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The Monge–Kantorovich mass-transportation problem has been shown in recent years
to be fundamental for various basic problems in analysis and geometry. In this paper
we describe some of the historical developments of this problem and some of the basic
results. In particular we emphasize the probabilistic aspects and contributions to this
subject and its relevance for various classical and recent developments in probability
theory ranging from probability metrics and functional inequalities over estimates for
risk measures to the analysis of algorithms. The paper is based on a lecture of the
author delivered at the MSRI meeting on mass transportation problems in November
2005 in Berkeley.
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1 Introduction

The classical mass transportation problem of Monge and its version of Kantorovich has
found a lot of recent interest because of its importance for several problems in nonlinear
PDEs, Riemannian geometry, variational problems and for several interesting inequalities
and concentration results, see in particular the recent excellent presentations of Ambrosio
(2003), Villani (2003, 2006) and Ambrosio, Gigli, and Savaré (2005). In this paper we
survey some of the probabilistic developments of the transportation problem and the related
optimal coupling problem and its applications. The probabilistic development of the subject
was mainly concentrated on the Kantorovich formulation of the problem which turned out
to be also instrumental for the Monge formulation and its applications in analysis.

The probabilistic interest in this topic was essentially connected with some naturally
defined minimal metrics on the space of probability measures which are defined via optimal
coupling properties. In particular to mention are the minimal `p-metrics, the Kantorovich–
Rubinstein theorem and others. Much of this development and many probabilistic applica-
tions are discussed in Rachev and Rüschendorf (1998a,b).

After the introduction of the connections between optimal couplings and mass trans-
portation we discuss in section 3 the development of the basic duality theory which gives
the clue to many of the optimal coupling results. We then present in section 4 as conse-
quences some of the main results for optimal L2-couplings (the classical L2-distance) and
also for general coupling functions. This includes in particular the important characteriza-
tions of optimal transportation plans based on generalized convexity notions (c-convexity,
c-subgradients, c-cyclical monotonicity). At this point roughly around 1990 the develop-
ment of this subject in analysis began. Here this survey tries to relate the various historical
sources and to describe the probabilistic contributions. We also describe some of the more
concrete probabilistic applications and developments as e.g. to the optimal coupling of nor-
mal or discrete distributions or to obtain bounds for the risk of portfolios arising from
positive dependence. In the final part of this paper we discuss a recently introduced modi-
fication of the minimal `s-metric and its application in the analysis of recursive algorithms
of divide-and-conquer type.

2 The mass transportation problem

In 1942 Kantorovich introduced the problem of optimal mass transport in the following
form: ∫

c(x, y)dµ(x, y) = inf
µ∈M(P1,P2)

=: µ̂c(P1, P2), (2.1)

where c : U1 × U2 → R is a measurable real cost function, Pi ∈ M1(Ui) are probability
measures on Ui and

M(P1, P2) = {µ ∈ M1(U1 × U2); µπi = Pi, i = 1, 2} (2.2)

is the class of all probability measures on U1 × U2 with marginals P1, P2. Here πi are the
projections on the i-th components and µπi is the image of µ under πi. µ̂c is called the
Monge–Kantorovich functional. In terms of random variables on a non-atomic probability
space (Ω, A, P ) problem (2.1) is equivalent with the problem to find an optimal coupling of
P1, P2 w.r.t. the coupling function c, i.e.

Ec(X1, X2) = inf (2.3)
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over all couplings X1, X2 of P1, P2, i.e. such that PXi = Pi, i = 1, 2. Any µ ∈ M(P1, P2)
describes a transference (transportation) plan for the mass distribution P1 to P2 or equiv-
alently the joint distribution of a pair of (X1, X2) of couplings of P1, P2. Using conditional
distributions we obtain for µ ∈ M(P1, P2)

∫
c(x, y)dµ(x, y) =

∫ (∫
c(x, y)µ(dy|x)

)
P1(dx). (2.4)

Any mass at point x is transported to y according to µ(dy|x) and thus
∫

c(x, y)dµ(x, y)
denotes the total cost of transportation using this plan. In the optimal coupling problem
(2.3) c is understood as a distance (dissimilarity) and it is a natural problem to find an
coupling (X1, X2) of P1, P2 with minimal expected dissimilarity.

A subclass of all transport plans are deterministic transport plans of the form µ(· | x) =
εφ(x), where φ is a function which transports P1 to P2, i.e. Pφ

1 = P2. The additional
restriction is that no mass is allowed to be split. Denoting by

S(P1, P2) = {φ : U1 → U2, φ measurable, Pφ
1 = P2} (2.5)

the set of all deterministic transport plans one obtains the corresponding Monge transporta-
tion problem

∫
c(x, φ(x))dP1(x) = inf

φ∈S(P1,P2)
(2.6)

resp. the deterministic coupling problem

Ec(X1, φ(X1)) = inf
φ∈S(P1,P2)

. (2.7)

This problem was introduced in 1781 by Monge for the special case that Ui ⊂ R3 are
two bounded domains with volume measures Pi and c(x, y) = ‖x − y‖ is the Euclidean
distance. Monge detected that optimal transport should go along straight lines which are
orthogonal to a family of surfaces (formally worked out by Appel (1887)). Also he found
the no-crossing rule of optimal transport rays.

From the probabilistic point of view the Kantorovich formulation of the transport prob-
lem is more ‘natural’ than the Monge formulation. Similar extensions of deterministic opti-
mization problems are quite often to find in probability and statistics as e.g. the transition
from deterministic decision rules (like deterministic tests and estimators) to randomized
decision rules (like randomized tests and estimators) is a classical example from the early
period of statistics. Kantorovich obviously was not aware of the Monge problem when he
formulated his transport problem in 1942. In 1948 he wrote a short note of three pages
where he made the connection to the Monge problem and stated that in case (2.1) has
a deterministic solution φ, then φ is also a solution of the Monge problem, i.e., the Kan-
torovich problem is a relaxation of the Monge problem. In fact Kantorovich’s problem was
one of the earliest infinite dimensional linear programming problems considered. In 1975
Kantorovich got together with Koopman the Nobel price in economics for his development
of linear programming and the application to mathematical economics.

