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Abstract

In this paper we give a characterization of minimal distance martingale
measures with respect to f -divergence distances in a general semimartin-
gale market model. We provide necessary and sufficient conditions for
minimal distance martingale measures and determine them explicitly for
exponential Lévy processes with respect to several classical distances. It
is shown that the minimal distance martingale measures are equivalent to
minimax martingale measures with respect to related utility functions and
that optimal portfolios can be characterized by them. Related results in
the context of continuous-time diffusion models were first obtained by He
and Pearson (1991b) and Karatzas et al. (1991) and in a general semi-
martingale setting by Kramkov and Schachermayer (1999). Finally parts
of the results are extended to utility-based hedging.
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1 Introduction

A common approach to derivative pricing in incomplete markets is to base the
prices on a minimal distance martingale measure with respect to certain dis-
tances like L2-distance (Schweizer (1996), Delbaen and Schachermayer (1996)),
Hellinger distance (Keller (1997)), entropy distance (Frittelli (2000)) and others.
In this paper we consider the class of all f -divergence distances defined by strictly
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convex, differentiable functions f which includes all the distances above (see
Liese and Vajda (1987)) and obtain some necessary and some sufficient condi-
tions for projections of the underlying measure on the set of martingale measures
in general semimartingale market models.
Minimal distance martingale measures are related to minimax martingale mea-
sures. These were introduced and studied in various forms by He and Pearson
(1991 a, b), Karatzas et al. (1991), Bellini and Frittelli (1997, 1998) and Kallsen
(1998). As a consequence the characterization of minimal distance martingale
measures is closely related to the determination of optimal portfolios. The cru-
cial property is an integral representation of a transform of the minimal distance
martingale measure, for which we give a short proof. In general the minimal dis-
tance martingale measure may not exist. It is shown in Kramkov and Schacher-
mayer (1999) that the optimal portfolio is characterized by the solution of a
dual variational problem which is related to the problem of finding a minimal
distance martingale measure.
In comparison to Kramkov and Schachermayer (1999) our approach to this kind
of results is different. Our main focus is on a general characterization of minimal
distance martingale measures for general f -divergence distances. This charac-
terization yields new sufficient criteria for projections on the set of martingale
measures and allows to determine in a unified way explicitly projections. In
particular we get a complete discussion in the important class of exponential
Lévy processes. We also determine the projection with respect to the reverse
entropy for non-continuous semimartingales. For continuous semimartingales
Schweizer (1999) had proved that the projection is given by the minimal mar-
tingale measure. Based on the characterization of minimal distance martingale
measures we obtain directly a duality result for optimal portfolios. We do not
insist on the most generality concerning the duality theorem as in the paper of
Kramkov and Schachermayer (1999) but we assume the existence of projections.
(The approach in this paper could be extended to obtain a more general dual-
ity result by allowing finitely additive measures.) From our characterization of
minimal distance martingale measures we finally obtain directly the equivalence
to minimax martingale measures. This implies an existence result for minimax
measures from a well-known existence result for f -projections.
The paper is organized as follows. In Section 2 we recall a theorem of
Rüschendorf (1984) about f -projections on moment families, which is our main
tool to characterize minimal distance martingale measures. Moreover we give
an existence result for minimal distance measures and a general result on the
equivalence of f -projections. In Section 3 we show how these results can be
applied to minimal distance martingale measures. Some necessary and some
sufficient conditions for minimal distance martingale measures are derived. In
Section 4 we introduce our notion of a minimax measure with respect to con-
cave utility functions and convex sets of probability measures, which is weaker
than the notions of minimax measures of He and Pearson (1991 a, b) and Bellini
and Frittelli (1997, 1998). It is shown that our notion of minimax measures is
equivalent to minimal distance measures with respect to f -divergence distances
induced by the convex conjugate of the utility function. In Section 5 we show

2



that under weak conditions the different notions of a minimax measure coincide.
It is pointed out how the results on minimal distance martingale measures are
related to optimal portfolios maximizing the expected utility of terminal wealth.
In Section 6 the sufficient conditions on minimal distance martingale measures
allow us to calculate some examples explicitly. For exponential Lévy processes
the minimal distance martingale measures are determined with respect to several
classical distances. Finally in Section 7 we extend our duality result to utility
based hedging of claims as introduced in Föllmer and Leukert (2000).

2 f-divergences and minimal distance measures

In the following we define f -divergence distances and recall some relevant results
about f -projections. For general reference we refer to Liese and Vajda (1987) or
Vajda (1989). Let (Ω, F , P ) be a probability space.

Definition 2.1 Let Q� P and let f : (0,∞)→ R be a convex function. Then
the f -divergence between Q and P is defined as

f(Q||P ) :=

{ ∫
f(dQdP )dP , if the integral exists
∞ , else

where f(0) = lim
x↓0

f(x).

Examples of f -divergence distances are the Kullback-Leibler or entropy distance
for f(x) = x log x, the total variation distance for f(x) = |x− 1|, the Hellinger
distance for f(x) = −√x, the reverse relative entropy for f(x) = − log(x) and
many others (see Liese and Vajda (1987)).
In the following we assume that f is a continuous, strictly convex and differ-
entiable function. K denotes a convex set of probability measures on (Ω,F)
dominated by P . A measure Q∗ ∈ K is called f -projection of P on K if
f(Q∗||P ) = inf

Q∈K
f(Q||P ) =: f(K||P ).

Remarks. (1) If f is strictly convex and f(K||P ) < ∞, then there exists
at most one f -projection of P on K (Liese and Vajda (1987), Proposition 8.2).

(2) If K is closed in the variational distance topology and lim
x→∞

f(x)
x = ∞, then

there exists a f -projection of P on K (see Liese and Vajda (1987), Proposition
8.5).

For Q̂ � P and a vector subspace F ⊂ L1(Q̂) with 1 ∈ F define the gener-

alized moment family induced by F and Q̂,

KF := {Q� P : F ⊂ L1(Q) and EQf = EQ̂f for all f ∈ F}.
In classical moment families some moments of the distributions are fixed. In our
application to mathematical finance the moment family KF typically represents
some class of martingale measures. The following result was given in Rüschendorf
(1984).
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Theorem 2.2 (i) Let Q∗ ∈ K satisfy f(Q∗||P ) < ∞. Then Q∗ is the f -
projection of P on K if and only if

∫
f ′(

dQ∗

dP
)(dQ∗ − dQ) ≤ 0 for all Q ∈ K with f(Q||P ) <∞.

(ii) Let Q∗ ∈ KF satisfy f(Q∗||P ) < ∞ and f ′(dQ
∗

dP ) ∈ L1(Q∗). If Q∗ is the
f -projection on KF , then

f ′(
dQ∗

dP
) ∈ L1(F,Q∗), the closure of F in L1(Q∗).

(iii) Let Q∗ ∈ KF satisfy f(Q∗||P ) < ∞. If f ′(dQ
∗

dP ) ∈ F , then Q∗ is the
f -projection on KF .

Remarks. (1) In Theorem 5 in Rüschendorf (1984) the assumption f ′(dQ
∗

dP ) ∈
L1(Q∗) was also stated for part (i) but was not used for the proof of this part.

(2) For every Q ∈ K with f(Q||P ) <∞ ∫
f ′(dQ

∗

dP )(dQ− dQ∗) coincides with the
directional derivative of the function f(·||P ) (see Vajda (1989), Lemma 9.31.i)).
Hence the condition in Theorem 2.2 (i) can be understood as a condition on the
directional derivative in Q∗.
(3) Under some additional growth conditions on f (see Liese and Vajda (1987))
one gets the following equivalence for a measure Q∗ with f(Q∗||P ) <∞:

Q∗ is the f -projection of P on K if and only if f ′(dQ
∗

dP ) ∈ L1(Q) and

EQ∗f
′(dQ

∗

dP ) ≤ EQf ′(dQ
∗

dP ) for all Q ∈ Kf , where Kf := {Q ∈ K : f(Q||P ) <∞}.
(4) Theorem 2.2 (ii) is a generalization of a theorem of Csiszár (1975) on the
entropy distance. This result was applied in recent papers on mathematical fi-
nance for the characterization of minimal relative entropy martingale measures
by Frittelli (2000), Grandits and Rheinländer (1999) and Rheinländer (1999).

