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Abstract
We study the problem of sequential prediction of categorical data and

discuss a generalisation of Blackwell’s algorithm on 0-1 data. The arguments
are based on Blackwell’s approachability results given in [1]. They use mainly
linear algebra.

1 Introduction and Background

Let us consider the problem of sequential prediction of categorical data. Let
D = {0, 1, . . . , d−1} denote the set of possible outcomes with d ≥ 2. Let x1, x2, . . .
be an infinite sequence with values in D. Let Y1, Y2, . . . denote the sequence of
predictions. This is a random sequence with values in D. Yn+1 predicts xn+1 and
may depend on the first n outcomes x1, x2, . . . , xn, Y1, Y2, . . . , Yn and some addi-
tional random mechanism. Our goal ist to construct a sequential prediction proce-
dure which works well for all sequences (xi)i∈N in an asymptotic sense. We intend
to generalize Blackwell’s prediction procedure for two categories. The algorithm
of Blackwell can be described as follows using Figure 1 below. Let x1, x2, . . . be
an infinite 0-1 sequence. Let xn = 1

n

∑n
k=1 xk be the relative frequency of the

“ones” and γn = 1
n

∑n
k=1 1{Yk=xk} the relative frequency of correct guesses. Let

µn = (xn, γn) ∈ [0, 1]2 and S = {(x, y) ∈ [0, 1]2 | y ≥ max(x, 1− x)}.

D1
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In Fig. 1, let D1, D2 and D3 be the left, right, and bottom triangles, respectively,
in the unit square so that D1 = {(x, y) ∈ [0, 1]2 | x ≤ y ≤ 1−x} etc. When µn ∈ D3,
draw the line through the points µn and (1

2
, 1

2
) and let (wn, 0) be the point where

this line crosses the horizontal axis. The Blackwell algorithm chooses its prediction
Yn+1 on the basis of µn according to the (conditional) probabilities

P (Yn+1 = 1) =


0 if µn ∈ D1

1 if µn ∈ D2

wn if µn ∈ D3.

When µn is in the interior of S, Yn+1 can be chosen arbitrarily. Let Y1 = 0. It then
holds that for the Blackwell algorithm applied to any 0-1 sequence x1, x2, . . . the
sequence (µn; n ≥ 1) converges almost surely to S, i.e. dist(µn,S)→ 0 as n→∞
almost surely. Here dist(·, ·) denotes the Euclidean distance from µn to S.

As Blackwell once pointed out this is a direct consequence of his Theorem 1 in
[1] when one chooses the payoff matrix as(

(0, 1) (1, 0)
(0, 0) (1, 1)

)
.

For a quick almost sure argument see [4]. Blackwell also raised the question whether
his Theorem 1 of [1] applies to sequential prediction when there are more than two
categories. We shall study this question and finally answer it affirmative.

We construct a Blackwell type prediction procedure for d > 2 categories by
choosing the state space and the randomisation rules in a certain way. This proce-
dure then has similar properties as Blackwell’s original one. It also has the feature
that the d-category procedure reduces to the (d − 1) category procedure if one
category is not observed.

The structure of this paper is as follows. In Section 2 we introduce the appro-
priate state space and define the randomisation rule. In Section 3 we state the
convergence result and prove it. For that we shall apply a simplified version of
Blackwell’s Theorem 1 of [1], which we also state in Section 3.

This paper is a continuation of [2], where the case d = 3 was discussed, and of
the diploma thesis of R. Sandvoss [5].

We shall use the following notation: Latin letters for points, vectors, and indices,
greek letters for scalars. We denote components of vectors or points by superindices
like v = (v(0), . . . , v(d−1)) ∈ Rd. e0 = (1, 0, . . . , 0), . . . , ed−1 = (0, . . . , 0, 1) denote the
d-dimensional unit points and 1d = (1, . . . , 1). The affine subspace of Rd generated
by the points a0, . . . , an ∈ Rd is given by

A({a0, . . . , an}) :=

{
a ∈ Rd

∣∣∣ a =
n∑

i=0

λiai,
n∑

i=0

λi = 1, λi ∈ R, ai ∈ Rd, i = 0, . . . , n

}
.
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The convex hull of ai, . . . , an ∈ Rd is given by

conv({a0, . . . , an})

=

{
a ∈ Rd

∣∣∣ a =
∑n

i=0 λiai,
∑n

i=0 λi = 1, λi ∈ [0, 1], ai ∈ Rd, i = 0, . . . , n

}
.

