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Abstract In this paper we study derivative pricing under information on observed market

prices of some derivatives. To this purpose we characterize minimal distance martingale mea-

sures under constraints on a finite number of random variables with respect to f -divergence

distances in a general semimartingale setting. As a result a characterization of optimal portfo-

lios of the underlyings and the given derivatives is obtained.
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1 INTRODUCTION

A common approach to derivative pricing in incomplete markets is to base the prices

on a minimal distance martingale measure with respect to certain distances like L2-

distance (see [26] and [6]), Hellinger distance (see [19]), entropy distance (see [9])

and others.

This approach to derivative pricing takes into consideration the probabilistic model

of the future behaviour of the underlyings, but not the information on derivative prices

observed in the market. In order to include this information in the model we con-

sider only those martingale measures which yield derivative prices consistent with the

observed market prices. For derivative pricing we propose the minimal distance mar-

tingale measure consistent with observed market prices. A related idea of derivative

pricing is studied by Kallsen in [17] and [16]. There derivative prices are considered

such that it is optimal for an investor to hold a given non-zero position in the derivatives

in order to maximize his expected utility. In the recent paper [18] the least favourable

martingale measure consistent with observed market prices is proposed for derivative

pricing. This pricing measure can actually be seen as minimal distance martingale

measure consistent with observed market prices, see Section 4, and thus this proposal

is consistent with our idea of integration of information on the market prices.
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We consider the class of all f-divergence distances defined by strictly convex, dif-

ferentiable functions f which includes the distances above and many further examples

(see [21]). We obtain some necessary and some sufficient conditions for projections of

the underlying measure on the set of martingale measures consistent with the observed

prices of a finite number of derivatives in a general semimartingale market model.

A related problem is studied by Avellaneda (see [2]), who characterizes the proba-

bility measure which minimizes the relative entropy distance of the pricing measure to

the class of all probability measures consistent with the observed market prices. How-

ever, the calibrated pricing measure obtained in this way is not necessarily a martingale

measure.

The paper is organized as follows. In Section 2 we recall a characterization of

f-projections on classes of distributions determined by inequality constraints. Based

on this result we obtain in Section 3 characterizations of minimal distance martingale

measures under constraints. We derive some necessary and some sufficient conditions

for minimal distance martingale measures under constraints. In Section 4 we remind

the notion of a minimax measure with respect to concave utility functions and convex

sets of probability measures. Minimax martingale measures are equivalent to mini-

mal distance martingale measures with respect to f-divergence distances induced by

the convex conjugate of the utility function. As a consequence the characterizations

of minimal distance martingale measures consistent with observed market prices are

closely related to the determination of optimal portfolios, if one allows additionally

constant positions in the derivatives with observed market prices.

2 f -DIVERGENCES AND MINIMAL DISTANCE

MEASURES

In the following we recall a characterization of projections with respect to f-diver-

gence distances on classes of distributions determined by inequality constraints. For a

detailed discussion of f-divergence distances we refer to [21] or [28].

Let (
;F ; P ) be a probability space.

Definition 2.1 Let Q � P and let f : (0;1) ! R be a convex function. Then the

f-divergence distance between Q and P is defined as:

f(QjjP ) :=

�

R

f(

dQ

dP

)dP , if the integral exists

1 , else

where f(0) = lim

x#0

f(x).

Examples of f-divergence distances are the Kullback-Leibler or entropy distance

for f(x) = x logx, the total variation distance for f(x) = jx � 1j, the Hellinger
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distance for f(x) = �

p

x, the reverse relative entropy distance for f(x) = � log(x)

and many others.

In the followingwe assume that f is a continuous, strictly convex and differentiable

function. Let K be a convex set of probability measures on (
;F) dominated by P . A

measure Q� 2 K is called a f-projection of P on K if

f(Q

�

jjP ) = inf

Q2K

f(QjjP ) =: f(KjjP ):

Let F be a convex cone of real valued random variables on (
;F), i.e.

f

k

X

i=1

�

i

f

i

: �

i

� 0; f

i

2 Fg = F;

and define the moment family determined by inequality constraints with respect to F

as

K

F

:= fQ� P : F � L

1

(Q) and E
Q

f � 0 for all f 2 Fg:

The following result was given in [23], Theorem 2:

Theorem 2.2 Let Q� � P satisfy f(Q�jjP ) <1 and assume that d := E

Q

�

f

0

(

dQ

�

dP

)

is finite.

