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Abstract

The optimal stopping value of random variables X1, . . . , Xn depends on the joint

distribution function of the random variables and hence on their marginals as well

as on their dependence structure. The maximal and minimal values of the optimal

stopping problem is determined within the class of all joint distributions with fixed

marginals F1, . . . , Fn. They correspond to some sort of strong positive respectively

negative dependence of the random variables. Any value in between these two extremes

is attained for some dependence structures. The maximal value is related to maximally

dependent random variables in the sense of Lai and Robbins. The determination of

the minimal value is based on some new ordering results for probability measures in

particular on lattice properties of probability orderings. With help of an extension of

Strassen’s theorem on representation of the convex order which is of interest in its own

we identify positive dependence structures leading to the minimal optimal stopping

value.

Keywords: Optimal stopping, distributions with given marginals, maximal dependence,

stochastic ordering, Strassen theorem.
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1 Introduction

Suppose X = (X1, . . . , Xn) is a sequence of n random variables with distribution functions

F1, . . . , Fn. Let V (X) = supτ∈T EXτ denote the optimal stopping value of X, where T
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denotes the class of all stopping times. In general it is not known which kind of ordering of

the dependence structure of the distributions of the random variables leads to a corresponding

ordering of the optimal stopping value. Rinott and Samuel-Cahn (1987, 1991) have shown

that a weak condition of negative dependence leads to an increase of the optimal stopping

value compared to the case of independent components with the same marginals. A similar

ordering result could be formulated more generally when restricting to threshold stopping

times. This restriction, however, is justified only for independent sequences.

Generally one would believe that some form of ‘negative dependence’ should go with

large optimal stopping values, while some form of ‘positive dependence’ should go with

small optimal stopping values. This idea has been made precise in the different but related

context of the random variable

Mn(X) = max
1≤i≤n

Xi,

the value which a prophet could reach in an optimal stopping problem. Lai and Robbins

(1976, 1978) constructed so called maximally dependent random variables X̃ = (X̃1, . . . , X̃n)

with distribution functions F1, . . . , Fn such that Mn(X) ≤st Mn(X̃) for any X with the same

marginals. Here ≤st denotes the usual stochastic ordering introduced below.

The construction principle underlying maximally dependent random variables is as fol-

lows. Obviously, for any real number α

Mn(X) ≤ α +
n∑

i=1

(Xi − α)+ (1)

and equality holds in (1) if for some α∗ the sets Ai = {Xi > α∗} are a disjoint partition

of Ω. If all Fi are continuous (in α∗) then this is fulfilled for maximally dependent random

variables which are constructed recursively and exhibit a strong form of negative dependence

and

P (Mn(X̃) ≥ t) = min{1,
n∑

i=1

(1− Fi(t))}.

An extension of this construction to a general class of recursively defined functions κn(X) was

given in Rüschendorf (1980, Theorem 7), see also the discussion in Rachev and Rüschendorf

(1998, pp. 155-56).

It was recently shown in Müller (2001) that maximally dependent random variables also

maximize the optimal stopping value if the Fi are continuous. There a particular simple

construction for maximally dependent random variables (which are not unique, as is obvious
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from (1)) is given. The main idea is as follows. For any stopping time τ and any Xi with

d.f. Fi, 1 ≤ i ≤ n holds

Xτ ≤ Mn(X) ≤st Mn(X̃).

Further, by (1) and the subsequent remarks, with

τ̃α∗ = inf{i : X̃i ≥ α∗}

one obtains X̃τ̃α∗ = Mn(X̃). Therefore, τ̃α∗ is an optimal stopping time for X̃ and

V (X̃) = EX̃τ̃α∗ = EMn(X̃).

Hence, with Γ(F1, . . . , Fn) the Fréchet class of all n-dimensional distributions with marginals

F1, . . . , Fn the upper bound of the optimal stopping value is given by

V +(F1, . . . , Fn) = sup
X∈Γ(F1,...,Fn)

V (X) = V (X̃) = EMn(X̃).

In Müller (2001) there is also an interesting example showing that for discrete distributions

F1, . . . , Fn, V +(F1, . . . , Fn) < EMn(X̃) is possible.

