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Preface

|[UCUNDI ACTI LABORES.!

Last autumn the average newspaper reader was most likely confronted wekiskence
of something calledinancial mathematics Its short period of fame was due to Robert
Merton and Myron Scholes receiving the Nobel prize in economics for their work on the
pricing and hedging of stock options. But in fact, since the famous article by HBlack
Scholes (1973) and its reformulation by Harrison & Pliska (1981) in terms of mgzte
theory, many papers have been written about the implications of differenetraddels on
derivative prices and hedging portfolios. Most of these approaches rely heavipeotfic
assumptions concerning the distribution of the underlying securities price precédse
fact makes adaptation to more general situations and comparison betwees diffideilt.
Our goal is to present a new formalism for derivative hedging and pricing whietsiee
three following demands as far as possible:

1. It shall not be restricted too closely to a specific distribution hypothestsnstead
be applicable to a large class of underlying securities price processes.

2. In cases where market completeness is not given, the additional assumptiesis nec
sary to determine strategies and prices shall be economically meaningful.

3. The derived formulae shall be numerically tractable.

In order to achieve the generality, we are striving for, we express diveoskels for the
underlyings in a uniform manner. This is done in terms@mimartingale characteristics
andmartingale problems These are intuitive notions that have not yet sufficiently found
their way into applications. To overcome this gap we present these conceptartewe

also state a new (though classical in spirit) existence and uniquenessfoesndrtingale
problems. Modelling dynamical phenomena by martingale problems should be considered
a stochastic counterpart of ordinary differential equations. Therefore, it imohyeans
restricted to financial applications and the title of this thesis could dshaee beerSemi-
martingale Modelling and Financé/Ne have nevertheless chosen the prepositipeince

the financial aspect is expounded upon and cannot be fully appreciated without the general
mathematical framework.

1Cicero, de finibus 2.32.105
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Chapter 1

Introduction

1.1 Obijective

As an investor in a securities market you may be facing two questions. dta¥l you
compose your portfolio? What is a good probabilistic model for the market enabling you,
for instance, to estimate your value at risk? To tackle these problems we ppyposeding

in three steps.

Firstly, one divides the securities of interest into underlyings and derigafivee assign-
ment of any asset to either group may be quite arbitrary. The only condition we éngos
that — roughly speaking — the value of any derivative is, at a certain futaes tiniquely de-
termined by the present or past values of the underlyings. Usually we treat stiooisterm
fixed income investments etc. as underlyings, while futures, options, zero-couporet@nds
are considered derivatives of these assets. Now one needs a good probalmtigtiéonthe
underlyings, including all unknown parameters that have to be statisticaligagetl. In
a second step, one extends this statistical model for the underlyings to the whokt,mark
including the derivatives. In this enlarged model one computes optimal trading onlgedgi
strategies. The results from the second step are usually not given in ébwsedHence,
step three is to evaluate the formulas by means of nhumerical algorithms.

This thesis deals with how to perform the second step. For the construction b a
priate formalism we are guided by three goals:

1. Generality: The statistical setting for the underlyings in the first step will usually
be given by econometricians and/or statisticians. They work hard at imprdwng t
models for financial data, including correlation of different securities antiysisa
of high frequency data. Therefore, we want our approach to be applicable to very
diverse and complex securities market models including discrete-timelsraxieell
as continuous-time models with continuous and discontinuous paths.

2. Appropriateness of the assumptioria: general, one cannot compute unique prices
and optimal portfolios without making strong assumptions concerning the behaviour
of the market and the quality of trading strategies. We want these hypotheses and

11



12 Chapter 1. Introduction

conditions to be economically intuitive.

3. Numerical tractability: Although flipping through the pages of this thesis may not
give you this impression, our approach is aimed at the practitioner. Thus we must
ensure that the resulting formulas are numerically tractable. This does aat tine
one can fall back on existing methods in any given setting. But we want to take c
that the results are not too complex to allow for efficient algorithms afTallavoid
this, we simplify the assumptions leading to the extended models.

Black & Scholes (1973) give a very elegant and satisfactory solution to ourskepeoro-
gram in a particular situation (also including the first and the third step)c& summarize
their reasoning in an informal manner as follows:

market regularity conditions
+ hypotheses on the distribution of the underlyings
absence of arbitrage (1.1)
— unique reasonable derivative prices

perfect hedging strategies

_|_

Here market regularity compromises many assumptions characterizalgndekets: Secu-
rities are traded continuously at any time at a unique market price, traceggice takers
and they can buy and sell arbitrary amounts of any asset without any triansaugts, taxes,
etc. In the Black-Scholes model the underlyings are stock and a riskless bank addwunt
interest rate is presumed to be fixed and stock prices are assumed te ls&ditestically
as geometric Brownian motion, which is a reasonable though not entirely stirgfap-
proximation. The key insight of Black-Scholes is that, under these conditions, the absenc
of arbitrage (i.e. the impossibility of riskless gains in the market) sisfioaderive unique
prices for European options on the stock. Their idea is as follows: One constructsaiclyna
portfolio consisting of shares of stock and money in the bank account whose valuaiat mat
rity will certainly equal the payout of the option. The dynamic strategy is selfrima, i.e.
after inception of the strategy no further cash infusions (or withdrawelshesgded. The
absence of arbitrage implies that investments yielding the same profits mreshleassame
initial costs. Hence in this setting a unique fair option price can be computialnrs of
the current stock price. Moreover, this answers the question how we can hedgskotr r
we have sold an option and if we can only trade in the stock and the bank account.rin orde
to completely offset the risk, we simply have to buy the duplicating portfollacivin fact
necessitates an uncountable number of very small trades.

The Black-Scholes approach was reformulated in terms of semimartirigesdeytby
Harrison & Pliska (1981). The application of the well-develogederal theory of stochas-
tic processeto finance led to considerable progress in the field. The paper by Harrison and
Pliska was also the main inspiration for this thesis.

The reasoning (1.1) has been applied to many other underlyings (e.g. foreign exchange,
zero-coupon bonds, cf. Lamberton & Lapeyre (1996)) and other distributional hypotheses



1.1. Objective 13

(for an overview see Frey (1997)). However, though the arbitrage-based dppoaheriva-
tive pricing and hedging is very elegant, it suffers from a severe lirartaf he choice of the
distribution of the underlyings is quite restricted. An alteration of the prolsigiimodel
not only affects the pricing formulas, it often makes the whole argumentatipossible.

Many papers have addressed derivative pricing and hedging in incomplete nRidess.
the reasoning (1.1) is not applicable, they usually impose additional conditions. Most ap-
proaches are restricted to a certain class of securities price prowaels (e.g., discrete-
time models or continuous-time models with continuous processes driven by Browoian m
tion). Some of them are based on a general equilibrium framework (cf. Duffie (1992))
some come up with ad-hoc assumptions. The equilibrium framework is appealingrirom a
economic point of view but in complex models the control problems which must be solved
in order to derive prices and strategies seem almost intractable. Altlmaudbrmalism is
fundamentally built on maximization of expected utility and on some form of ptarlear-
ing, we do not place ourselves in a general equilibrium setting. It would be inteydst
examine whether our approach could be completely embedded in that framework, but this
is beyond our scope here.

As far as hedging is concerned, Schweizer's work (Félimer & Schweizer (1991
zer (1991)) is related to ours in that he also works in a general semimaetisgfaihg and
he also applies a local optimality criterion for trading strategies mization of quadratic
losses). Contrary to him, we use an increasing utility function since we devawot to
penalize strategies that produce gains.

The probabilistic models used to describe the underlyings can be of very different kind.
Just consider bivariate diffusions, discrete ARCH time series and hypepoidiffusions
(cf. Chapter 4) that are all used to model stock price behaviour. These are notardg$es
with distinct path properties, they are also expressed in differenstaraing stochastic dif-
ferential equations or infinitesimal generators for diffusions, conditional lbigtans for
time series models and the Lévy jump measure for pure-jump independent increment pr
cesses. In order to apply the same formalism in these disparate settegayve to use a
unifying representation that can easily be obtained from the respectiveomstatihe appro-
priate tool at hand is the notion pfedictable characteristicr semimartingales, a concept
that goes back to 1t, Grigelionis, Jacod & Mémin (cf. Jacod & Shiryaev (19857 3).
Although Jacod's comprehensive account (1979) was written almost twenty yearsiago, t
notion seems to be scarcely used in applications. Very loosely speakingnaemgale
characteristics can be compared to the derivative of a time-dependenofunict this re-
spect,martingale problem$orm a stochastic counterpart of ordinary differential equations
(ODE's). As with ODE's, the question whether martingale problems have urogumas
is an issue. We give an introduction to predictable characteristics arithgade problems
with an emphasis on applications in Chapter 2. No knowledge of finance is needed there

Although the notions and results from Chapter 2 are necessary to understand owr formal
ism in its full generality, we feel that we should not frighten away the nigjoiff potential
readers by confronting them immediately with heavy doses of stochastic cal@susn
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appetizer, we present our approach in a lighter fashion in Section 1.2 for theeniait
model. Although we are applying only moderate portions of probability theory, this ex-
position contains all the important ideas from an economical point of view. In Chapter
we give a mathematically rigorous presentation of our formalism, which sapelied to
particular settings in Chapter 4.

