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Abstract

We consider optimal stopping of independent sequences. Assuming that
the corresponding imbedded planar point processes converge to a Poisson pro-
cess we introduce some additional conditions which allow to approximate the
optimal stopping problem of the discrete time sequence by the optimal stop-
ping of the limiting Poisson process. The optimal stopping of the involved
Poisson processes is reduced to a differential equation for the critical curve
which can be solved in several examples. We apply this method to obtain
approximations for the stopping of iid sequences in the domain of max-stable
laws with observation costs and with discount factors.

Keywords: optimal stopping, Poisson processes, max stable distributions,
critical curve

1 Introduction

The aim of this paper is to approximate the optimal stopping problem for a sequence
X1, . . . , Xn by an optimal stopping problem for a limiting Poisson process N under
the assumption that for some normalization constants an, bn the imbedded planar
point process Nn converges in distribution to N

Nn =
n∑
i=1

ε(
i
n
,
Xi−bn
an

) D−→ N (1.1)

More precisely our aim is to determine the asymptotic distribution of the optimal
stopping value XTn−bn

an
, the asymptotic expected stopping value vn = EXTn−bn

an
of the

stopping problem and to construct explicit asymptotically optimal stopping rules
T ′n based on the corresponding optimal stopping problem for the limiting Poisson
process. Point process convergence in (1.1) alone is not enough to approximate the
stopping problem. So our task is to introduce additional assumptions which together
with (1.1) imply convergence of the stopping problems.

Some related ideas can be found in the literature. An approximation of the op-
timal stopping of max-sequences by the optimal stopping of corresponding extremal
processes has been observed in Flateau and Irle (1983). In this paper both problems
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are of monotone kind and could be solved explicitely. The approximative optimal
stopping of the max sequence by that of the (continuous) limiting process is not
derived from some general approximation argument but is proved directly. It has
also been observed in some papers that an optimal stopping problem has an easier
solution in a related form with a Poisson-number of points. Bruss and Rogers (1991)
and Gnedin (1996) use this idea in the context of an optimal selection problem. A
famous example of this kind is the house selling problem due to Karlin (1962), Elfv-
ing (1967), and Siegmund (1967) who consider optimal stopping of a Poisson process
with finite intensity of the form λ\⊗ ν on [0, 1]× IR1. They derive in this context a
differential equation for the critical curve which allows to calculate some examples
explicitly.

In this paper we concentrate on the optimal stopping of independent sequences.
The main source and starting point of this work are several papers of Kennedy and
Kertz (1990, 1991, 1992) who determined the asymptotics of the optimal stopping
of iid sequences directly. They also used point process convergence to derive asymp-
totics of several functionals of the optimally stopped sequences for the case of iid
sequences in the domain of attraction (for maxima) of max stable distributions. In
particular they proved convergence of the optimal stopping value and convergence
of the normalized optimal stopping times to certain threshold stopping times in the
limiting Poisson process. Our approach will allow to derive approximate optimality
also in cases which can’t be handled in a direct way.

In section two we state a characterization of optimal stopping times for a Pois-
son process by a differential equation for the critical curve. For our application
to stopping problems for sequences we need to consider general Poisson processes
with possibly infinite intensities of general form. As consequence one cannot order
the points and reduce this problem to the optimal stopping of stationary discrete
sequences directly as is done in the above mentioned papers to the house selling
problem.

In section three we state an approximation result for the optimal stopping of
independent sequences by the optimal stopping of the limiting Poisson process. We
discuss an application to the optimal stopping of iid sequences with observation
costs resp. discount factors in the domain of attraction of max-stable distributions
in detail in section 4. This extends results of Kennedy and Kertz (1991) for the
iid case without observation costs or discounts. For several details we refer to the
dissertation of R. Kühne (1997) on which this paper is based.

2 Optimal stopping of Poisson processes

Optimal stopping of a Poisson process has been considered in Karlin (1962), Elfving
(1967), Siegmund (1967), and Chow Robbins and Siegmund (1971), in the case where
the intensity measure is finite and of product form λ\[0,∞) ⊗ ν. Their motivating
example was the house selling problem with a random number of iid offers Yi at
random times τi, τ1 < τ2 < . . . , (Yi) iid. The value of the house at the time of the
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n-th offer is Xn = Yn r(τn) where r is a nonincreasing nonnegative discount function.
By making use of the continuous time aspects of the problem a differential equation
has been derived for the boundary of an optimal stopping region which can be solved
in some cases explicitely.

The finiteness and product form of the intensity is used essentially in the deriva-
tion of the result by reducing the question of optimality to the discrete stationary
Markov case.

In this section we consider the optimal stopping of Poisson processes for more
general intensities allowing in particular infinitely many points. Therefore, it is not
possible to arrange the points in increasing order τ1 < τ2 < · · · and to reduce the
problem to the discrete case directly. This more general situation will be typical
for applications to point processes which arise as the limit of point processes of
normalized independent variables.

We consider two dimensional point processes on [0, 1] × IR1 of the form N =∑
k ε(τk,Yk) where the sum may be finite or countable infinite.

Definition 2.1 Let N =
∑
k ε(τk,Yk) be a point process on [0, 1] × IR1. A mapping

τ : Ω→ [0, 1] is called (canonical) stopping time if:

a) For P almost all ω ∈ {τ < 1} : ∃k ∈ IN such that τ(ω) = τk(ω).

b) {τ ≤ t} ∈ σ(Ns, s ≤ t) = σ({(τk, Yk); τk ≤ t}) for 0 ≤ t ≤ 1.

So canonical stopping times stop either at the points τk or in 1. For the optimal

stopping problem we introduce the gain Y τ = Y τ,c =

{
sup{Yk, τk = τ}
c if τ = 1 and τ 6= τk, ∀k

.

Here c is a guaranteed gain (which might be −∞) in case of not stopping at all in
[0, 1].

Definition 2.2 Let N =
∑
ε(τk,Yk) be a point process. A stopping time τ0 is optimal

if

EYτ0 = sup
τ
EYτ =: V. (2.1)

Remark 2.3 In general there will be more than one point at a stopping time. In
this case we would like to choose the maximum of these points. In the further part of
this paper we usually will assume continuity conditions which imply that no multiple
points arise in the point processes considered.

For general point processes it is not clear that the formulation of the optimal
stopping problem as in Definitions 2.1 or 2.2 is suitable. Problems arise from ac-
cumulation points of the point measures. In this paper we consider point processes
with accumulation points only at the lower boundary. For this class of processes the
definition of stopping times is flexible enough to consider suitable threshold stopping
times.
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In the definition we assume that the expectation is welldefined. Finiteness of the
value V will be a consequence of the boundedness assumption

(B) Boundedness condition

EM <∞,where M := sup
k
Yk

For functions v : [0, 1)→ IR1 we define

τ = τ v = inf{τk; Yk ≥ v(τk)}, inf Ø = 1. (2.2)

For curves v such that there are only finitely many points above v τ v defines a
stopping time, the threshold stopping time associated with v. The independence
properties of Poisson processes suggest the threshold stopping rule τu associated
with the ’optimal’ stopping curve

u(t) = sup{EYτ ; τ a stopping time ≥ t}, Yτ = Yτ,c (2.3)

for some guarantee value c.
In the following we consider Poisson processes whose intensity is concentrated

on

Mf := {(t, y) ∈ [0, 1]× IR; y > f(t)} (2.4)

for some function f : [0, 1]→ IR∪{−∞}monotonically nonincreasing on {f > −∞}.
We allow clustering of the points of N at the lower boundary f . Formally, we
consider on S = Mf the topology which is induced on Mf by the usual topology
on [0, 1]× IR. We assume that the intensity measure µ is a Radon measure on Mf .
This assumption implies that for any function v > f separated from f there are
only finitely many points in Mv. We generally assume c ≥ f(1).

