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Abstract

The optimal choice problem is considered for a discounted sequence of
random variables in the domain of a max-stable distribution. Asymptotically
optimal stopping times and the asymptotic value of the stopping problem are
determined. For the proof of these results the best choice problem for the dis-
counted sequence is related to a best choice problem in an associated Poisson
process.
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1 Introduction

Gilbert and Mosteller (1966) found the solution of the best choice problem for an
iid sequence X1, . . . , Xn with known continuous distribution F . The best choice
problem is to find an optimal stopping time τn maximizing the probability P (Xτ =
Mn), where Mn = max{X1, . . . , Xn}, under all stopping times τ ≤ n. The optimal
stopping rule is given by

Tn = min{k; Xk = Mk, F (Xk) ≥ bn−k},

where b0 = 0,
i∑

j=1

(
i
j

)(
b−1
i − 1

)j
j−1 = 1, i = 1, 2 . . . (1.1)

The boundary numbers bi satisfy bi ↑ 1, i(1− bi) → b = 0.80435 . . . , b is the solution

to
∑∞

j=1
bj

j!j
= 1. The optimal choice probability vn = P (XTn = Mn) is strictly

decreasing in n, independent of F and

vn −→ v∞ = e−b + (eb − b− 1)

∞∫
1

x−1e−bxdx (1.2)

= 0.58016 . . .
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Gnedin (1996) proved that the limiting value v∞ is identical to the optimal choice
probability of the best choice problem for a Poisson process N =

∑
ε(τk, yk) on

[0, 1]× IR1 where the intensity µ is given by the product of the Lebesgue measure on
[0, 1] with the Lebesgue measure on (−∞, 0], µ = λ\[0,1] ⊗ λ\(−∞,0]. ε(τk,yk) is the one
point measure in time point τk with coordinate yk. Our aim is to stop at the time
point with the highest y-value. The information at time t is given by the observa-
tion of all points (τk, yk) with τk ≤ t (see the detailed description of the problem in
Gnedin (1996)). The optimal stopping time for this problem is given by stopping
at the first time point where a boundary u(t) is exceeded and the observed value
is identical to the maximum value until this time. Gnedin (1996) also imbedded
an iid exponentially distributed sequence into the Poisson process and proved in
this way the approximation result vn → v∞ (even with order O(n−1)). Some re-
lated optimal choice problems in the iid case based on other criteria like expected
rank are discussed in Bruss and Ferguson (1993) and in Saario and Sakaguchi (1995).

In this paper we consider a class of best choice problems for discounted sequences

Xi = ciYi (1.3)

under the assumption that (Yi) is an iid sequence with distribution in the domain of
a max-stable distribution i.e. the normalized maxima converge in distribution. By
the wellknown limit theorems of Gnedenko (1943) (see Resnick (1987) pg. 9) the
limiting distribution is of one of three possible types Λ,Ψα and Φα where

Λ(x) = e−e−x

, x ∈ IR, Φα(x) =

{
e−x−α

x ≥ 0
0 x < 0

for some α > 0 and

Ψα(x) =

{
e−(−x)α x < 0
1 x ≥ 0

for some α > 0.

We assume that 0 < ci, (ci) bounded by a constant. We also assume that (ci) is
either monotonically nonincreasing or nondecreasing and for some real c

lim
n→∞

c[nt]
cn

= t−c, t ∈ [0, 1]. (1.4)

If ci ≥ ci+1 then c ≥ 0, if ci ≤ ci+1 then c ≤ 0. We deal explicitly with the case where
the distribution of Y1 is in the max-domain of Ψα i.e. P Y1 ∈ D(Ψα), α > 0. Just for
normalization we assume Yi ≤ 0 with upper bound on the support wF = F−1(1−) =
0, F the distribution function of Yi. The cases where the distribution of Y1 is in the
domain of attraction of Φα for some α > 1 or Λ, P Y1 ∈ D(Λ) resp. P Y1 ∈ D(Φα),
α > 1 are dealt with analogously. For this non-iid best choice problem Gnedins
imbedding technique cannot be applied since a Poisson process cannot be reduced
as in his paper to reproduce the sequence (Xi). Instead we directly approximate the
associated embedded point process

Nn =
n∑

i=1

ε
( i
n
,
Xi
an

)
, an := ancn (1.5)
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by a limiting Poisson process N . Here, an = −F−1(1 − 1
n
) are the normalizing

constants ensuring convergence of the maxima Mn. Then we argue that the optimal
choice problem of {X1, . . . , Xn} can be approximated by that of the limiting Poisson
process and we also obtain asymptotically optimal stopping times and convergence
of the optimal choice probabilities vn → v∞ as in the iid case in (1.2).