(i) Q

�

2 K is the f-projection of P on K if and only if

E

Q

�

f

0

�

dQ

�

dP

�

� E

Q

f

0

�

dQ

�

dP

�

for all Q 2 K with f(QjjP ) <1:

(ii) If Q� 2 K
F

is the f-projection on K
F

, then

f

0

�

dQ

�

dP

�

� d 2

�

F , the L1

(
;F ; Q

�

)-closure of F:

(iii) If Q� 2 K
F

such that f 0(
dQ

�

dP

)� d 2 F , then Q� is the f-projection on K
F

.

Proposition 8.5 in [21] shows the existence of a f-projection of P on a convex

class K under the assumptions that K is closed in the variational distance topology

and lim

x!1

f(x)

x

= 1. By Corollary 2.3 in [11] a f-projection is equivalent to P if

f

0

(0) = �1 and if there exists a measure Q 2 KwithQ � P and with finite distance

f(QjjP ) <1.

3 CHARACTERIZATION OF MINIMAL DISTANCE

MARTINGALE MEASURES UNDER CONSTRAINTS

In the following we apply Theorem 2.2 to characterize f-projections on the set of mar-

tingale measures which fulfill some additional constraints. Our mathematical frame-

work is as follows: (
; F , (F
t

)

0�t�T

, P ) is a filtered probability space, where the
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filtration is assumed to be right-continuous and F = F

T

. Let S be aRd-valued semi-

martingale with deterministic S
0

. Vector stochastic integrals are written as ' � S
t

=

R

t

0

'

s

dS

s

. (For the definition of a vector stochastic integral see [14].)

Let M (M
loc

) be the set of P -absolutely continuous (local) martingale measures

andMe (Me

loc

) the subset ofM (M
loc

) consisting of probability measures which are

equivalent to P . Let H
1

; : : : ;H

n

be a finite set of F
T

-measurable random variables

and r 2 f0; : : : ; ng.

We define the set of martingale measures with constraints as

c

M := fQ 2M : H

1

; : : : ;H

n

2 L

1

(Q); E

Q

H

i

� 0 for 1 � i � r

and E
Q

H

i

= 0 for r + 1 � i � ng:

The class cM stands for the set of martingale measures consistent with some informa-

tion on the prices of derivatives H
1

; : : : ;H

n

. Notice that price information of the form

E

Q

H

i

2 [q

i

; p

i

] can also be described by inequality constraints as in the definition of
c

M. The sets cM
loc

;

c

M

e

;

c

M

e

loc

are defined analogously to c

M. We assume throughout

that

c

M

e

6= ?:

For a Rd-valued local martingale N the class L1

loc

(N ) of predictable integrands

is defined in [14]. For Q 2 M

loc

we denote by L

1

loc

(S;Q) the class of integrands

L

1

loc

(S) which is defined with respect to the measure Q. The following theorem gives

a necessary condition for the f-projection of P on c

M.

Theorem 3.1 Let Q� 2 c

M satisfy f(Q�jjP ) < 1. If Q� is the f-projection of P on
c

M and d := E

Q

�

f

0

(

dQ

�

dP

) is finite, then

f

0

�

dQ

�

dP

�

= d+ ' � S

T

+

n

X

i=1

�

i

H

i

Q

�-a.s. (3.1)

with �
1

; : : : ; �

n

2 R, such that �
i

� 0 and �
i

(E

Q

�

H

i

) = 0 for 1 � i � r, and with

some process ' 2 L

1

loc

(S;Q

�

), such that ' � S is a martingale under Q�.

Proof. First we introduce a set G of random variables which determines cM as a mo-

ment family. Define the set G0 as

G

0

:= f' � S

T

: '

i

= Y

i

1

]s

i

;t

i

]

; s

i

< t

i

; Y

i bounded F
s

i

-measurableg:

Let G be the convex cone generated by the set

G

0

[ fH

i

: 1 � i � ng [ f�H

i

: r + 1 � i � ng:

Then we have the following characterization of cM.

c

M = fQ� P : G � L

1

(Q) and E
Q

g � 0 for all g 2 Gg:
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The necessary condition in Theorem 2.2 (ii) yields: f 0(dQ
�

dP

) � d 2

�

G. Corollary

2.5.2 in [29] (for a multidimensional version see Theorem 1.6 in [7]) implies that the