Frittelli (2000) studied the minimal entropy martingale measure, which corre-
sponds to f(x) = x log(x). He showed that in this case the f -projection of P on
K is necessarily equivalent to P if there is a measure Q ∈ K with Q ∼ P and
f(Q||P ) <∞. Based on Theorem 2.2 (i) this result can be extended to general
f -projections.

Corollary 2.3 Let f ′(0) = −∞. Assume the existence of a measure Q ∈ K such
that Q ∼ P and f(Q||P ) <∞. If Q∗ is the f-projection of P , then Q∗ ∼ P .

Proof. Suppose Q∗ is not equivalent to P , i.e., P (dQ
∗

dP = 0) > 0. Because Q ∼ P
this implies Q(dQ

∗

dP = 0) > 0. Since f ′(0) = −∞ this leads to a contradiction to
the necessary condition on a f -projection of Theorem 2.2 (i). �
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3 Characterization of the minimal distance mar-
tingale measure

In the following we apply Theorem 2.2 to characterize f -projections on the set
of martingale measures. Our mathematical framework is as follows. (Ω, F ,
(Ft)0≤t≤T , P ) is a filtered probability space in the sense of Jacod and Shiryaev
(1987), Definition I.1.2, where F = FT . Securities 0, . . . , d are modeled by
their price process S := (S0, . . . , Sd). We assume that S is a Rd+1-valued
semimartingale with deterministic S0. Security 0 serves as a numeraire and hence
we may assume without loss of generality S0 ≡ 1. Vector stochastic integrals are
written as

∫ t
0
ϕsdSs = ϕ · St. (For the definition of a vector stochastic integral,

see Jacod (1980).)
LetM (Mloc) be the set of P -absolutely continuous (local) martingale measures
andMe (Me

loc) the subset ofM (Mloc) consisting of probability measures which
are equivalent to P . If in some context of the paper we consider M as well as
Mloc, then we use the notation M(loc).
We define

G : = {ϕ · ST : ϕi = Hi1]si,ti], si < ti,H
i bounded Fsi-measurable}

∪{1B : P (B) = 0}

and

Gloc : = {ϕ · ST : ϕi = Hi1]si,ti]1[0,T̂ i], si < ti,

Hi bounded Fsi-measurable, T̂ i ∈ γi} ∪ {1B : P (B) = 0}
with γi : = {T̂ i stopping time; (Si)T̂

i

is bounded}.

For a Rd-valued local martingale N Jacod (1980) defined the class L1
loc(N) of

predictable integrands. For Q ∈Mloc we denote by L1
loc(S,Q) the class L1

loc(S)
with respect to Q.

Theorem 3.1 Let Q∗ ∈ M satisfy f(Q∗||P ) < ∞ and f ′(dQ
∗

dP ) ∈ L1(Q∗). If
Q∗ is the f -projection of P on M, then

f ′(
dQ∗

dP
) = c+

∫ T

0

ϕsdSs Q∗-a.s. (3.1)

for some process ϕ ∈ L1
loc(S,Q

∗) such that
∫ ·

0
ϕsdSs is a martingale under Q∗.

Proof. We have the following characterization of M as a moment family

M = {Q prob. measure on (Ω,F) : G ⊂ L1(Q) and EQg = 0 ∀g ∈ G}.

Let F be the vector space generated by 1 and G. Theorem 2.2 (ii) yields:

f ′(
dQ∗

dP
) = ξ Q∗-a.s.
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for some ξ in L1(F,Q∗), the L1(Q∗)-closure of F .
By a theorem of Yor (1978, Corollary 2.5.2) (for a multidimensional version see
Delbaen and Schachermayer (1999, Theorem 1.6)) on the closedness of stochastic
integrals L1(G,Q∗) is contained in {ϕ ·ST : ϕ ∈ L1

loc(S,Q
∗), such that ϕ ·S is a

Q∗-martingale}. According to Jacod (1979), Proposition 1.1, this result is valid
without the assumption of a complete filtration. Since F is generated by 1 and
G we get the characterization (3.1) (see for example Schaefer (1971, Proposition
3.3)). �

The following theorem is a variant of Theorem 3.1. It shows that the neces-
sary condition in Theorem 3.1 is also valid for the set of local martingale measures
under the additional assumption that the price process is locally bounded. For
the case of the relative entropy it was independently shown by Grandits and
Rheinländer (1999).

Theorem 3.2 Let S be locally bounded. Let Q∗ ∈ Mloc satisfy f(Q∗||P ) < ∞
and f ′(dQ

∗

dP ) ∈ L1(Q∗). If Q∗ is the f -projection of P on Mloc, then

f ′(
dQ∗

dP
) = c+

∫ T

0

ϕsdSs Q∗-a.s. (3.2)

for some process ϕ ∈ L1
loc(S,Q

∗) such that
∫ ·

0
ϕsdSs is a martingale under Q∗.

Proof. We have the following characterization of Mloc as a moment family

Mloc = {Q prob. measure on (Ω,F) : Gloc ⊂ L1(Q) and EQg = 0 ∀g ∈ Gloc}.
Therefore, we can follow the proof of Theorem 3.1. �

Remarks. (1) If Q∗ ∼ P and additionally −f ′(dQ∗dP ) is bounded from below

then the attainability of f ′(dQ
∗

dP ) as a stochastic integral may also be derived
from Theorem 2.2 (i) and a martingale representation result of Jacka (1992),
Theorem 3.4, and Ansel and Stricker (1994), Theorem 3.2.
(2) If S is (locally) bounded thenM(loc) is closed with respect to the variational
distance. This can be verified by the characterization of M(loc) with the help

of G(loc). If moreover lim
x→∞

f(x)
x = ∞ then there exists a f -projection of P on

M(loc) (see Liese and Vajda (1987), Proposition 8.5). This condition on f is in
particular fulfilled in the case of the relative entropy.

In the following we give sufficient conditions for a f -projection of P on M(loc).
The first one is also considered in the case of the relative entropy in Frittelli
(2000) and Rheinländer (1999).

Proposition 3.3 Let Q∗ ∈M(loc) such that f(Q∗||P ) <∞ and

f ′(
dQ∗

dP
) = c+

∫ T

0

ϕsdSs P -a.s. (3.3)

for
∫ T

0
ϕsdSs ∈ G(loc). Then Q∗ is the f -projection of P on M(loc).
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Proof. See Theorem 2.2 (iii). �
The condition in Proposition 3.3 is not satisfactory. Usually the transform of
the density f ′(dQ

∗

dP ) cannot be represented as elementary stochastic integral (see
also the discussion in Rheinländer (1999)).
From Theorem 2.2 (i) one can derive a more general sufficient condition for
f -projections of P . This extension allows us to determine minimal distance
martingale measures with respect to several classical distances explicitly in Sec-
tion 6. We denote by L(S) the set of predictable, S-integrable processes with
respect to P (see Jacod (1980)).

Theorem 3.4 Let Q∗ ∈ M(loc) with f(Q∗||P ) < ∞ such that for a predictable
process ϕ ∈ L(S)

f ′(
dQ∗

dP
) = c+

∫ T

0

ϕsdSs P -a.s.,

−
∫ ·

0

ϕsdSs is bounded from below P -a.s.,

EQ∗(

∫ T

0

ϕsdSs) = 0.

Then Q∗ is the f -projection of P on M(loc).