The Kantorovich problem and some variants have been developed in the probabilistic
literature since the mid seventies. For various kinds of optimization problems they have
been established as a basic and natural tool. A detailed exposition with many applications
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of these developments is given in Rachev and Rüschendorf (1998a,b). Starting with the late
eighties, early nineties, important connections of the transportation problem with problems
from analysis and geometry, partial differential equations, fluid mechanics, general curvature
theory, variational problems, geometric and functional inequalities like isoperimetric and
concentration inequalities, gradient flows in metric spaces, and many others have been
detected. This lead to a very active and wide ranged research area. This line of research is
excellently described and developed in the books of Ambrosio (2003), Villani (2003, 2006),
and Ambrosio, Gigli, and Savaré (2005).

In the following we review some of the history of the probabilistic development of the
transport problem, put it into line with the developments described above in analysis. In
this way we obtain e.g. a new extension of Brenier’s polar factorization result. Finally, we
point out to some of the more recent applications in various areas of probabilistic analysis.

3 Duality theory and optimal couplings

In this section we describe developments of the duality theory which is the main tool and
the basis for determining optimal couplings and transport plans. In some more recent work
starting with McCann (1995) and Gangbo and McCann (1996) more direct methods have
been developed to determine optimal transport plans. We begin this section with stating
some of the classical results on minimal probability metrics which stand at the beginning
of optimal transportation problems.

3.1 Minimal probability metrics

a) Minimal `1-metric. Let (U, d) be a separable metric space and P1, P2 ∈ M1(U) be
probability measures on U with its Borel σ-Algebra. We denote the minimal `1-metric on
M1(U) by

`1(P1, P2) := inf
{ ∫

d(x, y)dµ(x, y); µ ∈ M(P1, P2)
}

(3.1)

i.e. `1 is the minimal version of the usual L1-metric

L1(X, Y ) = Ed(X, Y ) (3.2)

of random variables X, Y in U and is identical to the solution of the transportation problem
with cost function c = d.

The Lipschitz metric µL is defined by

µL(P1, P2) = sup
{ ∫

fd(P1 − P2); Lip f ≤ 1
}

. (3.3)

Kantorovich–Rubinstein Theorem: The minimal `1-metric is identical to the Lipschitz
metric, i.e., for all P1, P2 ∈ M1(U) holds

`1(P1, P2) = µL(P1, P2). (3.4)

This result was proved by Kantorovich and Rubinstein (1957) in the case of compact
metric spaces and then extended by de Acosta (1982), Dudley (1976), Fernique (1981),
Levin (1975), and Kellerer (1984a).
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In the case of the real line U = R1 and d(x, y) = |x− y| one gets the explicit expression

`1(P1, P2) =
∫ 1

0

|F−1
1 (u)− F−1

2 (u)|du

=
∫
|F1(x)− F2(x)|dx

(3.5)

where Fi are the distribution functions of Pi. In this case the results go back to early work
of Gini (1914), Salvemini (1949), and Dall’Aglio (1956) (even for the case c(x, y) = |x−y|α)
Vallander (1973) and Szulga (1978).

Fréchet (1940) was the first to note formally the metric properties of `1 in general metric
spaces, Hoeffding (1940) gave a formula for `2 in the real case and Vasershtein (1969)
‘introduced’ `1 again in his paper on Markov processes. Dobrushin (1970) was the first to
call `1 Wasserstein metric (Wasserstein the English transcripted version of Vasershtein).

b) Total variation metric. Let V denote the total variation metric on U and let

σ(X,Y ) := P (X 6= Y ) (3.6)

denote the compound probability metric on the space of random variables, then

V (P1, P2) = σ̂(P1, P2) = inf{σ(X, Y ); X d= P1, Y
d= P2}. (3.7)

This result is due to Dobrushin (1970). It is a basic result to many of the optimal coupling
results in probability theory which extend the classical paper of Doeblin (1938) giving a
coupling proof of the limit theorem for Markov chains.

c) Prohorov metric. A similar result holds true for the Prohorov metric π on M1(U)
which is the classical metric for the weak convergence topology. Strassen (1965) proved that
π is the minimal metric of the Ky Fan metric K, i.e.

π = K̂. (3.8)

In all three cases the transition to the minimal metric yields a change of the topol-
ogy. This has important applications, e.g. to Skorohod type results (relation between weak
and strong convergence) in the proof of central limit theorems, in matching theory and in
robustness results and many others. More generally for any compound probability metric
µ(X,Y ) the corresponding minimal metric µ̂ is defined by

µ̂(P1, P2) = inf{µ(X, Y ); X d= P1, Y
d= P2}. (3.9)

Zolotarev (1976) used this principle for the construction of several examples of ideal metrics.
The interesting question of characterization of the minimal metrics with ζ-structure, i.e.
which have a sup-representation similar to (3.3), is so far only partially answered.

3.2 Monge–Kantorovich duality theory

The duality theory for the transportation problem began with Kantorovich’s 1942 result
which stated equivalence of (2.1) with a dual problem for the case of compact metric spaces
and continuous cost functions c(x, y). The proof however worked only for the case where
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c(x, y) = d(x, y) is a metric on U = U1 = U2. For the metric case the MK-transportation
problem is equivalent to the mass transfer problem where for P1, P2 ∈ M1(U) the class of
transport plans M(P1, P2) is replaced by the class of mass transference plans

M = M(P1 − P2) = {γ ∈ M(U × U); γπ1 − γπ2 = P1 − P2}, (3.10)

i.e. all transport plans with fixed difference of the marginals. With respect to this class it is
allowed to transfer a mass point of x to y via some route x = x1, x2, . . . , xn = y such that
the cost c(x, y) is replaced by the cost

∑n
i=1 c(xi, xi+1). The basic result is an extension of

the Kantorovich–Rubinstein theorem of the form

µ
◦
c(P1, P2) = inf

{ ∫
c(x, y)dµ(x, y); µ ∈ M(P1 − P2)

}

= sup
{ ∫

U

fd(P1 − P2); f(x)− f(y) ≤ c(x, y)
}

.