Point process convergence on a metric space S is defined in the usual sense and

Nn
D→ N0 if for all g ∈ C+

k (S) holds ENn(g) → EN0(g). We consider throughout
point process convergence to a point process N0 supported by Mf ; the convergence

takes place either in S = [0, 1] ×
(
IR \ graph(f)

)
=: M f or in S = Mf supplied

in each case with the relative topology. Convergence in M f implies convergence
of the restrictions to Mf . For our main theorem convergence in Mf together with
an additional condition (condition (L)) will be sufficient to imply approximation
of the stopping problem. For the relevant facts on point process convergence we
refer to Resnick (1987, chapter 3). Applying the Skorohod theorem to point process

convergence Nn
D→ N0 we obtain versions which converge a.s. in the vague topology.

Therefore, a wellknown result (see Prop. 3.13 in Resnick (1987)) implies that for
each ω and any compact set K which may depend on ω with N0(ω, ∂K) = 0 there
is a labeling of the points of Nn(ω, · ∩K) for n ≥ n(ω,K) such that the relabeled
points converge pointwise to the points of N0(ω, ·∩K). In this sense we may assume
a.s. convergence of the points on compact sets.
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In order to describe the optimal stopping curve by a differential equation we
introduce

(D) Differentiability condition
µ/Mf

is continuous w.r.t. Lebesgue-measure λf = λ\2/Mf
such that with hf a version

of the density
dµ/Mf

dλf

(t, z)→
∞∫
z

∞∫
x

hf (t, y) dy dx (2.5)

is continuous on Mf .

In particular

z →
∞∫
z

 ∞∫
x

hf (t, y) dy

 dx (2.6)

is continuously differentiable for any t.
Under the differentiability condition no multiple time points arise. Therefore,

there is a uniquely determined stopping index k = Kτ (ω) for any stopping time and
ω = {τ < 1}, such that

EY τ = EYKτ , (2.7)

here YKτ := c if τ = 1 and τ 6= τk for all k.
For technical reasons we need that the distance of the optimal stopping curve u

to the lower boundary is bounded away from zero on intervals [0, t] for t < 1. We
introduce the following

(S) Separation condition
Let v be a monotonically nonincreasing function on [0, 1]. v satisfies the separation
condition (w.r.t. N) if for all t < ω1 := inf{t ≤ 1; µ([t, 1] × (c,∞)) = 0} there
exists a constant ct > 0 such that

(v − f)/[0, t] > ct. (2.8)

(We define (−∞)− (−∞) := 0.)
This condition will be obviously fulfilled in the case when f is constant and

v > f .
The following proposition concerns convergence of threshold stopping times un-

der the assumption that Nn
D→ N a Poisson point process which satisfies the dif-

ferentiability assumption. Let Nn =
∑n
i=1 ε( i

n
,Xn,i)

, N =
∑
i ε(τi,Yi) and note that N

has a.s. no point on the line {1} × IR. From the convergence in distribution we
conclude that limXn,n ≤ f(1) which implies by the boundedness assumption for the
optimal stopping boundary un that lim supun(1) ≤ f(1). To obtain convergence of
threshold stopping times at time point t = 1 we set the guarantee value c ≥ f(1)
and so YKτ = c ≥ f(1) on {τ = 1}.
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Proposition 2.4 Let (Xn,i)1≤i≤n be real random variables, n ∈ IN, such that

Nn :=
n∑
i=1

ε( i
n
,Xn,i)

D−→ N =
∑
i

ε(τi,Yi) on Mf . (2.9)

Let N satisfy (D) and let vn, v : [0, 1] → IR be monotonically nonincreasing func-
tions, such that vn → v pointwise, v a continuous function fulfilling (S). Let

Tn := nτ vn = inf
{

1 ≤ i ≤ n; Xn,i ≥ vn
(
i
n

)}
where inf Ø := n

T := τ v = inf{τi; Yi ≥ v(τi)} where inf Ø := 1.

Then (
Tn
n
,Xn,Tn

)
D−→ (T, YKT ). (2.10)

If the point process convergence is a.s., then also the convergence in (2.10) is a.s.

Proof: Define X ′n,i := Xn,i − vn
(
i
n

)
+ v

(
i
n

)
and N ′n :=

∑n
i=1 ε( in ,X′n,i)

. N ′n is

no longer supported by Mf . Let Nn denote the restriction of N ′n on Mf . Since
vn − v → 0, vn are monotonically nonincreasing and v is continuous it follows

by (S) that vn − v → 0 uniformly on [0, t], t < 1. Therefore, also Nn
D→ N on

Mf and w.l.g. let Nn =
∑n
i=1 ε( in ,X′n,i)

. Otherwise, replace for X ′n,i ≤ f
(
i
n

)
X ′n,i by

Xn,i = f
(
i
n

)
+ 1

2n

(
v
(
i
n

)
− f

(
i
n

))
. Then, using Skorohod’s theorem w.l.g. Nn → N

a.s. and by definition Tn = inf
{

1 ≤ i ≤ n; X ′n,i ≥ v
(
i
n

)}
noting that v

(
i
n

)
> f

(
i
n

)
and so points X ′n,i ≤ f

(
i
n

)
do not cross the boundary v

(
i
n

)
.

Define N ′′n := Nn(· ∩ M v) =
∑
X′n,i≥v(

i
n) ε( in ,X′n,i)

. With the labeling N ′′n =∑mn
i=1 ε

(
kn
i
n
,X′
n,kn

i

), kn1 < kn2 < · · · it follows that Tn = kn1 . Since µ is Lebesgue

continuous on Mf ⊃ Mv it follows that µ(∂Mv) = 0 and N ′′n = Nn(· ∩ M v) →
N(· ∩M v) =: N =

∑
ε(τ ′i ,Y

′
i ). The separation condition (S) implies compactness of

M v in [0, t] × IR and, therefore, µ(([0, t] × IR) ∩M v) < ∞, ∀t < 1. This implies
that N has a.s. finitely many points on [0, t] × IR which we rearrange w.l.g. as
T = τ ′1 < τ ′2 < · · ·. For ω ∈ Ω with τ ′1(ω) < 1 there exists t = t(ω) ∈ (τ ′1(ω), 1) such
that τ ′i 6= t(ω), i ∈ IN. The set M t := M v ∩ ([0, t(ω)]× IR) is compact. Since conver-
gence of pointmeasures implies convergence of the points in M t after relabeling we
conclude

(
Tn
n
, X ′n,Tn

)
=
(
kn1
n
, X ′n,kn1

)
(ω) → (τ ′1, Y

′
1)(ω) = (T, YKT )(ω) and X ′n,Tn can

be replaced by Xn,Tn to yield the same convergence. 2

For a threshold stopping time τ = τ v where v : [0, 1]→ IR ∪ {−∞} is monoton-
ically nonincreasing define

τ≥t = inf{τk; Yk ≥ v(τk), τk ≥ t}. (2.11)
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Optimality of a stopping curve v will be related to the equation

EY
Kτ≥t = v(t), t < 1. (2.12)

In the following theorem we consider the optimal stopping for a Poisson process
on Mf with guarantee value c = f(1). The case c > f(1) can be reduced to this
case by restricting the point process to Mf∨c.

Theorem 2.5 (Optimal stopping of Poisson processes)
Let N be a Poisson process, fulfilling the boundedness assumption (B) and the dif-
ferentiability condition (D).

a) Under the separation condition (S) for the optimal stopping curve u

T := τu := inf{τi; Yi ≥ u(τi)}, inf Ø = 1 (2.13)

is an optimal stopping time for N . Any optimal stopping time is a.s. identical
to T .

b) Under condition (S) u solves the differential equation

u′(t) = −
∞∫

u(t)

∞∫
x

hf (t, y) dy dx, 0 ≤ t < 1

u(1) = c = f(1).