Proof. From Jacod (1979), Proposition 7.26.b, one gets that ϕ is also S-integrable
with respect to any Q ∈Mloc in dimension d = 1. Using Proposition 3 in Jacod
(1980) the proof of this result can be extended to dimension d ≥ 1. Hence by
Ansel and Stricker (1994), Corollaire 3.5, −ϕ · S is a Q-local martingale and
hence a Q-supermartingale for any Q ∈Mloc. Therefore,

EQf
′(
dQ∗

dP
) = c+ EQ(ϕ · ST ))

≥ EQ∗f
′(
dQ∗

dP
).

Now the result follows from Theorem 2.2 (i). �

If the set of martingale measures is restricted a priori to the class MHq :=
{Q ∈ M : Si ∈ Hq(Q) for i ∈ {1, . . . , d}} for some q ∈ [1,∞), where Hq(Q)

consists of all martingales M such that [M,M ]
1
2∞ ∈ Lq(Q) (for further infor-

mations about the Hq-spaces see for example Jacod (1979)), then the following
sufficient condition for a f -projection of P on MHq allows a larger class of
integrands for a sufficient criterion in comparison to Proposition 3.3.

Theorem 3.5 Let Q∗ ∈MHq with f(Q∗||P ) <∞ such that for a bounded and
predictable process ϕ

f ′(
dQ∗

dP
) = c+

∫ T

0

ϕsdSs P -a.s..

Then Q∗ is the f -projection of P on MHq .
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Proof. Let Q ∈ MHq . Since Si ∈ Hq(Q) we have that ϕi ∈ Lq(Si) and hence
(see Jacod (1979) , Theorem 4.60) ϕ · S ∈ Hq(Q). Now the result follows from
Theorem 2.2 (i). �

4 Minimal distance and minimax measures

Again (Ω, F , P ) is a probability space and K denotes a convex set of probability
measures on (Ω,F) dominated by P . K may be thought of as a subclass of the
class of all absolutely continuous local martingale measures.
A utility function u:R→ R∪{−∞} is assumed to be strictly increasing, strictly
concave, continuously differentiable in dom(u) := {x ∈ R | u(x) > −∞} and to
satisfy

u′(∞) = lim
x→∞

u′(x) = 0, (4.1)

u′(x̄) = lim
x↓x̄

u′(x) =∞ (4.2)

for x̄ := inf{x ∈ R | u(x) > −∞}. This implies either dom(u) = (x̄,∞) or
dom(u) = [x̄,∞).
We denote by I := (u′)−1. Because of assumption (4.1) we have I(0) = ∞.
The convex conjugate function of u, u∗ : R+ → R, is defined by u∗(y) :=
supx∈R{u(x)− xy} = u(I(y))− yI(y).
In the following we introduce minimax measures. In the case where K is the
set of equivalent martingale measures they were first introduced in a stronger
form in He and Pearson (1991 a, b). Recently they were studied in another
modified form by Bellini and Frittelli (1997, 1998) and in a finite market setting
by Kallsen (1998). The minimax martingale measure has an economic interpre-
tation. It produces prices which are least favourable for an investor with a given
utility profile, i.e., the maximal expected utility with respect to prices based
on a martingale measure is minimal. For a brief discussion of the economical
significance of the minimax martingale measure see He and Pearson (1991b).
For Q ∈ K and x > x̄ define

UQ(x) := sup{Eu(Y ) : Y ∈ L1(Q), EQY ≤ x,Eu(Y )− <∞}. (4.3)

The following lemma gives a well-known representation of UQ(x).

Lemma 4.1 Let Q ∈ K and EQ(I(λdQdP )) <∞ ∀λ > 0. Then

(i) UQ(x) = inf
λ>0
{E(u∗(λdQdP )) + λx}.

(ii) There is a unique solution for λ in the equation EQ(I(λdQdP )) = x, denoted

as λQ(x) ∈ (0,∞), and UQ(x) = E[u(I(λQ(x)dQdP ))].
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Proof. Let Y ∈ L1(Q) with EQY ≤ x and Eu(Y )− < ∞. Then we have for
λ > 0:

Eu(Y ) ≤ Eu(Y ) + λ(x− EQY )

≤ Eu∗(λ
dQ

dP
) + λx

= Eu(I(λ
dQ

dP
)) + λ(x− EQI(λ

dQ

dP
)).

The inequalities hold as equalities if and only if Y is given as I(λQ(x)dQdP ).

Since we have EQ(I(λdQdP )) < ∞ for all λ > 0, one can conclude that

EQ(I(λdQdP )) is a continuous, monotonically decreasing function of λ with values
in (x̄,∞). This guarantees the existence of λQ(x). Finally one has to check that

E[u(I(λQ(x)dQdP ))]− <∞. From the inequality u(x)− xy ≤ u(I(y))− yI(y) one

gets that E[u(I(λdQdP ))− λdQdP I(λdQdP )]− <∞. The inequality

[
u(I(λ

dQ

dP
))

]−
≤

[
u(I(λ

dQ

dP
))− λdQ

dP
I(λ

dQ

dP
)

]−
+

[
λ
dQ

dP
I(λ

dQ

dP
)

]−

implies that the condition E[u(I(λQ(x)dQdP ))]− <∞ is fulfilled. �

Remarks. (1) I(λQ(x)dQdP ) can be interpreted as optimal claim which is finance-
able under the pricing measure Q.
(2) Notice that if for Q ∈ K there exists λ > 0 with Eu∗(λdQdP ) < ∞, then
UQ(x) <∞ for all x > x̄. Moreover if for Q ∈ K with UQ(x) <∞ the assump-

tion of Lemma 4.1 is fulfilled, then Eu∗(λQ(x)dQdP ) <∞.

(3) For log x, xp

p , 1 − e−x the corresponding convex conjugate functions are

− log x − 1, −p−1
p x

p
p−1 , 1 − x + x log x. Hence for u(x) = 1 − e−x the u∗-

divergence distance is the relative entropy, for u(x) = log x the reverse relative
entropy and for u(x) = −x−1 the Hellinger distance.

Definition 4.2 A measure Q∗ = Q∗(x) ∈ K is called minimax measure for x
and K if it minimizes Q 7→ UQ(x) over all Q ∈ K, i.e.,

UQ∗(x) = U(x) := inf
Q∈K

UQ(x).

Remark. In general the minimax measure Q∗ will depend on x. Fortunately for
the standard utility functions like u(x) = xp

p (p ∈ (−∞, 1) \ {0}), u(x) = log x

and u(x) = 1− e−px (p ∈ (0,∞)) the minimax measure is independent of x.

Our weak notion of minimax measures allows to formulate a complete equiv-
alence to minimal distance measures with respect to related f -divergence dis-
tances. This is the reason why we did not use the stronger forms of this notion
in He and Pearson (1991b) or Bellini and Frittelli (1998). Later on we will see
that under weak conditions the weak notion of a minimax measure coincides
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with the stronger notion in He and Pearson (1991b) and also with that of Bellini
and Frittelli (1998).
We assume throughout this section that

∃x > x̄ with U(x) <∞, (4.4)

EQI(λ
dQ

dP
) <∞ ∀λ > 0 ∀Q ∈ K. (4.5)

Remarks. (1) Assumption (4.5) is fulfilled for u(x) = log x. If for every Q ∈
K u∗(Q||P ) < ∞, then assumption (4.5) is also fulfilled for u(x) = xp

p (p ∈
(−∞, 1) \ {0}) and u(x) = 1 − e−px (p ∈ (0,∞)). In these cases one could
substitute the set K by the convex subset {Q ∈ K : u∗(Q||P ) <∞}.
(2) Assumption (4.5) implies according Remark 2 after Lemma 4.1 that

{Q ∈ K : UQ(x) <∞} = {Q ∈ K : ∀λ > 0 : u∗λ(Q||P ) <∞}.