In the present paper we determine the lower bound

V −(F1, . . . , Fn) = inf
X∈Γ(F1,...,Fn)

V (X)

and the ‘positive dependence structure’ of the random vector X with

V (X) = V −(F1, . . . , Fn).

The argument for the lower bound can not be based on a simple comparison with the

maximum (or some related quantity) as in (1). Instead we use a special construction of a

Snell envelope, which is based on an extension of the Strassen theorem on convex domination.

We also introduce as main tool of the proof a new operation on distributions, related to lattice

properties of stochastic orderings.

The paper is organized as follows. Section 2 contains the main results, including the

determination of the lower bound, a result on the dependence structure of the corresponding

random variables, and the proof of the fact that the set of all stopping values is an interval.

In section 3 we describe the explicit construction of the distribution F∇G, which is the main

tool in section 2. This makes it possible to determine the minimal value explicitly. Section

4 contains the extension of the Strassen theorem on convex domination, which allows to

determine the strong positive dependence property of the random variables delivering that

minimal value.

3



2 Determination of the lower bound

The Hoeffding-Fréchet class Γ(F1, . . . , Fn) has a ‘unique’ maximally positive dependent el-

ement X∗ = (F−1
1 (U), . . . , F−1

n (U)), U uniformly distributed on [0, 1], with distribution

function

F (x) = min
1≤i≤n

Fi(xi).

This distribution minimizes the maximum in the stochastic order (cf. Rüschendorf (1980,

1981), i.e.

Mn(X
∗) ≤st Mn(X) for all X ∈ Γ(F1, . . . , Fn).

Therefore, it is natural to conjecture that X∗ also yields the lower bound for the optimal

stopping value. The following example, however, shows that this is not true in general, i.e.

V (X∗) > V −(F1, . . . , Fn).

is possible.

Example 2.1. Assume that X1 and X2 have uniform distributions with X1 ∼ U(−1, 0),

X2 ∼ U(−2, 2) and denote by F1 and F2 the corresponding distribution functions. Consider

the optimal stopping problem of X∗ = (F−1
1 (U), F−1

2 (U)). A simple calculation shows that

the optimal stopping time is given by

τ ∗ =

1, if X1 < −2
3
,

2, otherwise

with optimal stopping value V (X∗) = EXτ∗ = 1
6
. In the independent case X̃ = (X̃1, X̃2)

with X̃1 ∼ U(−1, 0), X̃1 ∼ U(−2, 2) the optimal stopping time obviously is τ̃ ≡ 2 and

V (X̃) = EX2 = 0 <
1

6
.

So in this example the strongest positive dependence does not yield the smallest optimal

stopping value. Indeed, here the independence structure yields the lower bound, since EX2

is an obvious lower bound of the optimal stopping value irrespective of the dependence struc-

ture.
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For the determination of the lower bound V −(F1, . . . , Fn) of the optimal stopping values

we remind some properties of stochastic orderings and the corresponding lattices. For a

comprehensive treatment of stochastic orders see Stoyan (1983) or Shaked and Shanthikumar

(1994). Recall that for distributions F and G the usual stochastic order F ≤st G holds if∫
fdF ≤

∫
fdG for all increasing functions f for which the integrals are defined. It is well

known that F ≤st G holds iff F (x) ≥ G(x) for all real x. Using this characterization it is

easy to see that the set of all distributions endowed with the order ≤st forms a lattice, where

the least upper bound F ∨st G has the distribution function min{F,G} and the greatest

lower bound F ∧st G has the distribution function max{F,G}.
For distributions with a finite mean the increasing concave order F ≤icv G holds if∫

fdF ≤
∫
fdG for all increasing concave functions f for which the integrals are defined.