(2.14)

If c > −∞, then (2.14) has a unique solution.

c) Assume c > −∞ and let a monotonically nonincreasing function v satisfy (S)
and solve the differential equation (2.14) then v is the optimal stopping curve of
N (i.e. T = τ v is optimal).

d) Let v : [0, 1]→ IR ∪ {−∞} satisfy (S) and solve equation (2.12) for t ≤ 1 then v
solves the differential equation (2.14).

e) Let c = −∞, f ≡ −∞. If the differential equation (2.14) has a unique solution
and u(t) > −∞ for all t < 1, then u is a solution of (2.14).

Proof:

a) To prove optimality of T we reduce the stopping problem of N to discrete time
stopping problems. Let Ms,t := sups<τk≤t Yk where for s = 0 we define M0,t =
sup0≤τk≤t Yk and

Zn,i := M i−1
2n

, i
2n
, 1 ≤ i ≤ 2n, n ∈ IN

Gn := (Gn,k)1≤k≤2n , Gn,k := σ
(
(τi, Yi)1{τi≤ k

2n
}, i ∈ IN

)
.

(2.15)

The sup over the empty set is defined as −∞.
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Claim 1 For all stopping times τ for N there exists a Gn stopping time τ ′ such
that

1) Zn,τ ′ ≥ YKτ a.s.

2) If τ ≥ i
2n

a.s., then τ ′ ≥ i a.s.

Proof of claim 1: Let hn(x) := 1
2n

inf{i ∈ IN; i
2n
≥ x} =

d2nxe
2n

,

τm := inf
{
τi ≥ i

2n
; Yi = Mhn(τ)− 1

2n
, hn(τ)

}
, then with τ ′ := 2nhn(τm) holds YKτ ≤

YKτm = Zn,2nhn(τm) = Zn,τ ′ . It can be checked easily that τ ′ is a stopping time
w.r.t. the filtration Gn. Furthermore, τ ≥ i

2n
implies i

2n
≤ τm ≤ hn(τm) = τ ′.

This finishes the proof of claim one.

The σ-algebras σ
(

(τi, Yi)1( k−1
2n

<τi≤ k
2n ), i ∈ IN

)
1≤k≤2n

(where for k = 1 τi = 0

is to be included), are independent. Therefore, we may consider the stopping
problem for Zn,1 , . . . , Zn,2n w.r.t. the canonical filtrationHn as stopping problem
of independent sequences.

Let wn,i := V (Zn,i, . . . , Zn,2n) be the value of the stopping problem of Zn,1, . . .,
Zn,2n , wn(t) := wn,[2nt], Tn := inf{i ≤ 2n;Zn,i ≥ wn,i+1}, inf Ø = n.

Claim 2 There exists a function w ≥ u such that

wn → w. (2.16)

Proof of claim 2: By claim one we have

wn(t) = wn,[2nt] = V (Zn,[2nt], . . . , Zn,2n)

≥ sup {EZn,τ ′ ; τ ′ ≥ [t2n], τ ′ a Gn stopping time}

≥ sup

{
EYKτ ; τ a stopping time for N, τ ≥ [t2n]

2n

}
= u

(
[t2n]

2n

)

≥ u(t) since
[t2n]

2n
≤ t.

Furthermore, (wn) is monotonically nonincreasing in n. Consider the filtration
Hk
n defined by

Hk
n,i =

σ(Zn+1,1, . . . , Zn+1,i+1) if i is odd

σ(Zn+1,1, . . . , Zn+1,i) if i is even, k ≤ i ≤ 2n+1, then

wn+1(t) ≤ wn+1

(
[2nt]

2n

)
= V (Zn+1,2[2nt], . . . , Zn+1,2n+1)

≤ VH[2nt]
n

(Zn+1,2[2nt], . . . Zn+1,2n+1)

= V (Zn+1,2[2nt] ∨ Zn+1,2[2nt]+1, . . . , Zn+1,2n+1−1 ∨ Zn+1,2n+1)
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since using the filtration Hk
n,i it is possible at odd time points to foresee the next

random variable. So optimal stopping times stop at the maximum of these point
pairs. Since Zn+1,[2nt] ∨ Zn+1,[2nt]+1 = Zn,[2nt], . . . we obtain wn+1(t) ≤ V (Zn,[2nt],
. . ., Zn,2n) = wn(t). This implies claim 2.

Next observe that

2n∑
i=1

ε( i
2n
,Zn,i)

D−→ N.

N has only finitely many points in compact subsets of Mf . Therefore, it is enough
to prove convergence on subsets [a, b]× [d,∞) ⊂Mf with 0 ≤ a < b ≤ 1, d ∈ IR1

and the above convergence is checked elementary.

Now by Proposition 2.4 we obtain(
Tn
n
, Zn,Tn

)
→
(
T̃ , Y

KT̃

)
, (2.17)

where T̃ = τw = inf{τi; Yi ≥ w(τi)}. Note that w ≥ u satisfies the separation
condition (S) and so Proposition 2.4 applies. By the boundedness assumption
(B) it follows from Fatou’s lemma that

lim sup
n→∞

EZn,Tn ≤ EY
KT̃
≤ u(0).

On the other hand EZn,Tn = wn(0) ≥ u(0). Therefore, limwn(0) = lim
n→∞

EZn,Tn
= u(0) = EY

KT̃
. Similarly, by considering the stopping problem of N restricted

to the interval [t, 1] we obtain wn(t) → u(t),∀t < 1. The separation condition

(S) implies that Zn,n
D→ f(1). Restricting the point processes N to Mf and using

condition (B) we obtain wn(1) = EZn,n → f(1) = c = u(1). This implies w = u
and T̃ = T is optimal.

To prove uniqueness of the optimal stopping time we first state that any optimal
stopping time does not use points below u. Suppose T1 is optimal and for some
j ∈ IN

P (τj = T1, Yj < u(τj)) > 0.

Then define

T ∗1 := T ∗ := inf{τi ≥ T1; Yi ≥ u(τi)} on
⋃
j

{τj = T1, Yj < u(τj)}

and T ∗1 = T1 else. Conditionally by the strong markov property under T1 = t
N≥T1 =

∑
τi≥T1

ε(τi,Yi) is a Poisson process with intensity µ(· ∩ [t, 1] × IR) with
optimal stopping value u(t) = E(YKT∗ |T1 = t)).
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Then

EYKT1 = EYKT1 1{T1=T ∗1 } +
∑
j

EYKT1 1{T1=τj ,Yj<u(τj)}. (2.18)

On {T1 = τj, Yj < u(τj)} we have conditionally under T1 = t

u(t) = E(YKT∗ |T1 = t) > YKT1 , (2.19)

and, therefore,

EYKT1 1{T1=τj ,Yj<u(τj)} =
∫
E(YKT1 1{T1=τj ,Yj<u(τj)}|T1 = t) dP T1(t)

<
∫
E(u(t)1{T1=τj ,Yj<u(τj)}|T1 = t) dP T1(t)

= EY
K
T∗

1
1{T1=τj ,Yj<u(τj)}

This implies EYKT1 < EY
K
T∗

1
.