As usual we denote by ∂U(x) the subdifferential of the function U at x. If
f(x) = u∗(λ0x), we denote the corresponding f -divergence by u∗λ0

(·||·).
Proposition 4.3 Let x > x̄, λ0 ∈ ∂U(x), λ0 > 0. Then

(i) U(x) = u∗λ0
(K||P ) + λ0x.

(ii) If Q∗ ∈ K is an u∗λ0
-projection of P on K, then Q∗ is a minimax measure

and λ0 = λQ∗(x).

(iii) If Q∗ ∈ K is a minimax measure, then Q∗ is an u∗λQ∗ (x)-projection of P

on K, λQ∗(x) ∈ ∂U(x) and the following equation holds

UQ∗(x) = inf
Q∈K

UQ(x) = sup{Eu(Y ) : sup
Q∈K(x)

EQY ≤ x},

where K(x) := {Q ∈ K : UQ(x) <∞}.
Proof. (i) From Lemma 4.1 we obtain

U(x) = inf
Q∈K

inf
λ>0
{Eu∗(λdQ

dP
) + λx}

= inf
λ>0
{u∗λ(K||P ) + λx}.

Define H : (0,∞) → R ∪ {∞} as H(λ) := u∗λ(K||P ). According to Remark 2
after Lemma 4.1 the assumptions (4.4), (4.5) guarantee, that there is a λ > 0
with H(λ) <∞. This implies that U(x) <∞ for every x ∈ dom(u) = dom(U).
Hence we get H(λ) <∞ for every λ > 0. In the following it is shown that H is a
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convex function. Let ε > 0 and Q1, Q2 ∈ K, such that H(λ1) + ε ≥ Eu∗(λ1
dQ1

dP )

and H(λ2) + ε ≥ Eu∗(λ2
dQ2

dP ). Then we have

γH(λ1) + (1− γ)H(λ2) + 2ε ≥ γEu∗(λ1
dQ1

dP
) + (1− γ)Eu∗(λ2

dQ2

dP
)

≥ Eu∗(γλ1
dQ1

dP
+ (1− γ)λ2

dQ2

dP
)

≥ inf
Q∈K

Eu∗((γλ1 + (1− γ)λ2)
dQ

dP
)

= H(γλ1 + (1− γ)λ2).

The second inequality holds because u∗ is convex and the last inequality holds

because γλ1

γλ1+(1−γ)λ2

dQ1

dP + (1−γ)λ2

γλ1+(1−γ)λ2

dQ2

dP ∈ K. By Rockafellar (1970), Theorem

23.5, inf
λ>0
{H(λ)+λx} achieves its infimum in λ = λ0 if and only if −x ∈ ∂H(λ0).

By Rockafellar (1970), Theorem 7.4 and Corollary 23.5.1, this is equivalent to
λ0 ∈ ∂U(x).
(ii) This follows from Lemma 4.1.
(iii) The first statement follows from Lemma 4.1. According to Remark 2 after
assumption (4.5) we have

{Q ∈ K : UQ(x) <∞} = {Q ∈ K : u∗λQ∗(x)
(Q||P ) <∞}

and hence the equation follows from Theorem 2.2 (i) and Lemma 4.1. �

Corollary 4.4 Assume that the hypotheses of Proposition 4.3 hold and more-
over U is differentiable in x. Then we have the following equivalence: Q∗ is a
minimax measure if and only if Q∗ is the u∗λ0

-projection, where λ0 = ∇U(x).

Since U(x) typically is not known explicitly it is of interest to be able to deter-
mine λ0. In Proposition 4.7 we will address the question λ0 ∈ ∂U(x). Notice
that this problem vanishes for the standard utility functions like u(x) = xp

p

(p ∈ (−∞, 1) \ {0}), u(x) = log x and u(x) = 1 − e−px (p ∈ (0,∞)). In these
cases the minimax measure does not depend on x respectively the u∗λ-projection
does not depend on λ.

Proposition 4.5 Assume that x̄ = 0 and u is bounded from above. Then U is
differentiable in every x > 0.

Proof. According to Rockafellar (1970), Theorem 26.3, it is sufficient to prove
that the function H(λ) = u∗λ(K||P ) is strictly convex.
Define K̄ as the closure of K with respect to σ(ba, L∞). For any λ > 0 there
is due to Lemma 3.3 of Kramkov and Schachermayer (1999) and the convexity
of K a minimizing sequence {Qn} in K such that dQn

dP converges almost surely.
Since according to Alaoglu’s Theorem K̄ is weak-star compact the sequence

{Qn} has a cluster point Q̄ ∈ K̄ and hence dQn
dP → dQ̄r

dP , where Q̄r denotes
the regular part for Q̄ ∈ K̄. By Lemma 3.4 of Kramkov and Schachermayer

(1999) it follows that lim
n→∞

Eu∗(λdQndP )− = Eu∗(λdQ̄
r

dP )−. Since x̄ = 0 and u is
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bounded from above, it follows that u∗ is bounded from above. The theorem of

dominated convergence implies that lim
n→∞

Eu∗(λdQndP ) = Eu∗(λdQ̄
r

dP ) and hence

inf
Q∈K

Eu∗(λdQdP ) = Eu∗(λdQ̄
r

dP ).

Let λ1, λ2 ∈ R+, γ ∈ (0, 1). Due to the consideration above there are Q̄1,

Q̄2 ∈ K̄ with H(λ1) = Eu∗(λ1
dQ̄r1
dP ) and H(λ2) = Eu∗(λ2

dQ̄r2
dP ). Therefore,

γH(λ1) + (1− γ)H(λ2) = γEu∗(λ1
dQ̄r1
dP

) + (1− γ)Eu∗(λ2
dQ̄r2
dP

)

> Eu∗(γλ1
dQ̄r1
dP

+ (1− γ)λ2
dQ̄r2
dP

)

≥ inf
Q∈K

Eu∗((γλ1 + (1− γ)λ2)
dQ

dP
)

= H(γλ1 + (1− γ)λ2).

The strict inequality holds, since u∗ is strictly convex and the inequality because
of the convexity of the set K. Hence H is strictly convex and we are done. �

The differentiability condition in Corollary 4.4 is fulfilled if for every λ > 0
there is a u∗λ-projection. From Proposition 8.5 in Liese and Vajda (1987) one
gets the following result which was already obtained - using different methods -
by Bellini and Frittelli (1998) (see also Schachermayer (1999)).

Proposition 4.6 Assume that K is closed in the variational distance topology
and dom(u) = (−∞,∞). Then for every λ > 0 there is a u∗λ-projection of P on
K.

Proof. According to Liese and Vajda (1987), Proposition 8.5, it is sufficient to

check whether lim
x→∞

u∗(λx)
x =∞. Since u∗(λx) ≥ u(−nλ )+nx with u(−nλ ) > −∞

it follows that lim
x→∞

u∗(λx)
x ≥ n for every n ∈ N. �

Using the sufficient conditions for projections in section 3 we now provide a
way to determine the parameter λ0 ∈ ∂U(x) and, therefore, the f -divergence
distance related to a minimax measure.

Proposition 4.7 Let Q∗ ∈M (Mloc, MHq), λ > 0 with u∗λ(Q∗||P ) <∞ such
that for a S-integrable process ϕ

I(λ
dQ∗

dP
) = x+

∫ T

0

ϕsdSs P -a.s..

Assume moreover that any of the sufficient conditions on a u∗λ-projection of
Proposition 3.3 or the Theorems 3.4 or 3.5 hold. Then Q∗ is the minimax
measure for x and λ ∈ ∂U(x).

