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Abstract

In some recent work it has been shown how to solve optimal stopping problems
approximatively for independent sequences and also for some dependent sequences,
when the associated embedded point processes converge to a Poisson process. In
this paper we extend these results to the case where the limit is a Poisson cluster
process with random or with deterministic cluster. We develop a new method of
directly proving convergence of optimal stopping times, stopping curves, and values
and to identify the limiting stopping curve by a unique solution of some first order
differential equation. In the random cluster case one has to combine the optimal
stopping curve of the underlyinghiddenPoisson process with a statistical prediction
procedure for the maximal point in the cluster. We study in detail some finite and
infinite moving average processes.

1 Introduction
The theory of optimal stopping of independent and dependent sequencesX1, . . . , Xn is
a classical subject of probability theory which still has a lot of open problems and of new
applications as for instance in the context of exotic options in financial mathematics. In
some recent work a new approach has been developed in order to solve approximatively
optimal stopping problems for independent and for some types of dependent sequences
X1, . . . , Xn (see K̈uhne and R̈uschendorf (2000a, 2000b), in the following abbreviated
by KR). The basic assumption in this approach is the convergence of the imbedded planar
point process

Nn =
n∑

i=1

ε( i
n ,Xn,i) → N (1.1)

to some Poisson processN . HereXn,i = Xi−bn

an
is a normalization ofXi induced from

the central limit theorem for maxima. For the limiting Poisson processN , which has
accumulation points along a lower boundary curve, an optimal stopping problem in con-
tinuous time can be formulated. It is shown in KR (2000b) that the optimal solution
of this stopping problem for the Poisson process is given by a threshold stopping time
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where the threshold function is determined by a differential equation of first order. This
is in analogy to stopping problems for diffusion processes which typically lead to free
boundary value problems with differential equations of second order for the stopping
curve (Stefan free boundary problem). The differential equations for the optimal thresh-
old function in the Poisson case can be solved in several cases explicitely or numerically.
Furthermore, it has been shown in KR (2000a, 2000b) that some further uniform integra-
bility and separation conditions, a differentiability condition of the intensity measure of
N as well as an asymptotic independence condition in the dependent case ensure, that the
optimal stopping problem forX1, . . . , Xn can be approximated by the optimal stopping
problem for the limiting Poisson process.

This approach has been applied to obtain approximative solutions to a large class of
stopping problems of iid sequences with observation costs and/or with discount factors
(see KR (2000b)). It also has been applied to independent (non iid) sequences (KR
(2000d)), to the optimal stopping of some types of moving average processes, to hidden
Markov chains and to max-autoregressive sequences (KR (2000a, 2000b)) as well as to
best choice problems (KR (2000c)) and to optimal two stopping problems, where one
is allowed to stop two times and to choose the best of both values (KR (1999)). It is
clear from these examples that the approach should also be applicable to further related
stopping problems as for example tom-stopping problems. It is of particular interest that
in this way one not only gets structural results for these stopping problems but typically
one gets explicit (approximative) optimal stopping values, optimal stopping times and in
some cases even optimal stopping distributions.

In this paper we develop an extension of the optimal stopping approach as described
above to the case where the limiting process is a Poisson cluster process. In contrast to
the previous approach we do not in the first step solve the optimal stopping problem for
the limiting Poisson cluster process and then in a second step establish an approximation
property for the optimal stopping problem ofX1, . . . , Xn as in the Poisson process case.

In contrast we directly identify any limiting curveu of the finite optimal stopping
curves as unique solution of a differential equation which can be solved in explicit form.
This implies in particular convergence of the optimal stopping curves. We also construct
explicitly an asymptotically optimal stopping sequence. In the Poisson cluster process
case one cannot directly infer from the limiting stopping problem asymptotically optimal
stopping sequences since in the limit one looses the time structure for the points in the
cluster.

We consider in detail the optimal stopping of moving average sequences. In section 2
we deal with some examples which lead to a limiting Poisson cluster process with a ran-
dom cluster. In detail we discuss the example whereXi = Yi + Yi−1 for an iid sequence
(Yi). For some type of distribution in the domain of attraction of the extreme value dis-
tribution Λ(x) = e−e−x

, x ∈ R1, it was shown in Davis and Resnick (1988) that the
point processNn in (1.1) converges to a Poisson cluster process with random clusters of
size 2. We then relate the optimal stopping curve for the(Xi) to that of the underlying
Poisson process in the limit and we use the cluster structure to determine an asymptot-
ically optimal stopping sequence by a statistical prediction argument for estimating the
maximal point in the cluster. We also obtain approximatively the optimal stopping value
in explicit form. The method of proof can be extended to more general random cluster
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cases as long as one can construct similar predictions.
In section 3 we consider infinite moving average sequences with polynomial tails,

where the underlying distributionF is in the domain of attraction –F ∈ D(Φα) –
of the extreme valueΦα(x) = e−xα

, x > 0. The proof of the main theorem in this
case can be based upon similar ideas as in the limiting Poisson process case together
with an identification procedure for the maximal cluster points which is simpler than the
prediction rule in the random cluster case.

It seems possible to extend the methods for optimal stopping of dependent sequences
as introduced in this paper as well as in KR (2000a, 2000b) to further interesting classes
of dependent sequences which exhibit a similar limiting structure. For further examples
we refer to the thesis of K̈uhne (1997) on which this paper is based.

2 Optimal stopping in the random cluster case

For finite or infinite moving average processes of the formXi =
∑k

j=1 cjYi−j (resp.∑∞
j=1 cjYi−j) where(Yi) are iid with df F in the domain of attraction of an extreme

value distributionΛ(x) = e−e−x

, Φα(x) = e−x−α

, x ≥ 0 resp. Ψα(x) = e−(−x)α

,
x < 0 there has been developed an extensive literature on extreme value theory and
related point process convergence (see Durrett and Resnick (1978), Davis and Resnick
(1988), Davis and Resnick (1991), Resnick (1987), or Rootzen (1986)). Under various
conditions it is established in these papers that the embedded point process

Nn =
n∑

i=1

ε� i
n ,

Xi−bn
an

� → N (2.1)

converges in distribution to some Poisson process or some Poisson cluster process with
random or with deterministic cluster. In KR (2000a, 2000b) it has been shown how to
use this point process convergence in order to solve approximatively the related optimal
stopping problem forX1, . . . , Xn in the case thatN is a Poisson process. In this section
we consider the more involved case of Poisson random cluster processes. In contrast to
the previous approach we will not solve in the first step a related stopping problem for
the limiting cluster processN and then prove in a second step convergence of the opti-
mal stopping times and values. Instead we use several achievements on convergence of
threshold stopping times etc. from KR (2000a, 2000b) and establish a direct approxima-
tion argument.