Similarly, any stopping time T1 can be improved on {T1 > T} by replacing it on
this set by T and arguing as above.

b) Assume that P (T < 1) = 1 and define Nu := N(· ∩ Mu), µu := µ(· ∩ Mu).
Let N1 =

∑
k ετ ′k be a Poisson process on [0, 1] with intensity µ1 := µπ1

u , where
π1(s, z) = s is the first projection, which is well defined since µu is a finite
measure. Let {Yi} be random variables conditional independent given N1 with

distribution P (Y1 ∈ ·|N1) = K(·, τ ′i) where K([x,∞), t) :=

∞∫
x∨u(t)

dµ

dλ2 (t,y) dy

∞∫
u(t)

dµ

dλ2 (t,y) dy

if the

denominator is 6= 0 and identical ε{0} else. Then N2 :=
∑
k ε(τ ′

k
,Yk)

d
= Nn so we

use w.l.g. N2 for our calculations and assume w.l.g. τ ′1 < τ ′2 < · · ·. Let for fixed
t′ ∈ [0, 1) T = T ≥t′ := inf{τ ′i ≥ t′; Yi ≥ u(τ ′i)}. Then for P T a.a. t holds

E(YKT |T = t) =

∞∫
u(t)

x dP Y
KT |T =t(x)

= u(t) +

∞∫
u(t)

P (YKT ≥ x|T = t) dx

= u(t) +

∞∫
u(t)

K([x,∞), t) dx.
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From P (T ≥ t) = e−µu([t′,t]×IR) = e−µ
1([t′,t]) we obtain P T (dt) = dµ1

dλ\
(t)e−µ

1([t′,t])

and, therefore,

u(t′) =
∫
YKT dP =

1∫
t′

E(YKT |T = t) dP T (t)

=

1∫
t′

u(t) +

∞∫
u(t)

K([y,∞), t) dy

 dµ1

dλ\
(t)e−µ

1([t′,t]) dt

=

1∫
t′

u(t) +

∞∫
u(t)

∞∫
y

dµ
dλ\2 (t, z) dz

∞∫
u(t)

dµ
dλ\2 (t, z) dz

1{ ∞∫
u(t)

dµ

dλ\2 (t,z) dz 6=0

} dy

 dµ1

dλ\
(t)e−µ

1([t′,t]) dt

=

1∫
t′

u(t)
dµ1

dλ\
(t) +

∞∫
u(t)

∞∫
y

dµ

dλ\2
(t, z) dz dy

 e−µ1([t′,t]) dt.

This implies differentiability of u and the argument of the last integral is dif-
ferentiable in t′ and continuous in t. From the rule

d

dt

1∫
t

ft(x) dx =

1∫
t

d

dt
ft(x) dx− ft(t)

valid for ft(x) differentiable in t, continuous in x we obtain

u′(t′) =

1∫
t′

u(t)
dµ1

dλ\
(t) +

∞∫
u(t)

∞∫
y

dµ

dλ\2
(t, z) dz dy

 e−µ1([t′,t]) dt
dµ1

dλ\
(t′)

−

u(t′)
dµ1

dλ\
(t′) +

∞∫
u(t′)

∞∫
y

dµ

dλ\2
(t′, z) dz dy


= −

∞∫
u(t′)

∞∫
y

dµ

dλ\2
(t′, z) dz dy.

To prove uniqueness of a solution of (2.14) for c > −∞ assume that v1 6= v2 are

solutions of (2.14). Since h(t, x) := −
∞∫
x

∞∫
y

dµ
dλ\2 (t, z) dz dy is continuous on Mf and

differentiable in x, the differential equation v′(t) = h(t, v(t)) with initial values
v(z) = c0 for some z ∈ (0, 1) has a unique solution. This implies v1(t) 6= v2(t)
for all t ∈ [0, 1) and from continuity we assume w.l.g. that v1 > v2 on [0, 1).
Therefore, we conclude from (2.14) that v′1(t) ≥ v′2(t) ∀t ∈ [0, 1) which implies
v1(1) > v2(1) a contradiction to v1(1) = v2(1) = c. This proves b).
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In the derivation of the differential equation (2.14) in a) we in fact used only
equation (2.12). Therefore, d) is true.

c) In b) we proved that u satisfies (2.14) if it satisfies (S) and if c > −∞ then (2.14)
has a unique solution. For the proof of c) we modify the measure µ to a measure
µ0 in such a way, that the separation condition is valid for µ0 and the stopping
curve is the same. Define µ0 on M−∞ by µ0/Mu = µ/Mu and for −∞ < x < u(t),
dµ0

dλ\2 (t, x) = hf (t, u(t)), where hf = dµ
dλ\f

is a version of the density. µ0 satisfies

(D). Let N0 =
∑
ε(τ0

i ,Y
0
i ) be a Poisson process with intensity µ0, optimal stopping

curve u0 and optimal stopping time T0. Then u0(t) > c,∀t < ω1, u0 satisfies the
separation condition for t < 1. Therefore, by a), u0 is the unique solution of the
differential equation (2.14) and, therefore, u0 = v and EY 0

KT0
= u0(t),∀t ≤ 1.

Since N/Mu
d
= N0/Mu we have EYKτu = u(t), t ≤ 1. Therefore, the optimal

stopping curve u1 of N satisfies u1 ≥ u and thus satisfies (S). Again from a) we
conclude u1 = u.

Finally e) is proved similarly to d). 2

The uniqueness of solutions of (2.14) holds in the case of a differential equation
in separate variables.

Proposition 2.6 Let f : [0, 1]→ IR1, g : I → IR1 continuous functions, I ⊂ IR1 an

open interval. Assume that g(y) 6= 0,∀y ∈ I and for some y0 ∈ I, G(y) :=
y∫
y0

1
g(s)

ds

exists and F ([0, 1]) ⊂ I where F (x) =
x∫
1
f(t) dt. Then the differential equation

ϕ′(t) = f(t)g(φ(t)), t ∈ [0, 1)

ϕ(1) = y0

(2.20)

has a unique continuous solution and

G(ϕ(t)) = F (t). (2.21)

Proof: The case y0 > −∞ can be found in text books. In the case y0 = −∞ we
have to assume existence of G. 2

3 Approximate optimal stopping of independent

sequences

Let (Xn,i)1≤i≤n be independent sequences for n ∈ IN with associated planar point
processes Nn =

∑n
i=1 ε( i

n
,Xn,i)

converging to some Poisson processes N on Mf with

intensity µ, optimal stopping curve u and optimal stopping time T = inf{τi; Yi ≥
u(τi)} fulfilling (S). In general it is not possible without further conditions to ap-
proximate the optimal stopping behaviour of Nn by that of N .
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Example 3.1 Let (Xi) be independent, P (Xi ≥ x) = e−x, x ≥ e−i, P (Xi = ai) =
1 − e−e−i where ai are choosen such that EX1 = 0, EX2 = a1, EX3 = a2, . . . . Con-

sider (Yi) iid exp(1)-distributed, then Nn =
n∑
i>1

ε( i
n
,Xi−logn) and N ′n =

n∑
i>1

ε( i
n
,Yi−logn)

both converge to a Poisson process with intensity λ\[0,1] ⊗ v, v([x,∞)) = e−x (see
Resnick (1987), section 4). But both sequences have quite different stopping be-
haviour. For the optimal stopping of X1, . . . Xn the optimal stopping curve is given
by

un,n−1 = EXn and Xn−1 ≥ an−1 = un,n−1

un,n−2 = E(Xn−1 ∨ un,n−1) = EXn−1 = an−2

un,n−3 = E(Xn−2 ∨ un,n−2) = EXn−2 = an−3

as Xn−2 ≥ an−2. Finally, un,1 = EX2 = a1.
Tn = inf{1 ≤ i ≤ n; Xi ≥ un,i} is an optimal stopping time. As X1 ≥ a1 = un,1

we have Tn ≡ 1 and EXTn = 0,∀n. This implies E(XTn−log n)→ −∞, Tn
n
→ 0. On

the other hand by Kennedy and Kertz (1991) the stopping problem for the exponential
sequence has a nondegenerate limiting distribution.

It is also easy to construct examples with point process convergence but no con-
vergence of the stopping problem.

With

Mn,`,m := max{Xn,`, . . . , Xn,m}, Mn := Mn,1,n (3.1)

we introduce the following condition

(G) Uniform integrability

{(Mn)+; n ∈ IN} is uniformly integrable.

Let un,1, . . . , un,n be the optimal stopping curve of Xn,1, . . . Xn,n and define

un(s) := un,[ns+1]∧n, s ∈ [0, 1]. (3.2)

(L) Lower curve condition

lim inf
n→∞

un(1− ε) > −∞, ∀ε ∈ (0, 1].