Remark. Notice that the conditions in Proposition 3.3 and in the Theorems
3.4, 3.5 are formulated for (u∗λ)′(x) = −λI(λx).
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Proof. In the following K stands for either M, Mloc or MHq . Since
EQ∗I(λdQ

∗

dP ) = x one gets from Lemma 4.1 that λ = λQ∗(x). As Q∗ is the
u∗λ-projection of P on K the condition of Theorem 2.2 is fulfilled. Hence for all

measures Q ∈ K satisfying uλ(Q||P ) <∞ one gets EQI(λdQ
∗

dP ) ≤ x and one can

conclude that UQ∗(x) = Eu((I(λdQ
∗

dP )) ≤ UQ(x). From assumption (4.5) one
has {Q ∈ K : u∗λ(Q||P ) < ∞} = {Q ∈ K : UQ(x) < ∞} and it follows that Q∗

is a minimax measure for x and K. By Proposition 4.3 one can conclude that
λ = λQ∗(x) ∈ ∂U(x). �

5 Relationship to portfolio optimization

In this section we point out how the results of Section 3 and 4 are related to
portfolio optimization. We assume that assumptions (4.4) and (4.5) hold for
K =M (Mloc) and that x̄ > −∞.
We call a predictable S-integrable Rd+1-valued process ϕ an admissible strategy
if
∑d
i=0 ϕ

i
tS
i
t = x+

∫ t
0
ϕdS for any t ∈ [0, T ] and

∫ ·
0
ϕdS is bounded from below.

The set of admissible strategies is denoted by A. We say that ϕ̂ ∈ A is an

optimal portfolio if it maximizes ϕ 7→ Eu(x +
∫ T

0
ϕdS) over all ϕ ∈ A. Notice

that for x̄ = −∞ the optimal portfolio typically is not bounded from below and
hence not admissible. Therefore, in this case one needs to consider a larger class
of strategies (see Schachermayer (1999) and Kallsen (2000)).
With the results of the previous section one gets the following theorem.

Theorem 5.1 Let Q∗ ∈ Me
(loc) such that u∗λ0

(Q∗||P ) < ∞ and I(λ0
dQ∗

dP ) ∈
L1(Q∗), (S locally bounded), and let λ0 ∈ ∂U(x). Then

(i) The following statements are equivalent:

(a) Q∗ is a minimal distance (local) martingale measure.

(b) EQI(λ0
dQ∗

dP ) ≤ EQ∗I(λ0
dQ∗

dP ) ∀Q ∈M(loc) with u∗λ0
(Q||P ) <∞.

(c) I(λ0
dQ∗

dP ) = x +
∫ T

0
ϕ̂dS and

∫ ·
0
ϕ̂dS is a Q∗-martingale for some

S-integrable, predictable process ϕ̂.

(ii) If (c) holds then sup
ϕ∈A

Eu(x+
∫ T

0
ϕdS) = Eu(x+

∫ T
0
ϕ̂dS) = UQ∗(x) = U(x)

and ϕ̂ (with ϕ̂0
t := x +

∫ t
0
ϕ̂dS − ∑d

i=1 ϕ̂
i
tSt) is an admissible optimal

portfolio-strategy.

(iii) If (a) holds then Q∗ is a minimax (local) martingale measure.

Proof. Notice that (u∗λ)′(x) = −λI(λx).
(i) Due to Theorems 3.1, 3.2, 2.2 it remains to show that (c)⇒ (a).
Since I : R→ (x̄,∞) we obtain that x+ ϕ̂ · ST ≥ x̄. As ϕ̂ · S is a Q∗-martingale
and Q∗ ∼ P , ϕ̂ ·S is bounded from below P -a.s.. Therefore, by Theorem 3.4 Q∗
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is the u∗λ0
-projection of P on M(loc).

(ii) As pointed out in 1. for a process ϕ̂ fulfilling condition (c) one can con-
clude that ϕ̂ · S is bounded from below P -a.s.. Due to the definition of ϕ̂0

t and

the assumption that S0 equals 1 it holds that
∑d
i=0 ϕ̂

i
tS
i
t = x +

∫ t
0
ϕ̂dS for any

t ∈ [0, T ] and hence ϕ̂ ∈ A. By Ansel and Stricker (1994), Corollaire 3.5, ϕ · S
is a Q∗-local martingale and hence a Q∗-supermartingale for any ϕ ∈ A. There-
fore EQ∗(x + ϕ · ST ) ≤ x. Analogously to Lemma 4.1 (ii) one concludes that

sup
ϕ∈A

Eu(x +
∫ T

0
ϕdS) = Eu(x +

∫ T
0
ϕ̂dS) and hence ϕ̂ is an optimal portfolio

strategy.
(iii) This follows from Proposition 4.3. �

Theorem 5.1 together with Proposition 4.3 imply that for x̄ > −∞ our weak
form of the definition of a minimax martingale measure coincides with the strong
notion of a minimax martingale measure in the sense of He and Pearson (1991
a, b) and also with that of Bellini and Frittelli (1998).

Corollary 5.2 Let Q∗ be a minimax measure for x and M(loc).

(i) If u∗(Q̂||P ) <∞ for some measure Q̂ ∈Me
(loc), then Q∗ ∼ P .

(ii) If Q∗ ∼ P (and S is locally bounded), then

I(λQ∗(x)
dQ∗

dP
) = x+

∫ T

0

ϕ̂dS,

where ϕ̂ is a optimal portfolio strategy and moreover

U(x) = UQ∗(x) = sup{Eu(Y ) : EQY ≤ x for all Q ∈Mloc}.

Proof. (i) Proposition 4.3 shows that Q∗ is the u∗λQ∗ (x)-projection. Assumption

(4.5) implies according to Remark 2 after Lemma 4.1 that u∗λQ∗ (x)(Q̂||P ) <∞.

Since I(0) =∞ it follows from Corollary 2.3 that Q∗ ∼ P .

(ii) By Proposition 4.3 and Theorem 5.1 one concludes that I(λQ∗(x)dQ
∗

dP ) =
x + ϕ̂ · ST where ϕ̂ ∈ A is a optimal portfolio strategy. This implies due to
Corollaire 3.5 in Ansel and Stricker (1994) that ϕ̂ ·S is a Q-local martingale and
hence a Q-supermartingale for any Q ∈ Mloc. Therefore EQ(x + ϕ̂ · ST ) ≤ x
and Lemma 4.1 implies that

U(x) = UQ∗(x) = sup{Eu(Y ) : EQY ≤ x for all Q ∈Mloc}.
�

Remarks. (1) Theorem 5.1 is an extension of Theorem 9.4 in Karatzas et al.
(1991) and Theorem 2 in He and Pearson (1991b) from continuous-time diffusion
models to general incomplete semimartingale models.
(2) Recently Kramkov and Schachermayer (1999) obtained a characterization of
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the optimal portfolio in general semimartingale models by a solution of a dual
problem which is related to the problem of finding a minimal distance martin-
gale measure. They considered a variational problem with respect to a properly
defined set of supermartingale measures, which contains the set of absolutely
continuous martingale respectively local martingale measures. Kramkov and
Schachermayer (1999) give an example (Example 5.1 bis in that paper) where

the optimal portfolio cannot be characterized by a probability density dQ∗

dP as in
Theorem 5.1 (i), but only by a measure with mass strictly less than 1.
(3) Combining Theorem 2.2 (ii), (iv) in Kramkov and Schachermayer (1999)
and Theorem 2.2 (iv) in Schachermayer (1999) one could also derive a version
of Theorem 3.2 for u∗λ-projections.
(4) Theorem 5.1 shows that if derivative prices are computed by a minimax
respectively minimal distance martingale measure Q∗ then the optimal claim,
i.e., the solution of problem (4.3) for Q = Q∗ can be duplicated by a portfolio
strategy ϕ̂. Hence no derivative trade increases the maximal expected utility in
comparison to an optimal portfolio if derivative prices are computed by Q∗. We
have

EPu(x+ ϕ̂ · ST ) ≥ EPu(Y )

for all claims Y such that EQ∗Y ≤ x.