2 Asymptotics of the best choice problem

The aim of this paper is to prove the following approximation result.

Theorem 2.1 If P Y1 ∈ D(Ψα), Yi ≤ 0, wF = 0, α > 0, and (ci) satisfy (1.4) where
c > − 1

α
, then for the best choice problem for the discounted sequence Xi = ciYi,

1 ≤ i ≤ n holds

a) vn = sup{P (Xτ = Mn); τ a stopping time ≤ n}
−→ v∞ = 0.58016 . . .

b) Tn := inf

{
i ≤ n; Xi ≥ an

(
b

1−( i
n
)1+cα

)1/α

(1 + cα)1/α, Xi = Mi

}

is an asymptotically optimal stopping sequence, i.e.

P (XTn = Mn) −→ v∞. (2.1)

Proof: The embedded point process Nn =
∑n

i=1 ε( i
n
,
Xi
an

)
converges to a Poisson

process N =
∑

k ε(τk,yk) with intensity measure µ defined by

µ([0, t]× [x,∞)) = (−x)α
t1+cα

1 + cα
, x ≤ 0. (2.2)

For the proof note that Xi

an
= ciYi

cnan
=: γn, i

n

Yi

an
and for t ̸= 0 (tn, yn) → (t, y) implies

that Rn(tn, yn) := (tn, ynγn,tn) → (t, yγt) =: R0(t, y) where γn,tn := γ
n,

[ntn]
n

and

γt = t−c. Remind that Ñn =
∑

ε
( i
n
,
Yi
an

)
→ Ñ a Poisson process with intensity

µ̃ = λ\[0,1] ⊗ ν, ν([x, 0]) = (−x)−α, x < 0 (convergence in distribution, see Resnick
(1987, p. 210)). From uniform convergence of γn,. → γ. on [t, 1] for t > 0 we conclude

that Nn = RnÑn → N := R0Ñ where Rn, R0 operate on the points of the point
process. N is a Poisson process with intensity µ = (µ̃)R0 which is easily calculated
to be given by (2.2). (For details of this proof see Kühne and Rüschendorf (1998).)

The transformed point process N̂ = S(N), where S(t, y) = (t1+cα,− (−y)α

1+cα
) =

(S1, S2) is a Poisson process with intensity λ\[0,1] ⊗ λ\(−∞,0]. Since S2 is strictly

increasing the best choice problem for N can be reduced to that of N̂ . From Gnedin
(1996) we conclude that

T̂ = inf

{
S1(τk); S2(yk) > − b

1− S1(τk)
,
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S2(yk) = max {yi; τi ≤ τk} =: M τk

}
= S1(T )

with (2.3)

T := inf

τk; yk >

(
b

1− τ 1+cα
k

)1/α

(1 + cα)1/α, yk = M τk


is an optimal stopping time for the best choice problem for N̂ . Therefore, T is
optimal for the best choice problem for the Poisson process N with probability of
best choice

P
(
y
KT

= M = max{yk}
)
= v∞ = 0.58016 . . .

(see (1.2)); here KT denotes the stopping index of T .

With Mn,ℓ,m = max {Xℓ, Xℓ+1, . . . , Xm}, and Ms,t = max{yk; s ≤ τk ≤ t} and
using that Tn are threshold stopping times, we obtain as in Kühne and Rüschendorf
(1998) that(

Tn

n
,
XTn

an
,
Mn,1,Tn−1

an
,
Mn,Tn+1,n

an

)
D−→

(
T, y

KT
,M0,T−,MT+,1

)
. (2.4)

Since P (y
KT

= max{M0,T−,MT+,1}) = 0 this implies for the stopping time Tn

defined in the theorem

P (XTn = Mn) = P (XTn ≥ max {Mn,1,Tn−1,MTn+1,n})
−→ P

(
y
KT

≥ max {M0,T−,MT+,1}
)
= P

(
y
KT

= M
)
= v∞ (2.5)