For the case whereF ∈ D(Λ) we use the following point process convergence result
from Davis and Resnick (1988). Define for a distribution functionF with right endpoint
of supportωF = ∞:

F ∈ Sr(γ) for someγ ≥ 0 if

lim
x→∞

1− F ∗ F (x)
1− F (x)

= d ∈ (0,∞)

and lim
x→∞

1− F (x− y)
1− F (x)

= eγy, y ∈ R1.

(2.2)
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Sr(0) contains the log normal distribution as well as e.g. the distribution with1−F (x) =
e
− x

(log x)2 , x > 1, α > 0. More generally suppose that1 − Fα,p(x) ∼ Kxαe−xp

,
p > 0, α ∈ R asx → ∞. Then forp = 1 andα < −1 holdsF = Fα,p ∈ Sr(1) while
for p ∈ (0, 1) holdsF ∈ Sr(0) (see Durrett and Resnick (1978)).

Davis and Resnick (1988, Prop. 3.1) and Rootzen (1986) have established interesting
results in this framework with convergence in (2.1) to a Poisson process. These results
have been used in KR (2000a) for related optimal stopping problems. We shall next
consider in detail the following special case leading to a random cluster process.

LetF ∈ D(Λ)∩Sr(1) with left endpoint of supportαF = 0 and consider the moving
average processXi = Yi + Yi−1, i ≥ 1 then by Davis and Resnick (1988)

Nn =
n∑

i=1

ε( i
n ,Xi−an) → N =

∞∑

k=1

2∑

i=1

ε(τk,yk+Zi
k) (2.3)

whereN ′ =
∑

ε(τk,yk) is the corresponding underlying Poisson process such that the
normalized embedded(Yi) processN ′

n with additive normalizations(an) converges to
N ′,

N ′
n =

∑
ε( i

n ,Yi−an) → N ′ (2.4)

and(Zi
k)i=1,2 are independent and independent of(yk) with Zi

k
d= Y1. So we obtain

random clusters of size 2. For the optimal stopping ofN ′ the threshold stopping time
with critical function

uΛ(t) = log(1− t) (2.5)

has been shown to be optimal in KR (2000b). For the random cluster situation it turns out
that the optimal stopping curves for the finite stopping problem ofX1, . . . , Xn converge
to a curveu which is identical touΛ if modified by just a constant

a := log
∫

(e−xE((x + Y1) ∨ E(x + Y2)+))dx, (2.6)

u(t) = uΛ(t) + a. (2.7)

Define for random variablesZ1, Z2

Ef(Z1 + Ż2) =
∫

f(Z1 + x)dPZ2(x) (2.8)

i.e. the integral is taken w.r.t. the rv with a dot.
Let Tn denote the optimal stopping time ofX1, . . . , Xn and letcn → 0 satisfy

P (X1 ∧ · · · ∧ X√
n ≥ cn) → 0 assuming that the left endpoint of the support is zero,

αF = 0, and the right endpointωF = ∞. Furthermore, define

wn := F−1

(
1− ea

n

)
, and m̂n := min{j ≤ √

n : Xj = X1 ∧ . . . ∧X√
n}.
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From the structure ofXi = Yi + Yi−1 it is quite natural to use the alternating sum of the
lastm̂n alternating termsXj to predict the unobservedYi.

Ŷi := Xi −Xi−1 + Xi−2 − . . .±Xbmn∧(i−1). (2.9)

Ŷi predicts the unobservedYi.
For the following theorem we define for0 < ε < 1 stopping times

T ε
n = min{T ε

n,1; T
ε
n,2} (2.10)

where

T ε
n,1 := min {i > n− [nε]; Xbmn

> cn, Xi ≥ wn−i} ,

T ε
n,2 := min

{
i :
√

n < i ≤ n− [nε], Xbmn
≤ cn and

[(
Ŷi > Ŷi−1 andXi − an

≥ E

((
Ŷi − an + Ż1

1

)
∨ u

(
i

n

)))
or

(
Ŷi ≤ Ŷi−1 andXi − an ≥ u

(
i

n

))]}
.

Remark 2.1 The heuristic for the construction ofT ε
n is the following. In the Poisson

cluster process points appear pairwise. If one reaches for someXi− an approximatively
the first point of alargecluster then one has to compare it with the expected value of the
second point i.e. withE((Yi − an + Żi

1) ∨ u( i
n )). SinceYi is not observed one has to

estimate this quantity by replacingYi by the predictor̂Yi. For i > n− [nε] we stop by a
different simple threshold rule in order to guarantee uniform integrability of the stopped
variables.

Theorem 2.2 (Optimal stopping ofYi−1 + Yi) Assume thatF ∈ D(Λ) ∩ Sr(1) and
αF = 0, ωF = ∞. For the optimal stopping ofXi = Yi−1 +Yi and the optimal stopping
timesTn for X1, . . . , Xn we obtain

1. EXTn − an → a

2. limε→0 limn→∞(EXT ε
n
− an) = a

i.e.T ε
n is an asymptotically optimal double sequence of stopping times.

Proof: In the first part of the proof we consider the modified stopping problem w.r.t. the
enriched filtrationFe

i = σ(Y0, . . . , Yi). We make use of several arguments and notations
of the proof of Theorem 2.2 in KR (2000a), but since the limiting point process in (2.2)
is a Poisson cluster process (with random cluster) we have to choose a new strategy of
proof. For the preparation of the proof we first establish two conditions.

SinceX1, X3, . . . are iid withFX1 ∈ D(Λ) we obtain that the following lower curve
condition (L) holds:

Condition (L) lim inf
n→∞

Eγn,[nt] > −∞, ∀t < 1 (2.11)
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whereγn,k = ess sup{E(Xτ |Fe
k), k≤τ≤n} is the optimal stopping value after timek.

Since{X2k−1, k ∈ N}, {X2k; k ∈ N} both are iid withFXi
∈ D(Λ), the normalized

maxima of both sequences are uniformly integrable and therefore this holds also for the
normalized maxima of the whole sequence: i.e., we obtain that the uniform integrability
condition (G) holds:

Condition (G) {(Mn − an)+, n ∈ N} is uniformly integrable.

The next step of the proof is essential. We establish directly a weak subsequence
compactness of the normalized stopping timesTn/n and the normalized stopping values
XTn − an. SinceXn+2, . . . andFe

n are independent we obtain

E(γn,[nt+2]|Fe
[nt]) = Eγn,[nt+2] =: un,[nt+2] (2.12)

is the optimal stopping value after time[nt + 2]. There exists by condition(L) a
subsequence(n′) ⊂ N such that for allt ∈ [0, 1) un,[nt+2] − an → u(t) for some limit
functionu; w.l.g. let (n′) = N. Finally using the methods in Davis and Resnick (1988)
and Resnick (1987, p. 144) (see also KR (2000b)) we may assume that for some version
of the process a.s. convergence of the points holds i.e. for somemj

n,k = mj
n,k(ω), j =

1, 2, k = 1, . . . , n, . . . holds P a.s.

