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Abstract

In this paper we give a justification of the idea of Knott and Smith (1994)
to solve three-coupling problems by using optimal couplings to the sum. In
the normal case this leads to a complete solution. Under a technical condition
this idea also works for general distributions and one obtains explicit results.
We extend these results to the n-coupling problem and derive a characteri-
zation of optimal n-couplings by several 2-coupling problems. This leads to
some constructive existence results for Monge solutions.

1 Introduction

Olkin and Rachev (1993) introduced and discussed the problem of simultaneous
optimal coupling of three multivariate normal distributions. The problem is, given

Pi=N(0,%,), i = 1,2,30on IR, ¥, positive definite, to find random vectors X L P,
y 4 P, Z 2 Ps such that

E|IX-Y|P+E|Y = Z|P+ E ||X — Z|” = min; (1.1)

the minimum over all random vectors X, Y, Z with distributions P, P, P5. So in
L?*-sense X,Y, Z are as close as possible in average given the marginal distributions
P;.

In comparison to the coupling of three or more distributions the coupling problem
for two distributions is well investigated and an usable characterization of an optimal
coupling is known (cf. Riischendorf and Rachev (1990)). Obviously if it is possible
to minimize each of the three summands in (1.1)separately by one triple (X, Y, 7),
then one gets a solution of the three-coupling problem (1.1). But this assumption
imposes severe symmetry conditions on 3_; such as commutativity >, 57, = 37,37,
So in general the three-coupling problem can not be reduced to the simpler two
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coupling problem directly.

Knott and Smith (1994) proposed an interesting idea to reduce the three-coupling
problem to some related two-coupling problems. Note that problem (1.1) is equiva-
lent to each of the following maximization problems

E({(X,Y)+(Y,Z)+(X,Z)) = max (1.2)
or

E||X—|—Y—|—Z||2:max (1.3)
or

E(IX =TIF+[IY =TI +1|1Z = T|") = max, (1.4)

where T':= X 4+ Y 4+ Z and the max is again over all random vectors X, Y, Z with
distributions P;. Therefore, Knott and Smith (1994) suggested that a triple (X, Y,
7) with the given marginal distributions ‘should’ be optimal if each of X,Y, 7 is
optimally coupled to its sum T'. Using this idea they were able to construct in the
normal case P; = N(0,3;) an optimal triple (X, Y, Z) under the assumption that a
positive definite solution ), of the matrix equation
3
(24w o) = 5, (1.5)

1

K3

can be found. This nonlinear matrix equation is a consequence of the ‘coupling to
the sum’ idea.
For the construction of an optimal triple (X,Y,7Z) let T' be a random vector,

= N(0,%,) and define

e DR B (1.6)

K3

S; is the optimal coupling mapping between N(0,3,) and N(0,3;) (see Olkin and
Pukelsheim (1982)). Then defining

X = Sl T, Y = 52 T, = 53 T (17)

(1.5) implies that X + Y + Z = T and Knott and Smith (1994) proved that this

triple is optimal and
E||T|)? = tr(Z0). (1.8)

In this paper we prove existence of a positive definite solution of equation (1.5).
Thus Knott and Smith’s idea leads to a complete solution of the three-coupling
problem in the normal case. We also show that up to some ‘technical’ assumption
one can justify the idea of ‘optimal coupling to the sum’ for general distributions. We
further derive a characterization of optimal solutions by some related two-coupling
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problems with respect to coupling functionals F(xz,y) different from ||z — y||*. This
characterization can be used for explicit solutions in some concrete examples.

Finally we obtain a simple proof of a recent result of Gangbo and Swiech (1996)
on the existence of Monge solutions and by means of our characterization result
get more constructive results on the existence of Monge solutions. All results in
this paper are extended to n-coupling problems involving n probability measures
Pi,..., P, on IRY. The n-coupling problem is to find to given probability measures
P, on IRd,l <1 < n, random vectors X; with distribution P; such that

n 2

E D Xi| = max, (1.9)
=1
equivalently
E > 1Xi — Xj|]? = min, (1.10)
i<
or
E > (X, X;) = max (1.11)
i<

the max resp. min over all random vectors with distributions P;. We use the notation

X: L P, for equality in distribution and assume throughout the paper that P, have
second moments.