Let us mention a peculiarity about our notation that may lead to confusion, but cannot
easily be removed. Far € R", 22 denotes the second component:pfvhereas for € R,
it indicatesz squared.

1.2 Intuitive Survey by Means of the Multiperiod Model

1.2.1 The Market Model

In this section we present all economically important ideas at an infoewal and with-
out going into mathematical details. We make an effort to be open about the asswsnpt
underlying our results in order to avoid being overinterpreted.

Our object of interest is a securities market with a finite number of tradseelts Like
most approaches, we assume some kinidictionless marketIn this case, this means that
traders can buy and sell arbitrary (including fractional and negative) amotiahy security
at a unigue market price without any transaction costs, taxes, restgair margin require-
ments. The borrowing and lending interest rate are equal. Any single traaesumed to
be so small that he does not affect market prices. Some of the conditions willdke ezl
later, but still they form the basis for most of the following. The tdrmationlessis well
chosen, since — as in physical models — it means that we make assumptions ttexeare
fulfilled in practice, but allow us to approach the subject by mathematieains. One then
hopes that the results form a good approximation of real markets. In generaljltloisiy
be true in cases where the “friction” is at least low. In our setting thie isay that we are
talking only about heavily traded markets of comparatively large volume agddrey.

The securities at our exchange are termied ., n. The market prices of these assets
are described by thg: + 1)-dimensional stochastic proceSswhich simply means tha!
is the (random) price of securityat timet. Heret takes only the valueg, 1,2, ..., since
in this introduction we are working in a discrete-time frame. We assumntehbavhole
market (i.e. the price proces§ is governed by some objective probability measHreon
which inference can be made e.g. by statistical means. Security O playtcalparole. It
serves as aumeraireby which all other securities are discounted. The discounted market
price of securityi at timet is denoted byZ! := S!/S?. In the following we consider only
the discounted price processgs’, ..., Z") which have to be multiplied by° to return
to nominal prices. Usuallg® is the money market account, i.e. a short-term fixed-income
investment with initial valueS? := 1. But in principle it could be any traded security.
Discounting practically means expressing the value of any asset or portfaliuts of the
numeraireS°. Note that the resulting trading strategies and derivative prices iolloa/fng
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subsections slightly depend on the choice of the numeraire.

We follow the standard approaches in describing trading by angthet )-dimensional
stochastic process calledtrading strategy The random vectop;, = (¢?,. .., ¢}) is the
investor's (hereafter callegbu) portfolio at timet, i.e. at timet you hold ¢! shares of
security:. The composition of your portfolio can only be based on the information you
have, which generally excludes exact knowledge about future price changes. We denote the
information that is available to you up to timeasd,. As is usually done, we assume that
you have to order your portfolio for timestrictly beforet, i.e. based on the information set
F, 1. Mathematically this is to say that, is &, ;-measurable. We call youspeculatorif
you can choose your portfolio freely among all securities ., n. For ahedgerwith fixed
positionsy/*, ..., y" in assets:, ..., n, the situation is different. He is only free to choose
@Y, ..., o1, butthe rest of his portfolio is determined by the equalifigs= ", . .., ¢} =
1™, This is the state of affairs for e.g. a bank that has sold derivatives, n and can only
trade in the underlyings, . . ., £ — 1 to hedge the risk.

Thevalueof your portfolio (i.e.> " , ¢"S" or Y " ¢'Z" in discounted terms) changes
whenever you gain or lose money due to price changes of the securities or if you invest or
withdraw funds. In our approach we are only interested in changes of the first kind. Your
financial gaingn discounted terms at timeare AG,(p;) 1= > 1 0iAZ} =S pi(Z] —

Z!_,), since the discounted securities prices change at#ifrem Z;_, to Z!. We denote
yourtotal gainsup to timet by G (¢) := St AG,(ps) =30 S0 L AZL

1.2.2 Optimal Strategies

In this subsection we assume that the probability distribution for future phaaeges of

all assets is known to the investor. We will relax this condition lalewould be great to

find an optimal strategy in the sense that it maximizes your financial geihsr GG. This

will typically not be possible, of course, since you do not know the direction of future pric
changes in advance. One could now seek to maximize at leastpbetedjain E(AG,(¢;))

or E(Gy(¢)), but this would contradict economic prudence. Investors usually prefer slightly
lower expected returns if they can thereby considerably reduce their riskseéd. One
way of taking this into account is by trying to maximize an expected utilityeiadtof the
expected gain itselfUtility here means a functiom : R — R of the gain, i.e. you try to
maximizeE (u(AG(¢:))) or E(u(G(p))). If u is appropriately chosen, then optimization

of the expected utility takes into account the average return as well askloe the degree of
uncertainty of the profit. To that end, you wanto be strictly increasing and concave. Strict
growth means that you prefer “more” to “less.” Concavity is a way of sayingtiau earn
$100/month you will be happier about a pay rise of $50/month than if your salary amounts to
$10,000/month. In particular it means that, when computing expectations, potential losse
more than offset potential profits of the same size and likelihood. Utility fanstare a
common tool in equilibrium theory and they can be backed up in that frameworle (gee
Duffie (1992)). We only use them as a reasonable intuitive concept here. Beforeowssdis
the particular choice ofi, we have to decide whether we want to considéf, or GG, for
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maximization. If you seek to optimiz&(u(Gr(y))) for a given distant tim&’, you are
trading on a long-term basis. You have to maximize only one function, but over ¢avgey
set of variables (namely, the set of all strategies between time @ andlliternatively, one
can work on a short-term basis by choosing, at each tjragortfolioy;, ; that maximizes
the expected utility? (u(AG411(p:11))) for the following period. In economic theory one
usually considergerminal wealthwhich is a long-term concept (cf. Korn (1997)). For two
reasons we work instead with the one-period gaids.

1. A sequence of maximizations B**! is a much simpler mathematical problem than
optimizing over the whole set of strategies, which is of a very high dimensioneS
numerical tractability is a basic demand for our approach, this alone would lmnreas
enough to consider only local gains.

2. It seems likely to us that many investors really trade on a shortdesis, so that the

easier concept may even be as adequate as the other. We also avoid dependencies of

the results on the terminal ddie

Now we turn to the shape of the utility function: R — R. We demand the following
properties:

1. u is three times continuously differentiable.

2. The derivatives’, v", u"" are bounded anldm, ., u'(z) = 0.

3
4. v is strictly increasing (i.eu'(z) > 0 for anyx € R).
5. w is strictly concave (i.eu”(x) < 0 for anyz € R).

k := —u"(0) will be calledrisk aversion We have already explained that we claim Proper-
ties 4 and 5 for economical reasons. The third statement is just a convenieratlisation
that does not affect the results. The first two features are set up for matibehease and
(particularly the boundedness @ to allow application to a large class of underlying prob-
ability distributions. Since we want to give concrete advice to the traderpmwpose a
one-parametric class standard utility functionsnamely

1
Uy :R—=R z— —(1+ ke — V1+ k22?)
K

for any risk aversion: > 0. The functions.,, are plotted in Figure 1.1 for = 0.2 (dotted
line), x = 1 (solid line) andx = 5 (dashed line). The risk aversion parametenust be
chosen by the investor according to his tastes. Choosing a very large valoe thatone
tries to minimize the expected losses, almost regardless of the positnge de a result,
big values of< may be appropriate for a hedger. On the other harddsfsmall, thenu, (x)
behaves like the identity for moderate valuescpto that one is basically maximizing the
expected profit without caring about the risk.

We are now ready to define optimal portfolios.
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Figure 1.1: Standard utility functions,, forx = 0.2, x =1, Kk = 5.

Definition 1.1 We call a strategy.-optimalif E(u(AG(¢;))) is maximal for anyt € N\

{0}.

Since E(u(AGi(¢r))) = E(E(u(AG(¢r))|Fi-1)) (Where E(-|F,_,) denotes conditional
expectation giveff; ;) and sincep, can be choseff; ;-measurable, it suffices to maximize
the function

b Bu(AG, ()| F 1) = E(u( Zn:zmz;‘) 53,1).