(
mj

n,k

n , Xmj
n,k
− an

)
→

(
τk, yk + Zj

k

)
. Here

m1
n,i + 1 = m2

n,i, and we even obtain

(
mj

n,k

n
,Xmj

n,k
− an, Ym1

n,k
− an

)
→

(
τk, yk + Zj

k, yk

)
, (2.13)

andYm1
n,k+1 − an → −∞, Ym1

n,k−1 − an → −∞.

Step 1: In the first main step of this part of the proof we consider an analogueT̃n of T ε
n in

the enriched framework and establish convergence of
( eTn

n , XeTn
− an

)
to some limiting

stopping time and value(T, ŷKT ) defined in terms of the limiting process.
Define

T̃n := inf

{
i :

(
Xi − an > u

(
i

n

)
, i ∈ {m2

n,k}k∈N

)
or (2.14)

(
Xi − an > E

((
Yi − an + Ż1

1

)
∨ u

(
i

n

))
, i ∈ {m1

n,k}k∈N

)}
.

It is easy to see that no stopping point lies on the curveu. FirstP (yk +Z2
k = u(τk)) = 0

since
∑

k ε(τk,yk+Z2
k) is a Poisson process with intensityλ[0,1] ⊗ ν1 with ν1[x,∞) =∫

e−(x−z)PZ2
k(dz). SecondP (yk+Z1

k ≥E((yk+Ż1
1 )∨u(τk))) = 0 since

∑
kε(τk,yk+Z1

k)

is a Poisson process with Lebesgue continuous intensity. Furtherf(y) = E((y + Ż1
1 ) ∨

u(τk)) is continuous, monotonically nondecreasing andy1 > y2 impliesf(y1)−f(y2) >
y1 − y2. Therefore,f(y) = y holds for at most oney ∈ R.
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With T̃ 2
n := inf{i : Xi − an > u

(
i
n

)
, i ∈ {m2

n,k}k} we have convergence of( eT 2
n

n , XeT 2
n
− an

)
by KR (2000b, Proposition 2.4) on convergence of threshold stopping

times. Similarly also convergence holds forT̃ 1
n := inf

{
i : Xi−an > E

(
(Yi−an + Ż1

1 )

∨u
(

i
n

))
, i ∈ {m1

n,k}k

}
since the right side of the inequality is continuous inYi and

u
(

i
n

)
. Further theYi converge along{m1

n,k}k by (2.13). DefineT = inf{τk : yk+Z2
k >

u(t) or yk + Z1
k > E((yk + Ż1

1 ) ∨ u(t))} andŷKT the corresponding stopping value at
the stopping index induced byT , k = KT :

ŷKT :=





yk + Z1
k if yk + Z1

k > E((yk + Ż1
1 ) ∨ u(τk))

yk + Z2
k if yk + Z2

k > u(τk)

Then usingT̃n = T̃ 1
n ∧ T̃ 2

n we obtain
(

T̃n

n
, XeTn

− an

)
→ (T, ŷKT ). (2.15)

and as in KR (2000b) we see thatP (T < 1) = 1.

Step 2:We next investigate the asymptotics of the optimal stopping curves ofX1, ..., Xn

and prove that asymptoticallỹTn approximates the optimal stopping timesTn in the sense
that

P (Tn 6= T̃n) → 0. (2.16)

For the proof of convergence of the optimal stopping curves we first observe that

E
(
γn,eTn+1 | FeeTn

)
= E

(
XeTn+1 ∨ E

(
γn,eTn+2 | FeeTn+1

)
| FeeTn

)

= E
(
E

(
γn,eTn+2 | FeeTn+1

)
| FeeTn

)

+ E

(
E

(
XeTn+1 − E

(
γn,eTn+2 | FeeTn+1

))
+
| FeeTn

)

≥ E
(
γn,eTn+2|FeeTn

)
= un,eTn+2. (2.17)

Next we state that

E
(
XeTn+1 − E

(
γn,eTn+2 | FeTn+1

))
+

1l{eTn∈{m2
n,k}k,eTn≤n−[nε]} → 0.

For the proof note that
(
XeTn+1 − an

)
1l{bTn∈{m2

n,k}}
P−→ −∞. Further

{(
XeTn+1−an

)

1l{eTn∈{m2
n,k}}; n ∈ N

}
is uniformly integrable by condition (G),E

(
γn,eTn+2 | FeeTn+1

)

≥ E(γn,eTn+3 | FeeTn+1
) = un,eTn+3, and(un,eTn+3 − an) 1l{ eTn+3

n ≤1−ε} is bounded from

below∀ε > 0 as
eTn

n → T andP (T < 1) = 1. This implies

E

((
XeTn+1 − E

(
γn,eTn+2 | FeeTn+1

))
+

1l{eTn∈{m2
n,k}} | F

eeTn

)
→ 0
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From (2.17) we obtain
(
E

(
γn,eTn+1|FeeTn

)
− Eγn,eTn+2

)
1l{eTn∈{m2

n,k}}
P→ 0

and therefore
(
E

(
γn,eTn+1 | FeeTn

)
− an − Eu

( eTn+2
n

))
1l{eTn∈{m2

n,k}}
P→ 0. (2.18)

Similarly we obtain for the stopping curves oñTn ∈ {m1
n,k}

E
(
γn,eTn+1 | FeeTn

)

= E
(
XeTn+1 ∨ E

(
γn,eTn+2 | FeeTn+1

)
| FeeTn

)

= E
(
XeTn+1 ∨ E

(
XeTn+2 ∨ E

(
γn,eTn+3 | FeeTn+2

)
| FeTn+1

)
| FeeTn

)

≥ E
(
XeTn+1 ∨ E

(
E

(
γn,eTn+3 | FeeTn+2

)
| FeeTn+1

)
|FeeTn

)

= E
(
XeTn+1 ∨ E

(
γn,eTn+3 | FeeTn+1

)
| FeeTn

)

= E
(
XeTn+1 ∨ Eγn,eTn+3 | FeeTn

)

= E
((

YeTn
+ YeTn+1

)
∨ Eγn,eTn+3 | Y0, . . . , YeTn

)

= E
((

YeTn
+ ẎeTn+1

)
∨ EγeTn+3

)
.

Arguing as above this implies
(
E

(
XeTn+1 ∨ E

(
XeTn+2 ∨ E

(
γn,eTn+3 | FeeTn+2

)
| FeeTn+1

)
| FeeTn

)

− E
(
XeTn+1 ∨ E

(
E

(
γn,eTn+3 | FeeTn+2

)
| FeeTn+1

)
| FeeTn

))
1l{eTn∈{m1

n,k}}
P→ 0.

