On c-optimal Random Variables

Ludger Rüschendorf, University of Freiburg

Abstract

A characterization is proved for random variables which are optimal couplings w.r.t. a general function c. It turns out that on very general probability spaces optimal couplings can be characterized by subgradients of c-convex functions. An interesting application of optimal couplings are minimal $l^{p}{ }_{-}$ metrics.

AMS subject classification: 62 H 20
Key words and phrases: optimal couplings, c-cyclically monotone functions, marginal problem

1 Introduction

Let P_{i} be probability measures on $\left(\Omega_{i}, \mathcal{A}_{i}\right), i=1,2$ and let $c: \Omega_{1} \times \Omega_{2} \longrightarrow \mathbb{R}^{1}$ be measurable w.r.t. the product σ-algebra. Call a pair of random variables $X_{1} \stackrel{d}{=} P_{1}, Y_{2} \stackrel{d}{=} P_{2} \quad$ c-optimal if

$$
\begin{equation*}
E c\left(X_{1}, X_{2}\right)=\sup \left\{E c(U, V) ; U \stackrel{d}{=} P_{1}, V \stackrel{d}{=} P_{2}\right\} . \tag{1.1}
\end{equation*}
$$

The underlying probability space is assumed to support sufficiently many rv's. (1.1) is the basis of the optimal coupling problem and optimal solutions have been characterized in several cases (cf. [1], [6], [7], [8], [9]). An interesting special case of problem (1.1) is given when $\Omega_{1}=\Omega_{2}$ is a metric space and $c(x, y)=-d^{p}(x, y), p \geq 1$, is the p-th power of the underlying metric. Then (1.1) leads to the problem to determine the minimal l_{p}-metric (w.r.t. distance d), i.e.

$$
\begin{equation*}
l_{p}\left(P_{1}, P_{2}\right)=\inf \left\{\left(E d^{p}\left(Y_{1}, Y_{2}\right)\right)^{1 / p} ; Y_{i} \stackrel{d}{=} P_{i}\right\} . \tag{1.2}
\end{equation*}
$$

For the relevance and wide field of applications of this metric cf. [3].
The characterization of optimal solutions of (1.1) is closely related to the investigation of inequalities from conjugate duality theory. Define a subset $\Gamma \subset \Omega_{1} \times \Omega_{2}$ to be c-cyclically monotone, if for all $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \Gamma, x_{n+1}:=x_{1}$:

$$
\begin{equation*}
\sum_{i=1}^{n}\left(c\left(x_{i+1}, y_{i}\right)-c\left(x_{i}, y_{i}\right)\right) \leq 0 \tag{1.3}
\end{equation*}
$$

and for functions f on Ω_{1}, g on Ω_{2} define the c-subgradient in $x \in \Omega_{1}$ resp. $y \in \Omega_{2}$

$$
\begin{align*}
\partial_{c} f(x)= & \left\{y \in \Omega_{2} ; f(z)-f(x) \geq c(z, y)-c(x, y), \forall z \in \operatorname{dom}(f)\right\} \tag{1.4}\\
\partial_{c} g(y)= & \left\{x \in \Omega_{1} ; g(z)-g(y) \geq c(x, z)-c(x, y), \forall z \in \operatorname{dom}(g)\right\} \\
& (c \mathrm{cf.}[2],[7]) .
\end{align*}
$$

f is called c-convex if

$$
\begin{equation*}
f(x)=\sup _{i \in I}\left(c\left(x, y_{i}\right)+a_{i}\right) \tag{1.5}
\end{equation*}
$$

for some y_{i}, a_{i} and index set I. The c-conjugate of f is defined by

$$
\begin{equation*}
f^{*}(y)=\sup _{x \in \operatorname{dom} f}(c(x, y)-f(x)), \quad y \in \Omega_{2} \tag{1.6}
\end{equation*}
$$

and the doubly c-conjugate

$$
\begin{equation*}
f^{* *}(x)=\sup _{y \in \operatorname{dom} f^{*}}\left(c(x, y)-f^{*}(y)\right) . \tag{1.7}
\end{equation*}
$$

Then f is c-convex if and only if $f=f^{* *}(c f .[2])$. The aim of this note is to relate problems (1.1) to (1.3) in a general situation.