(3.11)

After the Kantorovich–Rubinstein (1957) paper this kind of duality theorems for the mass
transfer problem was intensively discussed in the Russian probability school in particular
by Levin (1975) and Levin and Milyutin (1979). Also the papers of de Acosta (1982),
Dudley (1976), Fernique (1981), and Rachev and Shortt (1990) concerned the Kantorovich–
Rubinstein functional µ

◦
c. It coincides with the MK-functional µ̂c only if c is a metric (see

Neveu and Dudley (1980)). An important role in this development is played by the Lipschitz
norm in (3.11) (see Fortet and Mourier (1953)) and by related approximation arguments.
A very complete duality theory of the KR-functional µ

◦
c has been developed by Levin (see

corresponding references and presentation in Rachev and Rüschendorf (1998a,b)).
The MK-problem with fixed marginals can be considered also on n-fold products of

probability spaces (Ui, Ai, Pi). Let h :
∏n

i=1 Ui → R and M = M(P1, . . . , Pn) be the set of
all transport plans, i.e. measures with marginals Pi then we define

S(h) = sup
{ ∫

hdµ; µ ∈ M

}

I(h) = inf
{ n∑

i=1

∫
fidPi;h ≤ ⊕fi, fi ∈ L2(Pi)

}
,

(3.12)

where ⊕fi(x) =
∑n

i=1 fi(xi). We say that duality holds if

S(h) = I(h). (3.13)

Here the equivalent problem of maximizing the gain (profit) is considered which transfers
to the problem of minimizing the cost by switching to c = −h. For the proof of duality
theorems of MK-type several strategies have been developed. One approach is to establish
via Hahn–Banach and Riesz-type results in the first step the equality

S̃(h) = I(h) (3.14)

where S̃(h) is the supremum problem where the measures with fixed marginals are relaxed
to the finite additive measures ba(P1, . . . , Pn). In the second step conditions on h are iden-
tified (Riesz-type results) which ensure that S(h) = S̃(h). This approach was followed in
Rüschendorf (1979–1981) (in the following abbreviated by Rü) and Gaffke and Rü (1981)
(without being aware at that time of the MK-problem in the Russian school). Motivated by
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this development Kellerer (1984b) followed a different route to obtain more general results.
Starting from the duality for simple cases he investigated in detail continuity properties of
the functionals S, I which allowed him by Choquet’s capacity theorem to obtain very general
duality results. Rachev (1985) extended approximation arguments as used in the KR-case
to some instances of the MK-problem. Levin (since 1984) established some techniques which
allowed him to prove reduction results from the MK-problem to the KR-problem.

Here is a list of some of the basic duality results for the MK-duality problem. The
spaces Ui are assumed to be Hausdorff and the measures are restricted to the class of tight
measures.

Theorem 3.1 (Duality Theorem.) a) Duality holds on the class of all lower-majorized
product-measurable functions:

Lm(U) = {h ∈ L(A1 ⊗ · · · ⊗ An);∃fi ∈ L1(Pi); h ≥ ⊕n
i=1fi}. (3.15)

b) Duality holds on F (U), (3.16)

where F (U) are the upper semicontinuous functions and closure is w.r.t. I(|f − g|).
Duality also holds on Gm(U), (3.17)

the closure of the lower majorized lower semicontinuous functions.

c) Existence of an optimal measure on F for the S-functional. (3.18)

d) Existence of minimal functions (fi) on Lm(U) for the I-functional. (3.19)

e) For P ∈ M , fi ∈ L1(Pi), ⊕fi ≥ h holds:

P, (fi) are solutions for S, I ⇐⇒ h = ⊕n
i=1fi [P] (3.20)

Remarks 3.2 a) The duality and existence results were proved in Rü (1981) essentially
for the bounded product measurable case and in Kellerer (1984b) for the general case.
The conditions in the results are sharp, i.e. there exist counter-examples of the duality
and existence results, e.g. on G(U) or without lower boundedness in d).

b) Condition (3.20) characterizes optimal transport plans P under the existence condition
e.g. for h ∈ Lm(U). The sufficiency part does not need any conditions, i.e. the r.h.s. of
(3.20) implies optimality of P and (fi).

c) In Kellerer (1984b) a simple example is given where h ∈ C(U×U), S(h) = I(h), P1 = P2,
but h does not allow a representation of the form h = f1 ⊕ f2 [P ] with fi ∈ L1(Pi),
P ∈ M(P1, P2).

d) The existence of solutions of the dual problem is closely connected with the following
closedness problem: Let P ∈ M(P1, P2), s ≥ 0 and consider

Fs = Ls(P1)⊕ Ls(P2)
= {f = f(x, y) = g(x) + h(y); g ∈ Ls(P1), h ∈ Ls(P2)}

(3.21)

When is Fs closed in Ls(P )? In general closedness does not hold true (see Rü and
Thomsen (1993)). Several partial results are known, e.g. in case s = 0 and P ¿ P1⊗P2

any element Φ ∈ F 0, the closure w.r.t. L0(P ), has a representation of the form

Φ(x, y) = f(x) + g(y) [P ] (3.22)
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but in general f , g cannot be chosen measurable. Several positive results are established.
(3.22) is sufficient for proving the existence of a general version of Schrödinger bridges
and the positive results also allow to give an extension of the Kolmogorov representation
result for continuous functions of n variables by a superposition of functions of one
variable to the case of locally bounded measurable functions with equality holding a.s.
(see Rü and Thomsen (1997)).

Immediately after establishing the duality results (3.15)–(3.20) some interesting conse-
quences were established in the early eighties in particular sharpening some classical bounds.
Here are some examples:

a) Sharpness of Fréchet-bounds: For Ai ∈ Ai holds

sup{P (A1 × · · · ×An); P ∈ M(P1, . . . , Pn)} = min{Pi(Ai); 1 ≤ i ≤ n} (3.23)

inf{P (A1 × · · · ×An); P ∈ M(P1, . . . , Pn)} =
( n∑

i=1

Pi(Ai)− (n− 1)
)

(3.24)

These are classical bounds in probability theory. They could be shown to be sharp by
calculating the dual problem explicitly (see Rü (1981)).

b) Hölder and Jensen inequality: For αi > 0,
∑

1/αi = 1, Xi ≥ 0 the Hölder inequality

E

n∏

i=1

Xi ≤
n∏

i=1

‖Xi‖αi (3.25)

is an optimal upper bound in the class of distributions with given αi-th moments of Xi.
One can improve this bound by

E

n∏

i=1

Xi ≤ E

n∏

i=1

F−1
i (U), (3.26)

where U is uniform on (0, 1), Fi the distribution functions of Pi. This bound is sharp in
the class of all distributions with marginals Pi (with distribution functions Fi).