Thus

(
E

(
γn,eTn+1 − an|FeeTn

)
− E

((
YeTn

+ ẎeTn+1 − an

)
∨ u

(eTn+3
n

)))
1l{eTn∈{m1

n,k}}
P→ 0.

(2.19)

The asymptotic equivalence of the optimal stopping curve and the stopping curve ofT̃n

in (2.18), (2.19) implies as in the prove in KR(2000a, (2.19))P (Tn 6= T̃n) → 0, i.e.,
(2.16).

As consequence of (2.15) and (2.16) we conclude convergence of the normalized
optimal stopping time and value

(
Tn

n
,XTn − an

)
→ (T, ŷKT ). (2.20)
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Finally from conditions (G), (L) we obtain as in the proof in KR (2000b, Theorems
4.3–4.5, (4.34)) (see also KR (2000a, (2.12)))

Eŷ
KT≥t = lim

n′→∞
EX

T
≥[n′t]
n′

− an′ = u(t). (2.21)

HereKT≥t, T
≥[n′t]
n′ are the threshold stopping times and stopping index restricted to

the time domain≥ t resp. ≥ [n′t]. Thus we obtain along the subsequence(n′) the
asymptotics of the optimal stopping times and values (see (2.20), (2.15)).

Step 3: The second main part of the proof is to identify the limit pointu as the unique
solution of a first order differential equation. This part then implies convergence of the
optimal stopping sequence as in (2.20), (2.21) along the whole sequenceN.

The argument for this step is an extension of the proof of the corresponding result for
Poisson processes in KR (2000b, proof of Theorem 2.5). We first have to determine the
distribution of the limiting Poisson cluster process in (2.2). To that purpose we introduce
a distributional version of the limiting cluster point process of points above the threshold
as in the definition ofT (resp. (2.15)). LetN1 =

∑
k ετ1

k
be a Poisson process with

intensity measureµ1, where

µ1(ds) =
∫

e−yP (y + Y2 ≥ u(s) or y + Y1 ≥ E((y + Y2) ∨ u(s))) dy ds. (2.22)

Let y1
i , i ∈ N be conditionally independent givenN1 with

P (y1
i ∈ dy|τ1

i = s)

=
e−yP (y + Y2 ≥ u(s) or y + Y1 ≥ E((y + Y2) ∨ u(s)))

∫
e−yP (y + Y2 ≥ u(s) or y + Y1 ≥ E((y + Y2) ∨ u(s))) dy

. (2.23)

Let further(z1
i , z2

i ) be rv’s conditionally independent givenN1 andy1
i , i ∈ N such that

P ((z1
i , z2

i ) ∈ · | N1) (2.24)

= P ((Y1, Y2) ∈ · | y1
i + Y2 ≥ u(τ1

i ) or y1
i + Y1 ≥ E((y1

i + Ẏ2) ∨ u(τ1
i ))).

Then
∑

i ε(τ1
i ,y1

i +z1
i ,y1

i +z2
i ) is a Poisson process and

∑

i

ε(τ1
i ,y1

i +z1
i ,y1

i +z2
i )

d=
∑

k;yk+Z2
k≥u(τk) or

yk+Z1
k≥E((yk+Ż1

1 )∨u(τk))

ε(τk,yk+Z1
k,yk+Z2

k). (2.25)

To prove (2.25) we first establish finiteness ofµ1 which implies a.s. finiteness of the
number of points above the threshold. Letµ4 := λ[0,1] ⊗ ν ⊗ PY1 ⊗ PY1 , let M ⊂ R4

be defined by

M := {(t, y, z1, z2) : y + z2 ≥ u(t) or y + z1 ≥ E((y + Z1
1 ) ∨ u(t))}
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and defineµu
4 := µ4(· ∩M) the restriction ofµ4 onM .

Then the projection(µu
4 )π1([0, t]) < ∞, ∀t < 1. To see this we introduce

M ′ := {(t, y, z1, z2) : y + z2 ≥ u(t) or y + z1 ≥ u(t)}
= {(t, y, z1, z2) : y + z2 ∨ z1 ≥ u(t)}.

ThenM ⊂ M ′ and
∑

k:yk+Z1
k∨Z2

k≥u(τk) ετk,yk+Z1
k∨Z2

k
is by Davis and Resnick (1988) a

Poisson process with intensityµ′ = λ[0,1] × ν′(· ∩ (π1, π2)(M ′)) whereν′[x,∞) =∫
e−(x−z)PZ1

k∨Z2
k(dz). Thus N(· ∩ M ′) is a Poisson process with intensityµ′ and

(µ′)π1([0, t]) < ∞ for all t < 1 and thus finiteness follows for(µu
4 )π1 . Defineµ2

on [0, 1] × R by

µ2(dt, dy) = e−yP (y + Y2 ≥ u(t) or y + Y1 ≥ E(Y2 ∨ u(t))) dt dy.

Then we obtain by direct calculationµ2 = (µu
4 )(π1,π2) and from the definition ofµ2 it

follows thatµ1 = (µu
4 )π1 . In particularµ1 defined above is finite,µ1([0, t] < ∞, ∀t < 1.

As consequence of the finiteness ofµ1 we can assume w.l.g. thatτ1
1 < τ1

2 < . . .
are ordered and thatT = τ1

1 a.s. Further as in KR (2000b, proof of Theorem 2.5) one
finds thatN2 =

∑
k ε(τ1

k ,y1
k) is a Poisson process with intensityµ2 and by an argument

as above applied toN2 andzj
i one obtains the equality in (2.25).

To establish the differential equation foru we introduceh(x, y) := E((x + Y1) ∨
E((x + Y2) ∨ y)− y). Thenh(x + z, y + z) = h(x, y), and thus

∫
e−xh(x, y) dx =

∫
e−xh(x− y, 0) dx

=
∫

e−(x+y)h(x, 0) dx

= e−y

∫
e−xh(x, 0) dx

= e−yea. (2.26)

The following identity will turn out to be useful. Let for random variablesWi, V ((Wi))
denote the optimal stopping value for(Wi), then

E
(
(y + Y1)1l{y+Y1≥E((y+Ẏ2)∨u(s))} + (y + Y2)1l{y+Y1<E((yk+Ẏ2)∨u(s))} − u(s)

)
+

= E
(
(y + Y1︸ ︷︷ ︸

=:W1

)1l{y+Y1≥E((y+Y2)∨u(s))}

+ ((y + Y2) ∨ u(s)︸ ︷︷ ︸
=:W2

)1l{y+Y1<E((yk+Ẏ2)∨u(s))}
)
− u(s)