The Euclidean scalar product on Rd is given by 〈·, ·〉, the Euclidean distance by
dist(·, ·).

2 The Construction of the d-Dimensional Pre-

diction Procedure

2.1 The Structure of the Prediction Prism

For n ∈ N, x1, x2, . . . , xn ∈ D let Y1, Y2, . . . , Yn ∈ D denote the corresponding
predictions. Let xn = (x(0)

n , . . . , x(d−1)
n ) with x(l)

n = 1
n

∑n
k=1 1{xi=l}, l ∈ D, denote

the vector of the relative frequencies of the n outcomes and γn = 1
n

∑n
k=1 1{Yk=xk}

the relative frequency of correct predictions.

Let

Σd−1 =

{
(q0, . . . , qd−1) | ql ≥ 0,

d−1∑
l=0

ql = 1

}
denote the unit simple in Rd and

Wd = Σd−1 × [0, 1] = {(q, γ) | q ∈ Σd−1, 0 ≤ γ ≤ 1} .

Since
∑d−1

l=0 x
(l)
n = 1, we have xn ∈ Σd−1 and (xn, γn) ∈ Wd. Let Sd =

{(q, γ) ∈ Wd | γ ≥ maxl q
(l)}. We are interested in prediction procedures for which

µn := (xn, γn) converges to Sd for every sequence x1, x2, . . . This means that the
Euclidean distance dist(µn,Sd)→ 0 as n→∞.

Unfortunately Blackwell’s Theorem 1 of [1] cannot be applied directly. The
reader may take a look at Theorem 3.3 below which is a simplified version of
Blackwell’s result. The condition (C) there does not hold in general for Wd and
Sd. (To see this, let d = 3, s = (1

3
, 1

3
, 1

3
, 1

3
), µn = (1

4
, 1

4
, 1

2
, 0). Then p(µn) = µn, and

s− µn is not perpendicular to R(p(µn)).)

The difficulties vanish when one modifies the state space in the right way. Let
Vd = {q + γ1d | (q, γ) ∈ Wd} with 1d = (1, . . . , 1). Then vn := xn + γn1d ∈ Vd

for all n. The convergence of µn to Sd corresponds to that of vn to Sd where
Sd = {q + γ1d ∈ Vd | γ ≥ maxl q

(l)}. This follows from the fact that Ψ : Wd → Vd

with Ψ((q, γ)) = q + γ1d is an isometric bijection of Wd on Vd. We note that for
z, z′ ∈ Wd it holds that

dist(Ψ(z),Ψ(z′))2 =
d−1∑
i=0

(zi − z′i)2 + d · (zd − z′d)2.
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To construct the appropriate randomisation regions let us “cut” the prism Vd by
certain hyperplanes. (This corresponds to splitting the unit square by the diagonals
in the case of two categories.)

Let e0 = (1, 0, 0, . . . , 0), . . . , ed−1 = (0, 0, . . . , 0, 1) denote the d-dimensional unit
points. Let El = A({e0, . . . , el−1, el + 1d, el+1, . . . , ed−1}), l = 0, . . . , d − 1, denote
the hyperplanes which contain one vertex of the “upper side” of the prism el + 1d

and (d− 1) vertices ek 6= el of Sd−1. The d hyperplanes El cut the prism Vd in 2d

pieces, and all contain the point s = (2
d
, 2

d
, . . . , 2

d
). In this point s the planes El are

all perpendicular to each others.

This can easily be seen since their corresponding normal vectors are given by
nl = −el + 2

d
1d. This leads to the following characterization of lying “above” Ei:

v lies above Ei ⇔ 〈v − ni, ni〉 < 0.

In the same way one defines lying below and in Ei.

Now we can describe Sd in two different ways:

Sd = {q + γ1d ∈ Vd | 〈q − nl, nl〉 ≥ 0 for l = 0, . . . , d− 1}
= {q + γ1d ∈ Vd | γ ≥ max(q(0), . . . , q(d−1))}.