2 Optimal c-couplings

We first establish a relation between c-cyclically monotone sets and c-subgradients.
Lemma 2.1 $\Gamma \subset \Omega_{1} \times \Omega_{2}$ is c-cyclically monotone if and only if there ex. a c-convex function f on Ω_{1} such that $\Gamma \subset \partial_{c} f$ (i.e. $\Gamma_{x} \subset \partial_{c} f(x)$ for all $x \in \Omega_{1}$).

Proof: If $\Gamma \subset \partial_{c} f$ and $\left(x_{i}, y_{i}\right) \in \Gamma, \quad 1 \leq i \leq n$, then by definition of $\partial_{c} f\left(x_{i}\right), \sum_{i=1}^{n}\left(c\left(x_{i+1}, y_{i}\right)-c\left(x_{i}, y_{i}\right)\right) \leq \sum_{i=1}^{n}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)=0$, i.e. Γ is c-cyclically monotone.

If, conversely, Γ is c-cyclically monotone, and $\left(x_{0}, y_{0}\right) \in \Gamma$, then define $f: \Omega_{1} \longrightarrow \overline{\mathbb{R}}$

$$
\begin{equation*}
f(x)=\sup _{\left(x_{i}, y_{i}\right) \in \Gamma, 1 \leq i \leq n}\left(c\left(x, y_{n}\right)-c\left(x_{n}, y_{n}\right)+\ldots+c\left(x_{1}, y_{0}\right)-c\left(x_{0}, y_{0}\right)\right) . \tag{2.1}
\end{equation*}
$$

Then f is c-convex and $f\left(x_{0}\right)=0$ as Γ is c-cyclically monotone. We establish that $\Gamma \subset \partial_{c} f$. Let $\left(x^{\prime}, y^{\prime}\right) \in \Gamma$ and $\lambda<f\left(x^{\prime}\right)$, then there exist $\left(x_{i}, y_{i}\right) \in \Gamma, 1 \leq i \leq m$, with $\lambda<c\left(x^{\prime}, y_{m}\right)-c\left(x_{m}, y_{m}\right)+\ldots+c\left(x_{1}, y_{0}\right)-c\left(x_{0}, y_{0}\right)$. Define $x_{m+1}=x^{\prime}, y_{m+1}=y^{\prime}$, then for $x \in \Omega_{1}$

$$
\begin{aligned}
f(x) \geq & c\left(x, y_{m+1}\right)-c\left(x_{m+1}, y_{m+1}\right)+c\left(x_{m+1}, y_{m}\right) \\
& -c\left(x_{m}, y_{m}\right)+\ldots+c\left(x_{1}, y_{0}\right)-c\left(x_{0}, y_{0}\right) \\
\geq & c\left(x, y_{m+1}\right)-c\left(x_{m+1}, y_{m+1}\right)+\lambda .
\end{aligned}
$$

This implies

$$
f(x)-f\left(x^{\prime}\right) \geq c\left(x, y^{\prime}\right)-c\left(x^{\prime}, y^{\prime}\right), \forall x \in \Omega_{1}
$$

and since $f\left(x_{0}\right)=0, f\left(x^{\prime}\right)<\infty$. Therefore, $y^{\prime} \in \partial_{c} f\left(x^{\prime}\right)$ and so $\Gamma \subset \partial_{c} f$.
Let $\left(\mathcal{A}_{1} \otimes \mathcal{A}_{2}\right)_{m}$ denote the set of all lower majorized $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ measurable functions c on $\Omega_{1} \times \Omega_{2}$, i.e. $c(x, y) \geq f_{1}(x)+f_{2}(y)$ for some $f_{i} \in \mathcal{L}^{1}\left(P_{i}\right)$. Recall that P_{i} is called perfect if for every measurable function $f_{i}: \Omega_{i} \longrightarrow \mathbb{R}^{1}$ one can find a Borel set $B_{i} \subset f_{i}\left(\Omega_{i}\right)$ such that $P_{i}\left(f_{i}^{-1}\left(B_{i}\right)\right)=1$. Perfectness is a weak regularity condition on P_{i}. For properties of this notion we refer to [4]. Define for $f_{i} \in \mathcal{L}^{1}\left(P_{i}\right), f_{1} \oplus f_{2}(x, y)=f_{1}(x)+f_{2}(y)$. The following theorem gives a very general characterization of c-optimal random variables. Special cases of this result are in [6], [7], [8], [9].

