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Abstract. As consequence of a characterization of optimal multivariate

coupling (transportation) problems we obtain the existence of optimal

Monge solutions as well as an explicit construction method for optimal

transportation plans in the case that one mass distribution is discrete. We

also give a new characterization of an extension of the transportation pro-

blem with more than two mass distributions involved.

1. c-optimal couplings on IR

k

The multivariate coupling (transportation) problem on IR

k

for a transpor-

tation `cost function' c : IR

k

� IR

k

! IR

1

and given mass distributions

P;Q 2M

1

(IR

k

; IB

k

) is de�ned as the problem

S

c

(P;Q) = sup

�

Z

c(x; y)d�(x; y);� 2M(P;Q)

�

(1.1)

where M(P;Q) is the class of all probabilities on IR

k

� IR

k

with marginals

P and Q. A pair of random variables X

d

= P; Y

d

= Q is called c-optimal if

Ec(X; Y ) = sup

n

Ec(U; V );U

d

= P; V

d

= Q

o

= S

c

(P;Q): (1.2)

The calculation of the optimal value S

c

(P;Q) and the construction of c-

optimal solutions (X; Y ) is a basic problem in probability theory with many

interesting applications (cf. Rachev (1991), Cuesta-Albertos, Matran, Ra-

chev and R�uschendorf (1996)). (Note that the corresponding in�mum pro-

blem can be reduced to the sup problem by switching from c to �c.)
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The following characterization of optimal solutions given in R�uschendorf

(1991) is basic. For its formulation we need some preliminary notions. Call

a function f on IR

k

c-convex if for some index set I and x

i

2 IR

k

; a

i

2

IR

1

; i 2 I

f(x) = sup

i2I

(c(x; y

i

) + a

i

) : (1.3)

The c-conjugate of a function f is de�ned by

f

�

(y) = sup

x

(c(x; y)� f(x)) ; (1.4)

the sup being over the domain of f . De�ne the doubly c-conjugate

f

��

(x) = sup(c(x; y)� f

�

(y)) : (1.5)

Then f

�

and f

��

are c-convex, f

��

is the largest c-convex function majorized

by f and f = f

��

if and only if f is c-convex. Also f

�

; f

��

are admissible

in the sense that

f

�

(y) + f

��

(x) � c(x; y) for all x; y : (1.6)

The (doubly) c-conjugate functions are basic for the theory of inequalities

as in (1.6). The c-subgradient of a function f is de�ned by

@

c

f(x) = fy; f(z)� f(x) � c(z; y)� c(x; y) 8z 2 dom fg : (1.7)

Let L

m

(P;Q) be the set of all lower majorized measurable functions c =

c(x; y) i.e. c(x; y) � f

1

(x)+f

2

(y) for some f

1

2 L

1

(P ) and f

2

2 L

1

(Q). The

following characterization is then to be found in R�uschendorf (1991, 1995).

Theorem 1.1 Let c 2 L

m

(P;Q) and assume that

I(c) = inf

�R

h

1

dP +

R

h

2

dQ; c � h

1

� h

2

; h

1

2 L

1

(P ); h

2

2 L

1

(Q)

	

<1.

a) X

d

= P; Y

d

= Q is a c-optimal pair if and only if

Y 2 @

c

f(X) a.s. for some c-convex function f ; (1.8)

b) If c is upper semicontinuous, then there exists an optimal pair (X; Y ).

The characterization in (1.8) is equivalent to the condition, that the sup-

port � of (X; Y ) is c-cyclically monotone, i.e. for all (x

1

; y

1

); : : : ; (x

n

; y

n

) 2 �

and x

n+1

:= x

1

,

n

X

i=1

(c(x

i+1

; y

i

)� c(x

i

; y

i

)) � 0 (1.9)

(cf. Knott and Smith (1993) and R�uschendorf (1996)) Some applications

of (1.8) and (1.9) can be found in Cuesta-Albertos and Tuero-Diaz (1993),
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Rachev (1991), R�uschendorf (1995). If c(�; y) is locally Lipschitz and P has

a Lebesgue-density, then for a c-optimal pair (X; Y ) holds

rf(X) = r

x

c(X; Y ) a.s. (1.10)

(cf. R�uschendorf (1991), formula (73))

We next discuss two consequences of the characterization of c-optimal

pairs (X; Y ).