= EWS − u(s) whereS := inf{i ∈ {1, 2} : Wi ≥ E((y + Y2) ∨ u(s))}
= V (W1,W2)− u(s) = V (y + Y1, (y + Y2) ∨ u(s))− u(s)

asS is the optimal stopping time ofW1,W2

= E((y + Y1) ∨ E((y + Y2) ∨ u(s))− u(s)).
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Let T := T≥t = τinf{i:τi≥t} denote the first stopping point ofT after timet and letyKT

denote the value of the(yk) at the corresponding stopping indexKτ . Then we obtain
using the previously established identities and the distributional properties of the point
process

u(t)= EŷKT

=
∫ 1

t

∫
E(ŷKT |T = s, yKT = y)dP yKT ,T (y, s)

=
∫ 1

t

(
u(s) +

∫
E((yKT + z1

1)1l{yKT +z1
1≥E((yKT +ż2

k)∨u(T ))}

+ (yKT + z2
k)1l{yKT +z1

k<E((yKT +ż2
k)∨u(T ))}

− u(s)|T = s, yKT = y)dP yKT |T =s(y)
)

dP T (s)

(2.24)
=

∫ 1

t

(
u(s) +

∫
E

(
(y + Y1)1l{y+Y1≥E((y+Ẏ2)∨u(s))}

+ (y + Y2)1l{y+Y1<E((y+Ẏ2)∨u(s))}

− u(s) | y + Y2 ≥ u(s) or y + Y1 ≥ E((y + Ẏ2) ∨ u(s))
)

dP yKT |T =s(y)
)

dP T (s)

=
∫ 1

t

(
u(s)+

∫
E((y+Y1)1l{y+Y1≥E((y+Ẏ2)∨u(s))}+(y+Y2)1l{y+Y1<E((yk+Ẏ2)∨u(s))}−u(s))+

P (y+Y2≥u(s) or y+Y1≥E((y+Ẏ2)∨u(s)))

dP yKT |T=s(y)
)

dP T (s)

(2.23),
(2.22),(2.25)

=
∫ 1

t

(
u(s) +

∫
E((y + Y1) ∨ E((y + Y2) ∨ u(s))− u(s))

P (y + Y2 ≥ u(s) or y + Y1 ≥ E((y + Ẏ2) ∨ u(s)))

· e−yP (y + Y2 ≥ u(s) ∨ y + Y1 ≥ E((y + Ẏ2) ∨ u(s))
dµ1
dλ (s)

)
dP T (s)

=
∫ 1

t

(
u(s) +

∫
e−y E((y + Y1) ∨ E((y + Ẏ2) ∨ u(s))− u(s))

dµ1
dλ (s)

dy

)
dP T(s)

(2.22)
=

∫ 1

t

(
u(s) +

∫
e−y h(y, u(s))

dµ1
dλ (s)

dy

)
dµ1

dλ
(s)e−(µ1([0,s])−µ([0,t]))ds

(2.26)
=

∫ 1

t

(
u(s) +

e−u(s)ea

dµ1
dλ (s)

)
dµ1

dλ
(s)e−(µ1([0,s])−µ1([0,t]))ds.

By differentiation w.r.t.t we obtain as in KR (2000b, proof of Theorem 2.5)

u′(t) = −ea−u(t), u(1) = −∞. (2.27)

This differential equation has by Proposition 2.6 in KR (2000b) the unique solution
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u(t) = a + log(1− t). Since this holds for any limit of a convergent subsequence there
exists a unique limit point of(un) given in (2.27) and thusun converges tou, un → u.

Step 4: In the previous parts of the proof we considered stopping w.r.t. the filtrationFe
n

generated by theYi. In the final step we show that theYi can be estimated by theXi

to a sufficient precise order so that one can use the canonical filtration(Fn) to obtain
approximatively the same stopping behavior. Here we need the assumptionαF = 0, i.e.,
the left endpoint of the support ofF is zero. Note that forj < i

Yi =

{
Xi −Xi−1 + Xi−2 − · · ·+ Xj − Yj−1 if i− j = 0 mod 2

Xi −Xi−1 + Xi−2 − · · · −Xj + Yj−1 if i− j = 1 mod 2,

in particular ifm̂n < i

Yi = Xi −Xi−1 + Xi−2 − · · · ±Xbmn+1 ∓ Ybmn
. (2.28)

By assumptionP (X1 ∧ · · · ∧X√
n ≥ cn) → 0 for some sequencecn → 0. As αF = 0

andXbmn
≥ Ybmn

≥ 0, we obtainYbmn

P→ 0. Therefore, from (2.28) we conclude that

sup√
n<i≤n

{|Yi − Ŷi|} P→ 0, (2.29)

i.e., Ŷi uniformly in
√

n ≤ i ≤ n estimatesYi. We next definẽT ′n by plugging inŶi for
Yi in the definition ofT̃n. The conditionsi ∈ {mj

n,k} for j = 1, 2 are replaced by the

conditionsŶi > Ŷi−1 resp. Ŷi ≤ Ŷi−1, which by (2.13) and (2.29) are asymptotically
equivalent. Formally,

T̃ ′n := inf
{

i :
(

Ŷi > Ŷi−1, Xi − an ≥ E

((
Ŷi − an + Ż1

1

)
∨ u

(
i

n

)))

or

(
Ŷi ≤ Ŷi−1, Xi − an ≥ u

(
i

n

))}
.

The asymptotic equivalence of the stopping thresholds impliesP (T̃ ′n = T̃n) → 1. There-
fore, by (2.16)

P (T̃ ′n = Tn) → 1. (2.30)

By definition ofT ε
n andT̃ ′n

T ε
n
/
{√n<eT ′n≤n(1−ε),Xcmn≤cn}

= T̃ ′n/
{√n<eT ′n≤n(1−ε),Xcmn≤cn}

.

Combining the convergence of the stopped variables, in (2.15), (2.20), (2.21) with (2.30)
and usinglimε→0 lim supn→∞E(XT ε

n
− an)−1l{T ε

n>n(1−ε)} → 0 we obtain finally
limε→0 limu→∞(EXT ε

n
− an) = a. 2
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Remark 2.3 1.) The proof of Theorem 2.2 also implies convergence in distribution of(
Tn

n , XTn
− an

)
. It seems however difficult to calculate the distribution of the stopped

variables in the limiting process.

2.) In KR (2000a, 2000b) the essential idea was to solve the optimal stopping problem
for the limiting process. Using this solution it was possible to introduce some finite
stopping rulesT ′n which yield asymptotically the optimal stopping value for the limiting
problem. Then it was possible to establish that the optimal stopping value of the limiting
problem is asymptotically an upper bound for the finite stopping problem and thusT ′n is
asymptotically optimal.

