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On the n-coupling problem 2coupling problem directly.Knott and Smith (1994) proposed an interesting idea to reduce the three-couplingproblem to some related two-coupling problems. Note that problem (1.1) is equiva-lent to each of the following maximization problemsE (hX;Y i+ hY;Zi+ hX;Zi) = max (1.2)or E jjX + Y + Zjj2 = max (1.3)or E (jjX � T jj2 + jjY � T jj2 + jjZ � T jj2) = max; (1.4)where T := X + Y + Z and the max is again over all random vectors X;Y;Z withdistributions Pi. Therefore, Knott and Smith (1994) suggested that a triple (X, Y,Z) with the given marginal distributions `should' be optimal if each of X;Y;Z isoptimally coupled to its sum T . Using this idea they were able to construct in thenormal case Pi = N(0;Pi) an optimal triple (X;Y;Z) under the assumption that apositive de�nite solution P0 of the matrix equation3Xi=1 ��1=20 �i �1=20 �1=2 = �0 (1.5)can be found. This nonlinear matrix equation is a consequence of the `coupling tothe sum' idea.For the construction of an optimal triple (X;Y;Z) let T be a random vector,T d=N(0;P0) and de�neSi = �1=2i ��1=2i �0 �1=2i ��1=2�1=2i : (1.6)Si is the optimal coupling mapping between N(0;P0) and N(0;Pi) (see Olkin andPukelsheim (1982)). Then de�ningX := S1 T; Y := S2 T; Z := S3 T (1.7)(1.5) implies that X + Y + Z = T and Knott and Smith (1994) proved that thistriple is optimal andE jjT jj2 = tr (�0) : (1.8)In this paper we prove existence of a positive de�nite solution of equation (1.5).Thus Knott and Smith's idea leads to a complete solution of the three-couplingproblem in the normal case. We also show that up to some `technical' assumptionone can justify the idea of `optimal coupling to the sum' for general distributions. Wefurther derive a characterization of optimal solutions by some related two-coupling



On the n-coupling problem 3problems with respect to coupling functionals F (x; y) di�erent from jjx� yjj2. Thischaracterization can be used for explicit solutions in some concrete examples.Finally we obtain a simple proof of a recent result of Gangbo and Swiech (1996)on the existence of Monge solutions and by means of our characterization resultget more constructive results on the existence of Monge solutions. All results inthis paper are extended to n-coupling problems involving n probability measuresP1; : : : ; Pn on IRd. The n-coupling problem is to �nd to given probability measuresPi on IRd; 1 � i � n, random vectors Xi with distribution Pi such thatE  nXi=1 Xi2 = max; (1.9)equivalentlyE Xi<j jjXi �Xjjj2 = min; (1.10)or E Xi<j hXi;Xji = max (1.11)the max resp. min over all random vectors with distributions Pi. We use the notationXi d=Pi for equality in distribution and assume throughout the paper that Pi havesecond moments.2 Optimal n-couplingsOptimal couplings for two probability measures P;Q on IRd w.r.t. the squareddistance c (x; y) = jjx�yjj2 are characterized by the following result (see R�uschendorfand Rachev (1990)): X d=P; Y d=Q are optimal if and only if there exists a convexlower semicontinuous function f such thatY 2 @ f(X) a.s., (2.1)where @f(x) is the subgradient of f in x. Equivalently, with the conjugate functionf�(y) = supx(hx; yi � f(x)) if and only ifX 2 @f�(Y ) a.s. (2.2)For general coupling functions c (x; y) a corresponding result holds (see R�uschendorf(1991), (1995)), where convex functions are to be replaced by c-convex functions ofthe formf(x) = supI fc (x; yi) + aig (2.3)