Davis (1997) proposes as reasonable derivative price, the price such that an
infinitesimal long- or short-position of the derivative does not increase the ex-
pected utility of terminal wealth in comparison to an optimal portfolio. Under
certain assumptions he gets that the fair price of a contingent claim H according
to an initial endowment x is given by

p(H) =
E (u′ (x+ ϕ̂ · ST )H)

const
, (5.1)

where ϕ̂ is an optimal portfolio strategy. Thus according to the characteri-
zation of Theorem 5.1 (i) the minimal distance martingale measure yields the
fair derivative price suggested by Davis (1997) by taking the expectation of the
derivative H under this measure. Hence not only infinitesimally but even general
trading of the derivative does not increase the maximal expected utility.

Corollary 5.3 Assume that the hypotheses of Theorem 5.1 hold. If Q∗ is the
minimal distance martingale measure, then Davis’ fair derivative price is given
by

p(H) = EQ∗H. (5.2)

6 Examples

6.1 Minimizing relative entropy

The distance corresponding to the utility-function u(x) = 1−e−px is the relative
entropy with f(x) = x log x. Necessary and sufficient conditions for the minimal
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entropy martingale measure have been given in Frittelli (2000) and Grandits and
Rheinländer (1999). In the setting of an exponential Lévy process the minimal
entropy martingale measure has been determined by Miyahara (1999) and Chan
(1999).
Theorems 3.1-3.5 gives as necessary respectively sufficient condition for minimal
distance martingale measures a representation of the density of the form

dQ∗

dP
=

1

λ0
exp(−p(x+ ϕ · ST )). (6.1)

The condition ϕ·ST ∈ L1(G(loc), Q
∗) is necessary, (see the Theorems 3.1, 3.2 and

also Grandits and Rheinländer (1999)), the sufficient condition ϕ · ST ∈ G(loc)

has been given in Frittelli (2000). Grandits and Rheinländer (1999) prove that
dP
dQ∗ ∈ Lε(P ) for an ε > 0 and ϕ·S ∈ BMO(Q∗) is a sufficient criterion. Theorem
3.4 gives a further quite general sufficient condition which can be checked in our
subsequent examples. If the stochastic integral in (6.1) is bounded from below
P -a.s. and is a Q∗-martingale then Q∗ is the minimal entropy (local) martingale
measure and ϕ is an optimal portfolio strategy. In general the question, whether
the process ϕ · S is bounded from below is a delicate point. For finite state
markets this problem vanishes.
Suppose that the positive price process S = (S1, . . . , Sd) is of the form

Si = Si0E (Xi), (6.2)

where X = (X1, . . . , Xd) is a Rd-valued Lévy process and E is the stochastic
exponential. By Lemma A.8 in Goll and Kallsen (2000), these processes coincide
with those of the form Si = Si0 exp(X̃i) for Rd-valued Lévy processes X̃. In
the last couple of years exponential Lévy processes have become popular for
securities models, since they are mathematically tractable and provide a good
fit to real data (cf. Eberlein and Keller (1995), Eberlein et al. (1998), Madan
and Senata (1990), Barndorff-Nielsen (1998)). In this setting one can derive a
candidate for the local martingale measure minimizing the relative entropy from
results in Kallsen (2000), who studies the corresponding portfolio optimization
problem.
Assume (b, c, F ) to be the characteristic triplet of X relative to some truncation
function h : Rd 7→ Rd in the sense of Jacod and Shiryaev (1987). Assume that
there exists some γ ∈ Rd with the following properties:

1.
∫ |xe−γ>x − h(x))|F (dx) <∞,

2.

b− cγ +

∫ (
xe−γ

>x − h(x)

)
F (dx) = 0. (6.3)

Let

ϕit :=
γi

Sit−
for i = 1, . . . , d, ϕ0

t := x+

∫ t

0

ϕsdSs −
d∑

i=1

ϕitS
i
t
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for t ∈ (0, T ].

Define Zt = E
(
− γ>Xc

s + (e−γ
>x − 1) ∗ (µX − ν)s

)

t

.

Corollary 6.1 The measure Q∗ defined by dQ∗

dP = ZT is an equivalent local
martingale measure. If γ · X is bounded from below, then Q∗ minimizes the
relative entropy between P and Mloc.

Proof. Theorem 3.3 in Kallsen (2000) shows that Z as defined above is a mar-
tingale such that SiZ is a local martingale with respect to P for i ∈ {1, . . . , d}.
Moreover the density ZT = dQ∗

dP of Q∗ with respect to P has a representation as

in (6.1) with ϕiT := γi

Sit−
. Furthermore, we have EQ∗(ϕ · ST ) = 0, which implies

that the relative entropy between Q∗ and P is finite, i.e., EQ∗ log(dQ
∗

dP ) < ∞.
If the process ϕ · S = γ · X is bounded from below, then one can conclude by
Theorem 3.4 that Q∗ minimizes the relative entropy between P and Mloc. �

Remarks. (1) Under the measure Q∗ as defined above X is again a Lévy
process (see Kallsen (2000)).
(2) Equation (6.3) is also part of the condition given in Chan (1999) and Miya-
hara (1999).
(3) The condition that γ · X = ϕ · S is bounded from below is not fulfilled in
general. In connection with portfolio optimization this question is discussed in
Schachermayer (1999) and Kallsen (2000).
(4) Corollary 6.1 extends to exponential Lévy processes of the form Si =
Si0 exp(Xi) using Lemma A.8 in Goll and Kallsen (2000), which shows that
these processes coincide with those of the form (6.2).

6.2 Minimizing the reverse relative entropy

In this section we consider the reverse relative entropy, i.e., the f-divergence dis-
tance for f(x) = − log x, which corresponds to the logarithmic utility function
u(x) = log x.
Assume that the characteristics (B,C, ν) of the Rd-valued semimartingale
(S1, . . . , Sd) relative to some fixed truncation function h : Rd → Rd (in the
sense of Jacod (1979), Jacod and Shiryaev (1987)) are given in the form

B =

∫ ·
0

btdAt, C =

∫ ·
0

ctdAt, ν = A⊗ F, (6.4)

where A ∈A +

loc is a predictable process, b is a predictable Rd-valued process, c
is a predictable Rd×d-valued process whose values are non-negative, symmetric
matrices, and F is a transition kernel from (Ω× R+,P) into (Rd,Bd).
Assume that there exists a Rd-valued, S-integrable process H with the following
properties:

1. 1 +H>t x > 0 for (A⊗ F )-almost all (t, x) ∈ [0, T ]× Rd,
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2.
∫ | x

1+H>t x
− h(x))|Ft(dx) <∞ (P ⊗A)-almost everywhere on Ω× [0, T ],

3.

bt − ctHt +

∫ (
x

1 +H>t x
− h(x)

)
Ft(dx) = 0 (6.5)

(P ⊗A)-almost everywhere on Ω× [0, T ].

Let

ϕit := xHi
tE

(∫ ·
0

HsdSs

)

t−
for i = 1, . . . , d, ϕ0

t := x+

∫ t

0

ϕsdSs −
d∑

i=1

ϕitS
i
t

for t ∈ (0, T ].
Goll and Kallsen (2000) show that ϕ as defined above is an optimal portfolio
strategy for the logarithmic utility maximization problem. Based on this paper
we get from Theorem 3.4 a characterization of the local martingale measure
minimizing the reverse relative entropy.

Corollary 6.2 If Zt := E
(
−H ·Scs+( 1

1+H>x−1)∗(µS−ν)s

)

t

is a martingale,

then the corresponding measure Q∗ is an equivalent local martingale measure and
it minimizes the reverse relative entropy.

Proof. Theorem 3.1 in Goll and Kallsen (2000) shows that Zt is a positive local
martingale, such that SiZ is a local martingale for i ∈ {1, . . . , d} and x

ZT
=

x+ϕ ·ST , where ϕ is an admissible portfolio-strategy. If Z is even a martingale,
then ZT is the density of an equivalent local martingale measure Q∗. For Q∗ we
have

E(− log(
dQ∗

dP
)) = E log(

1

ZT
) = E(log(x+ ϕ · ST ))− log(x).

