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Abstract

A characterization is proved for random variables which are optimal cou-
plings w.r.t. a general function c. It turns out that on very general probabil-
ity spaces optimal couplings can be characterized by subgradients of c-convex
functions. An interesting application of optimal couplings are minimal lp-
metrics.
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1 Introduction

Let Pi be probability measures on (Ωi,Ai), i = 1, 2 and let c : Ω1 × Ω2 −→ IR1

be measurable w.r.t. the product σ-algebra. Call a pair of random variables

X1
d
= P1, Y2

d
= P2 c-optimal if

Ec(X1, X2) = sup{Ec(U, V );U
d
= P1, V

d
= P2}. (1.1)

The underlying probability space is assumed to support sufficiently many rv’s. (1.1)
is the basis of the optimal coupling problem and optimal solutions have been charac-
terized in several cases (cf. [1], [6], [7], [8], [9]). An interesting special case of problem
(1.1) is given when Ω1 = Ω2 is a metric space and c(x, y) = −dp(x, y), p ≥ 1, is the
p-th power of the underlying metric. Then (1.1) leads to the problem to determine
the minimal lp-metric (w.r.t. distance d), i.e.

lp(P1, P2) = inf
{

(Edp(Y1, Y2))1/p ;Yi
d
= Pi

}
. (1.2)

For the relevance and wide field of applications of this metric cf. [3].

The characterization of optimal solutions of (1.1) is closely related to the inves-
tigation of inequalities from conjugate duality theory. Define a subset Γ ⊂ Ω1 × Ω2

to be c-cyclically monotone, if for all (x1, y1), . . . , (xn, yn) ∈ Γ, xn+1 := x1:

n∑
i=1

(c(xi+1, yi)− c(xi, yi)) ≤ 0 (1.3)

and for functions f on Ω1, g on Ω2 define the c-subgradient in x ∈ Ω1 resp. y ∈ Ω2

∂cf(x) = {y ∈ Ω2; f(z)− f(x) ≥ c(z, y)− c(x, y),∀z ∈ dom(f)} (1.4)

∂cg(y) = {x ∈ Ω1; g(z)− g(y) ≥ c(x, z)− c(x, y), ∀z ∈ dom(g)}
(cf.[2], [7]).

f is called c-convex if
f(x) = sup

i∈I
(c(x, yi) + ai) (1.5)

for some yi, ai and index set I. The c-conjugate of f is defined by

f ∗(y) = sup
x∈domf

(c(x, y)− f(x)), y ∈ Ω2 (1.6)

and the doubly c-conjugate

f ∗∗(x) = sup
y∈domf∗

(c(x, y)− f ∗(y)). (1.7)

Then f is c-convex if and only if f = f ∗∗(cf. [2]). The aim of this note is to relate
problems (1.1) to (1.3) in a general situation.
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2 Optimal c-couplings

We first establish a relation between c-cyclically monotone sets and c-subgradients.

Lemma 2.1 Γ ⊂ Ω1×Ω2 is c-cyclically monotone if and only if there ex. a c-convex
function f on Ω1 such that Γ ⊂ ∂cf (i.e. Γx ⊂ ∂cf(x) for all x ∈ Ω1).

Proof: If Γ ⊂ ∂cf and (xi, yi) ∈ Γ, 1 ≤ i ≤ n, then by definition of
∂cf(xi),

∑n
i=1(c(xi+1, yi)−c(xi, yi)) ≤

∑n
i=1(f(xi+1)−f(xi)) = 0, i.e. Γ is c-cyclically

monotone.
If, conversely, Γ is c-cyclically monotone, and (x0, y0) ∈ Γ, then define

f : Ω1 −→ IR

f(x) = sup
(xi,yi)∈Γ,1≤i≤n

(c(x, yn)− c(xn, yn) + . . .+ c(x1, y0)− c(x0, y0)). (2.1)

Then f is c-convex and f(x0) = 0 as Γ is c-cyclically monotone. We establish that
Γ ⊂ ∂cf . Let (x′, y′) ∈ Γ and λ < f(x′), then there exist (xi, yi) ∈ Γ, 1 ≤ i ≤ m, with
λ < c(x′, ym) − c(xm, ym) + . . . + c(x1, y0) − c(x0, y0). Define xm+1 = x′, ym+1 = y′,
then for x ∈ Ω1

f(x) ≥ c(x, ym+1)− c(xm+1, ym+1) + c(xm+1, ym)

−c(xm, ym) + . . .+ c(x1, y0)− c(x0, y0)

≥ c(x, ym+1)− c(xm+1, ym+1) + λ.

This implies

f(x)− f(x′) ≥ c(x, y′)− c(x′, y′), ∀x ∈ Ω1

and since f(x0) = 0, f(x′) <∞. Therefore, y′ ∈ ∂cf(x′) and so Γ ⊂ ∂cf . 2

Let (A1 ⊗A2)m denote the set of all lower majorized A1 ⊗A2 measurable func-
tions c on Ω1 × Ω2, i.e. c(x, y) ≥ f1(x) + f2(y) for some fi ∈ L1(Pi). Recall that
Pi is called perfect if for every measurable function fi : Ωi −→ IR1 one can find
a Borel set Bi ⊂ fi(Ωi) such that Pi(f

−1
i (Bi)) = 1. Perfectness is a weak reg-

ularity condition on Pi. For properties of this notion we refer to [4]. Define for
fi ∈ L1(Pi), f1 ⊕ f2(x, y) = f1(x) + f2(y). The following theorem gives a very gen-
eral characterization of c-optimal random variables. Special cases of this result are
in [6], [7], [8], [9].

