
DUALITY THEOREMS FOR ASSIGNMENTS WITH UPPER
BOUNDS

D. RAMACHANDRAN

California State University, Sacramento

AND
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1. Introduction

Let (Xi,Ai, Pi), i = 1, 2 be two probability spaces. A probability µ on
(X1 ×X2,A1 ⊗A2) is said to have marginals P1 and P2 if

P (A1 ×X2) = P1(A1) for all A1 ∈ A1

and

P (X1 ×A2) = P2(A2) for all A2 ∈ A2.

Let M = {µ on A1 ⊗A2 : µ is a probability with marginals P1 and P2}.
The measure theoretic version of the transportation problem dating

back to Monge(1781) concerns supµ∈M
∫
hdµ for A1⊗A2-measurable func-

tions h on X1 × X2. A succinct history of the problem with its origin in
the works of Kantorovich- Rubinštein(1958) and Wasserstěin(1969) can be
found in Kellerer(1984). A general version of the duality theorem in this
context is given in Ramachandran and Rüschendorf(1995). A close rela-
tive of the transportation problem, the assignment problem, leads to the
nonatomic assignment model and its formulation as a linear programming
problem (see Shapley and Shubik(1972)). Gretsky et. al. (1992) general-
ized the Shapley and Shubik “housing market” version of the assignment
model to its continuous version in which a continuum of sellers each having
a distinct house exchange them with a continuum of buyers. They prove
a Portmanteau Theorem in the set up of compact metric spaces whose
measure theoretic general version can be found in Kellerer(1984) which has
been further generalized in Ramachandran and Rüschendorf(1995).
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In this paper1, we formulate a version of the nonatomic assignment
model with upper bound constraints on the assignments in the form of a
dominating measure. By a modification of the finitely additive approach
to duality theorems as developed in Rüschendorf(1981), we obtain a gen-
eral duality theorem for this model. A particular case of interest arises
from economics when the dominating measure is supported on a given set
C ⊂ X1 × X2 (i.e., a subset of the economic agents control all activities
in the market). We first establish in this setting a general duality theorem
involving finitely additive measures. Using a specific variant of the problem,
we then obtain the duality for a large class of functions in the context of
σ-additive measures which enables us to derive explicit formulas in certain
cases.

2. Notation and Preliminaries

We use standard measure theoretic terminology and notation (as, for in-
stance, in Neveu(1965)). Let (Xi,Ai, Pi), i = 1, 2 and M be as in the in-
troduction. Let λ be an arbitrary (not necessarily σ-finite) measure on the
product space (X1 ×X2,A1 ⊗A2). Consider the class

Mλ = {µ ∈M : µ ≤ λ}.

For a given measurable function h on(X1 ×X2,A1 ⊗A2) we define

Sλ(h) = sup{
∫
hdµ : µ ∈Mλ}.

This leads to the dual definitions:

I(g) = inf{
2∑
i=1

∫
fidPi : g ≤ f1 ⊕ f2, fi ∈ L1(Pi)}

Iλ(h) = inf{I(g) +

∫
h0dλ : h0 ≥ 0, h0 + g ≥ h}

= inf{
2∑
i=1

∫
fidPi +

∫
h0dλ : h0 ≥ 0, fi ∈ L1(Pi), h ≤ h0 +

2∑
i=1

fi}.

1The work is supported by the U.S. - Germany Cooperative Science Program.
Ramachandran’s research is supported by NSF grant INT-9513375 and Rüschendorf’s
research is supported by DAAD grant 315/PRD/fo-ab.
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We seek to establish the duality

(D) Sλ(h) = Iλ(h)

for a large class of functions.

3. Main Results

Let F = {
∑2
i=1fi : fi ∈ L1(Pi)} = ⊕iL1(Pi) and let

Lm = {ϕ ∈ L(X1 ×X2,A1 ⊗A2) : ∃f ∈ F with f ≤ ϕ}.