2 Optimal n-couplings

Optimal couplings for two probability measures P,@ on IRY w.r.t. the squared
distance ¢ (z,y) = ||z —y||* are characterized by the following result (see Riischendorf

and Rachev (1990)): X 4 PY 4 () are optimal if and only if there exists a convex
lower semicontinuous function f such that

Yeof(X) as., (2.1)

where df(x) is the subgradient of f in x. Equivalently, with the conjugate function
[ (y) = sup,((x,y) — f(x)) if and only if

X € df(Y) as. (2.2)

For general coupling functions ¢ (z,y) a corresponding result holds (see Riischendorf
(1991), (1995)), where convex functions are to be replaced by ¢-convex functions of
the form

f(x) = sup{e (2, y:) +ai} (2.3)
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for some index set I, y; € IRY, a; € IR and the subgradient set is to be replaced by
the ¢-subgradient set

0. f(z)={y € RY; f(2)— f(z) > ¢ (z,y) — ¢ (x,y) for all z € domf}. (2.4)

Under an integrability condition on ¢ a pair (X,Y), X 2 P Y LY is c-optimal i.e.

Ec (X,Y)=sup{Ec (X1, X3): X12£P, X, £Q} (2.5)
if and only if

Y eo. f(X) as. (2.6)
for some c¢-convex function f; equivalently,

X €0. fY) as. (2.7)

where

f(y) = sup(c (z,y) — f(x)), (2.8)
is the c-conjugate of f.

The following proposition states necessity of optimal coupling to the sum.

Proposition 2.1 (Necessity of optimal coupling to the sum)

Let X; £ P, 1<i1<n, and let Xq,...,X, be an optimal n-coupling for Py,..., P,,
then with T; =37, X;, T = 377_, X;, X; is optimally coupled to the sum T; as
well as to T,1 <1 <mn.

Proof: Consider w.l.g. the case ¢« = 1. The n-coupling problem (1.9) is equivalent
to (1.11) i.e. to

E (<X1,T1>+§n: <Xi,ZXj>) = max] (2.9)

i=2 >

The second term depends only on X,,..., X,,. If X; were not optimally coupled to
T1, it would be possible to find a strict improvement of (2.9).
Furthermore, (2.9) is equivalent to

E (<X1,T> + Z:; <Xi,ZXj>) = max!

i>1

(the difference depends only on the marginal distribution). Therefore by the same
argument, X; has to be optimally coupled to the sum T as well. a

We next prove that Knott and Smith’s idea of optimal coupling to the sum leads
to a complete characterization of solutions in the normal case P; = N(0,3,),
1 <1 <n.
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Theorem 2.2 (Coupling of multivariate normal distributions)
Let X; 2P = N(0,%),1 <1< n,¥; >0 positive definite. Then it holds:
X = (X1,....X,) is an optimal n-coupling for (P1, ..., P,) if and only if
>0 = Cov T, T =737 X;, is a positive definile solution of

n 1/2
(Eléz S, 2152) — ¥ (2.10)
=1
15 y
) Ziz one obtains that

K3

Moreover in this case with S; = 212/2 (ZIZ/Q >0 21/2

X;=8; 7' Xjas., 1 <i<n. (2.11)

Proof: Let X = (Xi,...,X,) be an optimal n-coupling; then we may assume
w.l.g. that (X;) are jointly normal distributed. Otherwise replace X by a n-
tuple with joint normal distribution and identical covariance matrix. This implies
that also T, = 30,0, Xj and T' = 7%, X; are normal. By Proposition 2.1, T,
and X, are optimally coupled i.e. (X,,T,) is an optimal pair for N(0,3,) and
@ = N(0,X7,), where -7 = Cov(7,). Note that it is not obvious that > 7 is
positive definite. By Gelbrich (1990) (see also Olkin and Pukelsheim (1982)) an
optimal coupling between N(0,3",) and @ is given by the pair (X,, A X,,) where