Similarly the Jensen inequality

Eϕ(X)
≥

(≤)
ϕ(EX), ϕ convex (concave) (3.27)

is sharp in the class of all distributions with given expectation. For large classes of convex
functions one can improve the bounds. E.g. for ϕ(x) = max xi −min xi, the span of x,
holds

E span(Xi) ≥ E span(F−1
i (U)) (3.28)

which is sharp in the class of distributions with given marginals.

c) Sharp bounds for the sum: For Pi ∈ M1(R1) with distribution functions Fi holds

sup{P (X1 + X2 ≤ t); Xi ∼ Pi} = F1 ∧ F2(t)

= inf{F1(u) + F2(t− u); u ∈ R1}, (3.29)
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F1 ∧ F2 is the infimal convolution of the distribution functions Fi of Pi. Similarly,

inf{P (X1 + X2 ≤ t); Xi ∼ Pi} = (F1 ∨ F2(t)− 1)+, (3.30)

where F1 ∨ F2 is the supremal convolution.

This problem of sharp bounds for the distribution of the sum was solved independently
by Makarov (1981) and Rü (1982). In Rü (1982) the proof was based on the duality
theorem. This result has found recently great interest in risk theory since it allows to
derive sharp bounds for the ‘value at risk’ measure in a portfolio caused by dependence
of the components. There are a sequence of recent papers using the duality result in
order to establish extensions of the bounds for more than two random variables and
thus to obtain effective bounds for the risk in greater portfolios.

d) For ∆-monotone and for quasi monotone functions h : Rn → R1 as e.g.
h(x) = φ(x1 + · · ·+ xn), φ convex, sharp bounds were established

sup{Eh(X); Xi ∼ Pi} = Eh(F−1
1 (U), . . . , F−1

n (U)) (3.31)

(see Tchen (1980), Rü (1980, 1983)).

The duality theorem (3.15)–(3.20) was established for tight measures on a Hausdorff
space which corresponds roughly to the case of complete separable metric spaces. A natural
question is in what generality does the duality theorem hold true? We consider the case
n = 2 and probability spaces (Ui, Ai, Pi) and define:

(D) holds if S(h) = I(h) for all h ∈ B(U1 × U2, A1 ⊗ A2) (or h ∈ Lm(U1 × U2)).

Remind that P ∈ M1(Ω, A) is called perfect if for all f ∈ L(A) there exists a Borel set
B ⊂ f(Ω) such that

P (f−1(B)) = 1. (3.32)

This notion was introduced by Kolmogorov and is instrumental for various measure
theoretic constructions like conditional probability measures (see Ramachandran (1979a,b)).
The following general duality theorem holds if one of the underlying marginal measures is
perfect.

Theorem 3.3 (Perfectness and duality.) (Ramachandran and Rü (1995)) If P2 is per-
fect, then (U2,A2, P2) is a duality space, i.e. (D) holds for any further probability space
(U1, A1, P1).

The proof starts with the case Ui = [0, 1], i = 1, 2, where (D) holds by the Duality The-
orem 3.1. It then uses various measure theoretic properties as the outer measure property
of Pachl, the Marczewski imbedding theorem, and a measure extension property.

In the following we deal with the problem whether perfectness is also a necessary con-
dition. To study this question we introduce the notion of a strong duality space.

Definition 3.4 (U1, A1, P1) is a ‘strong duality space’ if it is a duality space and the func-
tional I is stable under extensions, i.e. for any (U2,A2, P2) and any sub σ-algebra C2 ⊂ A2

and h ∈ B(A1 ⊗ C2) holds

IA1⊗C2(h) = IA1⊗A2(h). (3.33)
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Equivalently one could also postulate stability of S. As consequence of the general
duality theorem one obtains that perfectness implies strong duality space. We need further
two measure theoretic properties.

Definition 3.5 (U1, A1, P1) has the ‘projection property’ if for all (U2, A2, P2) and C ∈
A1 ⊗ A2 there exists A1 ∈ A1 with P1(A1) = 1 and

π2(C ∩ (A1 × U2)) ∈ A2
P2

, (3.34)

A2
P2 the P2-completion of A2.

This notion is a measure theoretic analog of the projection property in descriptive set
theory. The classical result in this area says that the projection of a Borel set in a product of
two standard Borel spaces is analytic and thus universally measurable. The second property
is the measure extension property.

Definition 3.6 (U1, A1, P1) has the ‘measure extension property’ if for all (U2,A2, P2) for
all D2 ⊂ A2 and all P ∈ M(P1, P2/D2) there exists an extension P ∈ M(P1, P2) such that
P/A1 ⊗D2 = P .

We say that (U1, A1, P1) has the ‘charge extension property’ if the extension can be found
in the set ba(P1, P2) of charges, i.e. non-negative finitely additive measures.

It now turns out that the strong duality spaces are exactly the perfect spaces. Thus
a general duality theorem in the strong sense implies perfectness. The following theorem
states that the strong duality property is even equivalent with any of the measure theoretic
notions introduced above.

Theorem 3.7 (Characterization theorem.) (Ramachandran and Rü (2000)) For a
probability space (U1, A1, P1) the following statements a)–e) are equivalent:

a) (U1,A1, P1) is a strong duality space.

b) (U1,A1, P1) is perfect.

c) (U1,A1, P1) has the measure extension property.

d) (U1,A1, P1) has the projection property.

e) (U1,A1, P1) has the charge extension property.

As consequence all structure theorems for perfect spaces are also valid for strong duality
spaces. On the other hand this result says that one cannot expect ‘good’ duality results on
‘general’ infinite dimensional spaces. There remain the following important

Open problems:

a) Is any measure space a duality space?

b) Is any duality space a strong duality space?

c) Is M(P1, P2) ⊂ ba(P1, P2) dense in weak ∗-topology from B(U1 × U2)?
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4 Optimal multivariate couplings

The duality results of section 3 were developed into more concrete optimal coupling results
in the early nineties. Here also started the development on the subject by several researchers
from analysis since the strong and fruitful connections to several problems in analysis soon
became clear. In particular to mention is the work of Brenier, Gangbo and McCann and
later on Ambrosio, Villani, Otto, Caffarelli, Evans, Trudinger, Lott, and Sturm.