Taking partial derivatives yields

Lemma 1.2 1. A strategyy is u-optimal for the speculator if and only if for anye

N\ {0}

fﬂ_l) =0 foranyi € {1,...,n}.

E(u' ( Zn: ¢{Azg) AZ

J=1

2. A strategyp is u-optimal for the hedger with fixed positions, . .., ¥" in the assets
k,...,nifand only if for anyt € N\ {0}

(@)

E(u’(Zgo{AZg)AZZ 33_1) =0 foranyi e {1,...,k—1},
7=1
(b) o
9035 =’ for any: € {k7 .- '7n}‘

Observe thap" can be arbitrarily chosen becaudeZ) = 0 for anyt. It remains to solve

n equations in thex unknownsy;, ..., o} at any timet. For the rest of this chapter, we
assume that the equations in Lemma 1.2 have a unique solution. In Chapter 3 (cf. Theorem
3.28 and 3.26), we show that the existence of optimal strategies is implied by tmealo$e
arbitrage in the following sense.
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Definition 1.3 We call a trading strategy anarbitrageif there is a fixed tim&” > 0 such
thatG'r(p) > 0 P-almost surely and® (G (¢) > 0) > 0.

Let us summarize. We have defined a notion of optimality for trading strategnear-
kets where the distribution of all securities price processes is knowncdhcept is flexible
as to the risk profile of the trader (by adjustment of the risk aversion pagamietthe stan-
dard utility functionu,) and to his situation (speculator vs. hedger). Since we have chosen
a local criterion, optimal strategies can be computed relativelyydagiLemma 1.2.

1.2.3 Trading Corridors

As a real investor you are facing transaction costs. So you are not going toaarptying
strategy necessitating many small adjustments of the portfolio. You hastedoa middle
course between too many transactions and positions which are too riskysiSbyasl, we

want to provide you with some sort of alarm that is triggered whenever you arartodf f

the optimal strategy. More precisely, we define a trading corridor consistalypdrtfolios
whose expected utility does not fall to more thabelow the optimal value. The utility
bandwidths € R, has to be chosen according to the investor's needs. A large parameter
£ means accepting a higher risk, whereas a trader who does not want to leave itha corr
corresponding to a smallmust reshape his portfolio more often.

Definition 1.4 1. The(u, )-trading corridorat timet for the speculator is the set of all
portfolios ¢; such that

B(u( 3 #inz))

i=1

n

9271) > E<U< Z sO{AZ€>
=1

9271) — &,

wherey is theu-optimal strategy for the speculator.

2. The(u, £)-trading corridor at timet for the hedger with fixed positiong®, ..., ™ in
the assets, ..., n is the set of all portfolio®; such that

B(u( Yo #AZ)|F) = B(u( Y0 Ainz)
j=1

j=1

S"t,1> —¢

and
ot = foranyi € {k,...,n},

wherep is theu-optimal strategy for the hedger.

It is shown in Chapter 3 that the trading corridors usually form convex subsgts 6f
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1.2.4 Derivative Pricing

For the computation of optimal strategies we need a probabilistic model for the miaole
ket. Obtaining such a model solely by statistical means has two disadvanEacgtly, one
has to deal with a very large number of stochastic processes which congpksttaation.
Secondly, one ignores the fact that some assets are closely linked to othensgogidresa-
tives of them. The Black-Scholes model shows that in some settings this cameati
be so strong that the derivative price is actually a function of the underlyingnatrsense
one can interpret the Black-Scholes approach as a model extension from a m#rketown
securities (bank account and stock) to an infinity of assets (bank account, stbak Eu-
ropean options on the stock). In this subsection we will mimic this aspect in a geoeral
situation, albeit on admittedly weaker grounds.

The setting is as follows. We are still considering an exchange using sesorit. . , n.
We assume that the assets, $ay 1,...,n, arederivativesof 0, ...,[ in the sense that,
at some future tim&’, the random vecto(Z',..., Z2) is a deterministic function of
the processS?, Z!, ..., Z})icto1,. m (theunderlyingd. As in Subsection 1.2.1, we are
given a securities market for the underlyirs. ., [, including the probability measure
which governs price changes. However, we do not yet know anything about the desvativ
[+1,...,n, except their final valuegéirl, ..., Z7 interms of the assety. .., [. Our aim
is to build a probabilistic model for the whole market, i.e. to make a reaseisaigigestion
for the distribution of all securities. The extended model can then be used egjirtate
the value of risk of your portfolio or to compute optimal hedging strategies in the sense
of Subsection 1.2.2. This extension is only possible under some very strong assumptions
which carry a faint equilibrium flavour:

(A 1) We suppose that the vast majority of traders in the derivative market to®okspec-
ulators, whereas the influence of other investors (e.g. hedgers) is negligable.

(A 2) Moreover, we assume that the speculators intuitively (by their marketiexpe)
know the real distribution of all securities prices including the derivataed that
they trade (maybe unknowingly) by maximizing their expected utility in the sense of
Subsection 1.2.2. We suppose that they all work with standard utility functions, but
possibly with a differing risk aversion.

What is a speculator doing under these assumptions? He is choosing-tptimal
strategyy according to his risk-aversion By Lemma 1.2 and sincé, (z) = u)(kz) for
anyx > 0, x € R, this strategyp satisfies

E(u’l(z W{AZ,{)AZ,@' 33,1) - E(%(Z gog'AZg)AZg 33,1> -0 (1.2
j=1 j=1

fori = 1,...,n and anyt. It follows that all speculators trade with multiples of the

optimal strategy. In particular, if any speculator has a positive (regpative) amount of

a certain derivative in his portfolio, then the others do as well. Howaemording to our
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first assumption there are only few potential suppliers of these assets cdnparéuge
crowd of unrestricted traders. Hence, the portfolio of any typical spexutatist contain
practically no derivative. To phrase it mathematically, we can dhenfollowing

Conclusion 1.51f ¢ is the u,-optimal strategy for the speculator, thet = 0 for i =
[+1,...,n.

From now on, fixx > 0 and lety denote theu,-optimal strategy for the speculator. By
Lemma 1.2 it follows that

l
E(u;(zngzg)AZg 3;_1) —0 (1.3)
7=1
fori = 1,...,n and anyt. In particular (again by Lemma 1.2)¢°, ..., ¢!) is the u,-

optimal portfolio in the restricted market consisting only of the underlyings., / and can
be calculated without knowing the derivative prices. Recall that we hatevaed that the
optimal portfolios are unique except fgf which can be arbitrarily chosen. In Chapter 3
we see that one can do without this restriction.

Observe that Equation (1.3) allows to compute the derivative p#ées, Z:._, etc. re-
cursively. Indeed, sincg!, ..., Z' are given ang’, . . ., ¢’ do not depend on the derivative
prices,Z!_, can be obtained fror#} by solving Equation (1.3). Since such a recursive pro-
cedure is not applicable in continuous-time models, we will show how to obtain thader
tive prices in one step. To that end, we define a new probability me&5umequivalent to
the objective probability measure by its Radon-Nikodym density

Pt UZ(Zézl ¢{AZ§)
P tHl E(u;(zgzl go{AZ,f) ff,H)' ¢4

Proposition 1.6 1. The expectation of the right-hand side of Equation (1.4) equals
P~ is well-defined.

2. The definition of”* does not depend on

3. Fort =1,...,T and anyF,-measurable random variableé we have that

E(vu, (S viaz) ‘3'}_1>
E (uj{ ( Z;Zl go{AZ,f) fft,1>

whereE* denotes expectation with respectit instead ofP.

E*(Y|3:t_1) =

b

PROOF

1. SinceE(dP*/dP) = E(E(dP*/dP|%,)), it suffices to show that

. <dP* t u (5o winz)

33) =11 3’571)

dp 21 B (u (S, vinzd)

(1.5)
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fort = 0,...,7. (Just takee = 0.) By backward induction and the properties of
conditional expectation we have that
) o)

dp* dp*
E < dP rf“) E (E ( dP

i (X5, plazd)
-FE : Fi
E(uji 2321 gpiAZt> fft_1>
e (S einzi)
- EE(U;(Z;I Azl |7, )

2. Sinceu) (z) = u}(kz) for anyz, we have thap is u,-optimal if and only ifxy is the
uq-optimal strategy. This implies th&* does not change if we replagewith 1 and
theu,.-optimal strategy with theu,-optimal strategy.