Note that Lm contains all bounded measurable functions and that F is
a linear subspace of Lm. Let T : F → R be the linear functional defined
by T (⊕ifi) =

∑2
i=1

∫
fidPi. Let

M̃λ = {µ̃ ∈ ba(P1, P2) : µ̃ ≤ λ}

where ba(P1, P2) is the collection of all finitely additive measures (hereafter
referred to as charges) on the σ-algebra σ(R) generated by the class R of
measurable rectangles in A1⊗A2 whose marginals are P1 and P2. Then we
have

Proposition 1 Let M̃λ 6= ∅. Then (a) For all ϕ ∈ Lm

S̃λ(ϕ) = sup{
∫
ϕdµ̃ : µ̃ ∈ M̃λ} = Iλ(ϕ)

(b) If Iλ(ϕ) > −∞, then ∃ a P ∈ M̃λ such that S̃λ(ϕ) =
∫
ϕdP.

Proof: The assumption that M̃λ 6= ∅ implies that Iλ is positive. Since
Iλ | F = T and Iλ is sublinear on Lm, by the Hahn-Banach theorem, there
is an extension S of T to Lm as a linear functional such that S ≤ Iλ. For
any linear functional V on Lm

V ≤ Iλ ⇔ V | F = T and V (ϕ) ≤
∫
ϕdλ for all ϕ ∈ L+

m

and so S has these properties as well. By the Riesz representation the-
orem, there exists µ̃ ∈ ba(X1 × X2, σ(R)) representing S. It can now be
checked that µ̃ ◦ πi = Pi for i = 1, 2 and that µ̃(ϕ) ≤

∫
ϕdλ for all ϕ ∈ L+

m.
It follows that µ̃ ∈ M̃λ.

If ϕ ∈ Lm is such that Iλ(ϕ) > −∞ then, as a consequence of the Hahn-
Banach theorem, one obtains an extension of S with S̃λ(ϕ) = Iλ(ϕ). The
corresponding charge in M̃λ then yields both (a) and (b). If Iλ(ϕ) = −∞,
then S̃λ(ϕ) = −∞ as well and so (a) is valid generally.

Proposition 1 establishes a duality theorem in the context of charges
µ̃ ∈ M̃λ. We now derive general duality theorems under different settings
assuming M̃λ 6= ∅ .
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Definition 1 λ is said to be σ-finite on rectangles (“rechtecksnormal”
according to Kellerer(1964)) if

X1 ×X2 = ∪∞n=1Rn, Rn ∈ R, λ(Rn) <∞, ∀n ≥ 1.

Note that λ is σ-finite on rectangles if its marginals are σ-finite. Further,
if λ is σ-finite on rectangles, then it follows that (see Kellerer(1964))

M̃λ 6= ∅ ⇔ λ(A1 ×A2) ≥ P1(A1) + P2(A2)− 1 for all Ai ∈ Ai

and that M̃λ =Mλ. Hence we have the following general duality theorem,
for assignments bounded above, without any topological assumption on the
marginal spaces.

Theorem 1 Let (Xi,Ai, Pi), i = 1, 2 be two probability spaces and let λ be
σ-finite on rectangles. Then

(D) Sλ(h) = Iλ(h)

holds for all bounded A1 ⊗A2-measurable functions h.

Now we let λ be an arbitrary measure and prove duality theorems for
certain subclasses of bounded, measurable functions. For the definition and
properties of perfect measures see Ramachandran(1979).

Theorem 2 A1) If one of the spaces is perfect then

Sλ(h) = Iλ(h) ∀h ∈ L1(R)

where L1(R) = the set of M̃λ-integrable functions considered as charges
on R (see [1]).

A2) (Xi,Ai), i = 1, 2 are Hausdorff topological spaces and Pi are Radon
measures, then

(i) Sλ(h) = Iλ(h) for all bounded continuous functions h

and

(ii) If h is bounded and λ is finite then ∃f∗i ∈ L1(Pi) and h∗ ≥ 0 such
that

Iλ(h) =

∫
f∗1dP1 +

∫
f∗2dP2 +

∫
h∗dλ

(see Proposition 2 in Gaffke and Rüschendorf(1981), Proposition 1,
Theorem 5 in Rüschendorf(1981)).
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In order to extend the conclusions of Theorem 2 to more general classes
of functions one needs to extend the continuity properties of Sλ and Iλ
along the lines of Kellerer’s work (see 1984) for the case without upper
bounds. This appears to be considerably difficult in general. However, in
the finitely additive setting we take a new approach to treat the following
case.