L

1

(Q

�

)-closure of the vector space generated by G0 is contained in

f' � S

T

: ' 2 L

1

loc

(S;Q

�

); such that ' � S is a Q�-martingaleg:

According to Proposition 1.1 in [13] this result is valid without the assumption of a

complete filtration. Extending Proposition I.3.3 in [25] from vector spaces to the class

of closed convex cones one gets

f

0

�

dQ

�

dP

�

= d+ ' � S

T

+

n

X

i=1

�

i

H

i

Q

�-a.s.;

where �
i

� 0 for 1 � i � r. This implies by the definition of d that �
i

(E

Q

�

H

i

) = 0

for 1 � i � r. �

The following theorem is a variant of Theorem 3.1. It shows that the necessary condi-

tion in Theorem 3.1 is also valid for the set cM
loc

under the additional assumption that

S is locally bounded.

Theorem 3.2 Let S be locally bounded. Let Q� 2 c

M

loc

satisfy f(Q�jjP ) < 1. If

Q

� is the f-projection of P on c

M

loc

and d := E

Q

�

f

0

(

dQ

�

dP

) is finite, then

f

0

�

dQ

�

dP

�

= d+ ' � S

T

+

n

X

i=1

�

i

H

i

Q

�-a.s. (3.2)

with �
1

; : : : ; �

n

2 R, such that �
i

� 0 and �
i

(E

Q

�

H

i

) = 0 for 1 � i � r, and with

some process ' 2 L

1

loc

(S;Q

�

), such that ' � S is a martingale under Q�.

Proof. Let G
loc

be the convex cone generated by

f' � S

T

: '

i

= Y

i

1

]s

i

;t

i

]

1

[0;

b

T

i

]

; s

i

< t

i

; Y

i bounded F
s

i

-measurable; bT i

2 


i

g

[ fH

i

:� i � ng [ f�H

i

: r + 1 � i � ng;

where 
i := f

b

T

i stopping time : S

i

b

T

i

is boundedg.

Then the convex cone G
loc

determines cM
loc

as a moment family

c

M

loc

= fQ� P :

b

G

loc

� L

1

(Q) and E
Q

g � 0 8g 2 G

loc

g

The presentation (3.2) is then obtained as in the proof of Theorem 3.1. �

Remark. Theorems 3.1 and 3.2 are generalizations of the corresponding results in the

case without constraints, see [11], [12], [20] and [24].

From Theorem 2.2 (i) we obtain the followingsufficient condition for f-projections

of P on c

M

loc

(cM). We denote by L(S) the set of predictable, S-integrable processes

with respect to P (see [13]).
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Theorem 3.3 Let Q� 2 c

M

loc

with f(Q�jjP ) < 1 such that for some process ' 2

L(S) and �
1

; : : : ; �

n

2 R the following conditions hold:

(i) f

0

�

dQ

�

dP

�

= d+ ' � S

T

+

n

X

i=1

�

i

H

i

P -a.s.,

(ii) �' � S is bounded from below P -a.s.,

(iii) E

Q

�

(' � S

T

) = 0;

(iv) �

i

� 0; �

i

(E

Q

�

H

i

) = 0 for 1 � i � r:

Then Q� is the f-projection of P on c

M

loc

.

Proof. From Corollary 3.5 in [1] it follows from condition (ii) that�' � S is a Q-local

martingale and hence a Q-supermartingale for any Q 2

c

M

loc

. Therefore,

E

Q

f

0

�

dQ

�

dP

�

= d+E

Q

(' � S

T

) +

n

X

i=1

�

i

E

Q

H

i

� d = E

Q

�

f

0

�

dQ

�

dP

�

:

Now the result follows from Theorem 2.2 (i). �

The following proposition shows that one can transform the minimization problem

inf

Q2

c

M

f(QjjP ) with respect to c

M into a minimization problem with respect to M

including some penalty terms for violating the constraints. The coefficients 

i

in the

penalty terms can be interpreted as Lagrange multipliers.

Proposition 3.4 Let S and H

1

; : : : ;H

n

be bounded and inf

Q2

c

M

Ef(

dQ

dP

) < 1. As-

sume the existence of a measure Q

0

2

c

M such that E
Q

0

H

i

> 0 for 1 � i � r

and f(Q

0

jjP ) < 1. Furthermore assume that there exists a neighbourhood V of

(0; : : : ; 0) 2 R

n�r such that for all v 2 V there exists an element Q 2 M with

f(QjjP ) <1 and (E

Q

H

r+1

; : : : ; E

Q

H

n

) = v.