3. LetA € F, ;. By Equation (1.5) we have

dP*
- (1)

E*(1,Y)

dp*
E(14F(YE
(e (v (G

>

dP*

p(vae (53, i)

)

Fi 1)

E|1,4E
A(dP

i)

E (uji ( 2321 @{AZ,{) ‘3’}4)

p(vi (5l )

5o 1)

E* |14

ALY )

Fi)

O

By Equation (1.3) and Statement 3 of the previous proposition, it followsthak 7! |F; )
= 0. SinceZ,_, is F,_;-measurable, we obtaidi; , = F*(Z}|F,_,) fort =1,...,T and

-----

.....

the derivative prices are uniquely given by

Z

E*(Z7|F:)

fori=1+1,...,nand anyt.
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Note that some regularity conditions are needed to make the previous lemma hold. Thes
can be found in Chapter 3, where we also give more rigorous proofs.

By Lemma 1.7, derivative prices are obtained by calculating conditional exjmersta
under an equivalent martingale measure in the sense of

Definition 1.8 A probability measure”* ~ P (i.e. P* and P have the same null sets) is
called equivalent martingale measure (EMNYr the market with terminal daté&' if the

.....

By a well-known result (cf. Lemma 3.7) the existence of an EMM implies thaetended
market admits no arbitrage strategies, which is desirable for a reasanalbitet model.

The traditional arbitrage-based approach of Black and Scholes is usuallycHjopt@m-
plete settings where the cash flow of any derivative can be duplicated by a idymantfolio
(i.e. a trading strategy) consisting only of underlyings. The only price process @nisist
with an absence of arbitrage in this case is the value process of the correspdunglicgt-
ing portfolio, which can be obtained by calculating conditional expectations under &h EM
as in Lemma 1.7. Since there usually exists only one such measure in completes (obdel
Lamberton & Lapeyre (1996), Theorem 1.3.4), both approaches to derivative pricing yield
the same result.

Let us mention two alternatives to substitute for the crucial Assumptioriy @ad (A
2) underlying our pricing approach. We have already observed that the optimal stsategi
of the speculators differ only by a factor. By Equation (1.2) it is in fact eassemthat
the union of the portfolios op speculators with, say, risk aversions ..., k, is theu,-
optimal strategy for a speculator with risk aversion= 1/(}""_, x; ). If other investors
are virtually absent, then this imaginary trader can be interpretedeggesentative agent
standing in for the whole market. Since any derivative that is bought by som&anveas
to be sold by another, the union of all portfolios must contain zero derivativetod®ely
applying terms from equilibrium theory one may rephrase Assumptions (A 1) and (A 2) as

(A 1) Derivative marketslear, i.e. the representative agent has a zero position in the assets
[+1,...,n.

(A 2") The representative agent is a speculator maximizing his expected stantigrtbuti
somex > 0. In fact, the behaviour of any single trader is irrelevant, as long as the
joint strategy of all investors ig,.-optimal for some: > 0.

The third approach leading to Conclusion 1.5 focuses on the issuer and is quitentliffere
from the first two. Suppose that a derivative is supplied by a bank for a fixed pivee.
are interested in the lowest price at which the bank is willing to offiés security. If it
usesu,-optimal strategies for some > 0, then the threshold is the price at which the
optimal portfolio contains zero derivatives. If the price is lower,isglis disadvantagous,
if it is higher, it becomes increasingly profitable. Hence, if the bank is a sp@Ecuising
standard utility functions and if we assume that the market price of the teevs.close to
its threshold value, we end up again at Conclusion 1.5.
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Let us once again give a brief summary. We have derived derivative prisesl loaly
on the probability distribution of the underlyings. This model extension is based on strong
economic assumptions. Lemma 1.7 shows that the derivative price procesdes aan-
puted by calculating conditional expectations under an equivalent martingale eneaisisr
implies that the extended market model is arbitrage-free and that, in cienrmpéelels, the
derived prices coincide with the unique arbitrage-based values.

What are the limitations of our suggested prices?

1. An extended model can never be better than the underlying probabilistic description
of the asset9),...,[. This is why one should not focus too strongly on complete
settings, although the derivative prices are better founded in these modejfidre
do not fit the distribution of the underlyings very well.

2. The assumption concerning the genesis of derivative prices may be intuitivef, b
course it can only be a rough approximation. Except for derivatives that can gctuall
be duplicated, market prices stem from extremely complex, interrelagetianisms.
Therefore, we doubt that any economical model will ever be able to determina-deri
tive prices correctly as a function of the underlyings and some exogenous variables.
Still, a lot of investors want reasonable concrete results to base thesiahecon.

This is exactly the purpose of our pricing approach. In the next two subsections we
will present ways to estimate the accuracy of our proposed prices and to erpev
market model, although this involves more complicated computations.

1.2.5 Price Regions

In the previous subsection we computed derivative prices under the condition tivat all
vestors in the market were speculators. This implied that any of thedersr had a zero
position in any derivative. In the following two subsections we allow far &xistence of
other traders who hold a non-zero amount of derivatives in their portfolio. If théq@osbf

these other traders do not offset each other, then the speculators have tothescoueter-
position. Hence, the union of the speculators’ portfolios does not contain zero degyati

as was assumed in the previous subsection. We want to examine how this change affec
market prices. To this end, we replace the first of the two assumptions inciobsk.2.4

with

(A i) The union of the portfolios of all speculators contains, at any tina@d for any
i€ {l+1,...,n}, p° shares of Security,

wherep!*t! ..., p" are fixed real numbers (called tletternal supply Observe that the
original Assumption (A 1) is a verbal paraphrase of ConditioniOAin the case'*! =
0,...,p" = 0. In the previous subsection we observed that the union of all the speculators'
portfolios is again au.-optimal strategy for some > 0. We refer to thisx as therisk
aversion of the representative speculafiorshort: representative risk aversipnGiven the
preceding remark and Condition @9 the following definition should be obvious.
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Definition 1.9 We call discounted price processgs!, ..., Z" consistent with the repre-
sentative risk aversior > 0 and the external supply' !, ..., p" (in short: (x, p"*1, ...,
p")-consistent if the u,.-optimal strategyy for the speculator satisfies

¢, =p' fori=1+1,...,nand anyt

(i.e. theu,-optimal strategy for the hedger with fixed positiofis’, ..., p" in the assets
[+1,...,nisug-optimal for the speculator).

In Subsection 1.2.4 we calculale, 0, . . ., 0)-consistent price processes by computing con-
ditional expectations under an equivalent martingale measure. We will satithest also
possible for non-vanishing external supply. For this purpose(fix!*!, ..., p") and let
Z*1 ..., Z™ andy be as in Definition 1.9. Define a new probability measBie equiva-
lent to the objective probability measuft by its Radon-Nikodym density

Pt U%(Z}ll W?AZO
P t[[l E(u;(zgzl go{AZ,f) ffH)' (+6)

With the same proof as in Proposition 1.6, one shows

Proposition 1.10 1. The expectation of the right-hand side of Equation (1.6) equals
so P* is well-defined.

2. Fort =1,...,T and anyF;-measurable random variablé we have that

B(vu, (X7, #iaz)

ALY )
As in Subsection 1.2.4, we conclude from Lemma 1.2 and the second statement of the pre-
vious proposition that’* (AZ¢|F;, ;) = 0 fori = 0,...,n and anyt. Hence, the processes

(Z!)i—o.... are againP*-martingales, but this time faP* defined by Equation (1.6). Thus
we have obtained

Ty 1)
Fia)

E*(Y|3:t_1) =

Lemma 1.11 Suppose that the market prices &g p'*1, ..., p")-consistent. Then the pro-

-----

Equation (1.6) and is theu,-optimal strategy for the speculator in the market. ., n.

Let us try to understand whét, p'*!, ..., p*)-consistent prices mean. In complete models
derivative prices can be derived solely based on the absence of arbithegyeare indepen-
dent of supply and demand, making those models very attractive. In more genenglsset
this is no longer true. Derivative prices are a function not only of the underlyings, but
also of the extent to which they are asked for by investors wanting tdys#tesr needs.

In our pricing approach this is taken into account by specifying the external supgly. (r
demand for negative valuegjt', ..., p*. Without considering concrete examples here,
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one would intuitively expect the current derivative price to be lower (reghér) than the
(k,0,...,0)-consistent prices from Subsection 1.2.4 if the respective supply is greater (re
less) than 0, since surplus supply generally tends to lower market pricegashexcess de-
mand increases them. Note that by Lemma 1(&1,*!, ..., p")-consistent market prices

are always arbitrage-free, since they can be computed by means of an equnhaiegngale
measure. In particular, they do not depend on the parameter vecét!, .. ., p?) if there

exists but one EMM. This is another way of saying that in complete models (wheeeishe

a unique EMM) derivative prices are independent of supply and demand. This property of
complete models leads us to measure the degree of incompleteness of the given model or
more precisely, the degree of unattainability of the contingent claims under caitgider

by the extent to which derivative prices do in fact depend on the sygply. .., p". To

this end, we replace the unique derivative prices from Subsection 1.2.4 with tfgsiees
corresponding to any external supply that does not exceed a given bound. More specifically
we have the following

Definition 1.12 As before, the underlyings . . . , [ and the derivatives at maturifgfr“, e
77 are given. Fix a representative risk aversion- 0 and asupply bound- > 0. We say
(k, p*1, ..., p*)-consistent market price processes for sffié, . . ., p" satisfying|p’| < r
fori=10+1,...,n.