Equivalently with the so-called integrated distribution function

ΦF (x) =

∫
max{0, x− t}F (dt) =

∫ x

−∞
F (t)dt

F ≤icv G holds iff ΦF (x) ≥ ΦG(x) for all real x, see e.g. Stoyan (1983, p. 11). Since F is

the right derivative of ΦF , the integrated distribution function characterizes the distribution,

and moreover, a function Φ is an integrated distribution function iff it is increasing convex

with

lim
x→−∞

ΦF (x) = 0 and lim
x→∞

(ΦF (x)− x) = −
∫

xF (dx),

see e.g. Müller (1998). The lattice property of the increasing convex order is an easy

consequence of this observation. The greatest lower bound F ∧icv G has the integrated

distribution function max{ΦF ,ΦG}, and the least upper bound F ∨icv G has the integrated

distribution function conv{ΦF ,ΦG}, where conv denotes the convex hull operator (see Kertz

and Rösler (1992) and Müller (1996), where the corresponding results were obtained for the

increasing convex order which is in some sense dual to ≤icv). Note that the usual stochastic

order ≤st can be characterized via the integrated distribution function, too. F ≤st G holds

iff ΦF − ΦG is increasing.

In the sequel we will need an upper bound F∇G of F and G that combines the lattice

properties of ≤st and ≤icv. For distributions F and G we are looking for the smallest

distribution H with respect to ≤icv such that F ≤st H and G ≤icv H.

Let L(F,G) = {H : F ≤st H and G ≤icv H}. For any element H ∈ L(F,G) the function

ΦH has the property that ΦG ≥ ΦH and ΦF − ΦH is increasing. Therefore, the function

Ψ(x) = sup{ΦH(x) : H ∈ L(F,G)}
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shares these properties, too. Moreover, it is easy to see that Ψ is an integrated distribution

function. We denote the corresponding distribution function(which is the right derivative

of Ψ) by F∇G. Notice that this operation is not commutative; in general F∇G ̸= G∇F .

F∇G can be determined explicitly under some regularity conditions, see section 3.

Lemma 2.2.

F∇G is an element of L(F,G) and

a) F∇G ≤icv H for all H ∈ L(F,G).

b) If G1 ≤icv G2 then F∇G1 ≤icv F∇G2.

Proof. By definition ΦF∇G = Ψ = sup{ΦH ;H ∈ L(F,G)} ≤ ΦG and ΦF −ΦF∇G = inf{ΦF −
ΦH ;H ∈ L(F,G)} is increasing. Therefore, F∇G ∈ L(F,G).

a) is obvious from the definition of F∇G.

b) follows from the fact that G1 ≤icv G2 implies L(F,G2) ⊂ L(F,G1).

The following proposition will be useful for an explicit construction of F∇G in Section 3.

Let CG denote the set of all continuity points of G.

Proposition 2.3. a) min{F,G} ≤ F∇G ≤ F ;

In particular : F (x) ≤ G(x) implies F∇G(x) = F (x).

b) For F∇G almost all x ∈ CG holds

F∇G(x) ∈ {F (x), G(x)}.

Proof. a) is obvious from the definition of F∇G.

b) Let H∗ = F∇G and assume that for some x ∈ CG, G(x) < H∗(x) < F (x) and

ΦH∗(x) < ΦG(x). Then we obtain

inf
y≥x

[ΦG(y)− (ΦH∗(x) + (y − x)H∗(x))] = 0. (2)

Otherwise, it would be possible to increase the value ofH∗(y) so that of ΦH∗(y) in a neigh-

bourhood of x without violating the admissibility of H∗ in contradiction to the maximality

of ΦH∗ .

If the inf is attained at a finite value y0, then G(z) < F (z) on [x, y0) while ΦG(y0) =

ΦH∗(x) + (y0 − x)H∗(x) implies that H∗(z) = H∗(x) for all z ∈ (x, y0) i.e. H∗([x, y0)) = 0.

Furthermore, H∗(y0) = G∗(y0) if y0 ∈ CG. If y0 = ∞, then H∗(z) = H∗(x) for all z ≥ x and
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so H∗(x) = 1.

If G(y) < F (y) for y ∈ [x, x0] and ΦH∗(x) = ΦG(x), then maximality of ΦH∗ implies that

H∗(y) = G(y) for all y ∈ [x, x0]. This is the case in particular if G(x) < F (x), x ∈ CG and

ΦH∗(x) = ΦG(x). This implies the statement of the Proposition.

