KARHUNEN CLASS PROCESSES FORMING A BASIS

Jiří Michálek

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic Prague, Czech Republic

Ludger Rüschendorf

Westf. Wilhelms-University Münster, Germany

Abstract

Necessary and sufficient conditions for a Karhunen class sequence to form an unconditional basis and a minimal basis are given.

Let $\{X_n\}_{n=-\infty}^{+\infty}$ be a centered weakly stationary sequence with a covariance function $R(\cdot)$. There is the interesting question whether each element ξ in $\mathcal{L}_2(\{X_n\}_{n=-\infty}^{+\infty})$ can be expressed in the form

$$\xi = \sum_{n=-\infty}^{+\infty} \alpha_n \, X_n \tag{1}$$

where the summation is understood in the quadratic mean sense. This expression is a special form of a stochastic integral when a random measure $Z(\cdot, \cdot)$ is defined on $\mathbb{Z} \times \Omega$ $(\mathbb{Z} - \text{integers})$. The question of the possibility to express each element ξ in $\mathcal{L}_2(\{X_n\})$ in the form (1) is very important for predicting next values of $\{X_n\}_{n=-\infty}^{+\infty}$. Knowing that (1) holds we can find the best predictors in the set of $\{\sum_{n\leq t} \alpha_n X_n\}$ only. This fact is very serious from both theoretical and practical reasons. Rozanov (1960) proved that $\{X_n\}_{n=-\infty}^{+\infty}$ is an unconditional basis for the range space $\mathcal{L}_2(\{X_n\})$, i.e. $\{\alpha_n\}_{n=-\infty}^{\infty}$ in the expression (4) are defined unambiguously, if and only if $\{X_n\}_{n=-\infty}^{+\infty}$ possesses a spectral density function $\varphi(\cdot)$ on $\langle -\pi, \pi \rangle$ satisfying

$$0 < c \le \varphi(\lambda) \le C < \infty$$

a.s. [Leb.]. We next generalize this result to the Karhunen class. Let $R(\cdot, \cdot)$ be a covariance function on $\mathbb{Z} \times \mathbb{Z}$ expressible in the form

$$R(n,m) = \int_{S} f_n(\lambda) \,\overline{f_m(\lambda)} \,\mu(d\lambda) \tag{2}$$

where μ is a measure such that there exists the Radon-Nikodym derivative $h(\cdot) = \frac{d\mu}{d\nu}$ and where $\nu(\cdot)$ is fixed a σ -finite measure, $\{f_n\}$ is a fixed orthonormal system in $\mathcal{L}_2(\nu)$, i.e.

$$\int_{S} f_n(\lambda) \,\overline{f_m(\lambda)} \,\nu(d\lambda) = \delta_{nm}.$$

In the case that $f_n(\lambda) = e^{in\lambda}$, ν the Lebesgue measure on $[-\pi, \pi]$, in this way we obtain the weakly stationary sequences with existing spectral density functions. If $\{f_n\}$ is a complete system in $\mathcal{L}_2(\nu)$ then

$$\mathcal{L}_2(\{X_n\}) \simeq \mathcal{L}_2(\mu, f_n) = \mathcal{L}_2(\mu),$$

where \simeq means isometry. Now, we shall define random variables $Y_n = \int \frac{f_n(\lambda)}{h(\lambda)} Z(d\lambda)$ where $Z(\cdot, \cdot)$ is an orthogonal random measure generating the sequence $\{X_n\}_{n=-\infty}^{+\infty}$, i.e.

$$X_n = \int_S f_n(\lambda) Z(d\lambda)$$
 [a.e.].