_ 1/2 1
. 1/2 1/2 1/2 2 .. . . . .
A=3, DYDY 5 .'“. Positive definiteness of 3", implies uniqueness

of optimal pairs then (see Cuesta-Albertos, Matran and Tuero-Diaz (1996) and
Gangbo and McCann (1996)) and, therefore, T, = A X, a.s. This implies that
T=3",X;= (A4 1)X, a.s. Since A is positive semidefinite and (x, (A + [)x) =
(v, Ax) + (x,2) > (x,2) >0 for  # 0, A+ [ is positive definite and, therefore,

So=Cov(T,+ X,)=(A+1) ¥, (A+ DT >0.

Since N(0,%,) and N(0,Y ;) are optimally coupled by the mappings S5; (cp.
(1.6)) i.e. (T, S; T) is an optimal pair for (N(0,> ), N(0,>;)), and since optimal
coupling to the sum is a necessary condition by Proposition 2.1 we obtain from the

same uniqueness result, that X; = 5; T" a.s.
This implies that

XJ‘: (ZS])T l.e. ZS]‘:[.

i=1 i=1

T =

n

71=1

By some simple algebra this shows that Y is a solution of equation (2.10).
For the converse direction of Theorem 2.2 the proof of Knott and Smith (1994)
for the case n = 3 can easily be extended to general n. O

Remark: Theorem 2.2 in particular implies existence of a positive solution 3, of
(1.5) resp. (2.10). In order to find a positive definite solution Y-y of (2.10)

S(Ko K? Ko)'? = K2, K;:=%" (2.12)

=1
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Knott and Smith (1994) suggest for (n = 3) to use the iterative procedure

n 1/2
1/2
KD = (Z (K& K2 K§9) ) . (2.13)
=1
[t turns out by extensive simulations (for n = 3) with random initial matrices that
the iteration converges in dimension d = 2 (typically one needs about 100 iteration
steps for exactness up to 8 digits). But for dimension d = 3 only for favourable
initial matrices convergence is observed. O

Without some technical assumption optimal coupling of random vectors (X;) to
the sum 7' = 37", X is not sufficient to optimality for the n-coupling problem. Let
e.g. Xj, 1 <j <mn, be random vectors with -7, X; = 0. Constructions of (X;)
with this property exist for several nontrivial distributions (F;). Obviously, any X;
is optimally coupled to the (trivial) sum 7" but also X = (X;) is not optimal for the
n-coupling (F;).

Nevertheless the following theorem justifies the coupling to the sum idea of Knott
and Smith (1994) under the assumption that the distribution of T' is Lebesgue
continuous.

Theorem 2.3 (Coupling to the sum principle)

Let P; be distributions on ]Rd, 1 <@ < n with finite second moments and let X; e P,
1 <1 < n, be such that X; are optimally coupled to the sum T = 3", X;. If

=1
PT is Lebesgue-continuous, then X = (Xy,...,X,) is an optimal n-coupling of
(Pr,...,P,).

Proof: By the characterization of optimal couplings in (2.1) there exist convex
functions f; such that X; € 9f;(T) a.s.

The convex functions f; are locally Lipschitz continuous and, therefore, by
Rademachers theorem A a.s. differentiable. Since PT < A9 this implies that

Since T' = Y7_, X;, we obtain _I_, 7 f; = I or, equivalently, 31, fi(t) = 1 [[¢[]%.

Furthermore, by definition of convex conjugate functions f for z; € IR9,

t=73",z; holds

(zit) < filt) + f7 (@) (2.15)
Therefore,

[t]? = (t.t) = (3 wit)
< Zfz(t)—I'Zfz*(xl)

1 . ,
S+ 3 (), de.