4.1 The squared norm cost

For the squared norm cost c(x, y) = ‖x − y‖2, x, y ∈ Rk the problem of optimal transport
or optimal couplings is given by

E‖X − Y ‖2 = inf
X∼P1,Y∼P2

(4.1)

where Pi ∈ M1(Rk, Bk) have covariance matrices
∑

i = Cov(Pi). This problem is equivalent
to maximizing the trace trΨ

trΨ = max! (4.2)

over all

Ψ ∈ C(P1, P2) =
{

Ψ : ∃P ∈ M(P1, P2) such that
(

Σ1 Ψ
ΨT Σ2

)
∈ Cov(P )

}
. (4.3)

In general C(P1, P2) is a complicated set but for normal distributions Pi = N(ai,
∑

i) one
gets the maximal possible class C(P1, P2) with covariance matrices

∑
i of Pi. The covariance

condition (4.3) is in this case equivalent to
(

Σ1 Ψ
ΨT Σ2

)
≥ 0 in the sense of positive semidefiniteness. (4.4)

The corresponding optimization problem (4.2) was analytically solved in Olkin and
Pukelsheim (1982) and Dowson and Landau (1982), leading in particular to an universal
lower bound of `2(P1, P2) depending only on first and second moments ai, Σi for any pair
P1, P2 ∈ M1(Rk,Bk).

For general distributions Pi the following is the basic optimal coupling result which is
due to Knott and Smith (1984, 1987), Rü and Rachev (1990), and Brenier (1987, 1991).

Theorem 4.1 (Optimal L2-couplings.) Let Pi ∈ M1(Rk,Bk) with
∫ ‖x‖2dPi(x) < ∞,

then

a) There exists an optimal L2-coupling, i.e. a solution of (4.1).

b) X
d= P1, Y

d= P2 is an optimal L2-coupling

⇐⇒ ∃ convex, lsc f ∈ L1(P1) such that Y ∈ ∂f(X) a.s. (4.5)

c) If P1 ¿ λ\k, then for f as in a)

∂f(X) = ∇f(X) a.s. and (X,∇f(X)) (4.6)

is a solution of the Monge problem.
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d) If P1 ¿ λ\k, then there exists a P1 a.s. unique gradient ∇f of a convex function f , such
that

P∇f
1 = P2. (4.7)

Remarks 4.2 a) Part b) of this theorem was given in this form first in Rü and Rachev
(1990). The proof was based on the duality theorem. The sufficiency part for b) is con-
tained already in Knott and Smith (1984, 1987). Brenier (1991) established the unique-
ness result in d) as well as b) while a special version of c) is already in his 1987 paper.
Note that the existence of a Monge solution in c) is an immediate consequence of b)
and a.s. differentiability of convex functions (see Rockafellar (1970)). By this history it
seems appropriate to describe this important theorem to the authors from probability
and analysis as mentioned above.

b) Cyclically monotone support. By convex analysis condition (4.5) is equivalent to
cyclically monotone support Γ of the optimal transportation measure µ = P (X,Y ), i.e.
∀(x1, y1), . . . , (xm, ym) ∈ Γ holds

m∑

i=1

yixi+1 ≤
m∑

i=1

yixi (4.8)

with xm+1 := x1. This equivalence lead Gangbo and McCann (1995) to a new strategy
of proof. If uniqueness holds (as in the case P1 ¿ λ\k) then cyclical monotonicity of
the support of µ implies optimality. In this way they were able to replace the moment
assumptions on P1, P2 by the uniqueness condition.

c) For P1 = fλ\k, P2 = gλ\k absolutely continuous w.r.t. Lebesgue measure Caffarelli (1992,
1996) established regularity estimates of the optimal Monge solution Φ:
If f, g ∈ Ck,α (i.e. the partial derivatives up to order k are of Hölder type α) and
g > 0 then Φ ∈ Ck+2,α. In particular if f, g ∈ C∞ and locally bounded from below,
their supports and supp g is convex, then Φ ∈ C∞ and Φ is a classical solution of the
Monge–Ampère equation

det D2Φ(x) =
f(x)

g(∇Φ(x))
[P1] (4.9)

(see Villani (2006) for a more detailed exposition).

A corollary of the optimal L2-coupling theorem is the polar factorization theorem due
to Brenier (1987).

Corollary 4.3 (Polar factorization theorem.) Let E ⊂ Rd be a bounded subset with
positive Lebesgue measure, h : E → Rd a measurable map with Ph ¿ λ\d, where P = λE is
the normalized Lebesgue measure on E. Then there exists a unique gradient ∇f of a convex
lsc function f and a measure preserving map s on (E,P ) such that

h = ∇f ◦ s [P ]. (4.10)

Remarks 4.4 a) The nondegeneracy condition of the polar factorization theorem has been
weakened by Burton and Douglas (1998, 2003). Also a counter-example is given there
to show that the theorem is false without any further assumption.
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b) The nondegeneracy condition of h in the polar factorization theorem can also be replaced
by the following independence assumption (Ih):

(Ih) There exists a random variable V on (E,P ) such that V is independent of h and
PV = U(0, 1) is the uniform distribution on (0, 1).

For the proof let (X,Y ) be an optimal coupling of (Ph, P ), X
d= Ph, Y

d= P . Since
P ¿ λ\d, by the optimal coupling result Theorem 4.1 there exists a unique gradient ∇f of
a convex function f such that

X = ∇f ◦ Y a.s.. (4.11)

Now one can apply the following result of Rü (1985) on the solutions of stochastic equations
(see also Rachenv and Rü (1990)):

Let (E, µ) h→ B, B a Borel space, let (F, R)
f→ B, h, f measurable, µ, R probability

measures, and let (E,µ) be rich enough (i.e. it allows a uniformly distributed r.v. V on
(E, µ) independent of h). If the distributional equation

µh = Rf (4.12)

holds, then there exists an r.v. U : E → F with µU = R such that the stochastic equation

h = f ◦ U [µ] (4.13)

holds.

Applying this general factorization theorem with µ = λd
E = P , R = P = L(Y ) we obtain

the existence of a measurable factorization

h = ∇f ◦ U [P ] (4.14)

with some measure preserving map U on (E,P ), i.e. the polar factorization result.