Remark. One easily sees that the price region depends only on the predoft< andr.
Therefore it makes sense to use the ternprice region instead dfk, r)-price region.

Price regions may be compared to confidence regions in statistics, although Weey ha
nothing to do with probability. In neither situation we have enough information to ulyique
determine a certain quantity (an unknown parameter in statistics,atleeprices in fi-
nance). We can now take one of two paths. One option is to choose a particularseahee (
optimal estimator in statistics, the derivative prices from Subsedti2.4 in finance). Al-
ternatively, we may give a set (confidence/price region) consisting of thdsesvthat are
— according to some criterion — the most reasonable ones. Price regions (asrmanfete
gions) have the advantage that they contain information concerning the precisiompadthe
posed values. Therefore, they are particularly suited for model comparidon fiked «r
the price region is comparatively small or even zero, then derivaticepare chiefly resp.
entirely determined by the underlyings and only weakly dependent on supply and demand.
In this case the proposed derivative prices from Subsection 1.2.4 should fornoaakelas
approximation. On the other hand, in settings where the price region is compgrkgrgel,
model extensions solely based on the underlyings might be of limited explanatory power,
since the derivative market may follow its own dynamics to some extent.

Although we consider them to be a useful concept, price regions in the sense of Def-
inition 1.12 face two drawbacks because they are defined in terngs, pft!, ..., p")-
consistent price processes.
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We have not shown thét, o' L, ..., p)-consistent derivative prices really exist for
any choice of the parameter vector. Especially in the general continuousdimtext
of Chapter 3 (cf. Section 3.5), no satisfactory sufficient conditions for existare
known so far. This question should be addressed in future research.

Except for the simplest casg{' = 0,...,p" = 0), consistent price processes are
generally hard to compute explicitly. In order to see this, compare the Leniriia

and 1.11. The derivative prices are obtained in both cases by computing conditional
expectations under an equivalent martingale measure. But whereas theFENtM
Subsection 1.2.4 is defined only in terms of the underlyiifs . ., Z!, the pricing
measureP* in the current subsection (cf. Equation (1.6)) also depends on the deriva-
tive pricesZ!*!,..., Z" that have yet to be calculated. A way out of this vicious
circle is to proceed by backward recursion. The derivative pri€es, ..., 27 for

t = T (maturity) are, by assumption, given in terms of the underlyings. If the market
is (k, p'TL, ..., p")-consistent, then there exists, by Lemma 1.2, a strategych that

E(u ( Zn: go{AZ,f) AZ
j=1

S"H) =0foranyi € {1,...,n} (1.7)

and

ol =p'foranyi € {{+1,...,n}.
Sincelt!, ..., o are known, Statement (1.7) is a systemmogquations in the:
unknownsyp}, . .., ¢k, Ztlf}, ..., Z,. Given that a unique solution exists, we may
solve for Z{f}, ..., Z;, and subsequently in the same manner Zor,, 7, 3 etc.
However, this recursive algorithm has no continuous-time counterpart. Therefor
efficient computation ofx, p'*1, ..., p")-consistent prices is also an issue for future
research.

We now define an alternative notion of price regions that is less satisfdatoma theo-
retical point of view but avoids the stated problems. To this end, we replace,thie’, . . .,
p")-consistent prices in Definition 1.9 with, o'+, ..., p")-approximate prices that are ob-
tained as follows:

1.

As before, the underlyings . .., and the derivatives at maturitg., ..., Z» are
given as input. Fixc > 0 andp’ € Rfori =1+1,...,n.

. Take derivative priceg't!, ..., Z" as in Subsection 1.2.4.

Let ¢ be theu,-optimal strategy for the hedger with fixed positigns!, ..., p" in
the assets+ 1, ..., n, given the derivative priceg!*!, ..., Z" from step 2.

Define a new probability measuf, equivalent to the objective probability measure
P, by its Radon-Nikodym density

i gy {Saeis)
dP " E(UL(Z}LI Az ) 7 “> |
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5. Define new derivative price proces@#, ce Zn by
Zi = E*(ZL|F,) fori=1+1,...,nand anyt.
Z+1 . 7" shall be calleds, p'*1,. .., p")-approximateprice processes.

In the fourth step of this definition we mimic Equation 1.6, but we replacésahg ™', ...,
p")-consistent prices that we do not know with 0, . . . , 0)-consistent prices as an approxi-
mation. Likewisey is based oi!*!, ..., Z" from Subsection 1.2.4 instead of the unknown
prices as in Definition 1.9. Approximate prices are then computéttanartingales just as

in Lemma 1.11. Observe that if we started with p!*!, ..., p")-consistent prices instead

of the processes from the previous subsection in the second?s‘t@p, . Z" would be-
come(x, p*t1, ..., p")-consistent as well (by Lemma 1.11). Our hope is that for moderate
values ofp!*!, ..., p" the approximate prices are close to the corresponding consistent mar-
ket prices (cf. Subsection 4.1.4), but no rigorous statement has been proved yeha®ne
also iterate steps 2 to 5 of the above five-step procedure by substiftiting .., Z" for
ZW1 ..., Z™ in the second step and obtain an improved approximation, . .., Z" etc.

One can perhaps apply this iteration procedure in order to obtaifi*!, . . ., p™)-consistent
price processes in the limit (cf. Subsection 4.1.4). Be this as it may, we applpximate
market prices here since they are well-defined, can be obtained with exiffease, and
share the following useful properties.

Lemma 1.13 1. If 24!, ... Z"are (k, p"*1, ..., p")-approximate price processes, then
P* from step 4 is an equivalent martingale measure for the mdeket. . ., 7!, 7'+,
., Z™), which is therefore arbitrage-free.

2. Forp!tt = 0,...,p" = 0 both (s, p'*, ..., p")-approximate andx, p'*,..., p")-
consistent prices coincide with the derivative price processes from Lemma 1.7.

3. If there exists only one EMM, then approximate prices and consistent prices neces
sarily coincide with the unique arbitrage-free prices.

PROOF

1. Firstly observe that Proposition 1.10 also holdsRorfrom step 4. By Statement 2
in Lemma 1.2 we have thaf(AZju,, (-0 I AZ])|F,—y) = 0fori=1,...,land
anyt. By Statement 2 of Proposition 1.10, it follows th&t(AZ!|F;,_,) = 0 for
i = 1,...,1 and anyt. This implies thatZ’, ..., Z! are P*-martingales. Moreover,
ZI+1 .., Z™ are P*-martingales by definition.

2. This follows from the definitions, from Lemma 1.7 and from Conclusion 1.5.
3. This follows immediately from Statement 1, Lemma 1.11 and Lemma 1.7. O

Parallel to Definition 1.12 we now define approximate price regions for use in place of
Kr-price regions.
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Definition 1.14 Fix a representative risk aversian> 0 and a supply bound > 0. We
say that derivative price procesgeg ™, . . ., Z}")i=o... 7 belong to theapproximatesr-price
regionif (Z\*', ..., Z") -, are(s, o1, ..., p")-approximate market price processes for
somep't!, ..., p" satisfying|p’| < rfori=1+1,...,n.

We want to summarize the notions from this subsection. There are no unique arbitrage-
free derivative values in incomplete models. Prices may depend on supplyraaddieWe
take this fact into account by introducing consistent prices that incorporat@aaixsepply.
By uniting all price processes that correspond to moderate demand, we defineegitresr
that can be used to measure the degree of incompleteness of the market anglsaiow
assess the accuracy of the prices from Subsection 1.2.4. For computational edse we a
introduce approximate prices and approximate price regions as a substitute foresansist
prices and price regions. For better justification of the concepts from this siabsecfew
guestions still must be resolved. Firstly, what are sufficient conditions foexistence of
processes that are consistent with given external supply? Secondly, efflgienithans to
compute these prices are desirable. Thirdly, under what conditions and in whatdgense
approximate prices converge to their consistent counterparts?

1.2.6 Improved Derivative Models

In Subsection 1.2.4 we compute derivative prices mainly for the purpose of model ertensi
Such an extension should be based on all the available information. Therefosapuld
incorporate the initial derivative pricég ", ..., Z2 in our model, since they are observable
in the market and have not yet been taken into account. The idea is again teréydirst
assumption in Subsection 1.2.4 with Condition i)\from Subsection 1.2.5 and hence to
work with (x, p!*1, ..., p")-consistent price processes.