For the case d = 3 the sets Vd and Sd are shown in the following figures.
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Figure 3

2.2 The Randomisation Rule

For vn = xn + γn1d we will define a d-dimensional random vector p(vn) ∈ Σd−1. It
plays the same role as wn does in the 0-1 case. With it we define Yn+1 :

P ({Yn+1 = k}) = p(k)(vn) for k ∈ D.
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Definition 2.1 Let vn ∈ Vd, n ∈ N and let (i0, . . . , id−1) be a permutation of
(0, . . . , d− 1) such that it holds:

〈vn − nl, nl〉 ≤ 0 for l = i0, . . . , ij

and 〈vn − nl, nl〉 > 0 for l = ij+1, . . . , id−1.

Case 1: Let vn ∈ Vd \ Sd.

Let A1 = A({2
d
1d, eij+1

, . . . , eid−1
, vn}) be the affine space of Rd generated by the

points in the waved brackets. Let A2 = A({ei0 , . . . , eij}) denote the corresponding
affine space. The intersection A1 ∩ A2 contains exactly one point of Σd−1, we call
it p(vn).

Case 2: Let vn ∈ ∂Sd. Let ν = #{Ek | vn ∈ Ek for k = 0, . . . , d− 1}.
Then

p
(k)
(vn) =

{
1/ν for vn ∈ Ek

0 for vn 6∈ Ek

for k = 0, 1, . . . , d− 1.

The prediction procedure just defined is called “Generalized Blackwell algo-
rithm”.

Remarks 2.2 1) The case vn ∈ Sd \∂Sd does not occur by the construction of the
rule.

2) A2 = Ø cannot occur, since then there exists at least one k ∈ D with
〈vn − nk, nk〉 ≤ 0.

3) We note that A1 ∩ A2 contains always just one point of Σd−1.

4) For j = d − 1 one obtains A1 = A({2
d
1d, vn}), A2 = A({ei0 , . . . , eid−1

}) and
p(vn) is the projection along the line, defined by 2

d
1d and vn “down” to Σd−1.

5) For d = 3 the following figure shows the randomisation in a “lower” side piece
of the prism. Here planes lie above µn and one below.

nearest point in S for vn

s

p(vn)(1, 0, 0)

vn

(0, 1, 0)

Figure 4



6 H. R. Lerche

3 The Convergence Result

3.1 Main Result

Theorem 3.1 Let d ≥ 2. Then for the generalized Blackwell algorithm, applied to
any infinite sequence x1, x2, . . . with values in D, it holds that dist(vn,Sd)→ 0 with
probability one as n→∞.

Now we shall derive Theorem 3.1 by tracing it back to Blackwell’s Theorem 1
of [1]. This we first state in a simplified version.

3.2 Blackwell’s Minimax Theorem

We consider a repeated game of two players with a payoff matrix M = (mij) with
mij ∈ Rd and 1 ≤ i ≤ r and 1 ≤ j ≤ s. Player I chooses the row, player II the
column. Let

P =

{
p = (p1, . . . , pr)

∣∣∣ pi ≥ 0,
r∑

i=1

pi = 1

}
denote the mixed actions of player I and

Q =

{
q = (q1, . . . , qs)

∣∣∣ qj ≥ 0,
s∑

j=1

qj = 1

}
the mixed actions of player II. A strategy f in a repeated game for player I is
a sequence f = (fk; k ≥ 1) with fk ∈ P . A strategy g for player II is defined
similarly. Two strategies define a sequence of payoffs zk, k = 1, 2, . . . In detail:
If in the k-th game i and j are choosen according to fk and gk, the payment to
player I is mij ∈ Rd. Blackwell discussed in [1] the question: Can player I control
zn = 1

n

∑n
k=1 zk with a certain strategy such that zn approaches a given set S

independently of what player II does?

Definition 3.2 A set S ⊂ Rd is approachable for player I if there exists a strategy
f ∗ for which dist(zn,S)→ 0 with probability one.

Theorem 3.3 (Blackwell) For p ∈ P let

R(p) = conv

(
r∑

i=1

pimij; j = 1, 2, . . . , s

)
.

Let S denote a closed convex subset of Rd. For every z 6∈ S let y denote the closest
point in S to z. We assume:

(C) For every z 6∈ S there exists a p(z) ∈ P such that the hyperplane through y,
which is perpendicular to the line segment zy, seperates z from R(p(z)).