Corollary 4.5 For any measurable function h the independence hypothesis (Ih) implies the
existence of a polar factorization.

In general the independence hypothesis does not hold. If e.g. d = 1 and h(u) = u,
u ∈ [0, 1] = E then Ih does not hold. If V = V (u) would be independent of h, then
PV |h=u = εV (u), a contradiction. But by enlarging E to e.g. E′ := E× [0, 1] and considering
P ′ = P ⊗ λ\[0,1] we can consider h formally as function on E′ by h(x, u) := h(x). The
independence hypothesis holds in this extended framework and thus there exists an r.v. U
on E′ such that P ′U = P = λE and

h = ∇f ◦ U [P ′], (4.15)

i.e. h(x) = ∇f ◦ U(x, u) [P ′].
Thus, we obtain a polar factorization theorem in the ‘weak sense’ without any nonde-

generation condition on h.

Corollary 4.6 The polar factorization theorem holds in the extended sense (4.15) without
any further nondegeneration assumption.

This extension also holds for McCann’s (2001) version of the polar factorization theorem
in Riemannian manifolds.
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4.2 General coupling function

For the case of general coupling (resp. cost) functions c = c(x, y) and probability measures
P, Q we consider the corresponding optimal coupling (transport) problem

S(c) = sup
{ ∫

cdµ;µ ∈ M(P, Q)
}

(4.16)

with dual problem

I(c) = inf
{ ∫

h1dP +
∫

h2dQ; c ≤ h1 ⊕ h2, hi ∈ L1

}
(4.17)

The following notions from nonconvex optimization theory as discussed in Elster and Nehse
(1974) and Dietrich (1988) are useful and were introduced in the context of the transporta-
tion problem in Rü (1991b). A proper function f : Rk → R ∪ {∞} is called c-convex if it
has a representation of the form

f(x) = sup
y

(c(x, y) + a(y)) (4.18)

for some function a. The c-conjugate f c of f is defined by

f c(y) = sup
x

(c(x, y)− f(x)), (4.19)

the sup being over the domain of f . Defining further the double c-conjugate f cc by

f cc(x) = sup
y

(c(x, y)− f c(y)) (4.20)

then f c, f cc are c-convex, f cc is the largest c-convex function majorized by f and f = f cc

if and only if f is c-convex. The pair f c, fcc is an admissible pair in the sense that

f c(y) + fcc(x) ≥ c(x, y) for all x, y. (4.21)

Obviously this construction is similarly possible on a general pair U1, U2 of spaces
replacing Rk and c : U1 × U2 → R ∪ {∞}. The (double) c-conjugate functions are basic for
the theory of inequalities as in (4.21). The generalized c-subgradient of a function f at a
point x is defined by

∂cf(x) = {y; f(z)− f(x) ≥ c(z, y)− c(x, y) ∀z ∈ dom f} (4.22)

further

∂cf = {(x, y) ∈ U1 × U2; y ∈ ∂cf(x)}. (4.23)

Denoting by E := {Ψy,a; y ∈ U2, a ∈ R} the class of all shifts and translates of c,
Ψy,a(x) := c(x, y) + a, c-convexity of f is equivalent to a representation of the form f(x) =
supΨ∈E′ Ψ(x) for some E′ ⊂ E and further (with a := f(x)− c(x, y0))
y0 ∈ ∂cf(x) if and only if ∃ a ∈ R such that

Ψy0,a(x) = f(x) (4.24)
Ψy0,a(x′) ≤ f(x′), ∀x′ ∈ dom f. (4.25)

This geometric description of c-subgradients generalizes the corresponding description in
the case of convex functions and is very useful and intuitive. The following is an extension
of the optimal coupling (transportation) result in Theorem 4.1 to general cost functions
and general measure spaces Ui as in the basic Duality Theorem 4.1.
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Theorem 4.7 (Optimal c-couplings.) (Rü (1991b)) Let c be a lower majorized function
(i.e. c(x, y) ≥ f1(x) + f2(y) for some f1 ∈ L1(P ), f2 ∈ L1(Q)) and assume that I(c) < ∞.
Then a pair (X,Y ) with X

d= P , Y
d= Q is an optimal c-coupling between P and Q if and

only if

(X,Y ) ∈ ∂cf a.s. (4.26)

for some c-convex function f , equivalently, Y ∈ ∂cf(X) a.s.

The characterization in (4.26) is equivalent to the condition that the support Γ of the
joint distribution of X, Y is c-cyclically monotone, i.e. for all (xi, yi) ∈ Γ, 1 ≤ i ≤ n,
xn+1 := x1 holds

n∑

i=1

(
c(xi+1, yi)− c(xi, yi)

) ≤ 0. (4.27)

This notion was introduced in Smith and Knott (1992), who reformulated Theorem
4.7 in terms of c-cyclical monotonicity. For the equivalence see also Rü (1995, 1996b) and
Gangbo and McCann (1996). Note that for the corresponding inf problem (transportation
problem) the inequality sign in (4.27) has to be chosen in the opposite direction.

Without the moment assumptions in Theorem 4.7 c-cyclically monotone support is in
general not a sufficient condition for optimality (see Ambrosio and Pratelli (2003)). Gangbo
and McCann (1996) have developed a characterization of c-optimality based on c-cyclically
monotone support plus a uniqueness property. They also have studied some regularity
properties of c-convex functions. The moment assumptions of the duality theorem have
been weakened in Ambrosio and Pratelli (2003) and Schachermayer and Teichmann (2006)
for lower semicontinuous cost functions c. The notion of ‘strongly c-monotone’ support is
introduced and shown as a sufficient condition in their paper.