Then Q� 2 c

M is a f-projection of P on c

M, i.e.

f(Q

�

jjP ) = inf

Q2

c

M

f(QjjP );

if and only if there are 

1

; : : : ; 


n

2 Rsuch that

f(Q

�

jjP ) +

n

X

i=1




i

E

Q

�

H

i

= inf

Q2M

ff(QjjP ) +

n

X

i=1




i

E

Q

H

i

g

and 

i

� 0; 


i

(E

Q

�

H

i

) = 0 for 1 � i � r.
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Proof. 1. Since S is bounded it follows that the set M of absolutely continuous mar-

tingale measures is closed in variation. As H
1

; : : : ;H

n

are bounded this is also true

for M0

:= fQ 2 M : E

Q

H

i

= 0 for r + 1 � i � ng. Since M, M0 are convex,

they are also closed in �(L1

; L

1

), if one identifies Q 2 M with its Radon-Nikodym

density with respect to P (see for example Proposition IV.3.1 in [25]). We define a

functionB :M

0

! R

r by

B(Q) = (�E

Q

H

1

; : : : ;�E

Q

H

r

):

Obviously the component mappings of B are convex and continuous with respect to

�(L

1

; L

1

). The optimization problem is to minimize the lower semicontinuous func-

tional f(�jjP ) (see Theorem 1.47 in [21]) over cM,

inf

Q2

c

M

f(QjjP ):

This problem can be written in the form

inf

Q2M

0

BQ�0

f(QjjP );

where BQ � 0 is understood componentwise.

The assumption on the existence of an inner point Q
0

in M0 allows to apply a

Lagrange multiplier theorem (see [8], Theorem III.5.1), which results in the following

equivalence:

Q

�

2

c

M is a f-projection of P on c

M if and only if there are 

i

� 0 such that

f(QjjP ) +

r

X

i=1




i

E

Q

�

H

i

= inf

Q2M

0

ff(QjjP ) +

r

X

i=1




i

E

Q

H

i

g; (3.3)

and 

i

(E

Q

�

H

i

) = 0 for 1 � i � r.

2. Next we follow a similar line of argument to handle the equality constraints in

the right-hand side of (3.3). Since the component mappings of B are continuous and

linear, the mapping J : M ! R, defined by J(Q) := f(QjjP ) +

P

r

i=1




i

E

Q

H

i

, is

lower semicontinuous and convex. We define a function B0 :M! R

n�r by

B

0

(Q) := (E

Q

H

r+1

; : : : ; E

Q

H

n

):

The optimization problem

inf

Q2M

0

J(Q)

can be written as

inf

Q2M

B

0

(Q)=0

J(Q):
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The perturbation function � :M�R

n�i

0

!

�

R is chosen as

�(Q; v) :=:=

�

J(Q); if Q 2M and B0(Q) = v

1; otherwise.

For v 2 Rn�r define h(v) := inf

Q2M

�(Q; v). By assumption h(0) is finite. Ob-

serve that M is closed, J is lower semicontinuous and convex, and B

0 is linear and

continuous. Therefore, the function h is convex (see [8], Lemma III.5.2, Lemma

III.2.1). From Theorem 23.4 in [22] it follows that h is subdifferentiable in 0. Hence

by Proposition III.3.2 in [8] we obtain the following equivalence:

Q

�

2 M

0 solves inf

Q2M

0

J(Q) if and only if there are 

r+1

; : : : ; 


n

2 Rsuch that

f(Q

�

jjP ) +

n

X

i=1




i

E

Q

�

H

i

= inf

Q2M

ff(QjjP ) +

n

X

i=1




i

E

Q

H

i

g:

�

Remark. Following the line of arguments of the proof of Theorem 7.1 in [11] one veri-

fies that under the additional assumption f 0(dQ
�

dP

) 2 L

1

(Q

�

) the coefficients 

1

; : : : ; 


n

in Proposition 3.4 correspond to ��
1

; : : : ;��

n

, where �
i

are the coefficients of the

characterization of Q� in Theorem 3.1.