Then S is approachable for player I.
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3.3 Proof of the Main Result

To apply Theorem 3.3 to our case, we choose the vertices of Vd as “payments”:

mij =

{
ei + 1d if i = j,

ej if i 6= j.

We choose S as Sd = {q + γ1d ∈ Vd | γ ≥ maxl q
(l)}. Then

R(p) = conv

({ d−1∑
i=0,i 6=j

p(i)ej + p(j)(ej + 1d)
∣∣∣ j = 0, . . . , d− 1

})

= conv

({ d−1∑
i=0

p(i)ej + p(j)1d

∣∣∣ j = 0, . . . , d− 1

})
= conv

({
ej + p(j)1d | j = 0, . . . , d− 1

})
.

It is left to show that condition (C) is fulfilled.

Let v ∈ Vd \ Sd. We denote by vproj the closest point in Sd to v. We will show:

Fact 1 vproj ∈ R(p(v))

Fact 2 v − vproj is perpendicular to A(R(p)). Here A(R(p)) means the smallest affine
subspace which contains R(p).

Both facts together imply condition (C) and finally Theorem 3.1.

For the proofs we shall assume that the following situation holds: For v ∈ Vd\Sd

it holds

〈v − ni, ni〉 ≤ 0 for i = 0, . . . , j

and 〈v − ni, ni〉 > 0 for i = j + 1, . . . , d− 1.

Proof of Fact 1: v lies below Ei for i = 0, 1, . . . , j, but vproj ∈ Sd. Thus vproj ∈
E0 ∩ · · · ∩ Ej. Then

E0 ∩ · · · ∩ Ej = A

({
ej+1, . . . , ed−1,

2

d
1d

})
.

Thus

vproj ∈ A
({

ej+1, . . . , ed−1
2

d
1d

})
∩ Vd

⊂ A
({
ei + p(i)(v)1d | i = 0, . . . , d− 1

})
∩ Vd = R(p(v)).
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The inclusion follows since p(l)(v) = 0 for j+ 1 = l ≤ d− 1 and 2
d
1d = 1

d

∑d−1
i=0 (ei +

p(i)1d). 2

Fact 2 will be proven by a sequence of lemmata. At first we generate a new
auxiliary point ṽ which lies in the same plane as p(v).

Lemma 3.4 For v ∈ Vd \ Sd let A′ = A({v, vproj}) and A′′ =
A({ej+1, . . . , ed−1, p(v)}). Then there exists exactly one point ṽ ∈ A′ ∩ A′′ and
ṽ 6∈ Sd.

Proof: Let A1 = A({ej+1, . . . , ed−1,
2
d
1d, v}) as in Definition 2.1. Then according to

Definition 2.1 p(v) ∈ A1 and vproj ∈ A1 by the proof of Fact 1. Then it follows that
2
d
1d ∈ A′∨A′′. Here A′∨A′′ denotes the smallest affine space, which contains A′, A′′.

It holds A1 = A′ ∨A′′. Since A′ and A′′ are not parallel it follows that A′ ∩A′′ 6= Ø
and by the dimension formula dim(A′ ∩ A′′) = 0. Hence A′ ∩ A′′ contains exactly
one point. We call it ṽ. If ṽ ∈ Sd, then ṽ ∈ Sd∩A′′. Then Sd∩A(Σd−1) 6= Ø, which
is a contradiction to the definitions of Sd and Σd−1. 2

A direct consequence of Lemma 3.4 is

Fact 3: a) vproj = (ṽ)proj;

b) v − vproj⊥A(R(p))⇔ ṽ − (ṽ)proj⊥A(R(p)).

We shall use Fact 3 to show Fact 2. At first we calculate (ṽ)proj from ṽ. For
simplification, we write ṽproj instead of (ṽ)proj from now on.

Lemma 3.5

ṽ
(l)
proj =



2

d

(
1−

d−1∑
k=j+1

λk

)
for l = 0, . . . , j,

2

d

(
1−

d−1∑
k=j+1

k 6=l

λk

)
+
(
1− 2

d

)
λl for l = j + 1, . . . , d− 1,

where ṽ = p+ λj+1(ej+1 − p) + · · ·+ λd−1(ed−1 − p) ∈ A′′.

Proof: From the proofs of Fact 1 and 3 it follows that

ṽproj ∈ A({ej+1, . . . , ed−1,
2
d
1d}) ∩ Sd.