S Fi (). (2.16)

1
21412
it

IA
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The condition X; € df;(T) a.s. implies that

(X, T) = (1) + [7(Xi) a. (2.17)

ie. equality holds in (2. 15) on the support of the distribution of (X;,T) and, there-
fore, 3 ||T]* = ¥, f7(Xi) a.
ThlS implies that X = (XZ) is an optimal n-coupling, since for any Y; L P, holds

- 1
Z_: Vi< B3 i) =E 3 f1(Xi) = 5BITIP

This implies optimality of (X1,..., X,). O

[\Dl»—\

In a recent paper Gangbo and Swiech (1997) have proven existence of Monge
solutions for the n-coupling problem, i.e. of solutions of the form (Xi, ®2(Xy),...,
$,(X1)) if all P; are Lebesgue-continuous. We obtain a simple proof of this result
based on the necessity of the coupling to the sum principle in Proposition 2.1.

Theorem 2.4 (Monge solutions)
Let P; < A1 < i < n, with finite second moments. Then there exists a Monge

solution of the form (X1, ®2(X1),...,P,(X1)), X1 L Py, of the n-coupling problem.

Proof: Let X = (Xy,..., X)) be a solution of the n-coupling problem (F;), X; Lp,
Then by Proposition 2.1 X; are optimally coupled to the sums T; = 3., X; and

so by 2.1 T; € df;,(X;) a.s. for some convex functions f;. By Rademachers theorem
fi are A as. differentiable so that by assumption P; < A9, 9fi(X;) = {vfi( X))}

a.s., ie. T, = 7 fi(Xi) a.s
Therefore, defining fi(z) := fi(z) + %||z||* we obtain f; is strictly convex, 7f;
exists, A? a.s. and is invertible and 7' = T; + X; = <7 f;(X;) a.s. This implies that
= (v fi)~t (T) a.s. for all 7 and, therefore,
-1

—(97)7 (VAL = 8(X) as. (2.15)
which is the wished Monge solution. O
Remark: Note that the proof of Theorem 2.4 is not constructive. If we take convex

functions f; and define X; by (2.18) we do generally not obtain optimal n-couplings.
An improved constructive version of Monge solutions is given in the next section. O

3 Characterization of optimal n-couplings
and examples

Based on (2.6), (2.7) the following reduction result for the three coupling problem
has been proved in Riischendorf and Uckelmann (1997) for the case n = 3.
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Theorem 3.1 Let X < Pl,Y% Py, 74 Ps and let P; have finite second moments.
Then (X,Y,7Z) is a solution of the three coupling problem (1.1) if and only if there
exists a convex lsc function f and an F-convex function g, where F(y,z):= f*(y+

z) + (y, z), such that

(1) Y+7 €0f(X) as
(2) Z € 0pg(Y) as. (3.1)
Remarks:

a) From the characterization in Theorem 3.1 one obtains in the case n = 3 a more
concrete coupling to the sum result in comparison to Theorem 2.4. If XY, 7 is
an optimal three coupling for Py, P, P; then

Y+ Ze€df(X), X+7Ze€dg(Y)and X +Y € dg¥'(Z) as. (3.2)

with f,g as in Theorem 3.1, g* the F'—conjugate of g. By (2.1) this implies that
any of X,Y, 7 is optimally coupled to the sum of the two others. Further with

file) = fx) + 3l[el)? fola) = gla) + 3ll2|, fs(x) = ¢"(x) + ]]z[|* holds:
T=X+Y+2ecdf(X)Naf(Y)Nfs(Z) as. (3.3)

i.e. X, Y, Z are optimally coupled to the sum. Note that in the form (3.2) these
conditions are by Theorem 3.1 also sufficient for optimal three coupling.

b) If & : IRY — IR? is a cyclically monotone function and X = ®(Y + %), then X
is optimally coupled to Y + Z. If we solve the two-coupling problem

E@Y +2),Y+7Z)+(Y,Z) = max! (3.4)

over Y 2 P Z < Ps, then (X,Y, Z) is an optimal solution for the three-coupling
problem ( Py, P2, P3) where P is the distribution of X. This simple method allows
to construct some explicit examples.