Theorem 3.2 (Approximation of optimal stopping) Let (Xni) be an indepen-
dent sequence satisfying (G) such that the associated point processes converge

Nn =
n∑
i=1

ε( in ,Xn,i)
D−→ N on Mf , (3.3)

where N is a Poisson process with optimal stopping curve u, optimal stopping time
T = τu satisfying (S) and (D). Let (un,j) denote the optimal stopping curve for
(Xn,i) and let Tn denote the corresponding optimal stopping time.
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a) If limu un(1) = c = f(1) ∈ IR exists, then un(t) → u(t) uniformly on [0, t] for
t < 1 and(

Tn
n
,Xn,Tn ,Mn,1,Tn−1,Mn,Tn+1,n

)
D−→ (T, YKT ,M0,T−,MT+,1). (3.4)

u is a solution of the differential equation

u′(t) = −
∞∫

u(t)

∞∫
x

hf (t, y) dy dx, u(1) = c. (3.5)

b) If limε→0 limn→∞ un(1 − ε) = −∞ = f(1) and (L) holds then for any pointwise
convergent subsequence un′ → û,convergence is uniform on [0, t] for t < 1, and
the limit û satisfies

û′(t) = −
∞∫

û(t)

∞∫
x

hf (t, y) dy dx, û(1) = −∞. (3.6)

If (3.6) has a unique solution, then un(t)→ u(t), t ∈ [0, 1) and (3.4) holds.

Proof: Note that by assumption (Mn)+
D→ M+ and we assume w.l.g. that conver-

gence is pointwise. (G) implies (Mn)+
L1

→ M+; and E(Mn)+ → EM+, in particular
supnE(Mn)+ <∞ and condition (B) is satisfied as well as the further conditions in
Theorem 2.5.

a) For the proof of a) and b) we choose t̃ ∈ (0, 1) and consider convergence of the
stopping curves on [0, t̃ ]. Then for the proof of a) we take t̃ = 1. By (L) and (G)
there exist a subsequence (n′) ⊂ IN and d ∈ IR such that limun′(t̃ ) = d ∈ IR.
Let ut̃ be the optimal stopping curve of Nt̃,d where for points ≥ t̃, the values are

set to be d and let T̂ t̃ denote the optimal stopping time for Nt̃,d. The separation
condition is fulfilled for ut̃, Nt̃,d. Define new stopping curves

ûn′(t) =

ut̃(t), 0 ≤ t ≤ t̃

un′(t), t̃ < t ≤ 1
(3.7)

and T̂n′ the corresponding threshold stopping times. Since ûn′(t) → ut̃(t), t ≤ t̃
we conclude from Proposition 2.4 modified for Nt̃,d that

X
n′,T̂n′

1{
T̂n′
n′ ≤t̃

} D−→ Y
KT̂ t̃

1{
T̂ t̃≤t̃

} (3.8)
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and convergence of expectations in (3.8) holds. For the proof note on one hand
side X

n′,T̂n′
1{

T̂n′
n′ ≤t̃

} ≥ ut̃(t̃ ).

Since un′(t̃ ) → d we have lower bounds. Also X
n′,T̂n′

≤ (Mn′)+ and (G) imply

uniform integrability of {X
n′,T̂n′

1{
T̂ t̃≤t̃

}; n ∈ IN}.

For i ≤ n holds by the independence assumption

EX
n,T̂n

1{
T̂n
n
>t̃

} = E

(
X
n,T̂n

∣∣∣∣∣ T̂nn > t̃

)
P

(
T̂n
n
> t̃

)
(3.9)

= E
(
X
n,T̂n

∣∣∣Xn,j < un,j+1,
j

n
≤ t̃

)
P

(
T̂n
n
> t̃

)

= EX
n,T̂

>[̃tn]
n

P

(
T̂n
n
> t̃

)
= un(t̃ )P

(
T̂n
n
> t̃

)
.

Therefore,

EX
n′,T̂n′

= EX
n′,T̂n′

1{
T̂n′
n
≤t̃
} + EX

n′,T̂n′
1{

T̂n′
n
>t̃

}
→ EY

KT̂
1{T̂ t̃≤t̃ } + cP (T̂ t̃ > t̃ )

= ut̃(0).

This implies

lim inf
n′

un′(0) ≥ lim inf
n′

EX
n′,T̂n′

= EY
KT̂

= ut̃(0).

Similarly, restricting to stopping times ≥ [nt] resp. ≥ t we obtain

lim inf
n′

un′(t) ≥ ut̃(t), 0 ≤ t < t̃. (3.10)

For the converse inequality let (n′′) ⊂ (n′) such that un′′ → u′′ on [0, t̃ ]. A
subsequence (n′′) with this property exists as (un)n are monotonically decreasing
functions bounded below by the function f which is bounded on [0, t̃ ] and u′′ is
easily shown to be continuous. Furthermore, by (3.10) u′′ ≥ ut̃ on [0, t̃ ) and so
condition (S) holds. By Proposition 2.4

(
Tn′′

n′′
, Xn′′,Tn′′

)
→ (τu

′′
, Y

Kτu
′′ ).
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As above, therefore, by Proposition 2.4 again

un′′(0) = EXn′′,Tn′′
(3.11)

= EXn′′,Tn′′
1{Tn′′

n′′ ≤t̃
} + EXn′′,Tn′′

1{Tn′′
n′′ >t̃

}
→ EY

Kτu
′′ 1{τu′′≤t̃} + cP ({τu′′ > t̃ }

≤ ut̃(0).

(3.10) and (3.11) together imply limun′(0) = ut̃(0) and similarly one obtains

un′(t)→ ut̃(t) (3.12)

for all t ≤ t̃. This being true for any converging subsequences (n′) we con-
clude convergence of the joint distribution of the optimal stopping time and the
stopping variable choosing t̃ = 1.

Assuming a.s. convergence Nn → N we conclude as in Kennedy and Kertz (1990)∑
i<Tn

ε( in ,Xn,i)
→

∑
τi<T

ε(τi,Yi), (3.13)

and we obtain Mn,1,Tn−1 →M0,T− and Mn,Tn+1,n →MT+,1 and so (3.4).

b) Assumption (L) implies for any convergent subsequence (un′) that

cε = lim
n′
un′(1− ε) > −∞, ∀ε > 0.

Let u1−ε be the optimal stopping curve of N1−ε,cε . For t ≤ 1− ε by the argument
in a) with t̃ = 1− ε

un′(t)→ u1−ε(t), t ≤ 1− ε

and u1−ε = û/[0, 1− ε] solves by Theorem 2.5 the differential equation

u′1−ε(t) = −
∞∫

u1−ε(t)

∞∫
x

hf (t, y) dy dx on [0, 1− ε], u1−ε(1−ε) = û(1− ε) = cε.

Therefore, û(t) = u1−ε(t) on [0, 1 − ε] and by assumption û(1−) = û(1) = −∞.
This implies that cε → −∞ and û(t) solves the differential equation (3.6). Since
this holds true for any converging subsequence we conclude convergence of un in
the case that the differential equation has a unique solution ũ. Since (L), (G)
and Fatou imply for t < 1 that EY

K(τũ)
≥t > −∞ we conclude from Theorem 2.5

that ũ is the optimal stopping curve of N . 2

Remark 3.3 The assumption un(1)→ c = f(1) ∈ IR in part a) of Theorem 3.2 can
be replaced by the weaker assumption limε→0 limn→∞un(1− ε) = c = f(1) as in part
b). But in the examples considered it is easier to establish the condition on un(1).
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4 IID sequences with observation or discounted

costs

In this section we extend approximative optimal stopping results from Kennedy
and Kertz (1991) for the iid case to include observation costs or discount factors.
Approximative optimal stopping results for infinitely many iid observations (Yi) with
linear costs of the form Y1− δ, Y2− 2δ, . . . or for Y1e

−δ, Y2e
−2δ, . . . as the costs δ → 0

are given in Kennedy and Kertz (1992). We consider the finite stopping problem
for fixed costs δ as n → ∞. We apply our general approximation result for the
optimal stopping problem in section 3. Thus we also obtain an interpretation of
the limiting stopping times, distributions and stopping values as optimal stopping
times and values in the limiting Poisson process stopping problem. Some further
examples and an extension to some dependent sequences will be investigated in a
subsequent paper.