4 RELATIONSHIP TO PORTFOLIO OPTIMIZATION

Minimal distance martingale measures are closely related to minimax martingale mea-

sures and hence to utility maximization problems. We briefly restate the notion of a

minimax measure and some results about minimax measures for general convex mod-

els as introduced in [11], Section 4, in order to point out the relationship to portfolio

optimization. In the following, as in Section 2, we denote by K a general convex set

of probability measures on (
;F) dominated by P .

A utility function u:R! R[ f�1g is assumed to be strictly increasing, strictly

concave, continuously differentiable in dom(u) := fx 2 R j u(x) > �1g and to

satisfy

u

0

(1) = lim

x!1

u

0

(x) = 0; (4.1)

u

0

(�x) = lim

x#�x

u

0

(x) =1 (4.2)

for �x := inffx 2 R j u(x) > �1g. (This implies that either dom(u) = (�x;1) or

dom(u) = [�x;1).)

We denote by I the inverse of the derivative of u. Assumption (4.1) implies that

I(0) =1. The convex conjugate function u� : R
+

! Rof u is defined by

u

�

(y) := sup

x2R

fu(x)� xyg = u(I(y)) � yI(y):
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For Q 2 K and x > �x we define

U

Q

(x) := supfEu(Y ) : Y 2 L

1

(Q); E

Q

Y � x;Eu(Y )

�

<1g: (4.3)

The value U
Q

(x) can be interpreted as the maximal expected utility which can be

achieved with endowment x, if the market prices are computed by Q. If E
Q

(I(�

dQ

dP

))

is finite for all � > 0, then U

Q

(x) has the following well-known representation (see

for example [11], Lemma 4.1):

U

Q

(x) = E

h

u

�

I

�

�

Q

(x)

dQ

dP

��i

; (4.4)

where �
Q

(x) is chosen such that EI(�
Q

(x)

dQ

dP

) = x.

The random variable I(�

Q

(x)

dQ

dP

) can be interpreted as optimal contingent claim

which is financeable under the pricing measure Q.

Definition 4.1 A measure Q� = Q

�

(x) 2 K is called minimax measure with respect

to endowment x and model K if it minimizes Q 7! U

Q

(x) over all Q 2 K, i.e.,

U

Q

�

(x) = U (x) := inf

Q2K

U

Q

(x):

We refer to [3], [10] and [11] for further information about minimax measures. We

denote by u�
�

0

(�jj�) the f-divergence distance corresponding to f(x) = u

�

(�

0

x).

Under the assumptions:

9x > �x with U (x) <1; (4.5)

E

Q

I

�

�

dQ

dP

�

<18� > 0 8Q 2 K (4.6)

one gets the following result (see Proposition 4.3 in [11]):

Proposition 4.2 Let x > �x.

(i) Let �
0

> 0 such that �
0

2 @U (x). If Q� 2 K is a u

�

�

0

-projection of P on K,

then Q� is a minimax measure for K and �
0

= �

Q

�

(x).

(ii) If Q� 2 K is a minimax measure, then Q

� is a u

�

�

Q

� (x)

-projection of P on K

and �
Q

�

(x) 2 @U (x).

This result shows that minimax measures can be determined by distance minimiza-

tion and conversely a u�
�

0

-projection has an alternative interpretation in the sense of

utility-maximization. Notice that for the standard utility functions like u(x) =

x

p

p

(p 2 (�1; 1) n f0g), u(x) = logx and u(x) = 1 � e

�px (p 2 (0;1)) the minimax

measure does not depend on x respectively the u�
�

-projection does not depend on �.
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Since U (x) typically is not known explicitly it is of interest to be able to determine

some �

0

2 @U (x). In the next proposition we give a sufficient condition to imply

�

0

2 @U (x).

According to the relationship between minimax measures and u

�

�

-projections in

Proposition 4.2 the preceding results induce also necessary and sufficient conditions

for a minimax measure in c

M respectively in c

M

loc

.

Assume that the conditions 4.5, 4.6 hold true for cM ( cM
loc

).

Proposition 4.3 Let Q� 2 c

M ( cM
loc

), � > 0 satisfy u�
�

(Q

�

jjP ) < 1. Assume that

for some ' 2 L(S) and constants �
1

; : : : ; �

n

2 R the following conditions hold:

(i) I

�

�

dQ

�

dP

�

= x+ ' � S

T

+

n

X

i=1

�

i

(H

i

� E

Q

�

H

i

) P -a.s.;

(ii) ' � S is bounded from below P -a.s.;

(iii) E

Q

�

(' � S

T

) = 0;

(iv) �

i

� 0 and �
i

(E

Q

�

H

i

) = 0 for 1 � i � r:

Then Q� is a minimax measure for cM ( cM
loc

) and x and � 2 @U (x).