Let (Xi,Ai, Pi), i = 1, 2 be two probability spaces and let C ∈ A1 ⊗A2

be such that
MC = {µ ∈M : µ(C) = 1} 6= ∅.

Notice that MC =Mλ where

λ =

{
0 on CC ∩ (A1 ⊗A2)
∞ on C ∩ (A1 ⊗A2)

With λ as defined above, we denote by SC(h) and IC(h) the corresponding
Sλ(h) and Iλ(h); thus

SC(h) = sup{
∫
hdµ : µ ∈MC}

≤ sup{
∫
h1Cdµ : µ ∈M}

= S(h1C)

IC(h) = inf{
2∑
1

∫
fidPi :

∑
fi(xi) ≥ h(x1, x2) ∀(x1, x2) ∈ C}

≤ inf{
2∑
1

∫
fidPi :

∑
fi(xi) ≥ h1C(x1, x2)}

= I(h1C).

We know that SC(h) ≤ IC(h) and S(h1C) = I(h1C) (see Kellerer(1984),
Ramachandran and Rüschendorf(1995)) for all bounded, measurable func-
tions. From Theorem 2 we have

(DC) SC(h) = IC(h)

for the classes of functions defined therein.
We now introduce a modified assignment problem. Define

M̃≤C = {µ̃ ∈ ba(Q1, Q2) : Qi ≤ Pi, µ̃(Cc) = 0}

and let

S̃≤C (h) = sup{
∫
hdµ̃ : µ̃ ∈ M̃≤C } .
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In economic applications where X1 represents sellers and X2 represents
buyers this allows all feasible assignments for any subpopulations of the
sellers and the buyers concentrated on the subset C of X1×X2. Also define

I≤C (h) = I(h+1C) where h+ = (h ∨ 0).

Then we obviously have I≤C (h) = I≤C (h+).
That the modified problem is, in general, different from the original

problem can be seen from the following example:

Example 1 Let Xi = [0, 1],Ai= the Borel σ−algebra and Pi = λ, the
Lebesgue measure, for i = 1, 2. Consider h∗ = −21∆ where ∆ = {(x, x) :
x ∈ [0, 1]} = the diagonal. Then with C = ∆ and taking f1 = f2 = −1 we
have

SC(h) = −2 = IC(h∗).

However I(h∗1C) = 0; since g1(x1) + g2(x2) ≥ h∗1C(x1, x2) = −21∆

implies that
∫
g1dP1 +

∫
g2dP2 =

∫
(g1 +g2)dλ2 ≥ 0 where λ2 is the Lebesgue

measure in [0, 1]× [0, 1].

We now proceed to establish equality and the duality for nonnegative
functions for this modified problem. We need

Lemma 1 I≤C is a subadditive functional on Lm with

(a)I≤C ≥ 0

(b)f ∈ F , f ≥ 0⇒ I≤C (f) =
∑2
i=1

∫
fidPi

(c)I≤C (1) = 1, and

(d)h1C = 0⇒ I≤C (h) = 0.

Proof: (a) For h ≥ 0, I≤C (h) = I(h1C) ≥ I(0) = 0.
(b) If

∑
i gi ≥ f1C then

∑
gi ≥

∑
fi on C and so

∑∫
gidPi ≥

∑∫
fidPi.

This implies that I≤C (f) =
∑∫

fidPi. (c) and (d) are obvious.

Lemma 2 Let S be a linear functional on Lm. Then

S ≤ I≤C ⇔
(a) S ≥ 0
(b) f ≥ 0, f ∈ F ⇒ S(f) ≤

∑
i

∫
fidPi

(c) h1C = 0⇒ S(h) = 0.

Proof: “⇒” (a)h ≥ 0 ⇒ −h ≤ 0 ⇒ −S(h) = S(−h) ≤ I(0) = 0, i.e.,
S(h) ≥ 0.