Consider iid sequences (Yi) in the domain of an extreme value distribution, i.e.
of type

Λ(x) = e−e
−x
, x ∈ IR1

Φα(x) =

e
−x−α , x ≥ 0,

0, x < 0,
α > 0, or

Ψα(x) =

e
−(−x)α , x < 0,

1, x ≥ 0,
α ≥ 0.

(4.1)

Then with suitable normalizing constants an, bn

Nn =
n∑
i=1

ε(
i
n
,
Yi−bn
an

) D−→ N on Mf (4.2)

where N is a Poisson process with intensity µ = λ\[0,1] ⊗ v where
v([x,∞)) = e−x, x ∈ IR1, f ≡ −∞ if F ∈ D(Λ),

v([x,∞)) = x−α, x > 0, f ≡ 0 if F ∈ D(Φα), and

v([x,∞)) = (−x)α, x < 0, f ≡ −∞ if F ∈ D(Ψα)

(4.3)

(see Resnick (1987, p. 210)).
To establish the uniform integrability condition (G) we shall make use of the

following proposition.

Proposition 4.1 Let (Yi) be an iid sequence with df F in the domain of attraction
of an extreme value distribution with α > 1 in case F ∈ D(Φα). Then{

(Ln − bn)+

an
; n ∈ IN

}
is uniformly integrable, (4.4)

where Ln = max{Y1, . . . , Yn}.
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Proof: This follows from Resnick (1987, p. 80–82), using the following modification
of the uniform integrability condition: A sequence (Zn) ≥ 0 of nonnegative real
random variables is uniformly integrable if and only if

lim
L→∞

lim sup
n→∞

EZn1{Zn≥L} = 0. (4.5)

2

The extreme value theory of sequences with observation or with discount costs
has been dealt with in de Haan and Verkade (1987). The following gives a related
point process result.

Theorem 4.2 Let (Yi) be an iid sequence with df F .

a) If F ∈ D(Λ) and (ci) ⊂ IR such that ci ≤ ci+1 and

0 ≤ γt := lim
n→∞

cn − c[nt]

an
<∞, 0 < t ≤ 1, (4.6)

then γt = −c log t for some c ≥ 0 and with Xi := Yi + ci, b̂i := bi + ci, i ∈ IN,
holds

Nn :=
n∑
i=1

ε(
i
n
,
Xi−̂bn
an

) D−→ N ; (4.7)

N a Poisson process with intensity

dµ(· × [y,∞))

dλ\[0,1]

(t) = e−ytc. (4.8)

b) If F ∈ D(Φα), α > 1 and (ci) ⊂ IR such that ci ≥ 1, ci+1 ≥ ci, γt := limn→∞
c[nt]
cn

exists, then γt = tc for some c ≥ 0 and with Xi := ciYi, âi := ciai, i ∈ IN holds

Nn :=
n∑
i=1

ε(
i
n
,
Xi

â
n

) D−→ N ; (4.9)

N a Poisson process with intensity given by

dµ(· × [y,∞])

dλ\[0,1]

(t) = y−αtcα, y > 0. (4.10)
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c) If F ∈ D(Ψα), α > 0, (ci) ⊂ IR such that 0 < ci ≤ 1, ci ≥ ci+1, γt := limn→∞
c[nt]
cn

exists, then γt = t−c for some c ≥ 0 and with Xi := ciYi, âi := ciai holds

Nn :=
n∑
i=1

ε(
i
n
,
Xi

â
n

) D−→ N ; (4.11)

N a Poisson process with intensity given by

dµ(· × [y,∞])

dλ\1[0,1]

(t) = (−y)αtcα, y < 0. (4.12)

Proof:

a) For 0 ≤ s < t ≤ 1 holds

γt − γs = lim
n

(
cn − c[nt]

an
−
cn − c[ns]

an

)
= − lim

n

c[nt] − c[ns]

a[nt]

a[nt]

an

= − lim
n

cn − c[n s
t
]

an
= −γ s

t
, as

a[nt]

an
→ 1.

This implies that γt = −c log t for some c ≥ 0 since γt ≥ 0.

Consider the mapping Rn : [0, 1] × IR1 → [0, 1] × IR1, Rn(t, y) = (t, y − γn,t),

n ≥ 0, where γn,t :=
cn−c[nt]
an

for n ≥ 1, γ0,t := γt. Rn induces a mapping on point
processes given by

Rn

(∑
i

ε(si,zi)

)
:=
∑
i

εRn(si,zi). (4.13)

By (4.2) N̂n :=
∑n
i=1 ε

(
i
n
,
Yi−bn
an

) D→ N̂ , where N̂ is a Poisson process with intensity

measure µ̂ = λ\[0,1] ⊗ v, v([x,∞)) = e−x, x ∈ IR1. Since Xi−b̂n
an

= Yi+ci−bn−cn
an

=
Yi−bn
an
− γn, i

n
, we obtain

RnN̂n = Nn, n ≥ 1, R0N̂ = N. (4.14)

To prove that Rn operates continuously on the set of point measures first observe
that (tn, yn)→ (t, y), t 6= 0, implies

Rn(tn, yn) = (tn, yn − γn,tn)→ (t, y − γt) = R0(t, y).
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Then, for deterministic point measures Qn :=
∑
i ε(sni ,z

n
i ), Q =

∑
ε(si,zi) on Mf

with si 6= 0, ∀i, Qn → Q implies

RnQn → R0Q. (4.15)

For the proof of (4.15) note that γn,· is monotonically nondecreasing and for
t > 0 holds γn,· → γ· uniformly on [t, 1]. Furthermore, for compact sets [a, b] ×
[c, d] ⊂ Mf , 0 < a < b ≤ 1, −∞ < c < d with Q(∂([a, b] × [c, d])) = 0 holds
Qn([a, b] × [c, d]) → Q([a, b] × [c, d]). Then using that the points converge we
obtain RnQn → R0Q. By the continuous mapping principle, therefore, Nn =

RnN̂n
D→ N = R0N̂ .

As N = R0N̂ we obtain that the intensity measure µ of N satisfies µ = µ̂R0 .
Therefore, for 0 < t ≤ 1, x ∈ IR and with R−1

0 (t, y) = (t, y + γt) we have

µ([0, t]× [x,∞)) = µ̂(R−1
0 ([0, t]× [x,∞))) (4.16)

= µ̂({(s, z); z ≥ x− c log s, 0 ≤ s ≤ 1})

=

t∫
0

e−(x−c log s) ds = e−x
t∫

0

sc ds

= e−x
t1+c

1 + c
.

This implies a).

b) For 0 < s < t ≤ 1 holds

γs
γt

= lim
n→∞

c[ns]

c[nt]

= lim
n→∞

c[n s
t
]

cn
= γ s

t

which implies γt = tc for some c ≥ 0 since γt is monotonically nondecreasing.

Defining Rn(t, y) := (t, yγnt) we obtain as in a)

Nn = RnN̂n → R0N̂ = N on Mf , f ≡ 0.

c) The proof of c) is analogous. 2

We next apply the approximation result of optimal stopping in Theorem 3.2
to the optimal stopping problem for sequences X1, . . . , Xn as in Theorem 4.2 with
observation or discounted costs. Let (Yi) be iid integrable random variables with
df F .