As consequence of the proof we obtain

Corollary 2.4. If F,G are continuous then H∗ is continuous. An iterated application of

the ∇-operator leads to smallest majorizing sequences with respect to the increasing concave

ordering.

Proposition 2.5. Let F1, . . . , Fn be any distribution functions on the real line. Define by

backward induction

G∗
n = Fn,

G∗
i = Fi∇G∗

i+1, i = n− 1, n− 2, . . . , 1.

and denote

A(F1, . . . , Fn) = {G = (G1, . . . , Gn) : Gi ≥st Fi, G1 ≥icv ... ≥icv Gn}.

Then G∗ = (G∗
1, . . . , G

∗
n) is the smallest sequence in A(F1, . . . , Fn) w.r.t. ≥icv in the sense

that for any G ∈ A(F1, . . . , Fn) and any i = 1, . . . , n

G∗
i ≤icv Gi.

Proof. By definition G∗
i = Fi∇G∗

i+1 ≥st Fi and G∗
i ≥icv G∗

i+1. Hence G∗ ∈ A(F1, . . . , Fn).

Moreover, for any G ∈ A(F1, . . . , Fn) we have G
∗
n = Fn ≤st Gn and hence G∗

n ≤icv Gn. Since

Gn−1 ≥st Fn−1 and Gn−1 ≥icv Gn it holds that Gn−1 ∈ L(Fn−1, Gn). Therefore, Lemma 2.2

yields

Gn−1 ≥icv Fn−1∇Gn ≥icv Fn−1∇G∗
n = G∗

n−1.

By induction the result follows.

Theorem 2.6. (Lower stopping value)

Let F1, . . . , Fn be arbitrary distribution functions and let G∗
1, ..., G

∗
n be the majorizing sequence

constructed in Proposition 2.5. Then

V −(F1, . . . , Fn) = inf
X∈Γ(F1,...,Fn)

V (X) =

∫
xG∗

1(dx).
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Proof. By the well-known backward induction principle for any X ∈ Γ(F1, . . . , Fn) it holds

that V (X) = EZ1 where Z = (Z1, . . . , Zn) is the least majorizing supermartingale of

X (the so-called Snell envelope), see e.g. Chow et al. (1971). Let Gi be the distribu-

tion function of Zi. The supermartingale property implies G1 ≥icv ... ≥icv Gn and further

Zi ≥ Xi implies Gi ≥st Fi, i.e. G ∈ A(F1, . . . , Fn) and therefore by Proposition 2.5

EZ1 =

∫
xG1(dx) ≥

∫
xG∗

1(dx),

i.e.

V (X) ≥
∫

xG∗
1(dx) (3)

for all X ∈ Γ(F1, . . . , Fn).

Conversely, since G∗
1 ≥icv ... ≥icv G∗

n, there exists a supermartingale Z∗ = (Z∗
1 , . . . , Z

∗
n)

with Z∗
i ∼ G∗

i , 1 ≤ i ≤ n, see Strassen (1965). Let V1, . . . , Vn be i.i.d. uniformly U(0, 1)-

distributed random variables independent of Z∗ and define for a distribution function G the

generalized inverse

τG(z, v) = P (Z < z) + vP (Z = z),

where Z ∼ G. Then

X∗
i := F−1

i (τG∗
i
(Z∗

i , Vi)) ∼ Fi, 1 ≤ i ≤ n.

Furthermore, Fi ≤st G
∗
i implies F−1

i ≤ (G∗
i )

−1, and hence

X∗
i ≤ (G∗

i )
−1(τG∗

i
(Z∗

i , Vi)) = Z∗
i a.s.,

see Rüschendorf (1981). Thus Z∗ = (Z∗
1 , . . . , Z

∗
n) is a majorizing supermartingale of

X∗ = (X∗
1 , . . . , X

∗
n) and X∗ ∈ Γ(F1, . . . , Fn). Therefore,

V (X∗) ≤ EZ∗
1 =

∫
xG∗

1(dx)

and this yields

V −(F1, . . . , Fn) ≤ V (X∗) ≤
∫

xG∗
1(dx). (4)

From (3) and (4) the assertion of the theorem follows.