In our present proof we use a weak compactness argument and the convergence of
threshold stopping times for the optimal stopping sequence to obtain asymptotic equiva-
lence of the optimal stopping sequence with a simple threshold stopping sequence whose
definition depends on a special weak limit pointu of the optimal threshold sequence
(un) (cp. (2.14)). Then in a second step we identify the weak limit points by a differen-
tial equation and thus in particular get uniqueness and convergence of(un). Finally by
a prediction procedure we can extend this result to the natural filtrationFn (instead of
Fe

n).

As mentioned in the introduction the method of proof of Theorem 2.2 works for more
general moving average sequences. The essential point is to find consistent predictors of
the Yi. To consider a concrete example letb ∈ (0, 1) and let(Yi)i≥−2 be iid random
variables with dfF ∈D(Λ)∩Sr(1), αF = 0 and consider the MA-sequence of length 3.

Xi = Yi + bYi−1 + Yi−2, i ∈ N. (2.31)

Define the analogue to the constanta in Theorem 2.2:

a∗ := log
∫ (

e−xE ((x + bY1 + Y2) ∨ E(x + bY3 + Y4)+)
)
dx. (2.32)

Let cn > 0 be a sequence withcn → 0 and

P ((X1 ∨X2) ∧ · · · ∧ (X√
n ∨X√

n−1) ≥ cn) → 0.

Defineu := uΛ+a∗ andwn := F−1
(
1− ea∗

n

)
, whereuΛ(t) = log(1−t) is the optimal

stopping curve for the Poisson process in the corresponding iid case withF ∈ D(Λ)
(see KR (2000b, Theorem 4.3)). Further we introducem̂n := min{2 ≤ i ≤ √

n :
Xi ∨Xi−1 =

∧√
n

j=2(Xj ∨Xj−1)} , ai := (0 1)Mi−1
(

0
1

)
, i ≥ 1, withM :=

(
0
1
−1
−b

)
,

and the predictor̂Yi :=
∑i

`=i−bmn+1 X` ai−`+1 of the Yi. Finally we introduce the
analogue of the stopping times in (2.10)

T ε
n = min{T ε

n,1, T
ε
n,2} (2.33)
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with

T ε
n,1 = inf

{
i : (i > n− [nε]; Xbmn

> cn, Xi ≥ wn−i)
}

T ε
n,2 = inf

{
i :
√

n < i ≤ n− [nε], Xbmn
≤ cn, and

[
Ŷi > Ŷi−2, andXi − an

≥ E

(
(Ŷi − an + Ż1

1 + bŻ1
2 ) ∨ u

(
i

n

))]
or

[
Ŷi ≤ Ŷi−2, andXi − an ≥ u

(
i

n

)]}
.

Then we obtain the following analog to Theorem 2.2.

Theorem 2.4 LetF , (Xi), (cn) be as in (2.31), (2.32) then

EXTn
− an → a∗

and(T ε
n) is an asymptotically optimal double sequence of stopping times, i.e.

lim
ε→0

lim
n→∞

(EXT ε
n
− an) = a∗.

Proof: For the proof we can repeat the steps of the proof of Theorem 2.2. It remains to
establish that the estimateŝYi uniformly approximate theYi, i.e.

sup√
n<i≤n

{|Yi − Ŷi|} P→ 0. (2.34)

To that purpose we obtain by induction that theYi satisfy

Yi = (0 1)Mj

(
Yi−j−1

Yi−j−2

)
+

i∑

`=i−j+1

X` ai−`+1, 1 ≤ j ≤ n.

In particular

Yi = (0 1)Mi−bmn−1

(
Ybmn

Ybmn−1

)
+

i∑

`=bmn

X` ai−`+1. (2.35)

The minimal polynomialm of M is given by

m(x) = Det

((
0 − 1
1 − b

)
−

(
x 0
0 x

))
= x2 + bx + 1,

with rootsx1,2
0 = − b

2−
√

b2

4 − 1, both of norm1. Therefore,{Mj : j ∈ N} is bounded.
From the definition ofcn andm̂n we conclude that

Ybmn
∨ Ybmn−1

P→ 0. This implies asn →∞
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sup√
n<i≤n

{
(0 1)Mi−bmn−1

(
Ybmn

Ybmn−1

)}
P→ 0.

From (2.35) and the definition of̂Yi we obtain (2.34). 2

The construction of similar uniformly consistent predictions should be feasible for
much more general sequences.

3 Deterministic infinite cluster case
For infinite moving average processes with polynomial tails the following point process
result was proved in Resnick (1987). Let(Yi) be iid with dfF , letα > 1, cj ∈ R, j ∈ N,
where somecj 6= 0. Let c1 6= 0 and

∑∞
j=1 |cj |δ < ∞ for some0 < δ < α ∧ 1. We

introduce the following conditions:

A1) F ∈ D(Φα) and allcj ≥ 0

A2) F (0− ·) ∈ D(Φα) and allcj ≤ 0

A3) P (|Y1| > x) ∈ RV−α, i.e. P (|Y1| > x) is of regular variation of order−α.
Further the limitlimx→∞

P (Y1>x)
P (|Y1|>x) =: p exists, where somecj > 0 in casep = 1

and somecj < 0 in casep = 0.

In this section we consider the infinite moving average process

Xi :=
∞∑

j=1

cjYi−j+1, i ∈ N. (3.1)

Then for the imbedded point processes convergence in distribution holds on[0, 1]×(0,∞]
to a deterministic infinite cluster processN :

Nn =
n∑

i=1

ε( i
n ,

Xi
an

) → N =
∞∑

k=1

∞∑

i=1

ε(τk,ciyk). (3.2)

HereN ′ =
∑∞

i=1 ε(τi,yi) is an underlying Poisson process with intensityµ = λ\[0,1]⊗ ν,
ν([x,∞]) = x−α and(an) is the normalization of the limit law of the maximaMn =
Y1 ∨ · · · ∨ Yn (see Resnick (1987, chap. 4.5)).

In comparison to section 2 we have infinite deterministic clusters. For the construc-
tion of optimal stopping curves the idea is to wait after appearance of the first point of a
large cluster until the point with the biggest coefficient is observed and then to compare
it with the stopping curve. No additional estimation step is necessary compared to the
random cluster case. Denote byu = uΦ

α the asymptotically optimal stopping curve for
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the iid sequenceY1, . . . , Yn resp. the exact optimal curve for the Poisson processN ′

above given by

uΦ
α(t) =

(
α

α2 − 1

) 1
α (

1− t1+α
) 1

α (3.3)

(see KR (2000b, Theorem 4.4)).Tn denotes as in the first part the optimal stopping time
for the stopping ofX1, . . . , Xn.