From Lemma 4.1 it follows that

E log(x+ ϕ · ST ) ≤ E(− log(
dQ

dP
)) + x

for all measures Q ∈ Mloc. The last inequality shows that if Q∗ has infinite
reverse relative entropy, then also all other measures Q ∈Mloc. Hence it follows
due to EQ∗(x + ϕST ) = x from Theorem 3.4 that Q∗ minimizes the reverse
relative entropy. �

Remark. In the case of a continuous price process S equation (6.5) simplifies
considerably and the minimal distance martingale measure Q∗ is given by the
minimal martingale measure. In this case the result is due to Schweizer (1999).
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6.3 Derivative pricing by Esscher-transforms

Assume that the price process S = (St)t≤T is generated by some Lévy process
X = (Xt)t≤T with X0 = 0, in the sense that St = eXt . Let M be the moment
generating function of X with M(u, t) = M(u)t = EeuXt . M is assumed to
exist for |u| < C for some constant C > 0. By means of Esscher transforms one

defines a set of measures {Qθ : |θ| < C} by dQθ

dP = eθXT

M(θ)T
. If θ̂ is a solution of

0 = log
M(θ + 1)

M(θ)
, (6.6)

then Qθ̂ is an equivalent martingale measure (see Eberlein and Keller (1995) and
Shiryaev (1999)).
Let u be the utility-function given by u(x) = xp

p , p ∈ (−∞, 1) \ {0}. Then

condition (c) of Theorem 5.1 (i) becomes

dQ∗

dP
=

(x+ ϕ̂ · ST )p−1

λ0
and ϕ̂ · S is a Q∗-martingale.

Hence Qθ̂ fulfills condition (c) of Theorem 5.1 (i) respectively the assumption of

Theorem 3.3 for p̂ = θ̂ + 1 and ϕ̂ = const. Thus we obtain the following result.

Corollary 6.3 In the model of an exponential Lévy process the Esscher trans-

form Qθ̂ is a minimal distance martingale measure for f(x) = − p̂−1
p̂ x

p̂
p̂−1 , if θ̂

solves (6.6) and p̂ = θ̂ + 1 < 1. Moreover Qθ̂ is a minimax martingale measure

for the power utility function xp̂

p̂ .

Derivative pricing by the Esscher transform for exponential Lévy processes was
proposed and studied in Eberlein and Keller (1995). Corollary 6.3 shows that
the martingale measure obtained by the Esscher transform corresponds to a spe-

cific power utility function u(x) = xp̂

p̂ , where the parameter p̂ is determined in

such a way that const · eXT is the value of the optimal portfolio at time T . Thus
the optimal portfolio strategy constantly invests the whole wealth into the risky
asset (see Section 6.4 for the solution for general power utility functions).

Remarks. (1) Gerber and Shiu (1994) noted that the derivative price computed
by the Esscher transform corresponds to the derivative price suggested by Davis
(1997) (see (5.1)) for the power utility function as specified in Corollary 6.3.
(2) Chan (1999) studies a generalized Esscher transform for geometric Lévy pro-
cesses dSt = σtSt−dXt + btSt−dt. He shows that for this model the martingale
measure constructed via the generalized Esscher transform minimizes the rel-
ative entropy. This connection can be seen by the following consideration. If
we have constant coefficients σ, b, then 1

σSt−
dSt − b

σdt = dXt and the Esscher

transform dQθ

dP = eθXT

M(θ)T
can be written as dQθ

dP = e−ϕ·S
E(e−ϕ·S)

, where ϕt = − θ
σSt−

.

Hence the density of the Esscher transform has a representation as in equation
(6.1) which corresponds to the measure minimizing the relative entropy.
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6.4 Distance minimization for power utility functions

In the following we determine the local martingale measure minimizing the f -
divergence distance for f(x) = −p−1

p x
p
p−1 (p ∈ (−∞, 1) \ {0}), if the discounted

price process S = (S1, . . . , Sd) is of the form

Si = Si0E (Xi) (6.7)

for a Rd-valued Lévy-process X = (X1, . . . , Xd). This problem corresponds
according to Theorem 5.1 to the problem of portfolio optimization with respect
to u(x) = xp

p (u∗ = f).

Assume (b, c, F ) to be the characteristic triplet of X relative to some truncation
function h : Rd 7→ Rd. Assume that there exists some γ ∈ Rd with the following
properties:

1. F ({x ∈ Rd : 1 + γ>x ≤ 0}) = 0,

2.
∫ | x

(1+γ>x)1−p − h(x)|F (dx) <∞,

3.

b+ (p− 1)cγ +

∫ (
x

(1 + γ>x)1−p − h(x)

)
F (dx) = 0. (6.8)

Let

ϕit :=
γi

Sit−
Vt− for i = 1, . . . , d, ϕ0

t := x+

∫ t

0

ϕsdSs −
d∑

i=1

ϕitS
i
t

for t ∈ (0, T ], where V is the wealth process with respect to ϕ.
Kallsen (2000) shows that ϕ as defined above is an optimal portfolio strategy
for the utility maximization problem with respect to u(x) = xp

p . Based on
this paper we get from Theorem 3.4 a characterization of the local martingale
measure minimizing the f -divergence distance for f(x) = −p−1

p x
p
p−1 .

Define Zt = E
(

(p− 1)γ>Xc
s + ((1 + γ>x)p−1 − 1) ∗ (µX − ν)s

)

t

.

Corollary 6.4 The measure Q∗ defined by dQ∗

dP = ZT is an equivalent lo-
cal martingale measure and it minimizes the f -divergence distance for f(x) =

−p−1
p x

p
p−1 .

Proof. Theorem 3.2 in Kallsen (2000) shows that Z is a positive martingale,
such that SiZ is a local martingale with respect to P for i ∈ {1, . . . , d}. More-

over the density ZT = dQ∗

dP of Q∗ with respect to P has the representation

ZT = (x+ϕ·ST )p−1

E(x+ϕ·ST )p−1 with ϕiT := γi

Sit−
Vt− . Furthermore we have EQ∗(ϕ · ST ) = 0,

which implies that f(Q∗||P ) < ∞. Since it turns out that the process ϕ · S is
bounded from below the result follows from Theorem 3.4. �
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Remarks. (1) Under the measure Q∗ as defined above X is again a Lévy
process (see Kallsen (2000)).
(2) For p = −1 the measure Q∗ minimizes the Hellinger distance. This result
has also been obtained independently in Grandits (1999).

(3) Some related results for the f -divergence distances for f(x) = −p−1
p x

p
p−1

with p < 0 have been obtained independently in Xia and Yan (2000).
(4) Corollary 6.4 extends to exponential Lévy processes of the form Si =
Si0 exp(Xi) using Lemma A.8 in Goll and Kallsen (2000), which shows that
these processes coincide with those of the form (6.7).

7 Utility-based hedging

In an incomplete market an investor may apply superhedging to eliminate the
financial risk of a contingent claim. But this is often quite expensive. To super-
hedge a European call option an investor may be forced to buy the underlying
asset in t=0 (see Eberlein and Jacod (1997)).
Therefore, it is reasonable to ask for hedging strategies which require less cap-
ital than superhedging strategies. Recently Föllmer and Leukert (1999) pro-
posed hedging strategies maximizing the probability that the hedge is successful.
Föllmer and Leukert (2000) also studied further hedging criteria like minimizing
the shortfall risk, which is defined as the expected shortfall weighted by some
loss function or maximizing expected utility with respect to a state-dependent
utility function. In the following we show how our approach to portfolio opti-
mization can be extended to utility based hedging, i.e., we study the following
problem

sup
ϕ∈A

Eu(x+

∫ T

0

ϕdS −H), (7.1)

where H is a non-negative FT -measurable random variable modeling the contin-
gent claim in question. In problem (7.1) risk-aversion of the investor is described
by the utility function u.
If x̄ := inf{x ∈ R | u(x) > −∞} ≥ 0 then criterion (7.1) only allows superhedg-
ing strategies. Since we want to allow more general strategies we assume

−∞ < x̄ < 0 and x− x̄ > sup
Q∈Mloc

EQH. (7.2)

It is known that sup
Q∈Me

loc

EQH corresponds to the minimal cost for a superhedging

strategy (Föllmer and Kabanov (1998)).
We define

UH(x) := inf
Q∈Mloc

sup
EQY≤x

Eu(Y −H).

