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Abstract
Several statistics which are used for change-point detection are studied, when
applied to DAX-data, to find changes of trends. Using the usual levels of sig-
nificance, the time lag between a change of trend and its detection is quite
long. This is in agreement with the theory of sequential statistics.



1. Introduction
The detection of changes of trends is a major task in analyzing financial time
series. Usually technical analysists apply tools of data analysis which arose
by intuition but have no theoretical statistical foundation.
On the other hand there is some statistical literature on sequential change-
point detection, which can be applied to financial time series. Here we present
a little study in this spirit of a rather friendly DAX-dataset. We call it
friendly since it contains two time periods, where the market seem to have
changed trends. In fall 1992 it had its low at 1420 points and then slowly
turned around. In July 1993 there was another certain uprise. Both cases
are considered here, where of course the latter one is the much harder to an-
alyze. Beside others the Cusum-statistic is discussed. This is one of the few
statistics which arose from statistical theory and is known to many technical
analysists.
We start with explaining our statistical model in Section 2. Then we dis-
cuss in Section 3 how we determine our change-point a posteriori and how
we standardize the data-set. In section 4 we present the various statistics
together with some figures.



2. The model
We suppose that our data after standardizations fulfills the following model
assumptions:
X1, X9,..., X+, X:41,... are independent normally distributed random vari-
ables with unit variance and mean zero up to time 7. After time 7, which
may be either a fixed time point or a realization of a random variable, the X;
have drift 6, where # denotes either a known real value or an outcome of a
random variable. We denote the corresponding probability measures by Py
and Py, where k stands for a fixed time point and 7 stands for a random
variable interpreted as a prior distribution of the change point. We note that
Po,o is the measure of no change.
We are aware of the fact that our model is far too simple to describe the
real data precisely (see [2]). Nevertheless there is strong evidence by central
limit arguments, that our conclusions are rather stable, when refining the
underlying model.

3. Preparing the data
For our investigation we use daily sampled data of the German stock market
index DAX, recorded between August 1992 and October 1993.
For X; we take the increments of the prices and standardize them in an
appropriate way. For standardization we choose a certain change-point 7,
and remove the drift of the observations before 7.. By rescaling the variance
of the observations becomes one. It should be remarked, that for doing this,
we adopt a posterior point of view which means, that we use the whole dataset
to find the most likely change-point 7,. We use the following statistics:
Let Xi(k) = + =1 X; and X,(k) = -1 ¥F,, Xi. We shall consider

n—

n

quad.res(k) = > (X; — X; (k))2 + ) (Xi- Xg(k))Q, k=1,....m,

k+1
and
k B n B
abs.res(k) := Y | X — Xu(k)| + D_ |Xi — Xo(k)|,  k=1,...,n
1 k+1

A reasonable choice of the change-point 7, from the posterior point of view
may be a 7, which has low values for these statistics.

Another possibility is to perform multiple t-tests (see esp. [8] and [5]), and
guess the change-point as that 7., where the following statistic attains its
maximum:

k(n — k) | X1 (k) — Xa(k)]
n se(k) '

t(k) ==



with

(Zk: (X — Xa(k i (X5~ XQ(k))z) ; k=1,...,n.

Under the hypothesis that no change occurred the asymptotic distribution of
the maximum of ¢(k) is available (see [8]) and therefore also the asymptotic
p-values.

Figure 1 shows the raw data of the German DAX-index.
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Figure 2 includes the values of quad.res and abs.res on an appropriate scale’
and Figure 3 does this for the statistic t(k).
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I'We have decided to divide the values by their maximum over the whole range.



Fig. 3
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From these statistics we choose our experimental change-point 7., which
serves for standardizing the original data.
Fig.2 and Fig.3 resemble each other, which is not very surprising, since the
statistics all deal with residuals in some sense. Apart from the two patho-
logical peaks or holes at the very beginning and the end of the data set?, the
three figures suggest the most likely candidates for 7.: k = 38,k = 86 and
k = 194. All three statistics have k = 86 with a bit less evidence than the
two others. The statistic abs.res prefers k = 194 to k = 38, whereas the two
others are in favour of k = 382. It is interesting to note, that the t-value 2.09
which is reached at k = 38 has a p-value of 0.018, whereas the t-value 1.98
reached at k = 194 has p-value 0.024. Nevertheless it is misleading to take
these p-values serious, since we have enjoyed the luxury of evaluating 317
t-tests. If we take an approximative expression of the correct p-value as in
8], we get about 0.5 for k = 38, so that the posterior-analysis cannot reject
the hypothesis that there is no change at all.
But for the sake of watching the stopping times at work, we choose 7, = 194.
Equipped with this standardizing-point we can perform as follows. With the
rescaled increments,

e Xz' — Xl (Te)

Zi—'—_; ‘:1)"': 1
SE(TB) 1 n

the standardized random-walk S(k) is given by

For the DAX data we have a ’posterior drift’ after 7, of

Xy(7e) — Xu(7e)

0, =
Se (Tc)

=0.23 (1)

2This comes from the asymptotic behavior of ¢(k) near k = 1 and k = n (see [8]).
3At k = 38 the DAX index attains its minimum over the whole underlying dataset.



units per day.