(b)f ∈ F , f ≥ 0⇒ S(f) ≤ I≤C (f) =
∑
i

∫
fidPi.

(c)h1C = 0 ⇒ S(h) ≤ I(h+1C) = I(0) = 0 and −S(h) = S(−h) ≤
I((−h)+1C) = I(0) = 0.

“⇐” Let
∑
i gi ≥ h+1C ≥ 0. Then S(h) = S(h1C) ≤ S(h+1C) ≤

S(
∑
i gi) ≤

∑
i

∫
gidPi. Hence S(h) ≤ I≤C (h).

As a consequence we now obtain the interesting duality theorem:
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Theorem 3 For all h ∈ Lm we have the duality

S̃≤C (h) = I≤C (h)

and the supremum is attained.

Proof: This follows from the Hahn-Banach theorem using the preceding
two lemmas and the Riesz representation theorem as in Proposition 1.

If h is bounded then the infimum is attained as well (see Rüschendorf(1981)).
As a consequence we get

Corollary 1 For h ∈ Lm, we have

S̃≤C (h) = S̃≤C (h+) = I(h+1C) = I≤C (h).

Proof: Obviously, S̃≤C (h) ≤ S̃≤C (h+). Conversely, for any µ̃ ∈ M̃≤C letting

A = {h ≥ 0} and µ̃A = µ̃|A we get µ̃A ∈ M̃≤C and
∫
h+dµ̃ =

∫
A h

+dµ̃ =∫
hdµ̃A. This implies S̃≤C (h) = S̃≤C (h+).

We now seek to replace M̃≤C(P1, P2) by M≤C(P1, P2) consisting of the
σ−additive measures. Let (Xi,Ai), i = 1, 2 be two Hausdorff topological
spaces with Radon probabilities Pi, i = 1, 2 and let C ⊂ X1×X2 be a
closed set. Let h ∈ Lm, h ≥ 0; then, as in Theorem 2,

S≤C (h) = I≤C (h)

for bounded, continuous h or h as a uniform limit of functions of the
form

∑
αj1Aj×Bj .

Let G+ (F+) denote the nonnegative, lower (upper) semicontinuous
functions in Lm, and let R+ denote the nonnegative elements in Lm which
are increasing limits of functions of the form

∑
αj1Aj×Bj . Then we have

Theorem 4 For h ∈ G+ ∪R+ ∪ F+

S≤C (h) = I≤C (h) = I(h1C).

Proof: Consider 0 ≤ hn ↑ h, hn bounded, continuous or in R+, where
h ∈ G+ ∪R+. Then S≤C (hn) ↑ S≤C (h) and so we obtain from the continuity
of I (see Kellerer(1984))

S≤C (h) = limS≤C (hn) = lim I(hn1C) = I(h1C).

For h ∈ F+b (elements of F+ bounded above), let hn be bounded, contin-
uous functions with hn ↓ h. Then, by similar arguments as in Proposition
1.26 of Kellerer(1984), S≤C is continuous downwards on Fb. The continuity
of I and the argument in Proposition 2.3 of Kellerer(1984) imply the result.



8 D. RAMACHANDRAN AND L. RÜSCHENDORF

Extensions of this duality theorem to the class of nonnegative measur-
able functions in Lm as well as under constrained marginals will be given
in a subsequent paper. Note that, in the present setup, for h = 1B the dual
functional has a wellknown explicit representation

I≤C (1B) = I(1B∩C) = inf{P1(A1)+P2(A2) : B∩C ⊂ (A1×X2)∪(X1×A2)} .

Thus we have the above explicit formula for closed or open sets B for the
assignment problem concentrated on a subset C of X1 ×X2.
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Math. Phys. Acad. Roy. Sci. Paris, 666-704 (1781).

[8] Neveu, J. : Mathematical foundations of the calculus of probability.
Holden Day, London, 1965.



ASSIGNMENTS WITH UPPER BOUNDS 9

[9] Ramachandran, D. : Perfect Measures I and II . ISI - Macmillan
Lecture Notes Series, 5,7, Macmillan, New Delhi, 1979.
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