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1. Introduction

Let (X;, A;, P;),i = 1,2 be two probability spaces. A probability © on
(X1 x Xo, A1 ® Ag) is said to have marginals P, and P» if

P(Al X XQ) = P1<A1) for all A1 € Ay

and
P(X1 X Ag) = PQ(AQ) for all Ay € As.

Let M = {p on A; ® Ay : i1 is a probability with marginals P, and P»}.

The measure theoretic version of the transportation problem dating
back to Monge(1781) concerns sup,,¢ o [ hdp for Ay ® Ag-measurable func-
tions h on X7 x Xs. A succinct history of the problem with its origin in
the works of Kantorovich- Rubinstein(1958) and Wasserstéin(1969) can be
found in Kellerer(1984). A general version of the duality theorem in this
context is given in Ramachandran and Riischendorf(1995). A close rela-
tive of the transportation problem, the assignment problem, leads to the
nonatomic assignment model and its formulation as a linear programming
problem (see Shapley and Shubik(1972)). Gretsky et. al. (1992) general-
ized the Shapley and Shubik “housing market” version of the assignment
model to its continuous version in which a continuum of sellers each having
a distinct house exchange them with a continuum of buyers. They prove
a Portmanteau Theorem in the set up of compact metric spaces whose
measure theoretic general version can be found in Kellerer(1984) which has
been further generalized in Ramachandran and Riischendorf(1995).
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In this paper!', we formulate a version of the nonatomic assignment
model with upper bound constraints on the assignments in the form of a
dominating measure. By a modification of the finitely additive approach
to duality theorems as developed in Riischendorf(1981), we obtain a gen-
eral duality theorem for this model. A particular case of interest arises
from economics when the dominating measure is supported on a given set
C C X; x Xg (i.e., a subset of the economic agents control all activities
in the market). We first establish in this setting a general duality theorem
involving finitely additive measures. Using a specific variant of the problem,
we then obtain the duality for a large class of functions in the context of
o-additive measures which enables us to derive explicit formulas in certain
cases.

2. Notation and Preliminaries

We use standard measure theoretic terminology and notation (as, for in-
stance, in Neveu(1965)). Let (X;,A;, P;),i = 1,2 and M be as in the in-
troduction. Let A be an arbitrary (not necessarily o-finite) measure on the
product space (X x X3, 41 ® Az). Consider the class

My={peM:u<A}
For a given measurable function h on(X; x Xo, A; ® Ay) we define
Sxa(h) = sup{/ hdp : p € My}.
This leads to the dual definitions:
2
I9) = WY [ fidPi:g < fi® fo,fie £1(P))
i=1
() = inf{I(g) +/h0d/\ o > 0,ho+g > h)

2 2
- inf{Z/fidPZ- +/h0d)\ tho >0, f; € LY(P),h < ho+ Y _ fi}-
=1 =1
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We seek to establish the duality
(D) Sx(h) = Ix(h)

for a large class of functions.

3. Main Results
Let F = {32 fi: fi € LYP)} = ©: L' (P;) and let
Ly = {p€L(X1 X Xo, A1 ®A2) : 3f € F with f <}

Note that £,,, contains all bounded measurable functions and that F is
a linear subspace of L,,. Let T : F — R be the linear functional defined

by T(®if;) = Y2y [ fidP;. Let
My={i € ba(P,P): 1<)}

where ba( Py, P3) is the collection of all finitely additive measures (hereafter
referred to as charges) on the o-algebra o(R) generated by the class R of
measurable rectangles in A; ® As whose marginals are P; and P,. Then we
have

Proposition 1 Let My # 0. Then (a) For all p € Ly,

Sx(@) =sup{ [ ¢dii = e M} = Do)

(b) If I(p) > —o0, then 3 a P € My such that Sx(p) = [ @dP.

Proof: The assumption that My # () implies that I is positive. Since
Iy | F =T and I, is sublinear on £L,,, by the Hahn-Banach theorem, there
is an extension S of T to L,, as a linear functional such that S < I,. For
any linear functional V on L,

V<IheV|F=T and V(cp)g/gpd)\ for all € L}

and so S has these properties as well. By the Riesz representation the-
orem, there exists ji € ba(X; x Xo,0(R)) representing S. It can now be
checked that jiom; = P; for i = 1,2 and that fi(p) < [ d\ for all p € L.
It follows that ji € M.