1.1. MONGE FUNCTIONS

The Monge problem is to �nd an optimal pair of the form (X;�(X));X

d

=

P;�(X)

d

= Q. � is then called an optimal Monge function. Since a Monge

function � is determined by a nonlinear variational problem even its exist-

ence has been an open problem for a long time. Some su�cient conditions

for the existence of (optimal) Monge functions have been given in the li-

terature starting with Sudakov(1979) (cf. Cuesta-Albertos and Tuero-Diaz

(1993), Gangbo and McCann (1996)). Gangbo and McCann (1996) have

shown that an optimal Monge function exists for strictly convex cost func-

tions of the form c(x; y) = h(x�y) if P has a Lebesgue density. We remark

that in this case formula (1.10) implies

Y = X � (rh)

�1

(rf(X)) a.s. ; (1.11)

the right hand side de�nes a Monge function �(X). More generally this

holds if (1.10) can be resolved uniquely in Y .

So the characterization formula (1.8) implies the existence of Monge

solutions if P is Lebesgue-continuous and also gives an interesting relation

between the gradient of c-convex functions f and their c-subgradients, the c-

optimal functions � (cf. also Gangbo and McCann (1996) for an alternative

derivation).

1.2. EXPLICIT SOLUTIONS FOR DISCRETE Q

Let Q =

P

n

j=1

�

j

"

x

j

be a discrete distribution on x

1

; : : : ; x

n

2 IR

k

then by

(1.3) we may restrict our discussion to c-convex functions of the form

f(x) = sup

1�j�n

(c(x; x

j

) + a

j

) : (1.12)

Consider the sets A

j

= fx; f(x) = c(x; x

j

) + a

j

g, then

x

j

2 @

c

f(x) for x 2 A

j

: (1.13)
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The subgradient is not unique only on the boundaries of A

j

. The problem

of �nding c-optimal couplings therefore, is equivalent to �nding suitable

shifts a

j

such that

P (A

j

) = �

j

; 1 � j � n : (1.14)

The optimal coupling then is given by � =

P

n

j=1

x

j

1

A

j

.

If the boundaries of A

j

have measure zero with respect to P then as a

consequence one obtains the existence and uniqueness of an optimal Monge

function for this problem. This application of the characterization in (1.8)

also has been observed independently in Gangbo and McCann (1996).

In the case that c(x; y) = �kx� yk

2

the boundaries are linear and can

be calculated explicitely for n not too large. The following example with P

the uniform distribution on the unit square and

Q =

8

X

j=1

�

j

"

x

j

;

has been solved approximatively in Abdellaoui (1994). The following solu-

tion is exact. For

(�

1

; � � � ; �

8

) = (0:105; 0:2; 0:125; 0:125; 0:125; 0:12; 0:1; 0:1) and

(x

1

; � � � ; x

8

) = ((0; 1); (0:5; 0:5); (1; 1); (1; 0); (0; 0); (1; 4); (2; 3); (1; 2))

one obtains

(a

1

; � � � ; a

8

) = (0:18;�0:01; 0:43; 0:05; 0; 10:86; 7:22; 2:19).