Fig. 4
o
o™
o
(8]
X o
w b oad
I
- VA AV
D T T Ll T
0 50 100 150 200 250 300
time

Looking at Figure 4 it seems quite reasonable to assume a change-point at
T, = 104,

4. Sequential analysis

We consider now the standardized data as outcomes of a sequence of inde-
pendent, normal random variables X, ..., X;, X;41,..., where X;,7 < 7 are
N(0,1)-distributed and X;,i > 7 are N(6, 1)-distributed*.

We take the sequential point of view (which means that at time k only
Xi,..., Xy are known) and analyze our data set with some sequential meth-
ods. They are based on stopping times of the time series X, X5,.... Here
stopping means an alarm stating that the drift has changed. The stopping
times under consideration all stop when certain statistics exceed some given
thresholds. This means that they have the following structure:

Tstatistic(b) = inf{t > U|statz’st2’c(t) > b},

where statistic denotes one of the quantities defined below. Therefore the
specific underlying statistics can be regarded as indicators for the occurrence
of a change-point.

4In our case we choose of course 7 = 7,.



4.a. Statistics for simple hypothesis
Most of the stopping statistics proposed in the sequential literature are based
on likelihood-ratio quantities. The following four procedures all treat the
post-change drift # as known, which is of course not realistic. Here we will
take 0 = 6..
The first statistic is known as Cusum-procedure and is motivated by maximum-
likelihood consideration. It is given by

CUS(K) = 0 {S(k) ~ 2k~ min(s(i) - ﬁj)} : @)

i<k 2

where S(k) denotes the underlying random walk. CUS(k) figures as max-
imum of the log-likelihood-ratios —"=R| with Fy, = o(X;|i < k), where k

runs through all possible values from 1,...,n.
Another possibility is to regard the likelihood ratio LIK’(k) := dP:.,u |ﬂ,

where we choose the prior distribution of 7 arbitrarily. In what follows we
use a geometric distribution Py, (7 = k) := ¢*p with ¢ = (1 — p). Thus
LIK®(k) is given by °:

2

LIK®(k) :=}_ exp{8(S(k) — S(5)) - e—(k —)}pd + Pos(T > k). (3)

Jj=0 2

Another statistic closely related to LIK? is the posterior probability
POST (k) = n°(k) = Py, (t < k|S(j),j < k), which is computed as

4 _

w0y = LK) — Par(r > K)
LIK(k)

Therefore, by drastically exceeding the prior probability PRIOR(k) = P (7 <

k), the posterior POST (k) gives some evidence for the occurrence of a change
point.

By letting the parameter p of the prior distribution tend to zero and
so allowing the prior distribution to become improper, we derive from the
statistic considered above the well known Shiryayev-Roberts-statistic (see
e.g. [9]), which is

k 2
SR = 3 expl0(S() ~ SG)) ~ 5k~ )}

5This approach relies on a Bayesian point of view, which seems advantageous in this
context, since it allows to get rather simple expressions of a risk structure and therefore
solvable optimization problems, see [13] and [1].
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Since under the hypothesis Py the statistic SR?(k) — k is a martingale we
expect that SR?(k) takes values much higher than k, when a change already
occurred.

In the following we present some graphs of the above statistics for the rescaled
DAX-data with @ = 6.. For LIK and POST we choose p to fulfill Eg ,7 = 7.
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To see a little bit more clearly what happens it seems reasonable to trans-
form POST (k) and SR(k) on a more convenient scale. Therefore we consider
the difference between POST (k) and PRIOR(k) (which is indicated in Fig.
8 with the dashed line) relatively to (1 — PRIOR(k)) instead of the mere
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POST (k). So we get

_ POST(k) — PRIOR(k)

rel. POST (k) := I~ PRIOR(R)
For SR(k) we consider
k)—k
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What can we conclude from these plots? Fig. 5 looks slightly more
impressive then Fig. 4 itself. The two most remarkable jumps upwards at
k=227 and—are better visible than in the original data (Fig. 4).