In the following proposition we determine a dependence structure, for which the lowest

optimal stopping value is attained. Recall that a random vector X = (X1, . . . , Xn) is said

to be conditionally increasing in sequence (CIS), if P (Xi+1 > t|Xi = xi, . . . , X1 = x1) is an

increasing function of x1, . . . , xi for all t and all i. When X = (X1, . . . , Xn) is in addition

Markovian, then it is called a stochastically increasing Markov chain.
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Proposition 2.7. In the problem

V −(F1, . . . , Fn) = inf
X∈Γ(F1,...,Fn)

V (X)

the infimum is attained for a vector X = (X1, . . . , Xn) which is CIS. Moreover, if F1, . . . , Fn

are continuous then it is attained for a stochastically increasing Markov chain.

Proof. It is well known that the vector Z∗ = (Z∗
1 , . . . , Z

∗
n) constructed in the proof of Theorem

2.6 via Strassen’s theorem can be chosen to be Markovian. It will be shown in Theorem 4.5

below that the transition probabilities in addition can be chosen stochastically increasing.

The stochastic monotonicity is preserved under the monotone transformation to X∗. If the

distributions F1, . . . , Fn are continuous then by Proposition 2.3 also the distribution functions

of G∗ are continuous. Therefore, also the Markov property is preserved under the monotone

transformation to X∗.

Notice that CIS is a strong notion of positive dependence, stronger than e.g. association

or positive quadrant dependence, and hence implying that all correlations within the vector

X are non-negative, see e.g. Barlow and Proschan (1975) for details.

The following proposition states that any value between V −(F1, ..., Fn) and V +(F1, ..., Fn)

is attained as optimal stopping value for some dependence structure.

Proposition 2.8. Assume that the upper and lower stopping values V +(F1, . . . , Fn) and

V −(F1, . . . , Fn) are finite, then

{V (X) : X ∈ Γ(F1, . . . , Fn)} = [V −(F1, . . . , Fn), V
+(F1, . . . , Fn)].

Proof. For any P1, P2 ∈ Γ(F1, . . . , Fn) and α ∈ [0, 1] define the mixture

Pα := αP1 + (1− α)P2.

Then Pα ∈ Γ(F1, . . . , Fn) and

h(α) := V (Pα) = sup
τ

EαXτ

= sup
τ
(αE1Xτ + (1− α)E2Xτ )

is a convex, lower semicontinuous function of α, since it is a supremum of linear functions.

This implies that h is even continuous. Now choose for P1 and P2 the dependence structures

for which as optimal stopping values V −(F1, . . . , Fn) and V +(F1, . . . , Fn) are obtained. It

follows that any value in the interval [V −(F1, . . . , Fn), V
+(F1, . . . , Fn)] is attained for some

dependence structure.
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3 Explicit Construction of F∇G

For the calculation of the optimal stopping interval it is of interest to have an explicit method

for the construction of F∇G. Such a construction can be given if F and G have a countable

discrete set of crossing points −∞ ≤ s1 < t1 < s2 < t2 < . . . such that F (x) ≤ G(x) iff

x ∈ (si, ti) for some i. It is closely related to the idea of the proof of Proposition 2.3. Define:

s1 := inf{x : G(x) > F (x)}

t1 := inf{x > s1 : F (x) > G(x)}
...

si := inf{x > ti−1 : G(x) > F (x)}

ti := inf{x > si : F (x) > G(x)}
...

In the case s1 = −∞ we have that F ≤ G on (−∞, t1) while for s1 > −∞ G ≤ F holds on

(−∞, s1). For the construction of F∇G our aim is to find a distribution function H such

that H ≤ F and ΦH ≤ ΦG and ΦH is maximal in this class. Therefore, we have to define H

recursively between two crossing points si ≤ x ≤ ti such that H(x) ≤ F (x) and ΦH ≤ ΦG

is maximal. For this we have to observe that since H has to be chosen monotonically

nondecreasing, the inequality ΦH ≤ ΦG also has to hold in G−1(x) if H is chosen constant

on the interval [x,G−1(x)]. For this argument compare also the proof of Proposition 2.3.