On the n-coupling problem 4for some index set I; yi 2 IRd; ai 2 IR and the subgradient set is to be replaced bythe c-subgradient set@c f(x) = fy 2 IRd; f(z)� f(x) � c (z; y)� c (x; y) for all z 2 domfg: (2.4)Under an integrability condition on c a pair (X;Y ); X d=P; Y d=Y is c-optimal i.e.Ec (X;Y ) = supfEc (X1;X2); X1 d=P; X2 d=Qg (2.5)if and only ifY 2 @c f(X) a.s. (2.6)for some c-convex function f ; equivalently,X 2 @c f c(Y ) a.s. (2.7)wheref c(y) = sup(c (x; y)� f(x)); (2.8)is the c-conjugate of f .The following proposition states necessity of optimal coupling to the sum.Proposition 2.1 (Necessity of optimal coupling to the sum)Let Xi d=Pi, 1 � i � n, and let X1; : : : ;Xn be an optimal n-coupling for P1; : : : ; Pn,then with Ti := Pj 6=iXj ; T := Pnj=1Xj ; Xi is optimally coupled to the sum Ti aswell as to T; 1 � i � n.Proof: Consider w.l.g. the case i = 1. The n-coupling problem (1.9) is equivalentto (1.11) i.e. toE 0@hX1; T1i + nXi=2 *Xi;Xj>iXj+1A = max! (2.9)The second term depends only on X2; : : : ;Xn. If X1 were not optimally coupled toT1, it would be possible to �nd a strict improvement of (2.9).Furthermore, (2.9) is equivalent toE 0@hX1; T i+ nXi=2 *Xi;Xj>iXj+1A = max!(the di�erence depends only on the marginal distribution). Therefore by the sameargument, X1 has to be optimally coupled to the sum T as well. 2We next prove that Knott and Smith's idea of optimal coupling to the sum leadsto a complete characterization of solutions in the normal case Pi = N(0;Pi);1 � i � n.



On the n-coupling problem 5Theorem 2.2 (Coupling of multivariate normal distributions)Let Xi d=Pi = N(0;Pi); 1 � i � n;Pi > 0 positive de�nite. Then it holds:X = (X1; : : : ;Xn) is an optimal n-coupling for (P1; : : : ; Pn) if and only ifP0 = Cov T , T = Pnj=1Xj , is a positive de�nite solution ofnXi=1 ��1=20 �i �1=20 �1=2 = �0 (2.10)Moreover in this case with Si = P1=2i �P1=2i P0 P1=2i �1=2P1=2i one obtains thatXi = Si S�11 X1a:s:; 1 � i � n: (2.11)Proof: Let X = (X1; : : : ;Xn) be an optimal n-coupling; then we may assumew.l.g. that (Xi) are jointly normal distributed. Otherwise replace X by a n-tuple with joint normal distribution and identical covariance matrix. This impliesthat also Tn = Pj<nXj and T = Pnj=1Xj are normal. By Proposition 2.1, Tnand Xn are optimally coupled i.e. (Xn; Tn) is an optimal pair for N(0;Pn) andQ := N(0;PTn), where PTn = Cov(Tn). Note that it is not obvious that PTn ispositive de�nite. By Gelbrich (1990) (see also Olkin and Pukelsheim (1982)) anoptimal coupling between N(0;Pn) and Q is given by the pair (Xn; A Xn) whereA = P-1=23 �P1=23 PTn P1=23 �1=2 P-1=23 . Positive de�niteness of Pn implies uniquenessof optimal pairs then (see Cuesta-Albertos, Matran and Tuero-Diaz (1996) andGangbo and McCann (1996)) and, therefore, Tn = A Xn a.s. This implies thatT = Pnj=1Xj = (A+ I)Xn a.s. Since A is positive semide�nite and hx; (A+ I)xi =hx;Axi+ hx; xi � hx; xi > 0 for x 6= 0; A + I is positive de�nite and, therefore,P0 = Cov(Tn +Xn) = (A+ I) Pn (A+ I)T > 0.Since N(0;P0) and N(0;Pi) are optimally coupled by the mappings Si (cp.(1.6)) i.e. (T; Si T ) is an optimal pair for (N(0;P0); N(0;Pi)), and since optimalcoupling to the sum is a necessary condition by Proposition 2.1 we obtain from thesame uniqueness result, that Xi = Si T a.s.This implies thatT = nXj=1 Xj = 0@ nXj=1 Sj1AT i.e. nXj=1Sj = I:By some simple algebra this shows that P0 is a solution of equation (2.10).For the converse direction of Theorem 2.2 the proof of Knott and Smith (1994)for the case n = 3 can easily be extended to general n. 2Remark: Theorem 2.2 in particular implies existence of a positive solution P0 of(1.5) resp. (2.10). In order to �nd a positive de�nite solution P0 of (2.10)nXi=1(K0 K2i K0)1=2 = K20 ; Ki := �1=2i (2.12)