Proof. SinceE
Q

�

I(�

dQ

�

dP

) = x one gets that � = �

Q

�

(x). Moreover, since (u�
�

)

0

(x) =

��I(�x), we conclude from Theorem 3.3 that Q� is the u�
�

-projection of P on c

M

( cM
loc

) and that the condition of Theorem 2.2 (i) is fulfilled. Hence for all measures

Q 2

c

M (cM
loc

) satisfying u
�

(QjjP ) < 1 one gets E
Q

I(�

dQ

�

dP

) � x. This implies

that

U

Q

�

(x) = E

h

u

�

I

�

�

dQ

�

dP

��i

� U

Q

(x):

Assumption (4.6) implies that (see Lemma 4.1 in [11])

fQ 2

b

K : u

�

�

(QjjP ) <1g = fQ 2 K : U

Q

(x) <1g:

Therefore, Q� is a minimax measure for x and c

M ( cM
loc

). From Proposition 4.2 we

conclude that � = �

Q

�

(x) 2 @U (x). �

In the following we point out the relationship between minimal distance martingale

measures under constraints and portfolio optimization. We consider a market model

which consists of d + 1 assets. We assume that the assets 0; : : : ; d are modeled by

theRd+1-valued semimartingale S = (S

0

; : : : ; S

d

) and suppose without loss of gen-

erality that the price of asset 0 is constant, i.e., S0

t

� 1. Assume that additionally to

the price process S also the prices fp
1

; : : : ; p

n

g of a finite set of contingent claims

fH

1

; : : : ;H

n

g are known at time t = 0. We suppose that one can buy or sell these

contingent claims in t = 0.
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We call a pair ('; �) of a predictable, S-integrable, Rd+1-valued process ' and a

vector � 2 Rn an admissible strategy if

d

X

i=0

'

i

t

S

i

t

= x�

n

X

i=1

�

i

p

i

+ ' � S

t

for any t 2 R

+

and the process ' � S is bounded from below. The set of admissible

strategies is denoted by A.

We define an optimal portfolio strategy as a strategy (b'; b�) 2 A which maximizes

('; �) 7! E

�

u

�

x+ ' � S

T

+

n

X

i=1

�

i

(H

i

� p

i

)

��

(4.7)

over all ('; �) 2 A. We denote by c

M the class of martingale measures consistent with

the observed market prices of the derivatives H
1

; : : : ;H

n

,

c

M := fQ 2M : H

i

2 L

1

(Q) and E
Q

H

i

= p

i

; 1 � i � ng:

Optimal portfolio strategies can be obtained from a representation of the u

�

�

0

-

projection Q

� of P on c

M as in Theorem 3.1. Assume that the conditions 4.5, 4.6

hold true for cM.

Theorem 4.4 Let Q� 2 c

M

e be the u�
�

0

-projection of P on c

M for some �
0

2 @U (x),

�

0

> 0.

(i) There exist constants b�
1

; : : : ; b�

n

2 Rand a process b' 2 L(S) such that:

I

�

�

0

dQ

�

dP

�

= x+ b' � S

T

+

n

X

i=1

b�

i

(H

i

� p

i

): (4.8)

(ii) If representation (4.8) holds and if the stochastic integral b' � S is bounded from

below, then (b'; b�) is an optimal portfolio strategy (where b'0

t

:= x + b' � S

t

�

P

n

i=1

b�

i

p

i

�

P

d

i=1

b'

i

t

S

t

).

Proof. 1. Theorem 3.1 and the identity �
0

= �

Q

�

(x) (see Proposition 4.2) imply the

existence of the representation in (4.8).

2. By the definition of b'0

t

and observing that S0 is assumed to be identical 1 it holds

that
P

d

i=0

b'

i

t

S

i

t

= x �

P

n

i=1

b�

i

p

i

+ b' � S

t

for any t 2 R

+

and hence (b'; b�) 2 A.