 Y_n will be defined when $E\{|Y_n|^2\} = \int_S \frac{|f_n|^2}{h^2} d\mu = \int_S \frac{|f_n|^2}{h} d\nu < \infty$ and, further

$$E \{X_n \overline{Y_m}\} = \int_S f_n(\lambda) \frac{\overline{f_m(\lambda)}}{h(\lambda)} \mu(d\lambda) =$$
$$= \int_S f_n \overline{f_m} \, d\nu = \delta_{nm}.$$

This fact proves that the random variables $\{Y_n, X_n\}_{n=-\infty}^{+\infty}$ form a biorthonormal system for $\mathcal{L}_2(\{X_n\})$ under the assumption $\int_S \frac{|I_n|^2}{h} d\nu < \infty$ for every $n \in \mathbb{Z}$. The question of representability of random variables $\xi \in \mathcal{L}_2\{\{X_n\}_{n=-\infty}^{+\infty}\}$ in the form (1) is the question of when the system of variables $\{X_n\}_{n=-\infty}^{+\infty}$ forms a basis in the Hilbert space $\mathcal{L}_2\{\{X_n\}\}$. In order to investigate this question it is natural to be limited to the case when the system $\{X_n\}_{n=-\infty}^{+\infty}$

is minimal. The minimality of a weakly stationary sequence $\{X_n\}_{n=-\infty}^{+\infty}$ was introduced by Kolmogorov (1941) who proved a necessary and sufficient condition for minimality, which is the existence of the following integral

$$\int_{-\pi}^{\pi} \frac{1}{\varphi(\lambda)} d\lambda, \qquad \qquad -$$

where $\varphi(\cdot)$ is the spectral function of $\{X_n\}_{n=-\infty}^{+\infty}$. As is known the system $\{X_n\}_{n=-\infty}^{+\infty}$ is minimal if and only if there exists in a Hilbert space a conjugate system of variables $\{Y_n\}_{n=-\infty}^{+\infty}$ forming a biorthogonal system in $\mathcal{L}_2\{\{X_n\}\}$. If this conjugate system $\{Y_n\}$ is complete, then every variable $\xi \in \mathcal{L}_2\{X_n\}$ is uniquely determined by (1). The existence of a biorthogonal system for $\mathcal{L}_2(\{X_n\})$ under the assumption $\int_{s} \frac{|f_{n}|^{2}}{h} d\nu < \infty$ for every $n \in \mathbb{Z}$ proves the minimality of $\{X_{n}\}_{n=-\infty}^{+\infty}$, i.e. for each $n \in \mathbb{Z}$

$$X_n \notin \mathcal{L}_2\{X_m; m \in \mathbb{Z}, m \neq n\}.$$

From a general result in Hilbert spaces a minimal system $\{X_n\}_{n=-\infty}^{+\infty}$ is an unconditional basis in $\mathcal{L}_2(\{X_n\})$ if and only if the system $\{X_n\}_{n=-\infty}^{+\infty}$ is Besselian and Hilbertian, see [3].

Definition 1 The minimal system $\{X_n\}_{n=-\infty}^{+\infty}$ is Besselian when xed complete orthonormal systems in $\mathcal{L}_2(\nu)$ and $d\mu = h d\nu$. Then in $\mathcal{L}_2(\{X_n\})$ if for each $h \in \mathcal{L}_2(\{X_n\})$

$$\sum_{n=-\infty}^{\infty} \left| E\{h \, \overline{Y_n}\} \right|^2 < \infty$$

and is Hilbertian if for any sequence $\{c_n\}_{n=-\infty}^{+\infty}$ with

$$\sum_{n=-\infty}^{\infty} |c_n|^2 < \infty$$

there exists $h \in \mathcal{L}_2(\{X_n\})$ such that $E\{h \overline{Y_n}\} = c_n$.

As is well known, cf. Rozanov (1960), the system $\{X_n\}_{n=-\infty}^{+\infty}$ is Besselian if and only if there exists a constant C such that

$$\sum_{n=-\infty}^{\infty} \left| E\{h \, \overline{Y_n}\} \right|^2 \le C \, E\{|h|^2\}.$$

If we put $h = \int_{S} \varphi(\lambda) Z(d\lambda), \ \varphi \in \mathcal{L}_{2}(\mu)$, then this is equivalent to

$$\sum_{-\infty}^{+\infty} \left| E\{h \, \overline{Y_n}\} \right|^2 = \sum_{-\infty}^{+\infty} \left| \int \varphi(\lambda) \, \overline{f_n(\lambda)} \, \nu(d\lambda) \right|^2$$
$$= \int_{\mathcal{S}} \left| \varphi(\lambda) \right|^2 \, \nu(d\lambda) \le C \int_{\mathcal{S}} \left| \varphi(\lambda) \right|^2 \, h(\lambda) \, \nu(d\lambda).$$

This inequality holds for each $\varphi \in \mathcal{L}_2(\mu)$. Using this fact we obtain the equivalent condition

$$h(\cdot) \geq \frac{1}{C}$$
 a.e. $[\nu]$.