The characterization of solutions of the optimal coupling problem and the results on
existence of solutions (X, Y ) resp. f imply the following necessary condition for differentiable
cost functions: If (X, Y ), f are solutions of the optimal c-coupling problem on Rk and if
P ¿ λ\k and f is differentiable almost everywhere, then

∇f(X) = ∇xc(X, Y ) a.s. (4.28)

(see Rü (1991b)).
In this direction Gangbo and McCann (1996) have shown that if c = c(x− y) is locally

Lipschitz, then c-convex functions are differentiable almost everywhere. For an extension
see (Villani, 2006, p. 125). As consequence one obtains:
If (4.28) has a unique solution in Y = Φ(X), then

(X, Φ(X)) is a Monge solution. (4.29)

In the case where c(x, y) = h(x− y), h strictly convex, c-convex functions f are convex
and thus ∇f exists almost everywhere and then (4.28) implies

Y = X −∇h∗(∇f(X)) =: Φ(X) (4.30)

where h∗ is the convex conjugate of h (see Gangbo and McCann (1996)). A similar example
for the concave functions h(|x − y|) is in Rü and Uckelmann (2000). Note that Monge
solutions for (4.16) are solutions in weak sense for generalized PDE’s of Monge–Ampére
type.
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Remarks 4.8 a) Call a function Φ c-cyclically monotone if Γ = graph(Φ) is c-cyclically
monotone. Several sufficient and several necessary conditions for Φ to be c-cyclically
monotone have been given in Smith and Knott (1992) and in Rü (1995). For the optimal
`p-coupling with c(x, y) = ‖x− y‖p, ‖ · ‖ the Euclidean norm, one obtains e.g. for p > 1
that for h

Φ(x) := ‖h(x)‖− p−2
p−1 h(x) + x (4.31)

is c-cyclically monotone. Similar extensions hold for p-norms ‖ · ‖p. In particular it is
shown that radial transformations

Φ(x) = α(‖x‖) x

‖x‖ , α(t) ≥ t (4.32)

are optimal. This allows e.g. to determine optimal couplings between uniform distri-
butions on two ellipsoids. For the Euclidean norm ‖ · ‖ = ‖ · ‖2 and p = 1, the
classical Monge case, one obtains that the optimal transport is concentrated on lines
Y ∈ {X + t∇f(X); 0 ≤ t ≤ T}. It is however not uniquely determined by this property.
Existence of Monge-solutions for the classical Monge case where c is the Euclidean norm
has a long history, starting with early work of Sudakov (1979) (for details see Villani
(2006)).

b) One-dimensional case. In the one-dimensional case the optimal coupling result in The-
orem 4.7 has been applied to determine optimal couplings for some classes of nonconvex
functions, see Uckelmann (1997), Rü and Uckelmann (2000), and, based on a direct anal-
ysis of monotonicity properties, in McCann (1999). In the case where P = Q = U(0, 1)
and c(x, y) = Φ(x + y) and for coupling functions Φ such that

Φ′′(t)





> 0 t ∈ [0, k1) ∪ (k2, 2]

< 0 t ∈ (k1, k2),
(4.33)

i.e. Φ is of the type: convex-concave-convex, the following result was proved in Uckelmann
(1997):

Proposition 4.9 If α, β are solutions of




Φ(2α)− Φ(α + β) + (β − α)Φ′(α + β) = 0,

Φ(2β)− Φ(α + β) + (α− β)Φ′(α + β) = 0,
(4.34)

0 < α < β < 1, then (X, T (X)) is an optimal c-coupling where

T (x) =





x, x ∈ [0, α] ∪ [β, 1],

α + β − x, x ∈ (α, β).
(4.35)

Similar results have been shown for c(x, y) = Φ(|x− y|), Φ convex-concave for the case
of uniform marginals. Extensions of these results are in Rü and Uckelmann (2000). Also
some results for nonuniform marginals and numerical results are given there. These
results confirm some general conjectures on the solutions in the one dimensional case.
The case c(x, y) = Φ(|x− y|), Φ concave was studied in McCann (1999) in detail.
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c) Discrete distributions, Voronoi cells. In the case where one distribution is discrete
Q =

∑n
i=1 αjεxj the relevant c-convex functions for the optimal couplings are of the

form

f(x) = max(c(x, xj) + aj). (4.36)

The subgradients are to be the support points xj of Q and we have to determine only
the shifts aj . Let

Aj := {x : f(x) = c(x, xj) + aj}
= {x : xj ∈ ∂cf(x)} (4.37)

denote the corresponding Voronoi cells, then the subgradients are unique except at the
boundaries of Aj . This observation implies a uniqueness result for discrete distributions
(see Cuesta-Albertos and Tuero-Diaz (1993)). The optimal transportation problem be-
tween P and Q reduces to finding shifts aj such that P (Aj) = αj , 1 ≤ j ≤ n. For the
case of c(x, y) = ‖x − y‖a one gets for a = 2 linear boundaries. Some cases for a = 1,
2, 4 are dealt with explicitly in Rü (1997, 2000) in the case where P is uniform on a
square in R2 or a cube in R3. For the solution in not too large discrete cases one can
apply sophisticated linear programming techniques or algorithms developed for Voronoi
cells (see Rü and Uckelmann (2000)). For an alternative continuous time algorithm see
Benamou and Brenier (1999).

4.3 The n-coupling problem

The coupling problem between two distributions on Rk is naturally extended to the optimal
coupling (transportation) between n probability measures P1, . . . , Pn on Rk. This might be
used as discrete time approximation of a continuous time flow along some time interval [0, T ]
where Pi are intermediate distributions on the transport from P1 to Pn. A new problem
arises only if in the formulation of the coupling problem there is a cycle or a back coupling
e.g. between Pn and P1. For the L2-cost one version of this problem is

E
∥∥∥

n∑

i=1

Xi

∥∥∥
2

= max (4.38)

over all Xi
d= Pi, 1 ≤ i ≤ n.

For the case n = 3 and Pi = N(0, Σi) this problem was posed in Olkin and Rachev
(1993). It is for n = 3 equivalent to

E(〈X,Y 〉+ 〈Y, Z〉+ 〈X, Z〉) = max! (4.39)

and thus includes cycles: some mass should be cycled around three places from 1) to 2) from
2) to 3) but then also back from 3) to 1) in an optimal way. Knott and Smith (1994) (in
the case n = 3) proposed the fruitful idea that “optimal coupling to the sum T =

∑n
i=1 Xi

should imply multivariate optimal coupling in the sense of (4.38) ”.
The reason for this conjecture is the equivalence of (4.38) with the problem

E

n∑

i=1

‖Xi − T‖2 = min
Xi

d
=Pi

! (4.40)
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In the case of multivariate normal distributions Pi = N(0, Σi), 1 ≤ i ≤ 3, this idea leads
then to the following algorithm: Let T

d= N(0, Σ0), Σ0 positive definite, and define

X = S1T, Y = S2T, Z = S3T (4.41)

the optimal 2-couplings with

Si = Σ1/2
i

(
Σ1/2

i Σ0Σ
1/2
i

)−1/2Σ1/2
i .