Theorem 3.1 Consider the moving average processXi =
∑∞

j=1 cjYi−j+1 as in (3.1):
a) Under conditions A1) or A2) and assuming w.l.g.supi |ci| = 1 we define

m := inf{i : ci = supj{|cj |}}, w := sup{i : |ci| ≥ |c1|}

and the stopping time

T ′n := inf
{

i ≥ w + 1 : Xi ≥ an
c1

cm
uΦ

α

(
i

n

)
and

Xi−1 ∨ · · · ∨Xi−w <
1
2
an

c1

cm
uΦ

α

(
i

n

)}
+ m− 1.

b) Under condition A3) we define

ms := inf{i : ci = supj{cj}}, m` := inf{i : ci = infj{cj}}, and

i+ := inf{i : ci > 0}, i− := inf{i : ci < 0}, c∞ := 0.

We assume w.l.g.p(cms)
1
2
+ + (1− p)(−cm`

)
1
2
+ = 1 and we define the stopping time

T ′n = min{T 1
n , T 2

n} (3.4)

where T 1
n := inf

{
i : Xi ≥ an

(ci)+
(cms)+

uΦ
α

(
i

n

)
andXi−1 ∨ · · · ∨Xi−ms

<
1
2
an

(ci)+
(cms)+

uΦ
α

(
i

n

)}
+ ms − i+

and T 2
n := inf

{
i : −Xi ≥ an

(ci)−
(cm`

)−
uΦ

α

(
i

n

)
and|Xi−1 ∨ · · · ∨Xi−m`

|

< − 1
2
an

(ci)−
(cm`

)−
uΦ

α

(
i

n

)}
+ m` − i−.

Then in both cases a), b) holds

EXTn

an
→

(
α

α− 1

) 1
α

, (3.5)

andT ′n is an asymptotically optimal sequence of threshold stopping times.
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Furthermore in case a) holds:

P

({
XTn

an
≤ x

})
→





1− x−α 1
2− 1

α

, x ≥
(

α
α−1

) 1
α

α
2α−1

(
α−1

α

)α−1
α xα−1, 0 < x <

(
α

α−1

) 1
α

0, x ≤ 0.

(3.6)

Remark 3.2 Theorem 3.1 states that the asymptotic optimal stopping value under the
normalizations onci for the moving average case is identical to that of stopping the
corresponding iid sequenceY1, . . . , Yn. Further convergence of optimal stopping times
holds. The idea of the definition of the stopping time is similar to that in Theorem 2.2.
As soon as the first point of alarge cluster is approximatively reached, then one stops
after reaching the maximal point of this deterministic cluster approximatively.

Proof of Theorem 3.1: The basic idea of this proof is to compare the optimal stopping
problem with the limiting cluster process by a majorization argument to a sequence of
stopping problems for a Poisson process.

The imbedded point processNn converges to the cluster processN (cp. (3.2)). As
in section 2 we assume w.l.g. almost sure convergence of the points of the process. We
consider first the statement under condition A1). Since

∑∞
j=1 |cj | < ∞ and{ 1

an
Y1∨· · ·∨

Yn : n ∈ N} is uniformly integrable we conclude that the maximaMn = max{Xi; 1 ≤
i ≤ n} normalized byan are uniformly integrable too, as

max
1≤i≤n

{∣∣∣
∞∑

j=1

Yi−jcj

∣∣∣
}
≤

∞∑

j=1

|cj || max
1≤i≤n

{Yi}|;

alsolimn→∞ EXn

an
= 0.

Forj ∈ −N0 definecj = 0. LetT denote the optimal stopping time of the underlying
Poisson processN ′ =

∑
ε(τi,yi), i.e.T = inf{τi, yi ≥ uΦ

α(τi)} (cp. KR (2000b)). We
shall use some notations from KR (2000a, proof of Theorem 2.2).

1.) In the first step we determine as in the first step of the proof of Theorem 2.2 the
asymptotics for the stopping timeT ′n:

X
T
′≥nt
n

an
→ y

KT≥t , (3.7)

where againT ′≥nt
n denotes the restriction of the stopping timeT ′n to the time domain

≥ nt, KT≥t is the first stopping index after timet and yKT≥t is the corresponding
stopping value after timet in the limiting Poisson processN ′. For the proof of (3.7) we
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establish convergence of the point process of points over the threshold

N1
n :=

∑

i=1,...,n,Xi≥an
c1
cm

uΦ
α( i

n
),

Xi−1∨···∨Xi−w< 1
2 an

c1
cm

uΦ
α( i

n
)

ε
( i

n ,
Xi+m−1

an
)

→
∑

i

∑

k∈{m}∪{j+m−1:j>w,yicj>
c1
cm

uΦ
α(τi),

yicj−1∨···∨cj−w< 1
2

c1
cm

uΦ
α(τi)}

ε(τi,yick) =: N1. (3.8)

To prove (3.8) we obtain as in Resnick (1987, chap. 4.5)

N2
n :=

n∑

i=1

ε� i
n ,

Xi
an

,
Xi−1∨···∨Xi−w

an
,

Xi+m−1
an

,
Yi
an

�
→

∑

i

∞∑
k=1

ck 6=0

ε(τi,ckyi,yi(ck−1∨···∨ck−w),yick+m−1,yi(2−k)+) =: N2, (3.9)

where the convergence holds on[0, 1]× (0,∞)× [−∞,∞]3.
Define

H :=
{

(t, x1, x2, x3, x4) ∈ R5 : t ∈ [0, 1], x1 >
c1

cm
uΦ

α(t), x2 <
1
2

c1

cm
uΦ

α(t)
}

.

Then from (3.7) andP (N2(∂H) 6= 0) = 0 we obtain

N1
n = N2

n(· ∩H) → N2(· ∩H) = N1.

The last equality follows from the definition ofH andm,w.
As in Resnick (1987, chap. 4.5, proof of 3.2 and p. 144) (see also (2.13)) we obtain

from (3.8) the existence of rv’smk
n,i such that fork ∈ N with ck 6= 0 andk ∈ {m} ∪

{j+m−1 : j > w, yicj > c1
cm

uΦ
α(τi), yicj−1∨· · ·∨cj−w < 1

2
c1
cm

uΦ
α(τi)} a.s. pointwise

convergence holds

Xmk
n,i

an
→ yick, (3.10)

wheremk
n,i = m1

n,i + k− 1. Note thatT ′n = m1
n,KT + m− 1. From (3.8) and (3.10) we

conclude (3.7).