If eig. ® = A is a linear, positive semidefinite, symmetric function then (3.4)
amounts to a linear problem which can be solved explicitely (as in the normal
case). Theorem 3.1 essentially implies that up to some technicals any three-
coupling problem can be solved in this simple way. The problem is however to

find to given (P;) the correct ® (or f).

a

The following result based on Theorem 3.1 is a constructive version on the exis-
tence of Monge solutions in Theorem 2.4. Also the continuity assumption on the P;
in Theorem 2.4 is weakened.
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Theorem 3.2
Let P; be probability measures on R4, 1 <i <3, and let Py, Py < A,

a) There exists a Monge solution (X, Uy(X), Wy(X)) of the three-coupling problem.

b) There exist conver, a.s. differentiable functions f,g such that with
Ci(y) = (V)T (Va(y) + ), h(t) := (1) + S|[]]?, the functions Wy, Wy

Ui(X) = o7 (Vf(X))
Uy(X) = V(X)) = Vi (X) (3.5)

define Monge solutions.

Proof: Consider the functions f, g, F as stated in Theorem 3.1. Then f, g are A4
a.s. differentiable, F(-, z) is convex and AY as. differentiable for all z € RY. For
z € Jr g(y) the function h(t) := ¢(t) — F(¢, z) has a local minimum in ¢ = y and,
therefore, z solves the equation

0=uly) =valy) — V1F(y ) (3.6)
if ¢ is differentiable in y.
Further, 7h exists A4 a.s. and for A4 a.a. y holds
valy) = vil'(y,2) = V(M y+2)+2)
= VI/y+z)+z = vhly+2)—v
h is strictly convex and, therefore, 7/ is strictly monotone and invertible. This
implies
2= (Vh)(Vely) +y) —y = Da(y). (3.7)

Since by Theorem 3.1, Z € dr g(Y) a.s. and P¥ <« A% we obtain Z = ®,(Y) a.s.
Furthermore, PX = P, < A% implies that df(X) = {7 f(X)} a.s. and by Theorem
3 Y+ 7 =vf(X) as.

This implies that

Z o= @uY)=(Th)(Tg(Y) +Y) - Y
(W) 7 g(Y) - Y
= DY) -V

where g(y) := g(y) + 3||y|[*. § is strictly convex and, therefore, ®; is invertible.
This finally implies that

VX)) = Y+ Z=0Y)ie.
Y= 07 (VX)) = Wi(X).
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Then we also obtain a representation of Z,

Z = 0 (Y) =Y =vf(X)- o7 (Vf(X))
=: Uy(X). O

Remark: Note that (3.5) is also a sufficient condition for optimality if ¢ is even F-
convex. If f is strict convex one obtains an alternative representation for an optimal

coupling by (X, ®1(X), ®2(X)) with

¢1(X) = (V)T((Vh)H(Vg(X) + X))
¢o(X) = (Vh)H(Vg(X)+X) - X, (3.8)

where h(t) = f*(t) + Y[t

This representation is again sufficient for optimality if ¢ is F-convex (cp. The-
orem 3.1). We will use this sufficient condition in the following to construct some
examples. a

An extension of the characterization of optimal solutions in Theorem 3.1 to n-
coupling problems is given in the following theorem.

Theorem 3.3 (Characterization of optimal n-couplings)

Let P; be probability measures on IRY, 1 < i < n with finite second moments. Then
X = (X1,...,X,) is n-optimal if and only if functions fi,..., fo_1 exist such that
f1 is convex, lsc, fi is Fj_1-convex where

Fy_q

Fy (Svt): <57t>7 Fk(svt): k (S—I_t) +<57t>7 (39)
fEe=1 s the Fy_y conjugate of fr, 1<k<n-—1, and
ZXZ' €0 fl(Xl), Z X; € 8Fk_1 fk(Xk) (310)
1=2 i=k+1
2<k<n-1, as.