The corresponding optimal partition is given in the following Figure 1:

@

@

@

@

@

@�

�

�

�

@

@

@

@

@
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@

@

@

�

�

�
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�

�

�

�

@

@
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The corresponding c-convex function f(x) = sup

1�j�n

(c(x; x

j

) + a

j

) is

given in the following Figure 2:
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Figure 2

For the cost function c(x; y) = �kx � yk

4

it is more di�cult to calcu-

late the volume of the sets A

j

. The following example is for P the uni-

form distribution on [0; 1]

2

and Q =

P

4

l=1

�

i

"

x

i

where (�

1

; � � � ; �

4

) =

(0:34; 0:05; 0:22; 0:39), (x

1

; � � � ; x

4

) = ((1; 1); (0; 0); (1; 0); (0; 1)). One ob-

tains (a

1

; � � � ; a

4

) = (0;�0:5;�0:25; 0)
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The c-convex function corresponding to the optimal solution is given in the

following Figure 4:
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2. A generalized transportation problem

The general duality theorem also holds for cost functions of n-variables

c(x

1

; : : : ; x

n

); x

i

2 IR

k

(cf. Rachev (1991), R�uschendorf (1981)) which are

lower majorized (as in Theorem 1)

sup

�

Z

c(x

1

; : : : ; x

n

)d�;� 2M(P

1

; : : : ; P

n

)

�

= inf

(

n

X

i=1

Z

f

i

dP

i

; f

i

2 L

1

(P

i

); c(x

1

; : : : ; x

n

) �

n

X

i=1

f

i

(x

i

)

)

(2.1)

where M(P

1

; : : : ; P

n

) is the set of all probability measures on IR

k

�� � �� IR

k

with marginals P

1

; : : : ; P

n

. Not many explicit results are known in this

generalized case. Recently Olkin and Rachev (1993) and Knott and Smith

(1993) have considered the case n = 3 and

c(x; y; z) := hx; yi+ hy; zi+ hx; zi (2.2)

in particular for normal marginals P

i

= N(0;�

i

).

Note that in this case the problem

supfEc(X; Y;Z);X

d

= P

1

; X

d

= P

2

; Z

d

= P

3

g (2.3)
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is equivalent to

inffEkX � Y k

2

+ kY � Zk

2

+ kZ �Xk

2

;X

d

= P

1

; Y

d

= P

2

; Z = P

3

g

and also to

supfEkX + Y + Zk

2

;X

d

= P

1

; Y

d

= P

2

; Z

d

= P

3

g :

In the duality theorem (2.1), for the solution of (2.3), we can restrict

consideration to convex functions f

i

(rede�ning f

1

(x

1

) as supfc(x

1

; x

2

; x

3

)�

f

2

(x

2

) � f

3

(x

3

); x

2

; x

3

2 IR

k

g and similarly f

2

; f

3

) and, therefore, for an

optimal solution X; Y; Z holds:

Y + Z 2 @f

1

(X); X + Z 2 @f

2

(Y ); X + Y 2 @f

3

(Z) (2.4)

i.e. Y + Z is optimally coupled to X , etc. Therefore, with g

i

(x) = f

i

(x) +

1

2

kxk

2

the sum X + Y + Z is also optimally coupled with any of X; Y; Z

X + Y + Z 2 @g

1

(X)\ @g

2

(Y ) \ @g

3

(Z): (2.5)

For the corresponding minimum problem

inffEc(X; Y;Z);X

d

= P

1

; Y

d

= P

2

; Z

d

= P

3

g (2.6)

one obtains similarly that

Y + Z 2 @f

1

(X); X + Z 2 @f

2

(Y ); X + Y 2 @f

3

(Z) (2.7)

for some concave functions f

i

and so again Y +Z is `optimally' coupled to

X , etc.

Remark 2.1

a) Condition (2.7) is not su�cient for optimality as can be seen by the

following one dimensional example where P

1

= P

2

= P

3

=

1

8

P

8

i=1

"

fig

.

