

x

φ(y)f(y) dy

σ2(y)
, x ∈ [α, β]

(cp. with formula (31) in Johnson and Zervos (2007). Note that since α > ℓ and β < r,
both integrals are finite). One can see that the function U0 is differentiable everywhere
on [α, β] and its derivative is absolutely continuous. Finally, due to (29) we can find
constants C1 and C2 such that the function

U(x) = U0(x) + C1ψ(x) + C2φ(x), x ∈ [α, β]

satisfies U(α) = U(β) = 0. This function U is what we need.
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Revuz, D. and M. Yor (1999). Continuous Martingales and Brownian Motion (Third
ed.), Volume 293 of Grundlehren der Mathematischen Wissenschaften. Berlin:
Springer-Verlag.

Rogers, L. C. G. and D. Williams (2000). Diffusions, Markov Processes and Martin-
gales. Vol. 2 (Second ed.). Cambridge University Press.
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