On the n-coupling problem 6Knott and Smith (1994) suggest for (n = 3) to use the iterative procedureK(k+1)0 =  nXi=1 �K(k)0 K2i K(k)0 �1=2!1=2 : (2.13)It turns out by extensive simulations (for n = 3) with random initial matrices thatthe iteration converges in dimension d = 2 (typically one needs about 100 iterationsteps for exactness up to 8 digits). But for dimension d = 3 only for favourableinitial matrices convergence is observed. 2Without some technical assumption optimal coupling of random vectors (Xi) tothe sum T = Pnj=1 Xj is not su�cient to optimality for the n-coupling problem. Lete.g. Xj ; 1 � j � n, be random vectors with Pnj=1 Xj = 0. Constructions of (Xj)with this property exist for several nontrivial distributions (Pi). Obviously, any Xiis optimally coupled to the (trivial) sum T but also X = (Xj) is not optimal for then-coupling (Pj).Nevertheless the following theorem justi�es the coupling to the sum idea of Knottand Smith (1994) under the assumption that the distribution of T is Lebesguecontinuous.Theorem 2.3 (Coupling to the sum principle)Let Pi be distributions on IRd, 1 � i � n with �nite second moments and let Xi d=Pi,1 � i � n, be such that Xi are optimally coupled to the sum T = Pnj=1 Xj . IfP T is Lebesgue-continuous, then X = (X1; : : : ;Xn) is an optimal n-coupling of(P1; : : : ; Pn).Proof: By the characterization of optimal couplings in (2.1) there exist convexfunctions fi such that Xi 2 @fi(T ) a.s.The convex functions fi are locally Lipschitz continuous and, therefore, byRademachers theorem �n d a.s. di�erentiable. Since P T � �nd this implies thatXi = 5fi(T ) =: �i(T ) a.s. (2.14)Since T = Pni=1Xi, we obtain Pni=15fi = I or, equivalently, Pni=1 fi(t) = 12 jjtjj2.Furthermore, by de�nition of convex conjugate functions f�i for xi 2 IRd;t = Pni=1 xi holdshxi; ti � fi(t) + f�i (xi) (2.15)Therefore,jjtjj2 = ht; ti = DXxi; tE� Xi fi(t) +Xi f�i (xi)= 12 jjtjj2+Xi f�i (xi); i.e.12 jjtjj2 � Xi f�i (xi): (2.16)



On the n-coupling problem 7The condition Xi 2 @fi(T ) a.s. implies thathXi; T i = fi(T ) + f�i (Xi) a.s. (2.17)i.e. equality holds in (2.15) on the support of the distribution of (Xi; T ) and, there-fore, 12 jjT jj2 = Pi f�i (Xi) a.s.This implies that X = (Xi) is an optimal n-coupling, since for any Yi d=Pi holdsE 12 jj nXi=1 Yijj2 � E Xi f�i (Yi) = E Xi f�i (Xi) = 12EjjT jj2:This implies optimality of (X1; : : : ;Xn). 2In a recent paper Gangbo and Swiech (1997) have proven existence of Mongesolutions for the n-coupling problem, i.e. of solutions of the form (X1;�2(X1); : : : ;�n(X1)) if all Pi are Lebesgue-continuous. We obtain a simple proof of this resultbased on the necessity of the coupling to the sum principle in Proposition 2.1.Theorem 2.4 (Monge solutions)Let Pi � �nd; 1 � i � n; with �nite second moments. Then there exists a Mongesolution of the form (X1;�2(X1); : : : ;�n(X1));X1 d=P1; of the n-coupling problem.Proof: Let X = (X1; : : : ;Xn) be a solution of the n-coupling problem (Pi);Xi d=Pi:Then by Proposition 2.1 Xi are optimally coupled to the sums Ti = Pj 6=iXj andso by 2.1 Ti 2 @fi(Xi) a.s. for some convex functions fi. By Rademachers theoremfi are �nd a.s. di�erentiable so that by assumption Pi � �n d, @fi(Xi) = f5fi(Xi)ga.s., i.e. Ti =5fi(Xi) a.s.Therefore, de�ning fi(x) := fi(x) + 12 jjxjj2 we obtain fi is strictly convex, 5fiexists, �n d a.s. and is invertible and T = Ti +Xi = 5fi(Xi) a.s. This implies thatXi = (5fi)�1 (T ) a.s. for all i and, therefore,Xi = �5fi��1 (5f1(X1)) = �i(Xi) a.s. (2.18)which is the wished Monge solution. 2Remark: Note that the proof of Theorem 2.4 is not constructive. If we take convexfunctions fi and de�ne Xi by (2.18) we do generally not obtain optimal n-couplings.An improved constructive version of Monge solutions is given in the next section. 23 Characterization of optimal n-couplingsand examplesBased on (2.6), (2.7) the following reduction result for the three coupling problemhas been proved in R�uschendorf and Uckelmann (1997) for the case n = 3.