From Corollary 3.5 in [1] it follows that ' � S is a Q�-local martingale and hence a

Q

�-supermartingale for any ('; �) 2 A. Therefore,

E

Q�

�

x+ ' � S

T

+

n

X

i=1

�

i

(H

i

� p

i

)

�

� x:



12 THOMAS GOLL, LUDGER RÜSCHENDORF

Since I(�
0

dQ

�

dP

) is the optimal contingent claim which is financeable under the pricing

measure Q

� and the endowment x (see (4.4)) we conclude that (b'; b�) is an optimal

portfolio strategy. �

Remarks. 1. If the utility-function is finite on (�1;1), i.e. �x = �1, then the

condition that b' � S is bounded from below is not fulfilled in general. In this case one

has to choose a suitable extended concept of admissible strategies in order to solve

utility maximization problems. This issue is discussed in [24], [5] and [15].

2. Theorem 4.4 shows that if derivative prices are computed by the minimax (re-

spectively, minimal distance) measure Q� for cM and x, then the optimal contingent

claim can be duplicated by a strategy (b'; b�). Hence although it may be profitable to

invest in the derivatives H
1

; : : : ;H

n

it turns out that one cannot increase the maximal

expected utility in comparison to the strategy (b'; b�) by trading in further derivatives.

This shows that Q� yields consistent derivative prices in the sense of [18].

3. There is a close relationship of the portfolio optimization problem (4.7) to

utility-based hedging of one contingent claim H

1

:

sup

(';�1)2A

E(u(x

0

+ ' � S

T

�H

1

)): (4.9)

If for k = 1 and b� = �1 the strategy b' in representation (4.8) is such that b' � S is

bounded from below, then b' turns out to be the optimal portfolio strategy for the utility-

based hedging problem (4.9) with initial endowment x
0

= x�p

1

. Hence problem (4.7)

is closely related to problem (4.9). In the portfolio optimization problem (4.7) we have

a fixed initial price of the derivative, in the utility-based hedging problem (4.9) we have

a fixed number of derivatives in the set of allowed portfolios. Due to this relationship,

results of this paper are closely related to results on utility-based hedging. The problem

of utility-based hedging has been studied recently in [4], [5], [11] and [15].

Example. We consider a discrete-time market model. Let S = (S

0

; S

1

; : : : ; S

T

) be the

price of a risky asset where S
0

2 R,S
0

> 0 and S
t

= S

0

Q

t

s=1

X

s

whereX
1

; : : : ; X

T

are (0;1)-valued random variables. Moreover the price p of one derivativeH is given.

Theorem 3.3 gives as sufficient conditions for a measure Q� 2 c

M, where

c

M := fQ 2M : E

Q

H = pg;

to minimize the relative entropy (corresponding to f(x) = x logx) over all measures

in c

M:

(i)
dQ

�

dP

=

e

'�S+�H

E

�

e

'�S+�H

�

;

(ii) ' � S is bounded from below:
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In the discrete-time setting condition (ii) implies condition (iii) in Theorem 3.3. Con-

dition (i) can be written in the following equivalent way:

dQ

�

dP

=

e

P

T

i=1




i

(X

i

�1)+�H

E

�

e

P

T

i=1




i

(X

i

�1)+�H

�
;

where 

i

isF
i�1

-measurable and � 2 R. The random variable 

i

describes the amount

of money invested at time i in the risky asset.

The condition that Q� 2 c

M leads to T + 1 recursive nonlinear equations for the

parameters 

i

; �. First 

T

is determined dependent on the parameter � by the equation:

E

�

(X

T

� 1) e




T

(X

T

�1)+�H

jF

T�1

�

= 0:

Then 

T�1

is determined by

E

�

(X

T�1

� 1) e




T�1

(X

T�1

�1)+


T

(X

T

�1)+�H

jF

T�2

�

= 0:

Finally 

1

is determined by

E

�

(X

1

� 1) e

P

T

i=2




i

(X

i

�1)+


1

(X

1

�1)+�H

jF

0

�

= 0:

According to a generalized Bayes formula (see for example [27], page 438-439) this

procedure ensures that Q� is a martingale measure.

The parameter � is determined by the moment constraint E
Q

�

H = p. One has

finally to check condition (ii) for '
i

:=




i

S

0

Q

s�i�1

X

s

. Then as consequence Q

�

as constructed above is the minimal distance measure for cM and f(x) = x logx.

Moreover ('; �) is an optimal portfolio strategy for the exponential utility function

u(x) = �e

�x. Notice that for the exponential utility function the optimal portfolio

strategy is independent of the initial endowment, as ey+z = e

y

e

z .
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