Theorem 2.2 Let P_{1} or P_{2} be perfect, $c \in\left(\mathcal{A}_{1} \otimes \mathcal{A}_{2}\right)_{m}$ and

$$
\begin{equation*}
I(c)=\inf \left\{\sum_{i=1}^{2} \int f_{i} d P_{i} ; f_{i} \in \mathcal{L}^{1}\left(\mathcal{A}_{i}, P_{i}\right), c \leq f_{1} \oplus f_{2}\right\}<\infty . \tag{2.2}
\end{equation*}
$$

Then $X_{i} \stackrel{d}{=} P_{i}, i=1,2$, are c-optimal if and only if $X_{2} \in \partial_{c} f\left(X_{1}\right)$ a.s. for some c-convex function f or if and only if the support Γ of the distribution of $\left(X_{1}, X_{2}\right)$ is c-cyclically monotone.

Proof: If $X_{i} \stackrel{d}{=} P_{i}$ and $X_{2} \in \partial_{c} f\left(X_{1}\right)$ a.s. for some c-convex function f, then for any rv's $Y_{i} \stackrel{d}{=} P_{i}$ we have the following chain of inequalities. If f^{*} denotes the c-conjugate of f, then $f(x)+f^{*}(y) \geq c(x, y)$ for all x, y and

$$
\begin{equation*}
E c\left(Y_{1}, Y_{2}\right) \leq E\left(f\left(Y_{1}\right)+f^{*}\left(Y_{2}\right)\right)=E\left(f\left(X_{1}\right)+f^{*}\left(X_{2}\right)\right)=E c\left(X_{1}, X_{2}\right) \tag{2.3}
\end{equation*}
$$

i.e. the pair $\left(X_{1}, X_{2}\right)$ is c-optimal.

For the converse note that by Theorem 1 in [5] the following duality theorem holds:

$$
\begin{equation*}
\sup \left\{E c\left(Y_{1}, Y_{2}\right) ; Y_{i} \stackrel{d}{=} P_{i}\right\}=I(c)=\inf \left\{\sum_{i=1}^{2} \int f_{i} d P_{i} ; f_{i} \in \mathcal{L}^{1}\left(P_{i}\right), c \leq f_{1} \oplus f_{2}\right\} . \tag{2.4}
\end{equation*}
$$

Let $\left(f_{1}, f_{2}\right)$ be a solution of the dual problem which exists by Proposition 3 in [5]. Then with

$$
\begin{aligned}
f^{*}(y) & =\sup _{x}\left(c(x, y)-f_{1}(x)\right) \quad \text { and } \\
f^{* *}(x) & =\sup _{y}\left(c(x, y)-f^{*}(y)\right)
\end{aligned}
$$

the pair $\left(f^{* *}, f^{*}\right)$ is admissible, i.e. $f^{* *}(x)+f^{*}(y) \geq c(x, y), f^{*}, f^{* *}$ are c-convex and $f^{* *}$ is the largest c-convex function majorized by f, and $f_{1} \oplus f_{2} \geq f^{* *} \oplus f^{*}$. Therefore, also $\left(f^{* *}, f^{*}\right)$ is a solution of the dual problem.

From the equality $E c\left(X_{1}, X_{2}\right)=E\left(f^{* *}\left(X_{1}\right)+f^{*}\left(X_{2}\right)\right)$ we conclude that $c\left(X_{1}, X_{2}\right)=f^{* *}\left(X_{1}\right)+f^{*}\left(X_{2}\right)$ a.s. and so $X_{2} \in \partial_{c} f^{* *}\left(X_{1}\right)$ a.s. (equivalently, also $X_{1} \in \partial_{c} f^{*}\left(X_{2}\right)$ a.s. $)$

Examples and Remark:

a) Let $\Omega_{i}=\mathbb{R}^{k}$ and $c(x, y)=-|x-y|^{p}, p>1,|\quad|$ the euclidean metric, i.e. we consider the problem to determine the minimal l_{p}-metric as in the introduction. $\Phi: \mathbb{R}^{k} \longrightarrow \mathbb{R}^{k}$ is called cyclically monotone if $\sum_{i=1}^{n} \Phi\left(x_{i}\right)\left(x_{i+1}-x_{i}\right) \leq 0$ for all $x_{1}, \ldots, x_{n} \in \mathbb{R}^{k}, x_{n+1}:=x_{1}$. Cyclically monotone functions are well studied in convex analysis. They arise essentially as gradients of convex functions. From [6] cyclically monotone functions lead to optimal couplings w.r.t. $-|\quad|^{2}$. For a cyclically monotone function Φ define

$$
\begin{equation*}
\Psi(x)=|\Phi(x)|^{-\frac{p-2}{p-1}} \Phi(x)+x \tag{2.5}
\end{equation*}
$$

then Ψ is c-cyclically monotone, and for any r.v. X_{1} in the domain of Ψ, the pair $\left(X_{1}, \Psi\left(X_{1}\right)\right)$ is an optimal c-coupling.