On the n-coupling problem 8Theorem 3.1 Let X d=P1; Y d=P2; Z d=P3 and let Pi have �nite second moments.Then (X;Y;Z) is a solution of the three coupling problem (1.1) if and only if thereexists a convex lsc function f and an F -convex function g, where F (y; z) := f�(y+z) + hy; zi, such that(1) Y + Z 2 @f(X) a.s.(2) Z 2 @F g(Y ) a.s. (3.1)Remarks:a) From the characterization in Theorem 3.1 one obtains in the case n = 3 a moreconcrete coupling to the sum result in comparison to Theorem 2.4. If X;Y;Z isan optimal three coupling for P1; P2; P3 thenY + Z 2 @f(X); X + Z 2 @g(Y ) and X + Y 2 @gF (Z) a.s. (3.2)with f; g as in Theorem 3.1, gF the F�conjugate of g. By (2.1) this implies thatany of X;Y;Z is optimally coupled to the sum of the two others. Further withf1(x) = f(x) + 12 jjxjj2; f2(x) = g(x) + 12jjxjj2; f3(x) = gF (x) + 12 jjxjj2 holds:T = X + Y + Z 2 @f1(X) \ @f2(Y ) \ @f3(Z) a.s. (3.3)i.e. X;Y;Z are optimally coupled to the sum. Note that in the form (3.2) theseconditions are by Theorem 3.1 also su�cient for optimal three coupling.b) If � : IRd ! IRd is a cyclically monotone function and X = �(Y + Z), then Xis optimally coupled to Y + Z. If we solve the two-coupling problemE h�(Y + Z); Y + Zi + hY;Zi = max! (3.4)over Y d=P2; Z d=P3, then (X;Y;Z) is an optimal solution for the three-couplingproblem (P1; P2; P3) where P1 is the distribution ofX. This simple method allowsto construct some explicit examples.If e.g. � = A is a linear, positive semide�nite, symmetric function then (3.4)amounts to a linear problem which can be solved explicitely (as in the normalcase). Theorem 3.1 essentially implies that up to some technicals any three-coupling problem can be solved in this simple way. The problem is however to�nd to given (Pi) the correct � (or f). 2The following result based on Theorem 3.1 is a constructive version on the exis-tence of Monge solutions in Theorem 2.4. Also the continuity assumption on the Piin Theorem 2.4 is weakened.