Consider random variables X; Y; Z given by permutations (with equal

probabilities) X ' (1 4 2 3 8 7 6 5) Y ' (3 5 7 8 4 1 2 6) Z '

(8 5 4 2 1 7 6 3) (i.e. P (X = 1; Y = 3; Z = 8) =

1

8

), then (2.7) is

ful�lled. Similarly the triple U ' (1 3 2 4 8 7 6 5); V ' (4 5 7 8 3 2 1 6)

and W ' (8 6 5 1 2 4 7 3) satis�es (2.7) but EkX + Y + Zk

2

=

EkU + V +Wk

2

+ 1=2.

b) Since EkX+Y +Zk

2

= E(hX; ti+hY; ti+hZ; ti) with t = X+Y +Z the

following approach suggested in Knott and Smith (1994) is promising.

Try to �nd X

d

= P

1

; Y

d

= P

2

and Z

d

= P

3

which are optimal coupled to

their sum t. In the normal case P

i

= N(0;�

i

) and if t

d

= N(0;�

0

); �

0
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nonsingular, it is well known that optimal coupling functions between

t and X

i

are given by

T

i

= �

1=2

i

�

�

1=2

i

�

0

�

1=2

i

�

�1=2

�

1=2

i

:

Then the condition

P

3

i=1

T

i

= I is easily seen to be equivalent to

3

X

i=1

�

�

1=2

0

�

i

�

1=2

0

�

1=2

= �

0

: (2.8)

Under the assumption that (2.8) has a positive de�nite solution Knott

and Smith (1993) establish optimality of the triple de�ned via T

i

. (2.5)

gives a justi�cation of this approach of Knott and Smith (1994).

If (X; Y; Z) is optimal then without loss in generality we may as-

sume that (X; Y; Z)

d

= N(0;�) is jointly optimal. Assuming that �

�

0

=

Cov (X+Y +Z) is nonsingular we conclude by (2.5) and the uniquen-

ess of optimal couplings in the normal case that equation (2.8) has

a solution (namely �

�

0

). Positive de�niteness of �

�

0

can be shown for

special cases (e.g. the case of commutative �

1

;�

2

;�

2

) but is an open

problem in general.

The following result gives a necessary and su�cient characterization of

optimal solutions of (2.2) in general.

Theorem 2.2 Let X

d

= P

1

; Y

d

= P

2

and Z

d

= P

3

, let P

i

have �nite co-

variance matrices, then (X; Y; Z) is optimal for problem (2.2) if and only

if there exists a convex, lower semicontinuous function f and a F -convex

function g with F (y; z) := f

�

(y + z) + hy; zi such that

(1) Y + Z 2 @f(X) a.s. ;

(2) Z 2 @

F

g(Y ) a.s. :

(2.9)

Proof: The duality theorem (2.1) is in the case (2.2)

sup

�2M(P

1

;P

2

;P

3

)

Z

(hx; yi+ hy; zi+ hx; zi)d�(x; y; z)

= inf

(

Z

fdP

1

+

Z

gdP

2

+

Z

hdP

3

; f(x) + g(y) + h(z)

� hx; yi+ hy; zi+ hx; zi

)

(2.10)
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Assume conditions (1) and (2) and de�ne the F -conjugate of g by

h(z) := g

F

(z) = sup

y

fF (y; z)� g(y)g : (2.11)

Then the triple (f; g; h) is admissible, i.e.

f(x) + g(y) + h(z)

= f(x) + g(y) + sup

y

ff

�

(y + z) + hy; zi � g(y)g

= f(x) + g(y) + sup

y

fsup

x

fhx; y + zi � f(x)g+ hy; zi � g(y)g

= f(x) + g(y) + sup

y

fsup

x

fhx; yi+ hx; zi+ hy; zi � f(x)� g(y)gg

� f(x) + g(y) + hx; yi+ hx; zi+ hy; zi � f(x)g(y)

= hx; yi+ hy; zi+ hx; zi: (2.12)

Furthermore, from (1) Y + Z 2 @f(X) a.s. and, therefore, f(X) + f

�

(Y +

Z) = hX; Y + Zi a.s. which implies

f(X)+f

�

(Y +Z)+hY; Zi = f(X)+F (Y; Z) = hX; Y i+hX;Zi+hY; Zi a.s.