2.) In the second step our aim is to show that the optimal stopping values for the stopping
problem ofX1, . . . , Xn converge to the optimal stopping curveu of the Poisson process
N ′. In more detail we establish thatP a.s. for allt ∈ [0, 1) andn →∞

E

(
γn,[nt]

an
|F[nt]−1

)
P→ u(t), u(t) := uΦ

α(t) = EyKT≥t . (3.11)

To that purpose we consider as in KR (2000a, (2.4)) a majorizing stopping problem
(X ′i

nk) with limiting problem(X ′i
k ) and establish

PX′i+1
n,k |F ′n,i

P→ PX′i+1
k . (3.12)
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In (3.12) we use the notationX ′i+1
n,k = max{Xn,ai

n,k
, . . . , Xn,ai+1

n,k
}, ai

n,k =
[
n

(
t + (1

−t) i
k

)]
andX ′i

k are the corresponding maxima on the discretized intervals[ai
n,k, ai+1

n,k ]
in the limiting problem for the Poisson cluster process with corresponding filtrationF ′k,i,
i.e., we discretize the time interval intok subintervals and consider stopping of themax-
sequence on these subintervals. Thus we get a finite stopping problem which majorizes
the original stopping problem.

For the proof of (3.12) we first obtain as in Resnick (1987, chap. 4.5, proof of (3.2))
on [0, 1]× (0,∞]× (0,∞] point process convergence

n∑

i=1

ε( i
n ,

Xi
an

,
Yi
an

) →
∑

k

∑
i

ci 6=0

ε(τk,ciyk,yk(2−i)+), (3.13)

and thus from the continuous mapping theorem for0 ≤ s < t ≤ 1 usingsup ci = 1

Y[ns] ∨ · · · ∨ Y[nt]

an
− X[ns] ∨ · · · ∨X[nt]

an

P→ 0.

Using independence of(Yi) this implies (3.12) by similar arguments as in KR (2000a,
proof of (2.7)).

As consequence of (3.12) we obtain by an induction argument from the Bellman
equation as in the proof of KR (2000a, (2.4)) convergence of the optimal stopping curves
for (X ′i

n,k) to the optimal stopping curvesuk for (X ′i
k ) in the discretized limit problem.

The optimal stopping curvesuk of this majorizing discretized problem in the limit satisfy
uk ≥ u and by the approximation theorem KR (2000b, Theorem 3.2) we obtain

uk → u (3.14)

using the normalization conditionsup ci = 1. Thus the optimal stopping problem for
the maxima in the limiting cluster process is identical to the optimal stopping of the un-
derlying Poisson process. As consequence of the approximation theorem in KR (2000b,
Theorem 3.2) we obtain from (3.14) by comparison with the majorizing stopping prob-

lem an upper bound for the optimal stopping curveun(t) = E
(

γn,[nt]

an
| F[nt]−1

)
:

lim
n→∞

P

(
E

(
γn,[nt]

an

∣∣∣F[nt]−1

)
< u(t) + ε

)
→ 1, ∀ε > 0. (3.15)

By uniform integrability and the attainment of upper bound as shown in (3.7) by appli-
cation of the stopping timeT ′n we conclude (3.11).

In order to investigate the distributional properties of the optimal stopping timesTn

we introduce

T̂n := inf
{

i : Yi > anuΦ
α

(
i

n

)}

and prove

P (Tn ∈ {T̂n + j − 1 : j ∈ {1, . . . , m}}) → 1. (3.16)
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From KR (2000b, Theorem 4.4) we obtain with the threshold stopping timeT := Tu,
u = uΦ

α

(
T̂n

n
,
YbTn

an

)
→ (T, yKT ) . (3.17)

Assuming w.l.g. a.s. convergence and following the proof in KR (2000a, Theorem 2.2)
we obtain also convergence of the stopping values at random timesT̂n +m. Considering
that after the time point̂Tn + m one observes based on the clustering structure only the
maximal valueyKT ∨∞i=m+1 ci, this leads to

E

(
γn,bTn+m+1

an
|FbTn+m

)
→ u(T ) ∨ (yKT ∨∞i=m+1ci︸ ︷︷ ︸

<1

).

As in the proof in KR (2000a, Theorem 2.2) it follows that

P (Tn ≤ T̂n + m− 1) → 1. (3.18)

In particularlimt→1 limn→∞ P
(

Tn

n ≤ t
)

= 0. Further as in the proof in KR (2000a,
(2.16)) using a discretization argument we obtain

E(γn,gn
k (Tn)|Fn,Tn) ≤ E(γn,Tn+1 |Fn,Tn), (3.19)

wheregn
k maps a number in{1, . . . , n − 1} to the nearest point of thek-grid

⌈
1 + ni

k

⌉
.

We obtain(
u

(
Tn

n

)
− E

(
γn,Tn+1

an
|FTn

))

+

≤
(

u

(
Tn

n

)
− u

(
gn

k

(
Tn

n

)))

+︸ ︷︷ ︸
P−−−−−−−−→

k→∞,n→∞
0

+
(

u

(
gn

k

(
Tn

n

))
− E

(
γn,gn

k (Tn)|Fn,Tn

))

+︸ ︷︷ ︸
P−−−−−−−−→

k→∞,n→∞
0 by (3.11)

+
(

E(γn,gn
k (Tn)|Fn,Tn)− E

(
γn,Tn+1

an
|FTn

))

+︸ ︷︷ ︸
≤0 by (3.19)

and, therefore,
(

u

(
Tn

n

)
− E

(
γn,Tn+1

an
|FTn

))

+

P→ 0. (3.20)

Using random variables as in (3.10) one can strengthen (3.13) and obtains that the
point which converges to(τi, c1yi, yi) appears first in the cluster. (3.20) implies that
at timeTn the stopping condition of̂Tn is satisfied and thusP (Tn ≥ T̂n) → 1. So
with (3.18) we obtain (3.16). (3.16) implies the distributional results in (3.5), (3.6) using
uniform integrability.

The proof of the other cases is similar; one has to regard the negative variables.2
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Remark 3.3 a) In contrast to section 2 it has not been shown in this proof thatP (Tn =
T ′n) → 1. In the case that for severali ∈ N, ci = supj cj this property is not clear
at all. As a result one does not obtain several convergence properties of stopped vari-
ables and maximum before and after the optimal stopping time as in the independent
case (cp. KR 2000b, Theorem 3.2)).

b) The structure of the proof in Theorem 3.1 is a variation of that of Theorem 2.2. It
is relatively easy to analyse the asymptotic behaviour of the stopping timeT ′n. The
stopping values are approximated by those of the limiting underlying Poisson process.
Then we consider majorizing stopping problems defined by maxima on a finite num-
ber of subintervals. Here one obtains convergence to the corresponding discretized
problem for the limiting cluster process. Then we obtain an asymptotically upper
bound of the stopping problems by letting the widths of the discretization converge
to zero. The discretized limiting stopping problem for the cluster process converges
by the normalization conditionsup ci = 1 to the stopping problem for the underlying
Poisson process. Since the upper bound is reached by the stopping time sequence
(T ′n) we obtain optimality of(T ′n).

Acknowledgement: The authors are very grateful to the editor for his comments on a
first version of this paper which lead to a reorganized and better readable version.
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