On the n-coupling problem 9Theorem 3.2Let Pi be probability measures on IR d, 1 � i � 3, and let P1; P2 � �n d:a) There exists a Monge solution (X;	1(X);	2(X)) of the three-coupling problem.b) There exist convex, a.s. di�erentiable functions f; g such that with�1(y) = (5h)�1(5g(y) + y); h(t) := f�(t) + 12jjtjj2; the functions 	1;	2	1(X) = ��11 (5f(X))	2(X) = 5f(X)�	1(X) (3.5)de�ne Monge solutions.Proof: Consider the functions f; g; F as stated in Theorem 3.1. Then f; g are �n da.s. di�erentiable, F (�; z) is convex and �nd a.s. di�erentiable for all z 2 IR d. Forz 2 @F g(y) the function h(t) := g(t) � F (t; z) has a local minimum in t = y and,therefore, z solves the equation0 = 5u(y) = 5g(y)�51F (y; z) (3.6)if g is di�erentiable in y.Further, 5h exists �n d a.s. and for �n d a.a. y holds5g(y) = 51F (y; z) = 5(f�(y + z) + hy; zi)= 5f�(y + z) + z = 5h(y + z)� y:h is strictly convex and, therefore, 5h is strictly monotone and invertible. Thisimpliesz = (5h)�1(5g(y) + y)� y =: �2(y): (3.7)Since by Theorem 3.1, Z 2 @F g(Y ) a.s. and P Y � �n d we obtain Z = �2(Y ) a.s.Furthermore, PX = P1 � �nd implies that @f(X) = f5f(X)g a.s. and by Theorem3.1 Y + Z = 5f(X) a.s.This implies thatZ = �2(Y ) = (5h)�1(5g(Y ) + Y )� Y= (5h)�1 5 g(Y )� Y=: �1(Y )� Ywhere g(y) := g(y) + 12jjyjj2. g is strictly convex and, therefore, �1 is invertible.This �nally implies that5f(X) = Y + Z = �1(Y ) i.e.Y = ��11 (5f(X)) = 	1(X):



On the n-coupling problem 10Then we also obtain a representation of Z,Z = �1(Y )� Y = 5f(X)���11 (5f(X))=: 	2(X): 2Remark: Note that (3.5) is also a su�cient condition for optimality if g is even F -convex. If f is strict convex one obtains an alternative representation for an optimalcoupling by (X; �1(X); �2(X)) with�1(X) = (5f)�1((5h)�1(5g(X) +X))�2(X) = (5h)�1(5g(X) +X)�X; (3.8)where h(t) = f�(t) + 12 jjtjj2:This representation is again su�cient for optimality if g is F -convex (cp. The-orem 3.1). We will use this su�cient condition in the following to construct someexamples. 2An extension of the characterization of optimal solutions in Theorem 3.1 to n-coupling problems is given in the following theorem.Theorem 3.3 (Characterization of optimal n-couplings)Let Pi be probability measures on IRd, 1 � i � n with �nite second moments. ThenX = (X1; : : : ;Xn) is n-optimal if and only if functions f1; : : : ; fn�1 exist such thatf1 is convex, lsc, fk is Fk�1-convex whereF0 (s; t) = hs; ti ; Fk(s; t) = fFk�1k (s+ t) + hs; ti ; (3.9)fFk�1 is the Fk�1 conjugate of fk; 1 � k � n� 1, andnXi=2Xi 2 @ f1(X1); nXi=k+1Xi 2 @Fk�1 fk(Xk) (3.10)2 � k � n� 1, a.s.Proof: The proof is based in both directions on the duality theorem (see Kellerer(1984), Rachev (1991), R�uschendorf (1981, 1991)). With M(P1; : : : ; Pn) the set ofmeasures with marginals P1; : : : ; Pn holdssup�Z c (x1; : : : ; xn) d�; � 2M(P1; : : : ; Pn)� (3.11)= inf ( nXi=1 Z fi dPi; fi 2 L1(Pi); nXi=1 fi(xi) � c (x1; : : : ; xn)) :This duality theorem is applied to c (x) = Pi<j hxi; xji. Given condition (3.10)de�nefn(t) = fFn�2n�1 (t) = sups fFn�2(s; t)� fn�1(s)g;