Then one needs that T = X + Y + Z = (S1 + S2 + S2)T and thus one needs the identity
S1 + S2 + S2 = I. This leads to the following nonlinear equation for Σ0:

3∑

i=1

(
Σ1/2

0 ΣiΣ
1/2
0

)1/2 = Σ0. (4.42)

As consequence of this idea one gets the following result:

If (4.42) has a positive definite solution Σ0, then X, Y , Z as defined in (4.41) are optimal
solutions of the 3-coupling problem (see Knott and Smith (1994)).

The natural iterative algorithm for the solution of (4.42) converges rapidly in d = 2 (as
reported in Knott and Smith (1994)) but in d = 3 it turns out that convergence depends
very sensitive on the initial conditions.

It was shown only in Rü and Uckelmann (2002) based on the uniqueness result for
optimal couplings that this idea of Knott and Smith is valid in the normal case (in particular
(4.42) has a solution) for any n ≥ 3.

For general distributions Pi however optimal coupling to the sum is not sufficient for
optimal n-coupling. There are some simple counter-examples. But a positive result is given
in Rü and Uckelmann (2002) saying that optimal coupling to the sum T , continuity of
PT ¿ λ\d and ‘maximality’ of the domain of PT imply optimal n-coupling.

The paper contains also a simple proof of the existence result of Gangbo and Świȩch
(1998) on Monge solutions (in the case without cycles) of the form

X = (X1,Φ2(X1), . . . , Φn(X1)) (4.43)

if Pi ¿ λ\d and gives a one-to-one equivalence of the n-coupling problem with several
modified 2-coupling problems.

5 A variant of the minimal `s-metric – application to
the analysis of algorithms

Many algorithms of recursive structure (divide and conquer type algorithms) allow to derive
limit theorems for their important parameters by the contraction method (see Rösler and
Rü (2001) and Neininger and Rü (2004)). The limits then are characterized by stochastic
fix point equations typically of the form

X
d=

K∑

i=1

(AiXi + bi) (5.1)
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where Xi are independent copies of X and where (Xi) and the random coefficients (Ai, bi)
are also independent.

For example: The path length Yn of the Quicksort algorithm satisfies the recursive
equation

Yn
d= InYIn

+ (n− In − 1)Y n−In−1 + (n− 1), (5.2)

where In is uniform on {0, . . . , n− 1} distributed and (Y n) are independent copies of (Yk).
The normalization Xn := Yn−EYn

n satisfies the recursive equation

Yn
d=

In

n
XIn

+
n− In + 1

n
Xn−In+1 + Cn(In) (5.3)

and leads to the limit equation

X
d= UX + (1− U)X + C(U), (5.4)

where the entropy function C(x) = x ln x + (1 − x) ln(1 − x) + 1 arises as the limit of Cn

and U
d= U [0, 1] as the limit of In

n . The contraction method then gives general conditions
which imply existence and uniqueness of solutions of (5.4) and convergence of Xn to this
solution.

The solution of (5.4) resp. (5.1) can be described as fixpoint of the operator

T : Ms → Ms, Tµ = L
( n∑

i=1

(AiXi + bi)
)

(5.5)

where (Xi) are iid and Xi
d= µ. Ms is the class of distributions with finite s-th moments. A

natural contraction condition is:

Ai, bi ∈ Ls,

K∑

i=1

E|Ai|s < 1. (5.6)

This has been shown to imply the fixpoint result for 0 ≤ s ≤ 1 and for s = 2 (with the
additional restriction of a fixed first moment). For 1 < s < 2 one has only an inequality of
the form

`s
s(Tµ, Tν) ≤ Ks

s

( K∑

i=1

E|Ai|s
)
`s
s(µ, ν) (5.7)

with some constant Ks > 1. This yields only an existence result for the fixpoint equation
(5.1) under restrictive conditions. To solve this problem a new modification of the minimal
`s-metric was introduced in Rü (2006). Define

`0s(µ, v) := inf{‖X − Y ‖s : X
d= µ, Y

d= ν, and X ≈ Y } (5.8)

Here X ≈ Y is defined by the conditions

E(X − Y ) = 0, E|X − Y |s < ∞. (5.9)

Note that condition (5.9) does not need that µ, ν ∈ Ms.
With this new variant of the minimal `s-metric which is defined by a modification of the

transportation problem one obtains the existence of fixpoints under the natural condition
(5.6) on the coefficients (see Rü (2006)).
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Theorem 5.1 If Ai, bi ∈ Ls, 1 ≤ s ≤ 2, E
∑K

i=1 |Ai|s < 1 and if for some µ0 ∈ M ,
`0s(µ0, Tµ0) < ∞, then there exists a unique solution of (5.1) in

M0
s (µ0) = {µ ∈ M ; `0s(µ, µ0) < ∞}. (5.10)

In the proof of this theorem it is shown that (M0
s (µ0), `0s) is a complete metric space and

with the help of weighted branching processes it is shown that some power Tn0 of T satisfies
a contraction condition on M0

s (µ0) w.r.t. the new variant `0s of the minimal `s-metric.
An interesting corollary of this result is an equivalence principle for homogeneous and

inhomogeneous stochastic equations.

Corollary 5.2 Under the assumptions of Theorem 5.1 there is a one-to-one relationship
between solutions of the homogeneous stochastic equation

X
d=

K∑

i=1

AiXi (5.11)

and the inhomogeneous stochastic equation

Y
d=

K∑

i=1

(AiYi + bi). (5.12)

More exactly: For any solution X of (5.11) there exists exactly one solution Y of (5.12)
with distribution µ ∈ M0

s (µ0), where µ0 = L(X) and conversely.

Thus the modification of the minimal `s-metric allows to investigate solutions of fixpoint
equations (5.1) without any moment conditions.
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Rachev, S. T. and L. Rüschendorf (1998a). Mass Transportation Problems. Vol. I: Theorey,.
Probability and its Applications. Springer.
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Rüschendorf, L. (1982). Random variables with maximum sums. Advances in Applied
Probability 14, 623–632.
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