On the other hand, the system $\{X_n\}_{n=-\infty}^{+\infty}$ is Hilbertian if and only if there is a constant c > 0 such that

$$\sum_{-\infty}^{+\infty} \left| E\{g\,\overline{Y_n}\} \right|^2 \ge c\,E\{|g|^2\}$$

for each $g \in \mathcal{L}_2(\{X_n\})$. With $g = \int_S \varphi \, dZ, \ \varphi \in \mathcal{L}_2(\mu)$ this gives similarly as above

$$h(\lambda) \leq \frac{1}{c}$$
 a.e. $[\nu]$.

Based on these considerations we obtain the following theorem.

Theorem 1. Let $\{X_n\}$ be a random sequence with $R(\cdot, \cdot)$ on $\mathbb{Z} \times \mathbb{Z}$ as a covariance function belonging to the Karhunen class, i.e.

$$R(n,m) = \int_{S} f_n(\lambda) \overline{f_m(\lambda)} \, \mu(d\lambda), \qquad n, m \in \mathbb{Z}$$

$$e \nu$$
 is a fixed σ -finite measure, $\{f_n\}$ is a fixed orthonormal systems in $f_{\sigma}(\nu)$ and $d\mu = h$

1. $\{X_n\}_{n=-\infty}^{+\infty}$ is minimal iff

$$\int_{S} \frac{|f_n|^2}{h} d\nu < \infty \quad \text{for every } n \in \mathbb{Z}$$

 A minimal system {X_n}^{+∞}_{n=-∞} is an unconditional basis of L₂({X_n}) iff there exist 0 < c ≤ C < ∞ such that

$$\frac{1}{C} \le h(\cdot) \le \frac{1}{c} \qquad \text{a.e. } [\nu].$$

An interesting open problem seems to be to find a characterization of the class of processes with representation as in (2) analogously to the characterization of weakly stationary processes by the Herglotz lemma.

In the case of $S = (-\pi, \pi)$, $\nu =$ Lebesgue measure, $f_n(\lambda) = \frac{1}{\sqrt{2\pi}} e^{in\lambda}$, for $n \in \mathbb{Z}$, μ and μ is a finite measure on S, then all the covariance functions of the form

$$R(n,m) = \int_{-\pi}^{\pi} f_n(\lambda) \overline{f_m(\lambda)} \,\mu(d\lambda)$$

are stationary ones and vice versa. In general, if (S, S, ν) is a measure space with an orthonormal system of functions $\{f_n\}_{n=-\infty}^{+\infty}$, i.e.

$$\int_{S} f_n(\lambda) \,\overline{f_m(\lambda)} \,\nu(d\lambda) = \delta_{nm}$$

and μ is a measure on (S, S) such that

$$\int_{S} |f_n(\lambda)|^2 \, \mu(d\lambda) < \infty$$

for each $n \in \mathbb{Z}$, then the question is how to describe the class of all covariance functions of the form

$$R(n,m) = \int_{S} f_n(\lambda) \,\overline{f_m(\lambda)} \,\mu(d\lambda)?$$

References

- Rozanov Yu.A. (1960), On stationary sequences forming a basis. Soviet. Math. Doklady 1 (1960), 155-158.
- [2] Kolmogorov A. N. (1941), Stationary sequences in a Hilbert space. Bull. MGV, Matematika, Tom 2, No 6, 1-40 (in Russian).
- [3] Gelfand I.M. (1951), Moskov. Gos. Univ. Uč. Zap. 148, Mat. 4, 224-237.

л.

ant and "