On the n-coupling problem 11then (f1; : : : ; fn) is admissible for the dual problem in (3.11) as can be seen byrecursive insertion of the de�nition of fi (for details see Uckelmann (1998)).Since Pnk=2Xk 2 @ f1(X1), it holds a.s. thatf1(X1) + f�1  nXk=2Xk! = *X1; nXk=2Xk+ : (3.12)Further from Pnk=3Xk 2 @F1 f2(X2) one obtainsf2(X2) + fF12 ( nXk=3Xk) = F1(X2; nXk=3Xk)= f�1 ( nXk=2Xk) + *X2; nXk=3Xk+ a.s.and generallyfm(Xm) + fFm�1m 0@ nXk=m+1Xk1A = fFm�2m�1  nXk=mXk!+ *Xm; nXk=m+1Xk+ a.s. (3.13)Finally, Xn 2 @Fn�2 fn�1 (Xn�1) a.s. impliesfn�1(Xn�1) + fFn�2n�1 (Xn) = Fn�2 (Xn�1;Xn) a.s., equivalently, by de�nition of fnfn�1(Xn�1) + fn(Xn) = fFn�3n�2 (Xn�1 +Xn) + hXn�1;Xni : (3.14)Summing over these equations yieldsnXk=1 fk(Xk) = c (X1; : : : ;Xn) a.s. (3.15)This implies by the duality theorem (3.11) optimality of X = (X1; : : : ;Xn).For the converse direction let � 2 M(P1; : : : ; Pn) be an optimal measure and(f1; : : : ; fn) be a solution of the dual problem (3.11) (see Kellerer (1984), R�uschendorf(1981)). De�ne f = f��1 i.e. f(x) = supyfhx; yi � f�1 (y)g then f � f1 and f� = f�1 .With G(x2; : : : ; xn) = supx1 fc (x1; : : : ; xn)� f(x1)g= supx1 f*x1; kXi=2 xi+� f(x1)g+Xi<j hxi; xji= f�  nXi=2 xi!+Xi<j hxi; xjiholds nXi=1 fi(xi) � f(x1) + nXi=2 fi(xi) � f(x1) +G(x2; : : : ; xn) � c(x1; : : : ; xn):



On the n-coupling problem 12As (f1; : : : ; fn) is a solution of the dual problem, this inequality impliesZ (f(x1) +G(x2; : : : ; xn)� c (x1; : : : ; xn)) d� = 0and, therefore, f(x1) + G(x2; : : : ; xn) = c (x1; : : : ; xn)� a.s.This implies that � a.s.,f(x1) + f�  nXi=2 xi! = *x1; nXi=2 xi+and, therefore, Pni=2 xi 2 @f(x1) � a.s., the �rst condition of (3.10) holds.Similarly, one constructs successively improvements of the admissible solutionf1; : : : ; fn which result in the conditions of the theorem (for details see Uckelmann(1998)).nXi=kXi 2 @Fk�2fk�1(Xk�1) a.s. 2Remark: Note that the functions fk; fFk�1k in Theorem 3.3 are convex and lsc. Asconsequence of Theorem 3.3 one obtains as in Theorem 3.2 an improved constructiveversion of the existence of Monge solutions. The proof can be given along the linesof the proof of Theorem 3.2. 2For the application to concrete examples the following calculation of F (t; z) =f�(t+ z) + ht; zi is of interest. We use the notation of Theorem 3.1.Lemma 3.4 If f : IRd ! IR is strictly convex, thenF (y; z) = Dy + z; (5f)�1(y + z)E� f �(5f)�1(y + z)�+ hy; zi : (3.16)Proof: Strict convexity of f implies existence of (5f)�1. De�ne �s(t) := hs; ti�f(t),then 5�s(t) = s � 5f(t) = 0 if and only if t0 = (5f)�1(s). Since D2�s(t) =�D2f(t) < 0 for all t; �s is strictly concave and t0 is a global supremum of �s.Therefore, f�(s) = suptfhs; ti � f(t)g = hs; (5f)�1(s)i � f((5f)�1(s)) which im-plies (3.16). 2Lemma 3.5 For � > 0 and p � 2 consider f(t) := �jjtjjp,then F (y; z) = p�1p (�p) 11�p jjy + zjj pp�1 + hy; zi.Proof: Note that5 f(t) = �pjjtjjp�2tand(5f)�1(s) = (�p)1=1�pjjsjj� p�2p�1 : (3.17)