In Fig. 7 we vary the parameter p which was in Fig. 6 chosen to hold
the equation Ey,7 = 7.. Since the LIK-statistic stems from the likelihood-
ratio of two distinct probability-measures, the values of LIK are closely
related to error probabilities. Thus to use the LIK-statistic means to work
confirmatively in the common statistical sense. According to the classical
theory, stopping at b = 2 (b = 4) means to reject the hypothesis of no
change with an error probability of about 50% (25% resp.). In face of the
levels usually used in confirmative statistics the significance level achieved
wit HIDFRA2E5)E205% 100ks in no way overwhelming. Fig. 7 with the other
prior distributions shows that for the early prior wit 90y the time
point k = 255 loses any importance since it does not contrive in reaching
the level b = 2. The progression of the LIK-statistic using the late prior
corresponding to Ey,7 = 500 resembles Fig. 6, the plotted line moves on a
slightly lower level.
Fig. 8 or the rescaled Fig. 9 also suggest to stop at k = 255 and so does the
Shiryayev-Roberts statistic. In Fig. 11 k = 255 is the first time, where the
rel.S R-statistic crosses level 2.
Briefly one can resume as following: all the above statistics suggest k = 255
in a more or less expressive way, but the phrase of high significance should
not be used in this context. On the other hand the delay om
mhlch means nearly three months delay, looks rather daunting. But a
change o s also quite hard to detect. For example, an
approximation for the delay of the stopping times T ke (b) is given by ( see

[4])

Egr(Tipe () — 1) ~ (1085 + K(p,0)), (4)

02
with K a constant depending of the prior parameter p and 6. We evaluated
K approximatively following the lines of [4]. This yields an expected delay
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The study for t!e change-point chosen at k& = 38 looks somewhat different.

In this case we getifgEn@@8fgwhich yields a simpler detection problem. The
following pictures support this impression:
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Fig. 4b shows that the progression of the standardized data with 7, = 38
follows the regression line quite regularly. The Cusum-statistic reflects this
by showing nearly the same shape as the original curve, whereas the LIK?-
and SR? statistics grow very rapidly after k = 107, e.g. LIK passes b = 10
at k=107, b= 20 at k = 119 and b = 100 at k = 126. The approximation
formula (4) renders for b = 4 an expected delay of about 33 days and LIK
passes b = 4 at k = 66. In this case the common values for safeness in
statistical inference are reached around k = 120, which means a delay of
about 80 trading days. '

4.b. Statistics for composite hypothesis
All the above statistics deal with the fixed parameter 6, and the stopping
times based on Lik and SR are known to work at their best since 6, is equal
to the posterior drift (see [13], [10]). Thus the statistics should also work
quite good, when @ is near the right value of the post-change drift. In Fig.
12 we vary the ’known’ drift 6, fed into the LIK’-statistic applied to our
random walk S(k), k > 1.
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The message seems to be clear. The higher the possible change (our guessed
f) is expected to be, the lower is the sensibility of the LIK statistic for our
data set, since the indicator line moves generally downwards.

One possibility to get rid of the parameter €., on which we rely in our ex-
ploration, is lent from the theory of tests with power one (see [7]). We regard
the parameter # as random, ruled by a distribution G(df) with g({0}) = 0
and then simply mix the statistics according to that distribution. Since for
every 0 the LI K" statistic is a test of power one for the simple alternative of
Py r, the 'mixed-statistic’ inherits this property. For our practical evaluations
we assume throughout the following, G to be normal N(0,1).

Mixing the Cusum-statistic makes only sense, when we remove the log,
that means to mix the expressions ezp(CUS?(k)). Thus one gets

1 (S(k) = SG) + &)’
exp{ RS }

2
€207 max

miz.CUS(k) := Ll e g

Q|+~

When we mix the likelihood-ratios we get

mizlib(8) = [, 3 exp{u(S(h) - 5(0) - U (k= )}e'Gldy) + Pl > b).

This stopping statistic has a known, nice optimal property, which is discussed
in [1].

The same idea can be applied to the Shiryayev-Roberts-statistic. We get

2

miz. SR(E) = [ 3" exp{y(S(8) - SG)) ~ % (k - 1)}C(dy).
R 25

Under the measure P, this statistic inherits the martingale-property from
its simple counterpart (see 4.a.). For the continuous case this is discussed in

13



some length in [10].
The following three pictures show these statistics when G has a N(0,1)-
distribution.
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It can be shown ( see [1]) that the approximation formula (4) which is true for
T ke (b) is also valid for the mixed statistic Tniz 115 (b) up to terms of order
loglogb. (In [10] an analogous behavior is shown for Tgge (b) and Tz sr(D).)
For our first data set with standardization point 7, = 194 Figs. 13-15 show,
that the mixture-statistics have some difficulties in gaining some expressive-
ness. It seems that miz.CUS and miz.S R react very sensitive on a big jump
upwards in the original data. This explains the peaks at the times k = 22
and k = 227. The maz.lik-statistic shows no reaction of that type until the
end of our observation horizon at n = 319.
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On the other hand for the second case with 7, = 38, when there is time
enough, the mixture-statistics work similar to their simple counterparts.

Fig. 14a
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5. Conclusion
Since quickness and safeness are two contrary goals in change-point detect-
ing, we cannot expect to get a unique procedure which covers all situations.
There are problems, where quickness is advantageous, others where safeness
is wished. The statistics investigated in this study all rely on likelihood con-
siderations and focus more the side of safeness than that of quickness. But

since the observed levels of safeness are not that high, one might be a bit
unsatisfied. On the other hand, the statistics are in some sense the best
and one must say that confirmative statements about drift-changes cannot

be done better.
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