The smallest affine space, which contains this set is given by
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A =
{
a ∈ Rd | a = 2

d
1d + δj+1(ej+1 − 2

d
1d) + . . .+ δd−1(ed−1 − 2

d
1d)
}
.

To find ṽproj the projection for v on Sd, we minimize the distance of v to A.

For a ∈ A

d(ṽ, a)2 =

j∑
l=0

(
ṽ(l) − 2

d
+ δj+1

2

d
+ . . .+ δd−1

2

d

)2

(3.1)

+
d−1∑

l=j+1

(
ṽ(l) − 2

d
− δl

(
1− 2

d

)
+

d−1∑
k=j+1

k 6=l

δk
2

d

)2

.

Calculating partial derivatives with respect to δi, i = j + 1, . . . , d− 1, yields

∂d(ṽ, a)2

∂δi
=

j∑
l=0

2

(
ṽ(l) − 2

d
+ δj+1

2

d
+ . . .+ δd−1

2

d

)
2

d

+
d−1∑

l=j+1

2

(
ṽ(l) − 2

d
− δl

(
1− 2

d

)
+

d−1∑
k=j+1

k 6=l

δk
2

d

)
α

= 2

(
2

d

d−1∑
l=0
l 6=i

ṽ(l) −
(

1− 2

d

)
ṽ(i) − 2

d
+ δi

)
,

where α = 2
d

for l 6= i, α = −(1− 2
d
) for l = i, and thus

∂d(ṽ, a)2

∂δi
= 0 ⇔ δi =

2

d

(
1−

d−1∑
l=0
l 6=i

ṽ(l)

)
+

(
1− 2

d

)
ṽ(i).

The determinant of the Hessian is positive which shows that a minimum occurs.
According to the statement of Lemma 3.5 the components of ṽ has the following
representation

ṽ(l) =


p(l)

(
1−

d−1∑
k=j+1

λk

)
for l = 0, . . . , j,

λl for l = j + 1, . . . , d− 1,

(3.2)

where one should note that p(j+1) = . . . = p(d−1) = 0.

Plugging in the equation of δi, i = j+1, . . . , d−1, and noting that
∑j

l=0 p
(l) = 1

leads to

δi =
2

d

1−
j∑

l=0

p(l)

(
1−

d−1∑
k=j+1

λk

)
−

d−1∑
l=j+1

l 6=i

λk

+

(
1− 2

d

)
λi
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and finally to δi = λi. Plugging this in equation (3.1) leads to the statement of the
Lemma. 2

Lemma 3.6 It holds:

1)

(ṽ − ṽproj)
(l) =



(
p(l) − 2

d

)(
1−

d−1∑
k=j+1

λk

)
for l = 0, . . . , j,

−2

d

(
1−

d−1∑
k=j+1

λk

)
for l = j + 1, . . . , d− 1.

(3.3)

2) The smallest affine subspace which contains R(p) can be expressed as x + U
where one can choose x = ṽproj and

ei + p(i)1d − ṽproj for i = 0, . . . , j
ei − ṽproj for i = j + 1, . . . , d− 1

as linear generating system of U .

Proof: Statement 1) is a direct consequence of Lemma 3.5 and (3.1). Statement 2)
follows from the fact that ṽproj = vproj ∈ R(p(v)) and that R(p) = conv(ei +p(i)1d |
i = 1, . . . , d− 1) where p(j+1) = . . . = p(d−1) = 0.

Lemma 3.7 It holds

ṽ − ṽproj⊥ei + p(i)1d − ṽproj for i = 0, . . . , j.

Proof: Lemma 3.5 implies

(
ei + p(i)1d − ṽproj

)(l)

=



p(i) − 2
d

(
1−

d−1∑
k=j+1

λk

)
l = 0, . . . , j; l 6= i,

1 + p(i) − 2
d

(
1−

d−1∑
k=j+1

λk

)
l = i,

p(i) − 2
d

(
1−

d−1∑
k=j+1,k 6=l

λk

)
−
(
1− 2

d

)
λl l = j + 1, . . . , d− 1.