Definition 1.15 In addition to the underlyings . . ., [ and the terminal value’él;’l, AL
fix initial derivative pricesp't!, ..., p". We call discounted price processgs', ..., 2"
consistent with the initial priceg' ™!, ..., p" (in short: (p'**, . . ., p")-consistentif

1. there existsa > 0andp'*!, ... p" € RsuchthaZ!*! ... Z"are(k, o', ..., p")-
consistent,

Zi=p'fori=1+1,...,n.

By using(p'*!, ..., p")-consistent processes instead of the prices from Subsection 1.2.4, we
are hitting two birds with one stone. Firstly, we avoid contradicting obskanel theoretical
initial prices. Secondly, we can relax the strong Assumption (A 1) (thatdgecs hold vir-

tually no derivatives) to the weaker Condition i/yx(that speculators hold a constant amount

of derivatives). However, as noted in the previous subsection, consistemppoicesses are
mathematically intricate. Therefore, we once again introduce a secondptahatis less
intuitive from an economic point of view but facilitates explicit computations.
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Definition 1.16 Fix initial derivative priceg!*!, ..., p". Discounted price process&s!,
..., Z™ shall be callegpproximately(p'*!, ..., p")-consistentf
1. there existsa > 0Oandp'*!, ..., p" € RsuchthatZ!*!,... Z"are(k, p'*!, ..., p")-

approximate price processes,

Zi=p'fori=1+1,... n.
Let us make some

Remarks.

1. The risk-aversion in Definitions 1.15 and 1.16 can in fact be chosen arbitrarily,
since by Lemma 1.2 and,(z) = u)(xz) we have thatk, o', ... p")-consistent
processes arés, (rk/k)p*!, ..., (k/R)p")-consistent for any;, & > 0. Therefore,
one may choose := 1 without loss of generality in both definitions.

2. As shown in Lemma 1.11p'*!, ... p")-consistent markets always constitute arbi-
trage-free price systems.

3. Itis easy to see thdp'*!, ..., p")-consistent prices do not necessarily exist for ar-
bitrary p'*!, ..., p". Indeed, the initial derivative vaIu@é“, ..., Z} are uniquely
determined in complete markets by the absence of arbitrage. Therefdnes case
there is only one price vectgp'*!, ..., p") such thatp'*!, ..., p")-consistent prices
exist.

4. Itis an open question as to whetligh'!, . . ., p”)-consistent price processes are com-
pletely determined by the initial prices™!, ..., p".

5. Choosingp'*?, ..., p")-consistent price processes is related to the methaweft-
ing the yield curven interest rate theory (cf. Bjork (1997), Subection 3.5). In both
settings, one considers a parametric family of equivalent martingale nesaswt one
uses initial derivative prices (i.e. bond prices in interest rate theorgietermine the
unknown parameters. We will apply our approach to interest rate models irSect
4.9.

6. Remarks 1-5 also hold for approximatély*!, ..., p")-consistent instead dp'*!,
.., p™)-consistent price processes.

7. Similar to the previous subsection, it is desirable to prove convergengdtsnesating
(p*1, ..., p")-consistent and approximatelyt!, . . ., p™)-consistent price processes
(for a comparison see Subsection 4.1.4).



30 Chapter 1. Introduction

Observe that for the construction gf'*!, ... p")-consistent price processes we as-
sumed that the external supply™!,..., p" stays constant through time. Therefore, the
extended model will not keep track of variability that is due to changing demartfoma-
tives. One can now go one step further and take this variability into accowmrisgructing
models withstochastic external supplySince this step towards more flexibility leads to
even more demanding computations, we will limit ourselves here to sketchingaeiv-
able procedure as an outloolStochastic supplgtands for a randomly changing vector
(Pt .., pM)i=1...7» Wherepi denotes the supply of Securifyat timet which we as-
sume to be known at time— 1, i.e. F;, ;-measurable. As in Subsection 1.2.5, we may
now define(x, p'*1, ..., p")-approximate price process@y substituting the random sup-
ply (ot ..., pp) for the fixed supply'™', ..., p" in the third step. The statements and
proofs of Lemma 1.13 also hold for these generaliged' !, . .., p")-approximate price
processes. For model building one may now proceed as follows.

1. As before, subdivide the market into underlyifigs. . , [ as well as derivativels+ 1,
...,n and take a good probabilistic model for the underlyings.#ix 1.

2. Take a probabilistic model of Markovian type for the external supply pragéss
., P )e=1,...7 (€.9. a Markov chain in discrete time or a diffusion process in con-
tinuous time). Do not specify the initial supply|™, ..., p7) yet. All that is still
missing for computation ofx, p'*!, ..., p")-approximate prices is the current value
(P, ..., p?), which is not directly observable.

3. As for approximatelyp'™, ..., p")-consistent processes (cf. Definition 1.16), try to
evaluate the initial supplip\™, ..., p?) such that theoretical and observed derivative
prices int = 0 coincide. The market model for Securitigs . . , n is now completely
determined.

4. The last step is to check whether the model extension and especially the dypply
namic in step 2 fits the real data well. To that end you successivelylatdcthe
implied supply(pit', ..., p*) by equating theoretical and observed derivative prices
int=0,1,2,.... Isitlikely that the time serie&|™", ... . Y )i=1,...7 IS generated by
your model in step 27 If yes, that is fine. If not, then you should change it.

Through this procedure, you obtain a model that can keep track of a dynamic that ogginate
in the derivatives market but which is still definitely arbitragesfeed conforms to the initial
market prices.

In summary, we have obtained models that can be made consistent with thiégyinitia
observed derivative prices. Firstly, this was done by assuming constagadnst vanish-
ing external supply as in Subsection 1.2.4. Secondly, we approximated this approach in
order to avoid the computational problems which already appeared in the previous-subse
tion. Thirdly, we briefly sketched how one may construct models that can incogpamat
independent dynamic of the derivative market without producing arbitrage.
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1.2.7 American Options

American options are more complicated derivatives than those we have cedssdefar.
They allow early exercise in the following sense: At any titvigefore expiration, you can
return the option and in exchange receive the amount of a payrhéimat depends on the
underlyings up to time. One may regard the derivatives from the previous subsections (at
least the non-negative ones) as particular American options¥yith= 7% andY; := 0
fort = 0,...,7 — 1. There is a well-established theory for pricing American options in
complete models (cf. Lamberton & Lapeyre (1996)). We will see that the bagicrents
and results carry over to our more general setting. To that end, we placevesnsethe set-
ting of Subsection 1.2.4 with a small exception. We assume that Segusdtgn American
option on the random payo(¥}),—, . r. Fixatimet € {1,...,T} and suppose for the mo-
ment that either no trader exercises the option at timeé or that it is even forbidden. Then
the derivativen behaves at timé — 1 as an ordinary security in the sense that it does not
suddenly vanish from the market by early exercise. &ix 0. By the same argumentation
as in Subsection 1.2.4 (cf. Equation (1.3)) we obtain

l
E(u;(z gpgAzg)AZg 53_1) —0 (1.8)
7=1
fori = 1,...,n, where(¢’,...,¢') is the u,-optimal strategy for the speculator in the

restricted market consisting only of the underlyifigs. ., [. By Statement 3 in Proposition
1.6 we conclude that*(AZ}|F; 1) = 0, whereP* is defined as in Equation (1.4). Hence,

Z | = EX(Z]|F-0). (2.9)
Now we make three weak assumptions in addition to those in Subsection 1.2.4.

1. No trader exercises the option if the market price is higher than theisx@rece. He
would rather sell it on the market than exercise it.

2. The market price cannot fall below the exercise price. This is eviderd ssume
the absence of arbitrage.

3. The market priceZ} ; at timet — 1is > E*(Z}'|F; ;). Above we have shown that
the market price would equél*(Z}'|F;_,) if exercise at time — 1 were not allowed.
Therefore, our assumption means that the additional right to exercise the option at
timet¢ — 1 may increase but not decrease the price.

By Assumption 1 we have that Equation 1.9 holds in the ¢gse > Y;_,. If on the other
hand,Z}" , is not strictly greater thaiv;,_,, then the option may suddenly vanish from the
market if everybody returns it. Speculators may thus face the short saietresty; , >

0, since potential buyers can use their right to immediately exercise thenopkence,
Equation (1.8) may no longer hold, because its derivation by Lemma 1.2 is based on the
assumption that speculators can freely choose their portfolRii. So Equation (1.9)
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cannot be derived in this case. On the other hand, we know by Assumption 2 that the option
price cannot fall below;_;. Thus we have

70y =Y (1.10)

in the caseZ” ; < Y,_;. Putting together Equations (1.9) and (1.10) as well as Assumption
3yields
Lemma 1.17 Under Assumptions 1-3 we have

Zp, = max{Y; 1, B (Z0|F: 1)} (1.12)
fort=1,...,T.