Theorem 2.2 Let P1 or P2 be perfect, c ∈ (A1 ⊗A2)m and

I(c) = inf

{
2∑

i=1

∫
fidPi; fi ∈ L1(Ai, Pi), c ≤ f1 ⊕ f2

}
<∞. (2.2)

Then Xi
d
= Pi, i = 1, 2, are c-optimal if and only if X2 ∈ ∂cf(X1) a.s. for some

c-convex function f or if and only if the support Γ of the distribution of (X1, X2) is
c-cyclically monotone.
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Proof: If Xi
d
= Pi and X2 ∈ ∂cf(X1) a.s. for some c-convex function f , then for any

rv’s Yi
d
= Pi we have the following chain of inequalities. If f ∗ denotes the c-conjugate

of f , then f(x) + f ∗(y) ≥ c(x, y) for all x, y and

Ec(Y1, Y2) ≤ E(f(Y1) + f ∗(Y2)) = E(f(X1) + f ∗(X2)) = Ec(X1, X2), (2.3)

i.e. the pair (X1, X2) is c-optimal.
For the converse note that by Theorem 1 in [5] the following duality theorem

holds:

sup{Ec(Y1, Y2);Yi
d
= Pi} = I(c) = inf

{
2∑

i=1

∫
fidPi; fi ∈ L1(Pi), c ≤ f1 ⊕ f2

}
.

(2.4)
Let (f1, f2) be a solution of the dual problem which exists by Proposition 3 in

[5]. Then with

f ∗(y) = sup
x

(c(x, y)− f1(x)) and

f ∗∗(x) = sup
y

(c(x, y)− f ∗(y))

the pair (f ∗∗, f ∗) is admissible, i.e. f ∗∗(x) + f ∗(y) ≥ c(x, y), f ∗, f ∗∗ are c-convex
and f ∗∗ is the largest c-convex function majorized by f , and f1 ⊕ f2 ≥ f ∗∗ ⊕ f ∗.
Therefore, also (f ∗∗, f ∗) is a solution of the dual problem.

From the equality Ec(X1, X2) = E(f ∗∗(X1) + f ∗(X2)) we conclude that
c(X1, X2) = f ∗∗(X1) + f ∗(X2) a.s. and so X2 ∈ ∂cf ∗∗(X1) a.s. (equivalently, also
X1 ∈ ∂cf ∗(X2) a.s.) 2

Examples and Remark:

a) Let Ωi = IRk and c(x, y) = −|x− y|p, p > 1, | | the euclidean metric, i.e. we
consider the problem to determine the minimal lp-metric as in the introduction.
Φ : IRk −→ IRk is called cyclically monotone if

∑n
i=1 Φ(xi)(xi+1−xi) ≤ 0 for all

x1, . . . , xn ∈ IRk, xn+1 := x1. Cyclically monotone functions are well studied in
convex analysis. They arise essentially as gradients of convex functions. From
[6] cyclically monotone functions lead to optimal couplings w.r.t. −| |2. For
a cyclically monotone function Φ define

Ψ(x) = |Φ(x)|−
p−2
p−1 Φ(x) + x, (2.5)

then Ψ is c-cyclically monotone, and for any r.v. X1 in the domain of Ψ, the
pair (X1,Ψ(X1)) is an optimal c-coupling.

For the proof note that by concavity of c(x, y) = −|x− y|p we have
n∑

i=1

(c(xi+1,Ψ(xi))− c(xi,Ψ(xi))

≤
n∑

i=1

c1(xi,Ψ(xi))(xi+1 − xi)

= p
n∑

i=1

Φ(xi)(xi+1 − xi) ≤ 0.
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The case p = 2 leads to the optimality of Φ(x) + x for the squared euclidean
distance (cf. [6]), the case 1 < p < 2 of this result has been dealt with in
[9]. From the result for p = 2 one can see that the sufficient condition for
optimality in (2.5) is not too far from being necessary.

The case p = 1, i.e. the Kantorovich l1-metric has been studied in [8]. If Ψ
satisfies the normalized angle monotonicity condition

(x− y)

(
Ψ(x)− x
|Ψ(x)− x|

− Ψ(y)− x
|Ψ(y)− x|

)
≥ 0, (2.6)

then (X1,Ψ(X1)) is an optimal l1-coupling for the l1-metric w.r.t. the euclidean
distance for any r.v. X1 in the domain of Ψ.

b) There remain two central open problems with the application of Theorem
2.2. The first one is to find characterizations of c-convex functions and c-
subgradients. Only in few cases as c(x, y) = −|x− y|2 this problem has been
dealt with satisfactorily. A second problem is to find to given P,Q an optimal
coupling function Φ. If P,Q are on IRk with densities f, g and if a regular
invertible solution Φ exists, then by the transformation formula the problem
to be solved is a Monge type nonlinear partial differential equation. Find Φ
regular, c-cyclically monotone such that in the support of Q

g(x) = f(Φ−1(x))|detDΦ−1(x)|. (2.7)

The usual boundary conditions of PDE’s are replaced by the condition of c-
cyclical monotonicity. 2
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