From (2) Z 2 @

F

g(Y ) a.s. and so g(Y )+ g

F

(Z) = F (Y; Z) a.s. This implies

f(X) + g(Y ) + g

F

(Z) = hX; Y i+ hY; Zi+ hX;Zi a:s: (2.13)

The inequality (2.12) and (2.13) imply optimality, since for any random

variables

e

X

d

= P

1

;

e

Y

d

= P

2

and

e

Z

d

= P

3

,

E(h

e

X;

e

Y i+ h

e

Y ;

e

Zi+ h

e

X;

e

Zi)

� E(t(

e

X) + g(

e

Y ) + h(

e

Z))

= E(t(X) + g(Y ) + h(Z))

= E(hX; Y i+ hY; Zi+ hX;Zi): (2.14)

For the opposite direction there exist optimal solutions (f

1

; f

2

; f

3

) of

the dual problem. So for an optimal measure � 2M(P

1

; P

2

; P

3

)

Z

(hx; yi+ hy; zi+ hx; zi)d� =

Z

f

1

dP

1

+

Z

f

2

dP

2

+

Z

f

3

dP

3

; (2.15)

where f

1

(x) + f

2

(y) + f

3

(z) � c(x; y; z), and equality holds on the support

of �.
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De�ne f(x) = f

��

1

(x) = sup

y

fhx; yi�f

�

1

(y)gwhere f

�

1

(y) = sup

x

fhx; yi�

f

1

(x)g is the conjugate. Then f is convex and lower semicontinuous and

f(x) � f

1

(x). De�ne

F (y; z) := sup

x

fhx; yi+ hy; zi+ hx; zi � f(x)g

= sup

x

fhx; y + zi � f(x)g+ hy; zi

= f

�

(y + z) + hy; zi :

Then it holds

f

1

(x) + f

2

(y) + f

3

(z) � f(x) + f

2

(y) + f

3

(z)

� f(x) + F (y; z) � hx; yi+ hy; zi+ hx; zi:

As (f

1

; f

2

; f

3

) is a solution of the dual problem we obtain

0 =

Z

(f(x) + F (y; z)� (hx; yi+ hy; zi+ hx; zi))d� (2.16)

and, therefore,

f(x) + F (y; z) = hx; yi+ hy; zi+ hx; zi � a.s. (2.17)

This implies that

f(x) + f

�

(y + z) = hx; y+ zi � a.s.

and, therefore,

Y + Z 2 @f(X) a.s.:

For condition (2) de�ne the double F -conjugate

g(y) = f

FF

2

(y) = sup

z

fF (y; z)� f

F

2

(z)g

where

f

F

2

(z) := sup

y

fF (y; z)� f

2

(y)g:

We have that g is F -convex; with

h(z) := g

F

(z)(= f

F

2

(z)) holds (as above)

f(x) + f

2

(y) + f

3

(z) � f(x) + g(y) + h(z)

� hx; yi+ hy; zi+ hx; zi:

Again from the optimality equation (2.15)

f(x) + g(y) + h(z) = hx; yi+ hy; zi+ hx; zi � a.s.
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This implies that

g(Y ) + h(Z) = F (Y; Z) a.s.

and, as h = g

F

it follows that

Z 2 @

F

g(Y ) :

2

Remark 2.3

a) If g is F -convex, then g is convex as supremum of the convex functions

of the type f

�

(�+z)+h�; zi+a. Condition (2) can be reformulated using

(1.10) by

rg(Y ) = rf

�

(Y + Z) + Z a.s.

using continuity of the involved distributions.

De�ne h(y) := f

�

(y) +

1

2

kyk

2

, then we obtain

(rh)

�1

(rg(Y ) + Y )� Y = Z (2.18)

b) An analog result holds true for the inf-problem

inf

X;Y;Z

E(hX; Y i+ hY; Zi+ hX;Zi) (2.19)

The corresponding characterizations are: (X; Y; Z) is optimal for (2.17)

, (1) Y + Z 2 �@(�f)(X)

(2) Z 2 @

�F

� g(Y )

(2.20)

where f is concave, f

�

the concave conjugate and g is F -concave.