So we have to choose H(x) = F (x) on an interval [si, yi), yi ≤ si+1, H(x) constant equal

to zi on the interval [yi, G
−1(zi)) and H(x) = G(x) on the interval [G−1(zi), si+1). Here

zi = sup
{
z > G(ti) : ΦF (F

−1(z)) + z(G−1(z)− F−1(z)) ≤ ΦG(G
−1(z))

}
= sup

{
z > G(ti) : z ≤ ΦG(G

−1(z))− ΦF (F
−1(z))

ΦG(G
−1(z))− ΦF (F

−1(z)

}
and yi = min{F−1(zi), si+1}.
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Figure 1: Construction of F∇G

The distribution function F∇G is obtained as follows:

F∇G(x) =



G(x), x < s1
...

F (x), si ≤ x < yi

zi, yi ≤ x < G−1(zi)

G(x), G−1(zi) ≤ x < si+1

...

To see, why this construction indeed yields F∇G, notice that by Proposition 2.3 on its

support F∇G equals either F or G. Moreover, F∇G(x) equals F (x) whenever F (x) ≤ G(x),

and when F∇G(x) = G(x) then also ΦF∇G(x) = ΦG(x). However, there are gaps in the

support of F∇G between G−1(zi) and F−1(zi), where F∇G switches from F to G (see

Figure 1).

Example 3.1. (Continuation of 2.1) Assume F1 = U(−1, 0) and F2 = U(−2, 2). These

distribution functions are piecewise linear, and hence the integrated distribution functions

are piecewise quadratic. An easy calculation yields

Z∗
1 ∼ F1∇F2 =

2

3
· U(−1,−1

3
) +

1

3
· U(

2

3
, 2).
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The supermartingale (Z∗
1 , Z

∗
2) constructed via Strassen’s theorem has the transition proba-

bility measure

P (z1, dz2) =

−3
4
z1 · U(−2,−2

3
) + (1 + 3

4
z1) · U(−2

3
, 2
3
), −1 ≤ z1 < −1

3

δz1 , z1 ≥ 2
3

,

where as usual δx denotes the point mass in x.

The monotone transformation described in the proof of Theorem 2.6 yields the worst

case dependence structure X∗ = (X∗
1 , X

∗
2 ) ∈ Γ(F1, F2) with transition probability measure

Q(x1, dx2) =

−3
4
x1 · U(−2,−2

3
) + (1 + 3

4
x1) · U(−2

3
, 2
3
), −1 ≤ x1 < −1

3

δ4x1+2, −1
3
≤ x1 ≤ 0

.

Any stopping time τ ∗ with τ ∗ = 2 if X∗
1 ≥ −1/3 is optimal and the corresponding optimal

stopping value is

V −(F1, F2) = V (X∗) = EZ∗
1 = 0.

There are many other random vectors X ∈ Γ(F1, F2), which also yield the worst case optimal

stopping value V −(F1, F2) = V (X) = 0. As we have already observed in Example 2.1 this

even holds for the case of independent components.

Remark 3.2. Let F = δ0, G = 1
2
(δ−1 + δ2) then F∇G = 3

4
δ0 +

1
4
δ2 (see Figure 2).

F G

ΦG

Φ

F

0 1 2

1/2

1

3/2

-1

G

F

G

Figure 2: ΦG and ΦF∇G

In this case we obtain

H∗(x) = sup{H(x);H ≤ F,ΦH ≤ ΦG} = 1 for x ≥ 1

2
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since δx ∈ L(F,G) for x ≥ 1
2
. This shows that the sup of L(F,G) in the increasing concave

order ≤icv is strictly smaller than the sup of L(F,G) in the stochastic order ≤st.

4 Monotone representation of the convex order

This section deals with Strassen’s theorem stating that two probability measures P and Q

can be compared in convex order, if and only if there is a martingale (X, Y ) with marginals

P and Q, respectively. Our proof will reveal the new result that in the real case the mar-

tingale can be chosen such that Y is stochastically increasing in X. Strassen (1965) gives a

nonconstructive functional analytic proof of the representation result in a general context.