SinceZ}. = Yr by definition, the derivative price process is uniquely determined by the re-
cursive Equation (1.11). The proces§’),—, . r is called theSnell envelopef (Y;);—1,. 1

(cf. Lamberton & Lapeyre (1996), Section 2.2). Using well-known results on &mell
velopes, we immediately obtain

Corollary 1.18 Under the assumptions of Lemma 1.17 we have that
1. Z" is the smallesf’*-supermartingale such thaf}” > Y, fort =0,...,T.

2. Foranyt € {0,...,T}, we have that

zZ = esssup{E"(Z"|F,) : T stopping time assuming values{i®, ..., T}}

where the stopping time is defined by, := inf{s > ¢ : Z" = Y,}.

PrRoOF. Gihman & Skorohod (1979), Section 1.5 and Lamberton & Lapeyre (1996), Section
2.2. O

Let us give a short summary. In complete models it is well-known that Ar@meoptions
are obtained as a Snell envelope of the exercise price process. Underadiyshietisame
assumptions as in Subsection 1.2.4, the same is true in our general setting, whaogte pr
measure is obtained as before by Equation 1.4.

1.2.8 Foreign Exchange and Stochastic Interest Rates

geen

geen

underlying currency is obviously given I8} := Y;F;, henceZ} = Y,F;/S} in discounted
terms. Investments in foreign exchange are thus covered by our approach. Buedbaer
when working with more than one currency, there is more than one natural choice of the
numeraire. One may choose the fixed income investments in any of the cusrignwoieed.
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In incomplete models the obtained optimal strategies and derivative pripesdl®n this
choice.

The modelling of markets with stochastic interest rates also poses noptoakprob-
lems, since the numerail®® was not assumed to be deterministic. However, the dynamic
of the discounted securitigg’ := S/S° may be very complex for involved interest rate
models. As in the case of foreign exchange, there is more than one natural choice of the
numeraire. Beside the money market accotfht= [['_,(1 + r,) (or S? = exp(fot rsds)
in continuous-time), where, is the instantaneous interest rate, one may also take long-term
fixed-income investments (i.e. bonds). Again, the resulting strategies aes pniay differ.

It is an open question whether this dependence plays an important role in pramtice fr
a numerical point of view (for a concrete example see Section 4.1). For both cases we
propose the following guideline for the choice 6f. For computing optimal strategies
you can choose the numeraire according to your own needs, whereas for derivativg pri
one should take&® to be the investment that the leading market powers consider riskless.
For example, if you are an investor from Reykjavik trading in the US equitieketia/ou
may consider fixed-income investments in Icelandic crowns riskless eabédS-Dollars
contain a currency risk for you. Since optimal trading in the sense of Subsectiond.2.2 |
risk-averse trading and the numeraire is by definition the benchmark of riskEssyou
should base the calculation of your optimal portfolio on Icelandic crowns. The corguutat
of derivative prices, however, is not based on your interests, but insteassampations
about how the market behaves as a whole, i.e. how influential investors tradg.arEhe
more likely to consider US-Dollars as riskless. As a result you shouldd&®ollar fixed-
income investments as a numeraire for model extension.



Chapter 2

Martingale Problems as a Means to
Model Dynamical Phenomena

Since the early days of analysis, time-dependent deterministic phenomena hawvedokeen
elled usingderivativesand ordinary differential equations Predictable semimartingale
characteristicaand martingale problemsan be viewed as stochastic counterparts of these
notions, but they seem to be rarely used in the same spirit for modelling purpbDses.

tails of these concepts can be found in Jacod (1979), Jacod & Shiryaev (1987), Métivier
(1982), and Liptser & Shiryaev (1989), (1998). Here we want to present the basic ideas
underlying predictable characteristics and martingale problems startingréal analysis

and applications. Most of the statements in this chapter are reformulatioaas®gquences

of well-known results that can be found in Jacod (1979) and Jacod & Shiryaev (1987). In
Section 2.8 we present an existence and uniqueness theorem for martingale problems unde
local Lipschitz conditions. Its statement and proof are closely relatadhitasclassical re-

sults for stochastic differential equations (SDE's), but it is new in theesthat it is directly
applicable to martingale problems. To understand everything in this chaptetiexcthe
proofs, semimartingale theory and stochastic calculus, as found in Jacody@&h{i979),
Chapter I, or Protter (1992), complemented by notions from Appendix A, should form a suf-
ficient background. For easier readability, we relegate all proofs to the end reflsihective
sections.

2.1 Real Analysis as a Motivation

If you want to model a quantitative, time-dependent deterministic phenomenon nadthem
ically, you may do this in terms of a functiak : R, — R?, i.e. X, € R? describes the
state of your system at any time> 0. The set of all mapping&” of that kind is usually too
large to work with in practice. In order to derive concrete results, osteices the attention

to classes of relatively simple functions. One such class consistslfeglt mappings, i.e.
functions of the typeX : R, — R?, X, = bt, whereb € R? is a constant. Linear functions
can be used to describe systems that grow steadily through time. They are ydiefee}

34
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mined by the constant growth ralie Although linear mappings take you quite far in light
of their simplicity, they are of limited use when you are dealing with aesysthat is not
growing constantly.

A way out of this fix is to consider instead the larger class of differentialnletfons.
Intuitively, a differentiablefunction X : R, — R¢ with derivativeb : R, — R? can be
viewed as a mapping that, locally around any¢ R, , behaves as a linear function with
growth rateb;, (more exactely:X,;,, ~ X; + b;h for small h). These functions can be
used to describe systems of approximately constant increase in smalhtenels. The
great success of analysis may be due to the fact that differentiable mappisgéfiarently
regular to derive a large number of useful results, but still flexible enough to muatey
real-world phenomena.

In the following sections, we use a slightly more general notion. A functionR, —

R? is calledabsolutely continuous there is a Lebesgue-integrable functibn R, — R?
(more precisely:f; [b;| ds < oo for anyt > 0) such that\;, = X, + [, b, ds for anyt > 0.
Since absolutly continuous functions are differentiabl&-simost allt > 0 (with derivative
b;) (cf. Elstrodt (1996), VII.4.12, VII.4.14), it makes sense to take absolute contiasity
slight generalization of differentiability.

When applied e.g. in the natural sciences, dynamical phenomena are often modelled by
ordinary differential equationsThe state of the system is described by a differentiable (or
absolutely continuous) functioki : R, — R?. The derivativéh, of X, which characterizes
the local change of the system, is given as a function of the current Stafer, more
generally, of the pastX;),cp4), €.9. by the ODE

t
by = f(Xy,t) (or, equivalently,X; = X, +/ f(Xs, s) ds),
0

wheref : R? x R, — R? is a given continuous function. Under Lipschitz and growth
conditions, any ODE has a unique solutionRn (given a fixedX, € R?). Since explicit
computation is often impossible, one has to fall back on numerical methods to tieain
solution functionX .

In the following sections we discuss stochastic analogues of the above notions.

2.2 Leévy Processes

If deterministic, time-dependent phenomena are described by a determimistioh X :
R, — R? for fixedd € N*, then it seems natural to model a stochastic system by a stochas-
tic function X, i.e. aR?-valued stochastic process.

General setting for Chapter 2 (unless otherwise stated)Our terminology is chosen as
in Jacod & Shiryaev (1987), which is abbreviated JS in the following. We fix dhasic
basis (filtered probability space, F, (F;):cr, , P) in the sense of JS, Definition I.1.2, i.e.
the filtration (F,)cr, is right-continuous but not necessarily complete. Byve denote a
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R?¢-valued stochastic process Qrfor somed € N*. For what follows, we usually consider
only adapted processes with cadlag paths. We do not distinguish between the prasess
a family of random variablegX;);cr, with X; : @ — R’ for any¢ € R, as a mapping
X : QO xR, — R?and as a mapping : Q — (R)®+ (or X : Q — D (R?) if X is cadlag).
Moreover, equalities etc. are usually only meant up to indistinguishability.

What is the stochastic analogue of a linear function? We are looking for processes that
keep growing steadily, bugteadilyhere is to be understood in a stochastic sense. Constant
growth for linear functions means thaf, — X, depends only ot — s. Our stochastic
translation is that thdistributionof X; — X, depends only on— s, and to avoid feedback
between successive parts of the process, #hat X, is independent of the-field ;.
Hence, we consider processes with stationary, independent increments imsbheot¢he
following definition to be a natural stochastic counterpart of linear functions.

Definition 2.1 A cadlag, adapted procedswith X, = 0 is calledLévy procesgor process
with stationary, independent increments (P)I#)the distribution ofX; — X, depends only
ont — s and if X; — X, is independent af, for anys, t € R, with s < ¢.