On the n-coupling problem 13This impliesDs; (5f)�1(s)E = (�p) 11�p jjsjj pp�1 and f �(5f)�1(s)� = �(�p) p1�p jjsjj pp�1 :This applied to (3.16) yields (3.17). 2In the case p = 2 we obtain the following consequence for F -subdi�erentials.Lemma 3.6 Let f(t) := �jjtjj2 and let g 2 C2(IRd) satisfyD2g(t)� 12�Id�d > 0.Then g is F -convex andz = 2�1 + 2� 5 g(y)� 11 + 2�y 2 @F g(y): (3.18)For g(t) = G(t) + �jjtjj2; G 2 C2(IRd) convex, �� > 14 the above assumption isful�lled.Proof: By Lemma 3.5F (t; z) = 14� jjt+ zjj2 + ht; zi :De�ne 	z(t) := g(t)� 14� jjt+ zjj2 � ht; zi then 5	z(t) =5g(t)� 1+2�2� z � 12�tand D2	z(t) = D2g(t)� 12�Id�d: For z = 2�1+2� 5 g(t)� 11+2�t holds 5	z(t) = 0 andD2	z(t) > 0 implies that t = tz is a global minimum of 	z.To prove F -convexity of g considerE = f(z; g(tz)� F (tz; z)); z 2 IRdg:Since g(t) � F (t; z) + g(tz)� F (tz; z)and g(tz) = F (tz; z) + g(tz)� F (tz; z) it holds thatg(t) = sup(z;a)2E fF (t; z) + ag:Therefore, g is F -convex and z 2 @F g(y).If g(t) = G(t) + �jjtjj2, thenD2g(t)� 12�Id�d = D2G(t) + (2� � 12�)I d�d= D2G(t) + 4�� � 12� Id�d:From our assumptions the condition of the �rst part of Lemma 3.5 is ful�lled. 2Example 3.7 Let �� � 14 ; �; � > 0 and let G 2 C2(IRd) be convex and de�nef(t) = �jjtjj2; g(t) = G(t) + �jjtjj2. De�ne h(t) = f�(t) + 12 jjtjj2 = 14�jjtjj2 + 12 jjtjj2.Then 5h(t) = 1+2�2� t; (5h)�1(s) = 2�1+2�s and 5g(t) + t =5G(t) + (2� + 1)t. By



On the n-coupling problem 14Lemma 3.6 g is F -convex and by (3.8) an optimal Monge pair is given by (�1;�2)with �1(t) = (5f)�1((5h)�1(5g(t) + t)) = 11+2� 5G(t) + 1+2�1+2�t�2(t) = (5h)�1(5g(t) + t)� t = 2�1+2� 5G(t) + 4���11+2� t: (3.19)Example 3.8 Let A;B > 0 be positive de�nite matrices and consider f(x) =12 hx;Axi ; g(y) = 12 hy;Byi. Then g is F -convex and an optimal Monge tuple (�1;�2)is given by�1(x) = A�1(A�1 + I d�d)�1(B + I d�d)x (3.20)�2(x) = ((A�1 + I d�d)�1(B + I d�d)� I d�d)x:For the proof note that f�(x) = hA�1x; xi and F (y; z) = hA�1(y + z); y + zi +hy; zi. Consider 	z(t) := g(t) � F (t; z), then 5	z(t) = Bt�A�1(t+ z)� z = 0 ifand only if z = (A�1+ I d�d)�1(B� I d�d)t. By assumption D2	z(t) = B�A�1 > 0i.e. 	z is convex. Then by Lemma 3.5 g is F -convex and(A�1 + I d�d)�1(B � I d�d)t 2 @F g(t):Next apply formula (3.8) to obtain (3.20).Remark: It is easy to rederive from our general characterization results that indimension d = 1 optimal couplings are given by Xi = F�1i (U), where Fi are thedistribution functions of Pi and U is uniformly distributed on [0; 1]. The normalexamples for optimal three-couplings in Olkin and Rachev (1993) resp. Knott andSmith (1994) were so far the only cases treated in the literature. Based on our char-acterization results and the description of F -convex functions we have added somemore examples. One can construct several further examples using the two-couplingresults in R�uschendorf (1995) where general coupling functionals are considered. 2References[1] Cuesta-Albertos, J.A.; Matran, C.; Tuero-Diaz, A. (1996): Properties of theoptimal maps for the L2-Monge-Kantorovich transportation problem, Preprint.[2] Gangbo, W.; McCann, R.J. (1996): The geometry of optimal transportation,Acta Math. 177, 113{161.[3] Gangbo, W.; Swiech, A. (1996): Optimal maps for the multidimensionalMonge-Kantorovich Problem, Preprint.
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