(3.4)
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From (3.3) and (3.4) it follows

〈ṽ − ṽproj, ei + p(i)1d − ṽproj〉

=

j∑
l=0
l 6=i

(
p(l) − 2

d

)(
1−

d−1∑
k=j+1

λk

)(
p(i) − 2

d

(
1−

d−1∑
k=j+1

λk

))

+

(
p(i) − 2

d

)(
1−

d−1∑
k=j+1

λk

)(
1 + p(i) − 2

d

(
1−

d−1∑
k=j+1

λk

))

−
d−1∑

l=j+1

2

d

(
1−

d−1∑
k=j+1

λk

)(
p(i) − 2

d

(
1−

d−1∑
k=j+1k 6=l

λk

)
−
(

1− 2

d

)
λl

)

=

(
1−

d−1∑
k=j+1

λk

)
·

[(
p(i) − 2

d

)
+

j∑
i=0

p(l)

(
p(i) − 2

d

(
1−

d−1∑
k=j+1

λk

))

−
i∑

l=0

2

d

(
p(i) − 2

d

(
1−

d−1∑
k=j+1

λk

))
−

d−1∑
l=j+1

2

d

(
p(i) − 2

d

(
1−

d−1∑
k=j+1

λk

))

+
d−1∑

k=j+1

2

d

2

d
λk +

d−1∑
l=j+1

2

d

(
1− 2

d

)
λl

]

=

(
1−

d−1∑
k=j+1

λk

)

·

[
p(i) − 2

d
+ p(i) − 2

d

(
1−

d−1∑
k=j+1

λk

)
− d2

d

(
p(i) − 2

d

(
1−

d−1∑
k=j+1

λk

))

+
d−1∑

k=j+1

2

d

2

d
λk +

d−1∑
l=j+1

2

d
λl −

d−1∑
l=j+1

2

d

2

d
λl

]
= 0. 2

Lemma 3.8 It holds

ṽ − ṽproj ⊥ ei + ṽproj for i = j + 1, . . . , d− 1.
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Proof: By Lemma 3.5 one gets

(ei − ṽproj)
(l)

=



−2
d

(
1−

d−1∑
k=j+1

λk

)
l = 0, . . . , j,

−2
d

(
1−

d−1∑
k=j+1

k 6=l

λk

)
−
(
1− 2

d

)
λl l = j + 1, . . . , d− 1; l 6= i,

1− 2
d

(
1−

d−1∑
k=j+1

k 6=i

λk

)
−
(
1− 2

d

)
λi l = i.

(3.5)

From (3.3) and (3.5) it follows

〈ṽ − ṽproj, ei − ṽproj〉

=

j∑
l=0

(
p(l) − 2

d

)(
1−

d−1∑
k=j+1

λk

)(
−2

d

(
1−

d−1∑
k=j+1

λk

))

+
d−1∑

l=j+1
l 6=i

−2

d

(
1−

d−1∑
k=j+1

λk

)−2

d

1−
d−1∑

k=j+1
k 6=l

λk

− (1− 2

d

)
λl



− 2

d

(
1−

d−1∑
k=j+1

λk

)1− 2

d

1−
d−1∑

k=j+1
k 6=i

λk

− (1− 2

d

)
λi


=

(
1−

d−1∑
k=j+1

λk

)

·

[
i∑

l=0

p(l)

(
−2

d

(
1−

d−1∑
k=j+1

λk

))
+

j∑
l=0

2

d

2

d

(
1−

d−1∑
k=j+1

λk

)

+
d−1∑

l=j+1

2

d

2

d

(
1−

d−1∑
k=j+1

λk

)
+

d−1∑
k=j+1

2

d

2

d
λk +

d−1∑
l=j+1

2

d

(
1− 2

d

)
λl −

2

d

]

=

(
1−

d−1∑
k=j+1

λk

)

·

[
− 2

d

(
1−

d−1∑
k=j+1

λk

)
+ d

2

d

2

d

(
1−

d−1∑
k=j+1

λk

)
+

d−1∑
k=j+1

2

d

2

d
λk

+
d−1∑

l=j+1

2

d
λl −

d−1∑
l=j+1

2

d

2

d
λl −

2

d

]
= 0. 2
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Finally we can state the proof of Fact 2: By Lemma 3.6, 3.7, and 3.8 one has
ṽ − ṽproj ⊥ A(R(p)). By Fact 1 it follows that v − vproj ⊥ A(R(p)). 2
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