For the proof note that by concavity of $c(x, y)=-|x-y|^{p}$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(c\left(x_{i+1}, \Psi\left(x_{i}\right)\right)-c\left(x_{i}, \Psi\left(x_{i}\right)\right)\right. \\
\leq & \sum_{i=1}^{n} c_{1}\left(x_{i}, \Psi\left(x_{i}\right)\right)\left(x_{i+1}-x_{i}\right) \\
= & p \sum_{i=1}^{n} \Phi\left(x_{i}\right)\left(x_{i+1}-x_{i}\right) \leq 0 .
\end{aligned}
$$

The case $p=2$ leads to the optimality of $\Phi(x)+x$ for the squared euclidean distance (cf. [6]), the case $1<p<2$ of this result has been dealt with in [9]. From the result for $p=2$ one can see that the sufficient condition for optimality in (2.5) is not too far from being necessary.

The case $p=1$, i.e. the Kantorovich l_{1}-metric has been studied in [8]. If Ψ satisfies the normalized angle monotonicity condition

$$
\begin{equation*}
(x-y)\left(\frac{\Psi(x)-x}{|\Psi(x)-x|}-\frac{\Psi(y)-x}{|\Psi(y)-x|}\right) \geq 0 \tag{2.6}
\end{equation*}
$$

then $\left(X_{1}, \Psi\left(X_{1}\right)\right)$ is an optimal l_{1}-coupling for the l_{1}-metric w.r.t. the euclidean distance for any r.v. X_{1} in the domain of Ψ.
b) There remain two central open problems with the application of Theorem 2.2. The first one is to find characterizations of c-convex functions and csubgradients. Only in few cases as $c(x, y)=-|x-y|^{2}$ this problem has been dealt with satisfactorily. A second problem is to find to given P, Q an optimal coupling function Φ. If P, Q are on \mathbb{R}^{k} with densities f, g and if a regular invertible solution Φ exists, then by the transformation formula the problem to be solved is a Monge type nonlinear partial differential equation. Find Φ regular, c-cyclically monotone such that in the support of Q

$$
\begin{equation*}
g(x)=f\left(\Phi^{-1}(x)\right)\left|\operatorname{det} D_{\Phi^{-1}}(x)\right| . \tag{2.7}
\end{equation*}
$$

The usual boundary conditions of PDE's are replaced by the condition of ccyclical monotonicity.

References

[1] Cuesta-Albertos, J.A., Rüschendorf, L. and Tuero-Diaz, A. (1993) Optimal coupling of multivariate distributions and stochastic processes. J. Mult. Anal. 46, 335-361
[2] Dietrich, H. (1988) Zur c-Konvexität und c-Subdifferenzierbarkeit von Funktionalen. Optimization 19, 355-371
[3] Rachev, S.T. (1991) Probability Metrics and the Stability of Stochastic Models. Wiley New York
[4] Ramachandran, D. (1979) Perfect Measures, I and II. ISI Lecture Notes Ser. 5 and 7, New Delhi, McMillan
[5] Ramachandran, D. and Rüschendorf, L. (1994) A general duality theorem for marginal problems. To appear in: Probability Theory Rel. Fields
[6] Rüschendorf, L. and Rachev, S.T. (1990) A characterization of random variables with minimum L^{2}-distance. J. Mult. Analysis 32, 48-54
[7] Rüschendorf, L. (1991) Fréchet bounds and their applications. In: Advances in Probability Measures with given Marginals. Eds. Dall'Aglio, Katz and Salinetti, Kluver, 151-188
[8] Rüschendorf, L. (1993) Optimal solutions of multivariate coupling problems. Preprint. To appear in: Applicationes Mathematicae
[9] Smith, C. and Knott, M. (1992) On Hoeffding Fréchet bounds and cyclic monotone relations. J. Mult Anal. 40, 328-334
L. Rüschendorf

Institut für Mathematische Stochastik
Hebelstr. 27
79104 Freiburg
Germany