So we finally have to prove that v∞ is an upper bound for the asymptotic probability
of the best choice problem for X1, . . . , Xn. The optimal stopping times Sn for the
best choice problem for X1, . . . , Xn are given by

Sn = inf {i; 1 ≤ i ≤ n, P (Xi = Mn|X1, . . . , Xi) (2.6)

≥ sup {P (Xτ = Mn|X1, . . . , Xi); τ ∈ Γn
i }}

where Γn
i is the set of stopping times τ with i ≤ τ ≤ n (see Chow, Robbins and

Siegmund (1971)).

For i ≤ n− 1 holds on {Xi = Mi}

P {Xi = Mn|X1, . . . , Xi) = P (Xi = Mn|Xi)
= P (max {Xi+1, . . . , Xn} ≤ Xi|Xi)
= FXi+1∨...∨Xn(Xi).

On {Xi < Mi} we have P (Xi = Mn|X1, . . . Xi) = 0 while a.s. sup{P (Xτ =
Mn|X1, . . . , Xi); τ ∈ Γn

i+1} > 0.



On a best choice problem for discounted sequences 5

For a stopping time τ ≥ i+1 holds on {Xi = Mi} by the independence assump-
tion

P (Xτ = Mn|X1, . . . , Xi) = P (Xτ = Xi+1 ∨ . . . ∨Xn ≥ Xi|Xi)
= (P (Xτ = Xi+1 ∨ . . . ∨Xn ≥ ·))(Xi)
=: hτ

i (Xi).

Let ki = max{hτ
i ; τ ∈ Γn

i+1} then ki(Xi) = sup{P (Xτ = Mn|X1, . . . , Xi), τ ∈
Γn
i+1}. Since ki is antitone and FXi+1∨...∨Xn is isotone, there exists a monotonically

nonincreasing sequence (un,i)1≤i≤n such that

Sn = inf
{
i ≤ n; FXi+1∨...∨Xn(Xi) ≥ ki(Xi)

}
= inf {i ≤ n; Xi ≥ un,i} .

(2.7)

In conclusion Sn is a threshold stopping time.

It remains to prove that

lim
n→∞

supP (XSn = Mn) ≤ v∞ = P (y
KT

= M), M = max{yk, k ∈ IN}. (2.8)

(2.8) then implies asymptotic optimality of Tn. Assume that for some subsequence
(n′) ⊂ IN, v′ = limn′ P (XSn′ = Mn′) > v∞. Then by the monotonicity of (un,i)
there exists a further subsequence (n′′) ⊂ (n′) such that the thresholds converge,
un′′,i → ui. Convergence of the thresholds implies convergence of the stopping times
and values (see Kühne and Rüschendorf (1998) or Kennedy and Kertz (1992));(

Sn′′

n′′ ,
Xn′′,Sn′′

an′′

)
D−→ (S ′, y

KS′ ), (2.9)

S ′ a stopping time for the limiting Poisson process N . It also implies convergence
of the probabilities of best choice (as in (2.5))

P (XSn′′ = Mn′′) → P (y
KS′ = M) = v′ > v∞, (2.10)

a contradiction to the optimality of T for the best choice problem for N .
Together this implies that Tn is asymptotically optimal for the best choice prob-

lem and vn = P (XTn = Mn) → v∞ = P (y
KT

= M). 2

Remarks:

a) The proof carries over to the cases where P Y1 ∈ D(Λ) resp. D(Φα), α > 1.
The corresponding point process convergence result is stated in Kühne and
Rüschendorf (1998) or in Kühne (1997).

b) Extreme value theory for sequences in the presence of a ’trend’ as in (1.4) has
been discussed in de Haan and Verkade (1987). The assumption on the sequence
(ci) that γt = t−c, c ∈ IR is implied by the existence of the limit γt = lim

c[nt]

cn
.

This condition ensures convergence of the point processes Nn to a Poisson process
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with intensity of the product form. The optimal choice problem for this Poisson
process can be reduced to the case considered in Gnedin (1996) and by our ap-
proximation argument we obtain that asymptotically the optimal probability of
best choice in the discounted sequence is identical to the optimal probability of
best choice in the limiting Poisson case. 2
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