We also construct an asymptotically optimal stopping sequence (T ′n), i.e. a
sequence of stopping times which asymptotically (after normalization) yield the
same stopping values as the optimal stopping times. This is of interest in the typical
case where the exactly optimal stopping times cannot be evaluated explicitely. The
modification of the ’natural’ asymptotic stopping times τu, for the optimal stopping
curves u, is necessary in order to be able to establish the lower boundary condition
(L).
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Theorem 4.3 Assume that F ∈ D(Λ), (ci) ⊂ IR such that ci ≥ 0, ci+1 ≥ ci and

limn→∞
cn−c[nt]
an

= −c log t. Let Tn be the optimal stopping time of X1, . . . , Xn where

Xi := Yi + ci. Then with b̂i := bi + ci, u
Λ
c (t) = log 1−t1+c

1+c
holds:

EXTn − b̂n
an

→ − log(1 + c) and (4.17)

P

({
XTn − b̂n

an
≤ x

})
→


1− 1

2

e−x

1 + c
, x ≥ − log(1 + c)

1

2
ex(1 + c), x < − log(1 + c).

(4.18)

Furthermore, for any ε > 0 and any sequence (wn) with n(1 − F (wn)) → 1 the
sequence (T ′n), where

T ′n := inf

{
i ≤ n;

(
i ≥ n− [nε] and

Xi − b̂n
an

> uΛ
c

(
i

n

)
− uΛ

0

(
i

n

)
+
wn−1 − bn

an

)

or

(
i < n− [nε] and

Xi − b̂n
an

≥ uΛ
c

(
i

n

))}
(4.19)

is an asymptotically optimal stopping sequence.

We remark, that for F ∈ D(G) for some extreme value distribution G and for a
sequence (wn) ⊂ IR1 holds (see Kennedy and Kertz (1990, p. 309)):

n(1− F (wn))→ x ⇔ wn − bn
an

→ − logG(x). (4.20)

Theorem 4.4 Let F ∈ D(Φα), α > 1 and let (ci) ⊂ IR1, 1 ≤ ci, ci ≤ ci+1 and
c[nt]
cn
→ tc for some c > 0.

Then with Xi := ciYi, âi := ciai and uΦ
c,α(t) =

(
α

(1+cα)(α−1)

)1/α
(1 − t1+cα)1/α the

optimal stopping times Tn for X1, . . . , Xn satisfy:

EXTn

ân
→

(
α

(1 + cα)(α− 1)

)1/α

and (4.21)

P
({

XTn

ân
≤ x

})
→



1− x−α 1

1 + cα

α

2α− 1
, x ≥ cα

α

2α− 1

(
α− 1

α
(1 + cα)

)α−1
α

xα−1, 0 < x < cα

0, x ≤ 0

(4.22)

where cα :=

(
α

(1 + cα)(1 + α)

)1/α

.

T ′n := inf
{

1 ≤ i ≤ n; Xi ≥ anu
Φ
c,α

(
i

n

)}
(4.23)

defines an asymptotically optimal stopping sequence.
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Theorem 4.5 Let F ∈ D(Ψα), α > 0, (ci) ⊂ IR, 0 < ci ≤ 1, ci ≥ ci+1, and
c[nt]
cn
→ t−c for some c ≥ 0.

Then with Xi := ciYi, âi := ciai the optimal stopping times Tn for X1, . . . , Xn

satisfy:

EXTn

ân
→ −

(
α

(1 + cα)(α + 1)

)−1/α

(4.24)

P
(
XTn

ân
≤ x

)
→



1, x ≥ 0

1− (−x)α
1

1 + cα

1

2 + 1
α

, x ≥ −cα(
α + 1

α
(1 + cα)

)α+1
α

(−x)−α−1, x < −cα

(4.25)

where cα := −
(

α

(1 + cα)(α + 1)

)−1/α

.

Furthermore, for any ε > 0, for any sequence (wn) with n(1− F (wn))→ 1 + 1
α

and

uΨ
c,α(t) := −

(
1−t1+cα

1+cα
α

1+α

)−1/2
holds

T ′n := inf

i ≤ n;

i ≥ n− [nε] and
Xi

cn
≥
uΨ
c,α

(
i
n

)
uΨ

0,α

(
i
n

)wn−i
 (4.26)

or
(
i < n− [nε] and

Xi

ân
≥ uΨ

c,α

(
i

n

))
is an asymptotically optimal sequence of stopping times.

Proof of Theorems 4.3–4.5: We verify the assumptions of the Approximation
Theorem 3.2. Point process convergence is shown in Theorem 4.2, (D) is satisfied in
all three cases and the separation condition holds in each case since f is constant.
Further, with Mn = Mn,1,n = max{X1, . . . , Xn} and Mn − b̂n ≤ Ln − bn in the Λ

case and M+
n

ân
≤ L+

n

an
in the Φα, Ψα case imply that (G) holds.

a) Proof of Theorem 4.3: By the independence properties of N we have for
t ∈ [0, 1], q, r, ω ∈ IR

P (T ≤ t,M0,T− ≤ q, YKT ≤ r,MT+,1 ≤ w) (4.27)

=

(o∨u−1(r))∨t∫
o∨u−1(r)

P (N({(x, y); 0 ≤ x < s, y > u(x) ∧ q}) = 0)

· P (∃τk; τk ∈ ds, u(s) ≤ Yk ≤ r)P (N((s, 1]× (w,∞)) = 0)

=

(o∨u−1(r))∨t∫
o∨u−1(r)

e−µ({(x,y); 0≤x<s,y>u(x)∧q})
(
e−u(s)u(s)−c − e−ru(s)−c

)
e−µ((s,1]×(w,∞)) ds

if u−1(r) ≤ t and zero else.
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The differential equation for the optimal stopping curve of N (see (2.14) in Theorem
2.5) is given by the differential equation with separated variables

u′(t) = −
∞∫

u(t)

e−xtc dx = −tce−u(t), t < 1

u(1) = −∞.
(4.28)

F (x) = −
x∫
1
tc dt = 1−x1+c

1+c
and G(y) =

y∫
−∞

1
e−t

dt = ey exists and so by Proposition

2.6, (4.28) has a unique continuous solution and G(u(t)) = eu(t) = F (t) = 1−t1+c

1+c
,

i.e.

u(t) = log
1− t1+c

1 + c
. (4.29)

To verify the lower curve condition (L) we next prove that

lim
ε→0

lim
n→∞

E

(XT ′n − b̂n
an

)−
1{T ′n>n−{nε}}

 = 0. (4.30)

Since

E

(
XT ′n − b̂n

an

)−
1{T ′n>n−[nε]}

=
n∑

i=n−[nε+1]

E

Xi − b̂n
an

1{
0≥Xi−̂bn

an
≥uΛ

c ( in)−uΛ
0 ( in)+

wn−i−bn
an

}
·
i−1∏
j=1

P

(
Xj − b̂n
an

< uΛ
c

(
j

n

)
− uΛ

0

(
j

n

)
+
wn−j − bn

an

)
.

Observe that Xi− b̂n = Yi−bn+ci−cn, ci ≤ ci+1 and limn→∞
cn−[nε]−cn

an
= log(1−ε).

Therefore, ci−cn
an

is for i ∈ [n− [nε], n] bounded by some constant d′1 for n ≥ n0 and,

therefore, Xi−b̂n
an
≥ Yi−bn

an
−d′1. Also uΛ

c

(
i
n

)
−uΛ

0

(
i
n

)
is bounded and so it is sufficient

to prove that for some m ∈ IN

lim
ε→0

lim
n→∞

n−m∑
i=n−[nε]+1

E

(
Yi − bn
an

1{0≥Yi−bn
an
≥wn−i−bn

an
−d1}

)
i−1∏
j=1

P

(
Yj − bn
an

< d2 +
wn−i − bn

an

)
= 0

for some constants d1, d2 ≥ 0 and

lim
ε→0

lim
n→∞

E

(
XT ′n − b̂n

an
1{T ′n>n−m}

)
= 0.
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Since
a[nt]

an
→ 1, t ∈ (0, 1] it is enough to prove in fact

lim
ε→0

lim
n→∞

n−m∑
i=n−[nε]+1

E

(
Yi − bn
an

1{0≥Yi≥w′n−i}

)
i−1∏
j=1

P (Yj < d2 + w′′n−i) = 0,

where w′n := wn − d1an and w′′n := wn + d2an. By Kennedy and Kertz (1991,

section 3) it holds that limn→∞ nE
(
Y1−bn
an

1{Y1>sn}
)

exists for all sequences sn such

that limn
sn−bn
an

exists. Since limn

E

(
Y1−bn
an

1{Y1>w
′
n}

)
E

(
Y1−bn
an

1{Y1>w
′′
n}

) exists it is enough to prove that

lim
ε→0

lim
n→∞

n−m∑
i=n−[nε]+1

E

(
Y1 − bn
an

1{Y1>w′′n}

)
i−1∏
j=1

P (Yj < w′′n−j) = 0

for some m and

lim
ε→0

lim
n→∞

E

(YT ′n − bn
an

)−
1{T ′n>n−m}

 = 0. (4.31)

This is proved to be true in Kennedy and Kertz (1992, 3.3(i)) and finishes the proof
of (4.30).