In the following we assume that UH(x) <∞ and that assumption (4.5) is fulfilled
for Mloc. Moreover we assume that S is locally bounded.
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Instead of problem (7.1) we consider the following dual problem for λ0 ∈ ∂UH(x):

inf
Q∈Mloc

E(u∗(λ0
dQ

dP
)− λ0

dQ

dP
H). (D)

Then one gets the following duality result for utility based hedging.

Theorem 7.1 Let λ0 ∈ ∂UH(x) and let Q∗ ∈Me
loc, such that u∗λ0

(Q∗||P ) <∞
and I(λ0

dQ∗

dP ) +H ∈ L1(Q∗). Then

(i) The following statements are equivalent:

(a) Q∗ solves problem (D).

(b) EQ(I(λ0
dQ∗

dP ) + H) ≤ EQ∗(I(λ0
dQ∗

dP ) + H) ∀Q ∈ Mloc with

E(u∗(λ0
dQ
dP )− λ0

dQ
dPH) <∞.

(c) I(λ0
dQ∗

dP ) +H = x+
∫ T

0
ϕ̂dS and

∫ ·
0
ϕ̂dS is a Q∗-martingale for some

S-integrable, predictable process ϕ̂.

(ii) If (c) holds then ϕ̂ (with ϕ̂0
t := x +

∫ t
0
ϕ̂dS −∑d

i=1 ϕ̂
i
tSt) is an optimal

hedging strategy.

For the proof of Theorem 7.1 one needs the analogous result to Theorem 2.2 (i).

Proposition 7.2 Let Q∗ ∈ Mloc satisfy u∗λ0
(Q∗||P ) < ∞ and I(λ0

dQ∗

dP ) ∈
L1(Q∗). Then Q∗ solves (D) if and only if

EQ(I(λ0
dQ∗

dP
) +H) ≤ EQ∗(I(λ0

dQ∗

dP
) +H) ∀Q ∈Mloc

with E(u∗(λ0
dQ
dP )− λ0

dQ
dPH) <∞.

Proof. For Q ∈Mloc with E(u∗(λ0
dQ
dP )− λ0

dQ
dPH) <∞ and α ∈ [0, 1] define

hα :=
1

α− 1
(u∗(λ0(α

dQ∗

dP
+ (1− α)

dQ

dP
))− λ0H(α

dQ∗

dP
+ (1− α)

dQ

dP
)

−u∗(λ0
dQ∗

dP
) + λ0

dQ∗

dP
H))

= −λ0H(
dQ∗

dP
− dQ

dP
) +

1

α− 1
(u∗(λ0(α

dQ∗

dP
+ (1− α)

dQ

dP
))

−u∗(λ0
dQ∗

dP
)).

For α ↑ 1, hα increases to λ0H(dQdP − dQ∗

dP )+λ0I(λ0
dQ∗

dP )(dQdP − dQ∗

dP ) and, therefore,
by the monotone convergence theorem, using

hα ≥ (u∗(λ0
dQ∗

dP
)− λ0

dQ∗

dP
H)− (u∗(λ0

dQ

dP
)− λ0

dQ

dP
H),

∫
hαdP increases to

∫
(λ0H + λ0I(λ0

dQ∗

dP ))(dQ− dQ∗).
If Q∗ solves (D), then the left hand side is ≤ 0 for each α, which implies, that
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also the limit on the right hand side is ≤ 0. If conversely the right hand side is
≤ 0, then by the nondecreasing property of hα we have that

∫
h0dP =

∫
(u∗(λ0

dQ∗

dP
)− λ0

dQ∗

dP
H − u∗(λ0

dQ

dP
)− λ0

dQ

dP
H)dP

≤
∫

(lim
α↑1

hα)dP

≤ 0.

�

Proof of Theorem 7.1. (i) Due to Proposition 7.2 it is sufficient to show (b)⇔ (c).

(b)⇒ (c): By Rüschendorf (1984), Proposition 1, we know that I(λ0
dQ∗

dP )+H ∈
L1(F,Q∗), the closure of F in L1(Q∗). The representation of this closure in

Theorem 3.2 yields that I(λ0
dQ∗

dP )+H = c+ ϕ̂ ·ST for a S-integrable predictable
process ϕ̂. Analogously to Proposition 4.3 one can show that if Q∗ ∈Mloc solves
(D) then

UH(x) = sup{Eu(Y −H) : EQ∗Y ≤ x,Eu(Y −H)− <∞}
= Eu(I(λ0

dQ∗

dP
))

and EQ∗(I(λ0
dQ∗

dP )+H) = x. Since ϕ̂ ·S is a Q∗-martingale it follows that c = x

and I(λ0
dQ∗

dP ) +H = x+ ϕ̂ · ST .
(c) ⇒ (b): Since I : R → (x̄,∞) we obtain that x + ϕ̂ · ST ≥ x̄. As ϕ̂ · S is
a Q∗-martingale and Q∗ ∼ P , ϕ̂ · S is bounded from below P-a.s.. By Ansel
and Stricker (1994), Corollaire 3.5, ϕ̂ · S is a Q-local martingale and hence a
Q-supermartingale for any Q ∈Mloc. Therefore

EQ(I(
dQ∗

dP
) +H) = x+ EQ(ϕ̂ · ST )

≤ x = EQ∗(I(
dQ∗

dP
) +H).

(ii) As pointed out in (i) for a process ϕ̂ fulfilling condition (c) one can conclude
that ϕ̂ · S is bounded from below P-a.s. and ϕ̂ ∈ A. Let ϕ ∈ A be a admissible
strategy, then

E(u(x+ ϕ · ST −H)) ≤ E(u(x+ ϕ̂ · ST −H)

+u′(x+ ϕ̂ · ST −H)(ϕ · ST − ϕ̂ · ST ))

= E(u(x+ ϕ̂ · ST −H) + λ0
dQ∗

dP
(ϕ · ST − ϕ̂ · ST ))

≤ E(u(x+ ϕ̂ · ST −H).

The first inequality holds since u is concave, the equality holds because

u′(x +
∫ T

0
ϕ̂dS − H) = λ0

dQ∗

dP and the second inequality holds since ϕ · S is
bounded from below and therefore EQ∗(ϕ · ST − ϕ̂ · ST ) ≤ 0 by Ansel and
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Stricker (1994), Corollaire 3.5. �

Remarks. (1) The results of this section can be also obtained with M or
MHq instead of Mloc without the assumption of local boundedness of S.
(2) In a recent paper (which we got to know only after finishing this paper)
Cvitanić et al. (1999) study the problem of utility maximization in incom-
plete markets with random endowment for utility functions defined on R+. This
includes utility-based hedging for x̄ > −∞ as a special case. They obtain a char-
acterization of the optimal portfolio strategy by the solution of a dual problem
which is similar to our dual problem (D).
(3) Delbaen et al. (2000) study the case of exponential hedging, i.e., hedging
with respect to a exponential utility function. Considering special classes of
hedging strategies they prove a duality relation between the problem of utility-
based hedging and problem (D) for the case of the exponential utility function.
(4) After essentially having finished the paper and during the process of re-
vision we got copies of the papers of Cvitanić et al. (1999), Delbaen et al.
(2000), Grandits (1999), Grandits and Rheinländer (1999), Rheinländer (1999),
Schachermayer (1999) and Xia and Yan (2000) where some related results were
obtained independently.
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