Proof: The proof is based in both directions on the duality theorem (see Kellerer
(1984), Rachev (1991), Riischendorf (1981, 1991)). With M(FPy,..., P,) the set of

measures with marginals Py, ..., P, holds

sup{/c(:z;l,...,xn) dy; MEM(Pl,...,Pn)} (3.11)
= iﬂf{é/ﬁ dp;  fi € El(Pi)véfi(l'i) >c (51?17---7%)}-

This duality theorem is applied to ¢ () = Y ,; (x;,2;). Given condition (3.10)
define

fn(t) = fffl_z(t) = Sgp{Fn—Q(Svt) - fn—l(s)}§
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then (fi,...,f.) is admissible for the dual problem in (3.11) as can be seen by
recursive insertion of the definition of f; (for details see Uckelmann (1998)).

Since Y-, X € 0 fi1(X1), it holds a.s. that

KX+ /7 (Zn:Xk) = <X1,anXk>. (3.12)

k=2 k=2
Further from Y7_5 X € 0r, f2(X3) one obtains

n

f2(X2) + szl(Zn: Xp) = (X2, Xy)

= fl*(Zn: Xi) + <X2, znj Xk> a.s.

and generally
S (Xo) + [ ( Z Xk) = fime (Z Xk) + <Xm, > Xk>a.s. (3.13)
k=m+1 k=m k=m+1

Finally, X,, € 0p,_, fo—1 (X,—1) a.s. implies
fao1(Xuz1) + ffﬁf (X,) = Faez (Xao1, X5) as., equivalently, by definition of f,

fn—l(Xn—l) + fn(Xn) = ffﬁ;s (Xn—l + Xn) + <Xn—17Xn> . (314)
Summing over these equations yields

Z fe(Xk) =c¢ (Xq,..., X)) as. (3.15)

This implies by the duality theorem (3.11) optimality of X = (Xy,..., X,).

For the converse direction let y € M(Py,...,P,) be an optimal measure and
(fi,-.., fn) be asolution of the dual problem (3.11) (see Kellerer (1984), Riischendorf
(1981)). Define f = f* i.e. f(x) = sup,{{z,y) — [;(y)} then [ < fi and f* = f;.
With

Glraseon) = suple (nrevin) = o))
_ S}Ulp{<$17§:$i>—f(wl)}+;<%%>
= (sz) + > Awi, ;)

1<J

Zfz(xl) > flxy) + Zfz(xl) > flar) + Glag, ... x,) > c(ay, ... x,).
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As (f1,..., fn) is a solution of the dual problem, this inequality implies

/(f(x1)+G($2,---,$n)—c(xl,...,xn))d/,bz()

and, therefore, f(xy) + G(xg,...,2,) = ¢ (1,...,2,) 1 as.
This implies that p a.s.,

flxy) + f7 (sz) = <$172$i>
=2
and, therefore, >-" , x; € df(x1) p a.s., the first condition of (3.10) holds.

Similarly, one constructs successively improvements of the admissible solution

f1,..., fn which result in the conditions of the theorem (for details see Uckelmann
(1998)).
> X € 0p,_, fim1(Xio1) as. 0
i=k

Remark: Note that the functions f, f,fk_l in Theorem 3.3 are convex and lsc. As
consequence of Theorem 3.3 one obtains as in Theorem 3.2 an improved constructive
version of the existence of Monge solutions. The proof can be given along the lines
of the proof of Theorem 3.2. O

For the application to concrete examples the following calculation of F(t,z) =
f*(t+2) 4 (t,z) is of interest. We use the notation of Theorem 3.1.

Lemma 3.4 If f : RY — IR is strictly convex, then
Fly,2)=(y+ (VN w+2) = F(VH Ty +2) + (,2). (3.16)

Proof: Strict convexity of f implies existence of (7 f)~!. Define n,(¢) := (s,¢)— f(¢),

then 7ns(t) = s — 7 f(¢t) = 0 if and only if ¢, = (Vf)*(s). Since Dzns( )
—D?*f(t) < 0 for all ¢,n, is strictly concave and ty is a global supremum of 7.

Therefore, f*(s) = sup,{(s,t) = (1)} = (s,(V.)7'(s)) = S((Vf)7'(s)) which im-
plies (3.16). O

Lemma 3.5 Fora >0 andp > 2 consider f(t) := of|t]|?,
then F(y,z) = =2 (ap) ™7 [ly+ 2|77 + (y, ).