From (4.30) we conclude that

−∞ < lim inf
n→∞

E
XT ′n − b̂n

an
1{T ′n>n−[nε]}

and so condition (L) holds. Theorem 3.2 implies convergence of stopping times and
stopping values.

To prove asymptotic optimality of T ′n we prove convergence of the thresholds.
By (4.20)

lim
wn−[nt]−bn

an
=

(
lim

wn−[nt] − bn−[nt]

an−[nt]

an−[nt]

an
+
bn−[nt] − bn

an

)
= log(1− t). (4.32)

Therefore, the thresholds of T ′n converge to the threshold u of the optimal stopping
time in the limiting process. Therefore, by Proposition 2.4(

T ′n
n
,
XT ′n − bn

an

)
→ (T, YKT ). (4.33)

A similar result holds for stopping times ≥ nt resp. ≥ t. Since

E
XT ′n − b̂n

an
= E

XT ′n − b̂n
an

1{T ′n≤n−[nε]} + E
XT ′n − b̂n

an
1{T ′n>n−[nε]}

it follows from (4.33)
E
XT ′n
−b̂n

an
1{T ′n≤n−[nε]} → EYKT 1{T≤1−ε}

and

EYKT 1{T≥1−ε} →
ε→0

EYKT .

(4.34)
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From (4.30), (4.33) and Fatou it follows that EY
KT≥t > −∞, for any t < 1. There-

fore, by Theorem 2.5 e) u is the optimal stopping curve of N . Thus, E
XT ′n
−b̂n

an
→

EYKT = u(0).
From (4.27) we obtain

P (YKT ≤ x) = −
1∫

o∨u−1(x)

e
−

s∫
0

e−(u(y)−c log y) dy (
e−u(s)sc − e−xsc

)
ds (4.35)

=

1∫
(1−ex(1+c))

1/(1+c)
+

(1− s1+c)sc
(

1 + c

1− s1+c
− e−x

)
ds

=

1∫
(1−ex(1+c))

1/(1+c)
+

1

1 + c

(
1 + c− e−x(1−Ψ)

1 + c

)
dΨ

=

Ψ−
e−x

(
Ψ− 1

2
Ψ2
)

1 + c

∣∣∣∣∣∣
1

(1−ex(1+c))+

=


1− 1

2

e−x

1 + c
for x ≥ − log(1 + c)

1

2
ex(1 + c) for x < − log(1 + c).

b) Proof of Theorem 4.4 The differential equation for the optimal stopping curve
u in the limiting process is given by an equation with separate variables

u′(t) = −
∞∫

u(t)

x−αtcα dx = −tcαu(t)1−α

α− 1
, t < 1

u(1) = 0.

(4.36)

With F (x) = −
x∫
1
tcα dt = 1−x1+cα

1+cα
, G(y) =

y∫
0
tα−1(α − 1) dt = (α − 1)y

α

α
, u is the

unique solution of G(u(t)) = F (t) i.e.

u(t) =

(
α

1− t1+cα

(1 + cα)(α− 1)

)1/α

. (4.37)

Condition (L) is trivially fulfilled in this case while the other part is handled simi-
larly to that in the proof of Theorem 4.3.

c) Proof of Theorem 4.5 In this case u is the unique solution ofu
′(t) = −tcα (−u(t))1+α

1 + α
u(1) = −∞

(4.38)
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which is given by

u(t) = −
(

1− t1+cα

1 + cα

α

1 + α

)−1/α

.

The conditions of Theorem 3.2 are verified as in the proof of Theorem 4.3. 2

In the case c = 0 the results simplify and yield in particular the iid case as
derived in Kennedy and Kertz (1991). In this iid case the asymptotic properties
of the optimal stopping times and values could be established directly. This direct
method however will not work in the examples with discount and observation costs
considered in this paper.

As in Kennedy and Kertz (1991) for the iid case we obtain also the following
relations between optimal stopping value and expected maxima.

Corollary 4.6 a) For F ∈ D(Λ) we obtain under the conditions of Theorem 4.3

lim
n→∞

EMn − EXTn

an
= γ (4.39)

where γ = 0, 5772 . . . is the Euler constant.

b) For F ∈ D(Φα), α > 1 and under the conditions of Theorem 4.4 holds

lim
n→∞

EMn − EXTn

an
= (1 + cα)−1/α

(
Γ
(

1− 1

2

)
−
(
α− 1

α

)1/α
)

lim
EMn

EXTn

=
(
α− 1

α

)−1/α

Γ
(

1− 1

α

)
.

(4.40)

c) For F ∈ D(Ψα), α > 0 and under the conditions of Theorem 4.5 holds

lim
EMn − EXTn

an
= (1 + cα)1/α

Γ
(

1 +
1

α

)
−
(
α− 1

α

)1− 1
α


lim

EMn

EXTn

=
(
α− 1

α

)−1/α

Γ
(

1 +
1

α

)
.

(4.41)

Proof: a) By condition (G) it follows that
{

(Mn−bn)+

an

}
n∈IN

is uniformly integrable.

Also by (4.30)
{

(Mn−bn)−

an

}
n∈IN

and, therefore,
{
Mn−bn
an

}
n∈IN

is uniformly integrable,

and we obtain from the convergence in distribution EMn−bn
an
→ EM where

P (M ≤ x) = P (N([0, 1]× (x,∞)) = 0)

= e−µ([0,1]×(x,∞)) = e−
1

1+c
e−x

= e−e
−x−log(1+c)

.
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Therefore, P (M + log(1 + c) ≤ x) = e−e
−x

and EM = γ − log(1 + c). By Theorem
4.3 (4.39) follows.

b), c) The proof of b), c) is analogous. 2

Finally we state some asymptotic independence properties as in Kennedy and
Kertz (1990) for the iid case. Let M1,t = max1≤k≤tXk, Mt,n = maxt≤k≤nXk be the
pre resp. past t maximum.

Corollary 4.7 a) If F ∈ D(Λ) and under the conditions of Theorem 4.3 the ran-
dom variables(

Tn
n
,
M1,Tn−1 − un,Tn

an

)
,

XTn − un,Tn
an

,
MTn+1,n−un,Tn

an
(4.42)

are asymptotically independent.

b) If F ∈ D(Φα), α > 1 or F ∈ D(Ψα), α > 0 then under the conditions of Theorem
4.4 resp. Theorem 4.5 the random variables

(
Tn
n
,
M1,tn−1

un,Tn

)
,

XTn

un,Tn
,

MTn+1,n

un,Tn
(4.43)

are asymptotically independent.

Proof: Note that un,[nt] → u(t) in each case. From Theorems 4.3, 4.4, 4.5 it is
enough to prove independence in the limiting Poisson process. But this can be seen
from (4.27) and the related formulas in b). 2

Remark 4.8 Our method of proof of approximation of stopping problems is based on
the approximation of the normalized imbedded point processes by the Poisson point
process. This point process convergence is closely related to convergence of maxima to
extreme value distributions. We therefore expect that the rate of approximation in the
convergence of the stopping values is of the same order as the rate of convergence for
moments of maxima in the extreme value distributions (see Resnick (1987, chapter
2)).
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