Example 2.4 Consider the univariate example P

1

= P

2

= P

3

= U([0; 1])

the uniform distribution on [0; 1]. Then the inf problem (2.17) is solved by

(X;�

1

(X);�

2

(X)), where

X

d

= U([0; 1]); �

1

(x) :=

�

1� 2x; x �

1

2

2� 2x; x >

1

2

�

2

(x) :=

�

x+

1

2

; x �

1

2

x�

1

2

; x >

1

2

(2.21)

For the proof de�ne f(x) :=

3

2

x�

1

2

x

2

= g(x). Then f is concave and

�@(�f(x)) = f

0

(x) =

3

2

� x = �

1

(x) + �

2

(x)
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and, therefore,

�

1

(x) + �

2

(x) 2 �@(�f(x)) (2.22)

i.e. condition (1).

Further,

f

�

(x) = inf

y

fxy � f(y)g

= inf

y

fxy �

3

2

y +

1

2

y

2

g = �

1

2

�

3

2

� x

�

2

:

Therefore,

F (y; z) = f

�

(y + z) + yz

= �

9

8

+

3

2

y +

3

2

z �

1

2

y

2

�

1

2

z

2

� yz + yz

= g(y) + g(z)�

9

8

This implies

F (y

0

; z)� F (y; z) = g(y

0

)� g(y): (2.23)

Since g(y) = F (y; z)� g(z)+

9

8

, g is F concave and z 2 @

F

g(y). Therefore,

the second condition �

2

(x) 2 @

�F

� g(�

1

(x)) is ful�lled and the optimality

is established by (2.18).

As consequence of the characterization in Theorem 2.2 one obtains the

following more speci�c coupling property of an optimal pair in problem

(2.3) to the sum.

Proposition 2.5 If (X; Y; Z) is an optimal solution for supfEhX; Y i +

hY; Zi+ hX;Zig then for the following convex functions f

1

; f

2

; f

3

given (in

the notation of Theorem 2.2) by f

1

(x) = f(x) +

1

2

kxk

2

; f

2

(x) = g(x) +

1

2

kxk

2

and f

3

(x) = g

F

(x) +

1

2

kxk

2

.

(1) X + Y + Z 2 @f

1

(X) a.s.

(2) X + Y + Z 2 @f

2

(Y ) a.s.

(3) X + Y + Z 2 @f

3

(Z) a.s.

i.e. X; Y; Z are optimally coupled to the sum.

Proof: From (2.9) in Theorem 2.2 Y + Z 2 @f(X) and, therefore, for any

x

0

hX + Y + Z;X � x

0

i = hY + Z;X � x

0

i+ hX;X � x

0

i

� f(X)� f(x

0

) +

1

2

kXk

2

�

1

2

kx

0

k

2

:
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This implies X + Y + Z 2 @f

1

(X).

Since X 2 @f

�

(Y + Z)

hX; Y + Z � �i � f

�

(Y + Z)� f

�

(�); 8�:

Therefore, from (2.9) relation (2):

F (Y; Z)� F (y

0

; Z) = f

�

(Y +Z)� f

�

(y

0

+Z) + hY � y

0

; Zi � g(Y )� g(y

0

):

g is convex by Remark 2.2a) and as hX+Z; Y �y

0

i = hX; Y +Z�(y

0

+Z)i+

hY �y

0

; Zi � f

�

(Y +Z)�f

�

(y

0

+Z)+hY �y

0

; Zi we obtain X+Z 2 @g(Y )

and, therefore, X + Y + Z 2 @f

2

(Y ) a.s.

Finally, from (2) in (2.9) Y 2 @

F

g

F

(Z). The F conjugate of g is convex.

Then we can argue as a above to obtain X + Y + Z 2 @f

3

(Z). 2
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