Proof: Note that

v ) = aplltl|"

and

(V) (s) = (ap)'||s]| 75 (3.17)
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This implies

(5, (71)71()) = () |Is]|75 and [ ((70)74(5) = aap) =5 Il
This applied to (3.16) yields (3.17). 0

In the case p = 2 we obtain the following consequence for F-subdifferentials.

Lemma 3.6 Let f(t) := ol|t||? and let g € C*(IR?) satisfy
DQL(](ZL) — ildxd > 0.
Then g is F'-convex and
2av
14 2«

v 9y) - y € O g(y). (3.18)

z =

1+ 2«

For g(t) = G(t) + B||t||>, G € C*IRY) conver, af > * the above assumption is
fulfilled.

Proof: By Lemma 3.5
1
F(t2)= o e 2l + {8,2).

Define W, (¢) := g(t) — t |t + z||> = (¢, 2) then 7U.(1) = Vg( ) — 1+§a - %t

and D?*V, (1) = D?g(t) — %]dxd. For » = 1-|2-62Ya vy(t) — 1_|_2 ——1 holds 7V, (¢) = 0 and
D*W,(t) > 0 implies that ¢ = ¢, is a global minimum of V..

To prove F'-convexity of ¢g consider

{(#,9(t:) = F(t2,2)); = € R

Since ¢(t ) ; F(t,z)+g(t,) — F(t.,2)
and ¢(t,) = F(t.,,2z)+g(t.) — F(t., z) it holds that
g(t) = supiaee {F(t2) +a}.

Therefore, ¢ is F-convex and z € dr g(y).

If g(t) = G(t) + Bt][2 then

1 1

2 L _ 2 L
D7g(t) = 5 -laxa D*G(t) + (25 = 5~)1axa
daff — 1
= D*G(t Laxa.
( ) + 200 dxd
From our assumptions the condition of the first part of Lemma 3.5 is fulfilled. O

Example 3.7 Let af > i,oz,ﬁ > 0 and let G € C*(IR?) be convex and define
f(t) = allt|?, g(t) = G(t) + Bl[t]|*. Define h(t) = f*(¢) + gllt* = [1tI* + 3[¢]]*.
Then h(t) = 2221, (7h)7(s) = 25 and g(t) + ¢ = V(1) & (23 + 1)t. By
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Lemma 3.6 g is F-convex and by (3.8) an optimal Monge pair is given by (®y, ®2)
with

Oi(t) = (VN TR (vyt)+1) = i v G+ 22
Ou(t) = (Vh)"N(glt) +1) —1 = 2 GG + sty

(3.19)

Example 3.8 Let A, B > 0 be positive definite matrices and consider f(z) =
(%, Ax),g(y) = L (y, By). Then g is F-convex and an optimal Monge tuple (®,®,
is given by

(I)l(l') = A_l(A_l + [dxd)_l(B + [dxd)w (320)
Oy(x) = (A" 4 Taxa) (B + Laxa) — Laxa)z.

For the proof note that f*(z) = (A~ 'x,2) and F(y,z) = (A~ (y+ 2),y+2) +
(y,z). Consider W,(t) := g(t) — F(t,2), then yW.(t) = Bt — A ' (t+2)—2=0if
and only if 2 = (A7 4 Taxa) (B — laxa)t. By assumption D*W_({) = B—A~' >0

i.e. U, is convex. Then by Lemma 3.5 ¢ is F-convex and
(A_l + [dxd)_l(B — [dxd)t - 6F g(t).
Next apply formula (3.8) to obtain (3.20).

Remark: It is easy to rederive from our general characterization results that in
dimension d = 1 optimal couplings are given by X; = F."'(U), where F} are the
distribution functions of P; and U is uniformly distributed on [0,1]. The normal
examples for optimal three-couplings in Olkin and Rachev (1993) resp. Knott and
Smith (1994) were so far the only cases treated in the literature. Based on our char-
acterization results and the description of F-convex functions we have added some
more examples. One can construct several further examples using the two-coupling
results in Riischendorf (1995) where general coupling functionals are considered. O
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