For distributions on the real line, we give a simple algorithmic proof of Strassens result,

which delivers additional insight into the problem. Though we need in this paper the ver-

sion of the theorem for the increasing concave order ≤icv, we give the proof in the usual

formulation for the dual convex order ≤cx, respectively for ≤icx. Two probability measures

P and Q are said to be in convex order (written P1 ≤cx P2), if
∫
f dP1 ≤

∫
f dP2 holds for

all convex functions f , such that the integrals exist. Strassen’s theorem states that in this

case there are random variables X and Y with distributions P1 and P2, such that (X, Y )

is a martingale, i.e. X = E[Y |X], or in other words, there is a Markov kernel Q(·, ·) with∫
yQ(x, dy) = x and P2(A) =

∫
Q(x,A)P1(dx).

The idea of our proof is based on the representation of convex order by so called mean

preserving spreads, a concept that is well known in economics, see e.g. Machina and Pratt

(1997), Müller (1998) and Rothschild and Stiglitz (1970).

We do not claim that this is the first constructive proof of Strassen’s theorem. Indeed,

even the classic paper of Blackwell (1953) contains a constructive proof. Our proof, however,

is much simpler and can easily be transformed into an efficient algorithm. This is not the

case for Blackwell’s proof. The same holds true for the proof based on the concept of

fusions introduced by Elton and Hill (1992). A constructive proof for distributions with

finite support in arbitrary Euclidean spaces can be found in Elton and Hill (1998).

The main tool for the proof is the so called integrated survival function

ΨX(a) := E(X − a)+ =

∫ ∞

a

(1− FX(t)) dt, a ∈ R.

This is the counterpart to the integrated distribution function considered in section 2. It is

straightforward to show that the integrated survival function can be characterized as follows.
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Proposition 4.1.

a) ΨX has the following properties:

(i) ΨX is decreasing and convex;

(ii) the right derivative D+ΨX exists and −1 ≤ D+ΨX ≤ 0;

(iii) limt→∞ ΨX(t) = 0, limt→−∞(ΨX(t)− t) = EX.

b) To every function Ψ : R → R, which fulfills (i) - (iii) in a) there is a random variable X,

such that Ψ is the integrated survival function of X. The distribution function of X is given

by FX(t) = D+ΨX(t) + 1, t ∈ R.

The following result is an immediate consequence.

Corollary 4.2. The following conditions are equivalent:

1. X ≤cx Y ;

2. ΨX(a) ≤ ΨY (a) for all a ∈ R and lima→−∞(ΨY (a)−ΨX(a)) = 0.

This characterization will be crucial for the proof of our main result. We first consider a

special case.

Lemma 4.3. Let Ψ1 be an integrated survival function and let ℓ be some affine function

with ℓ(t) = at + b for some a ∈ (−1, 0) and some b ∈ R. Define Ψ2(t) = max{Ψ1(t), ℓ(t)}.
Then there are random variables X1, X2 with integrated survival functions Ψ1,Ψ2 such that

E[X2|X1] = X1. Moreover, the conditional law [Y |X = x] is stochastically increasing in x.

Proof. If ℓ(t) ≤ Ψ1(t) for all t ∈ R, then Ψ1 = Ψ2 and hence the result is trivial. Therefore

let us assume that this is not the case. Then there are two points t1, t2 ∈ R where ℓ and Ψ1

coincide.

Now we first have to show that Ψ2 is an integrated survival function, but that follows

easily from Proposition 4.1. Next observe that Ψ1 and Ψ2 fulfill condition 2 of Corollary

4.2. Hence the corresponding distributions P1 and P2 are ordered with respect to convex

order. From convexity of Ψ1 and linearity of ℓ we conclude Ψ2(t) = ℓ(t) if t ∈ [t1, t2] and

Ψ2(t) = Ψ1(t) else. This means that P2(A) = 0, if A ⊂ (t1, t2), and P2(A) = P1(A), if

A ⊂ (−∞, t1) ∪ (t2,∞), i.e. P2 is obtained from P1 by removing all mass from the interval

(t1, t2) and moving it to the endpoints in such a way that the mean is preserved.
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It is easy to see that in this case there is a Markov kernel with the desired properties. In

fact, define Q(x, dy) as follows:

Q(x, ·) :=

δx , x ̸∈ (t1, t2)

x−t1
t2−t1

δt2 +
t2−x
t2−t1

δt1 , t1 ≤ x ≤ t2
, (5)

where δx is the degenerated probability measure with point mass in x. It is obvious that∫
yQ(x, dy) = x. Moreover,

∫
Q(x,A)P1(dx) = 0, if A ⊂ (t1, t2) and

∫
Q(x,A)P1(dx) =

P1(A), if A ⊂ (−∞, t1) ∪ (t2,∞). Hence∫
Q(x,A)P1(dx) = P2(A) for all measurable A.

Moreover, it is clear from the definition in (5) that Q is stochastically monotone (see Keilson

(1979) or Stoyan (1983) for a definition).

From the special case treated in Lemma 4.3 it will now be easy to derive the general

result.

Theorem 4.4. (An extension of Strassen’s theorem.)

For two probability measures P and Q on the real line the following conditions are equivalent:

1. P ≤cx Q;

2. There are random variables X,Y with distributions P,Q, such that E[Y |X] = X and

the conditional law [Y |X = x] is stochastically increasing in x.

Proof. Let Ψ1 and Ψ2 be the integrated survival functions corresponding to P and Q. Since

Ψ2 is convex, it can be written as the supremum of a countable family ℓ1, ℓ2, . . . of affine

functions (e.g. the lines of support in all rational points). Now define recursively the func-

tions ϕn, n ∈ N, by ϕ1 := Ψ1, and ϕn+1 := max{ϕn, ℓn}, n ∈ N. Then ϕn, n ∈ N, is an

increasing sequence of integrated survival functions converging to Ψ2. Moreover, all pairs

(ϕn, ϕn+1) fulfill the assumptions of Lemma 4.3.

Let Pn be the probability measures corresponding to ϕn. According to Lemma 4.3 there

is a Markov kernel Qn(x, dy) with
∫
yQn(x, dy) = x that links Pn to Pn+1. Hence there is a
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Markovian martingale X ≡ X1, X2, . . . with Xn ∼ Pn, n ∈ N. Since

E|Xn| = 2EX+
n − EXn

= 2ϕn(0)− lim
a→−∞

(ϕn(a)− a)

≤ 2Ψ2(0)− lim
a→−∞

(Ψ1(a)− a)

= 2EY + − EX

the sequence X1, X2, . . . is an L1-bounded martingale, and hence it converges almost surely

to a random variable Y with E[Y |X] = X, and obviously Y has the integrated survival

function Ψ2 and hence the distribution Q.

Moreover, we know from Lemma 4.3 that all Markov kernels Qn, n ∈ N are stochastically

monotone. Hence the sequence X1, X2, . . . is a stochastically increasing non-homogeneous

Markov chain, converging a.s. to Y . Therefore it follows from results in Stoyan (1983) that

[Y |X = x] is stochastically increasing in x.

It is now easy to extend the result of Theorem 4.3 to the orderings ≤icx (defined as

P ≤icx Q, if
∫
fdP ≤

∫
fdQ for all increasing convex functions) and ≤icv.

Theorem 4.5. For distributions on the real line

a) P ≤icx Q holds iff there are random variables X, Y with distributions P,Q, such that

E[Y |X] ≥ X and the conditional law [Y |X = x] is stochastically increasing in x.

b) P ≥icv Q holds iff there are random variables X, Y with distributions P,Q, such that

E[Y |X] ≤ X and the conditional law [Y |X = x] is stochastically increasing in x.

Proof. a) It is well known that P ≤icx Q holds iff there is a P1 such that P ≤st P1 ≤cx Q, see

e.g. Makowski (1994) or Müller (1996). It is easy to find random variables X and X1 with

distributions P and P1 such that X ≤ X1 with probability 1 and with the property that

[X1|X = x] is stochastically increasing in x. (They can simply be obtained by applying the

inverses of the distribution functions to the same uniformly distributed random variable.)

The assertion then follows from Theorem 4.3.

b) is obtained from a) since X ≥icv Y holds iff −X ≤icx −Y .
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