If ¢ € L,, is such that I\(p) > —oo then, as a consequence of the Hahn-
Banach theorem, one obtains an extension of S with Sy(¢) = Ix(p). The
corresponding charge in M, then yields both (a) and (b). If I)(¢) = —oo,
then S)(p) = —oo as well and so (a) is valid generally.

Proposition 1 establishes a duality theorem in the context of charges
it € M. We now derive general duality theorems under different settings
assuming My # () .
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Definition 1 X\ is said to be o-finite on rectangles (“rechtecksnormal”
according to Kellerer(1964)) if

X1 X Xy =U2, Ry, R,€R, MR,) <oo, Vn>1.

Note that X is o-finite on rectangles if its marginals are o-finite. Further,
if A is o-finite on rectangles, then it follows that (see Kellerer(1964))

M,\ 7é 0 < )\(Al X Ag) > Pl(Al) + PQ(AQ) -1 forall A; € A;

and that M, = M. Hence we have the following general duality theorem,
for assignments bounded above, without any topological assumption on the
marginal spaces.

Theorem 1 Let (X;, A;, P;),i = 1,2 be two probability spaces and let X be
o-finite on rectangles. Then

(D) Sx(h) = Ix(h)

holds for all bounded A; ® As-measurable functions h.

Now we let A be an arbitrary measure and prove duality theorems for
certain subclasses of bounded, measurable functions. For the definition and
properties of perfect measures see Ramachandran(1979).

Theorem 2 A1) If one of the spaces is perfect then
Sx(h) =I\(h) VYhe LYR)

where LY(R) = the set of M-integrable functions considered as charges
on R (see [1]).

A2) (X;, Ai),i = 1,2 are Hausdorff topological spaces and P; are Radon
measures, then

(7) Sx(h) = Ix(h) for all bounded continuous functions h

and
(i3) If h is bounded and X is finite then 3fF € LY(P;) and h* > 0 such
that

) = [ frapi+ [ gzars+ [ weay

(see Proposition 2 in Gaffke and Rischendorf(1981), Proposition 1,
Theorem 5 in Riischendorf(1981)).
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In order to extend the conclusions of Theorem 2 to more general classes
of functions one needs to extend the continuity properties of Sy and I
along the lines of Kellerer’'s work (see 1984) for the case without upper
bounds. This appears to be considerably difficult in general. However, in
the finitely additive setting we take a new approach to treat the following
case.

Let (X;, A;, P;),i = 1,2 be two probability spaces and let C' € A1 ® A,y
be such that

Me ={peM:puC)=1}#0.

Notice that Mo = M) where

)\_{0 ODCCﬁ(.ANX)Az)
oo onCnN(A ®Ar)

With A as defined above, we denote by Sc(h) and I¢(h) the corresponding
Sx(h) and Iy(h); thus

Sc(h) = sup{/ hdp : p € Mc}

< sup{/ hledp : p € M}
= S(hle)

2
Ic(h) = lnf{Z/ﬂdTJZ : Zfz(a:z) Z h(xl,xg) V(l’l,xg) S C}
1

2

<t [ fdPs Y filw) 2 Wola,m)
1

= I(hle).

We know that Sc(h) < Ic(h) and S(hle) = I(hlc) (see Kellerer(1984),
Ramachandran and Riischendorf(1995)) for all bounded, measurable func-
tions. From Theorem 2 we have

(Dc) Sc(h) = Ic(h)

for the classes of functions defined therein.
We now introduce a modified assignment problem. Define

ME = {1 €ba(Q1,Q2) : Qi <P, a(C% =0}
and let
gg(h) = sup{/hdﬁ TS /\;lé }.
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In economic applications where X; represents sellers and X5, represents
buyers this allows all feasible assignments for any subpopulations of the
sellers and the buyers concentrated on the subset C' of X7 x X5. Also define

I5(h) = I(h*1g) where ht = (hVO0).

Then we obviously have I5(h) = IS (k).

That the modified problem is, in general, different from the original
problem can be seen from the following example:
Example 1 Let X; = [0,1], A;= the Borel o—algebra and P; = X, the
Lebesgue measure, for i = 1,2. Consider h* = —21x where A = {(z,z) :
x € [0,1]} = the diagonal. Then with C = A and taking f1 = fa = —1 we
have

Sc(h) = =2 = Ig(h").

However I(h*1¢) = 0; since gi(x1) + g2(z2) > h*lo(x1,x2) = —21a
implies that [ g1dPy+ [ g2dPy = [(g1+g2)d\? > 0 where \? is the Lebesgue
measure in [0,1] x [0,1].

We now proceed to establish equality and the duality for nonnegative
functions for this modified problem. We need
Lemma 1 I(% is a subadditive functional on L, with

(a)I5 >0

(0)f € F.f > 0= I5(f) = £, [ fidP

(e)I5(1) =1, and

(d)hlc = 0= I5(h) = 0.

Proof: (a) For h > 0,15(h) = I(h1c) > I(0) = 0.

(b) If 37,9 > fle then 35 g; > 3 fion C and so 3 [ gidP; > 37 [ fidP;.
This implies that Ig( )= [ fidP;. (¢) and (d) are obvious.

Lemma 2 Let S be a linear functional on L,,. Then

(@) S>0
S<Ige (b) f>0,feF= S(f)<X,[fidP,
(¢) hlg=0= S(h) = 0.
Proof: “=” (a)h > 0= —h < 0= —S(h) = S(—h) < I(0) =0, ie.,
S(h) > 0.
(D) f €F,f>0=S(f) <I5(f) =3, [ fidP:.
(c)hle = 0 = S( I(h*1¢) = I(0) = 0 and —S(h) = S(—h) <

“<” Let >,9; > h'le > 0. Then S(h) = S(hle) < S(htle) <
S(3>;9i) <X [ gidP;. Hence S(h) < Ig(h).
As a consequence we now obtain the interesting duality theorem:
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Theorem 3 For all h € L,, we have the duality

and the supremum is attained.

Proof: This follows from the Hahn-Banach theorem using the preceding
two lemmas and the Riesz representation theorem as in Proposition 1.

If h is bounded then the infimum is attained as well (see Riischendorf(1981)).
As a consequence we get

Corollary 1 For h € L,,, we have
Se(h) = Sz(h%) = I(h*10) = I5 (h).

Proof: Obviously, S’E(h) < S’E(hﬂ Conversely, for any [i € ./\;lé letting
A={h>0}and jia = ji|A we get fia € M5 and [htdjp = [, htdjp =
[ hdjia. This implies Sg5(h) = S5(h).

We now seek to replace M%(PI,PQ) by /\/lé(Pl, Py) consisting of the
o—additive measures. Let (X;,4;),7 = 1,2 be two Hausdorff topological
spaces with Radon probabilities P;,i = 1,2 and let ¢ C X;xXs be a
closed set. Let h € L,,,, h > 0; then, as in Theorem 2,

S&(h) = IS (h)

for bounded, continuous h or h as a uniform limit of functions of the
form Zalejxgj.

Let Gt (F1) denote the nonnegative, lower (upper) semicontinuous
functions in £,,, and let R* denote the nonnegative elements in £, which
are increasing limits of functions of the form > a;14,xp,. Then we have

Theorem 4 For he GTURTUFT
S (h) = I5(h) = I(h1c).

Proof: Consider 0 < h,, 1 h, h, bounded, continuous or in R*, where
he Gt URT. Then S5(hy) 1 S5(h) and so we obtain from the continuity
of I (see Kellerer(1984))

S5 (h) = lim S5 (hy) = lim I(h,1c) = I(h1c).

For h € F*? (elements of ¥ bounded above), let h,, be bounded, contin-
uous functions with A, | h. Then, by similar arguments as in Proposition
1.26 of Kellerer(1984), Sg is continuous downwards on F°. The continuity
of I and the argument in Proposition 2.3 of Kellerer(1984) imply the result.
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Extensions of this duality theorem to the class of nonnegative measur-
able functions in £,, as well as under constrained marginals will be given
in a subsequent paper. Note that, in the present setup, for A = 15 the dual
functional has a wellknown explicit representation

Ig(lB) = I(lec) = inf{P1(A1)+P2(A2) : BNC C (A1 XXQ)U(Xl XAQ)} .

Thus we have the above explicit formula for closed or open sets B for the
assignment problem concentrated on a subset C' of X7 x Xbs.
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