Since we want to work in a semimartingale framework, the following statd is useful.
Lemma 2.2 1. Lévy processes are semimartingales.

2. A Lévy proces« is a special semimartingale if and only if it istegrable(in the
sense that'(| X;|) < oo for anyt € R, or, equivalently£(|X;|) < oo).

Although the general theory of stochastic processes is usually formulatedis ¢éisemi-
martingales, we want to restrict our attention to special semimalésgsince these are
a little easier to understand from an intuitive point of view. This allowsauseplace the
truncation functior : R? — R?¢ appearing in the Lévy-Khintchine formula as well as in
the semimartingale characteristics with the identity mappingR? — R¢, x — 2. The
difference between semimartingales and special semimartingaldsedaterpreted as an
integrability condition on the jumps (cf. JS, Proposition 11.2.29a). In the case\of péo-
cesses, our restriction means that we consider only those with existimgdinsénts, i.e. we
exclude e.ga-stable Lévy motions witlr < 1 (cf. Samorodnitsky & Tagqu (1994)). Still,
most statements can be generalized by reintroducing the truncation function.

In Section 2.1 we observe that linear functions are characterized by a canstdgit.
By the Lévy-Khintchine formula a similar statement is true for Lévy procesHasir distri-
bution is completely determined by a constant characteristic tfipletF')~. This is another
reason why one may consider them a rightful stochastic counterpart of linear functions

Theorem 2.3 Let X be an integrable Lévy process.

1. There is a unique triplef, ¢, F)~, consisting ob € R?, a symmetric, non-negative
definite matrix: € R¥*? and a measuré’ onR? satisfying [ (|z%| A |z|) F(dz) < oo
and F({0}) = 0, such that for any € R, we have
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(a)
Bt = bt,
whereB € 74 is the predictable part of finite variation in the canonical de-
composition of the special semimartingale

(b)
(Xhe, X0, = ¢t foranyi,j € {1,...,d},

(©)
v([0,1] x G) = F(G)t foranyG € B, (2.1)

wherev denotes the compensator of the random measure of jurhus X (cf.
Definition A.3 in Appendix A).

2. The triplet(b, ¢, )L uniquely determines the distribution &f.

3. We have
u-X . 1 T iuT .
E(e"™t) = exp (t (zu-b—§u cu—l—/(e —1—@u-x)F(dm)>> (2.2)
for anyt € R, and anyu € R?.

Definition 2.4 We call (b, ¢, F')* from the previous theorem tlebaracteristic tripletof the
Lévy processX.

Remarks.

1. A deterministic proces¥ (i.e. X;(w) does not depend an) is a Lévy process if and
only if X(w) : Ry — R¢is a linear function, i.eX, = bt for someb € R, Its
characteristic triplet ib, 0, 0)”.

2. Acontinuous, adapte®-valued process is a Lévy process if and only if it is a Wiener
process with drift (more precisely, if it is of the forXy, = bt + oW, for someb € R,
o € R, and (ifo # 0) some standard Wiener procd$3. Its characteristic triplet is
(b,0%,0)".

3. Any cadlag Poisson proce&swith arrival rate\ € R, (in the sense of Protter (1992),
Section 1.3) is a Lévy process with characteristic trighetd, \s;)~.

4. Intuitively speaking, an arbitrary integrable Lévy process can be intetpastan in-
dependent sum of a linear function with derivativa d-dimensional Wiener process
with covariance matrix and a (possibly uncountable) number of rescatesnpen-
satedPoisson processes, whereG) dt is the probability of a jump of sizA X, € G
in an infinitesimal interval of lengttit (cf. Figure 2.1). Compensation basically means
subtracting a predictable drift (which is even deterministic and lin@aPbisson pro-
cesses) to transform the process into a local martingale. If the jumpunegass
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Figure 2.1: Sample paths of Lévy processes with characteristic trip(8t$),0)-,
(0,10,0)%, (0,0, 10e;) and(3, 10, 10z;) %, respectively

finite, one may view the Lévy process alternatively as an additive supeqposita
linear drift (generally with derivative: b), a Wiener process and rescaladcompen-
satedPoisson processes. But for unboundédhis interpretation is not appropriate.

5. Anintegrable Lévy process is a martingale if and only4f 0.
There is another way in which Lévy processes are “linear,” as is showearmia 2.6.

Definition 2.5 Let X be a special semimartingale. We c@il, C, v)’ theintegral charac-
teristicsof X, where

1. B € 7 %is the predictable part of finite variation in the canonical decomposition of
X,

2. C € 774 s the continuous process defined @Y := (X*¢, X7<) for anyi,j €

{1,...,d},
3. v is the compensator of the random measure of jumpsf X .
Remarks.

1. The integral characteristi¢®3, C,v)’ are not the characteristi¢®(h), C,v) of X
in JS, Definition 11.2.6 (or Jacod (1979), Definition 3.46, from now on denoted as
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(B(h),C,v)’%), but they are closely related. By JS, Proposition 11.2.29a the only
difference is that

B(h) = B — (z — h(x)) * v, (2.3)
whereh : RY — R? is the truncation function in this definition. We see that if we

choseh(x) = z (which is not allowed for arbitrary semimartingales, cf. JS, Debniti
[1.2.3), then both notions would coincide.

2. In the above definition one observes that the first part of the integral chastcser
tells us about the drift ok (sinceX — B is a local martingale), the second part about
the continuous part of unbounded variation and the third about the jumps.

Lemma 2.6 Let X be a special semimartingalé,c¢ R?, ¢ € R¥“¢ symmetric and non-
negative definite and’ a measure ofR? such that[ (|z?| A |z]) F(dz) < cc and F({0}) =
0. Then we have equivalence between

1. X is an integrable Lévy process with characteristic triplete, F)L.

2. The integral characteristicéB, C, v)! of X are linear in the sense thaB, = ut,
Cy = ct,v([0,t] x G) = F(G)t foranyt € R, G € B?.

Proofs

Proposition 2.7 Let X be a semimartingale andthe compensator of the measure of jumps
1~ . Then we have equivalence between

1. X is a special semimartingale.
2. (|z A z]) * v € - Aoe
3. Foranyt € R, , we haveg|z|*> A |z|) * v; < oo P-almost surely.

PROOF 1 < 2: cf. JS, 11.2.29a

2 = 3: This is obvious.

3 = 2: The last statement implies thdt:|> A |x|) v € 7 which, by JS, 1.3.10, means
that it is also in.o7},.. O

Proposition 2.8 Let i be an integer-valued random measure with compensatand let

W :Q xR, x E — R be predictable, wheréF, £) denotes a Blackwell space. Assume
thatv is of the formv(dt, dxz) = Fy(dx) dA, for some transition kerndl’ from (2 x R, , P)
into (E, &) and an increasing functiod as in Definition 2.15. IF((|[W [2A|W])*vr) < oo
forT € R,, thenW x (u — v) is a uniformly integrable martingale do, 7).

PROOF SinceW = Wljwi<iy + Wilgw>1y, we may assume that eith@il’| < 1 or
Wi > 1. If W] > 1, thenE(|Wt|) < oofort € ©N|[0,7] and iV, = 0 for ¢ ¢ ©. By
|©N[0,T]| < oo, we haveE(|W| * vr) < oco. Since alsaE (|W| * vr) < oo, we have
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C(W1pr) € .27 and hence, by JS, 11.1.330)  (u—v))T € .7 Thus,(W « (u—v))T

is a local martingale of clasgD), hence a uniformly integrable martingale (JS, 1.1.47c).
The proof for|W| < 1 is similar, but using JS, 11.1.33a and the fact that a square-integrable
martingale is uniformly integrable. O

PrROOF OFLEMMA 2.2. 1. cf. JS, 11.4.19

2. =1 By JS, I1.4.19 the characteristit8(h), C, v)’S of X are of the formB(h), = bt,
C, = ct, v(dt, dz) = F(dz)dt for deterministid, ¢, F. SinceX is a special semimartingale
we have, by Proposition 2.7,/ (|z|* A |z]) F'(dz) = (|z]* A |z]) * 1p < oo P-almost
surely for anyt € R, and hence(|z|? A |z]) F(dz) < occ. Therefore, we hav&((|z|* A
lz|) * 1) < oo for anyt € R,. By Proposition 2.8 we conclude that« (u* — v) is a
martingale. MoreoverX® is a martingale, becaugg((X“¢, X“¢),) = c't < oo for any
ied{l,...,d}, t € Ry (cf. IS, 1.4.50). Finally, the last part in the canonical decomposition
X = Xo+ X+ (u* —v) + A of the special semimartingal€ (cf. JS, 11.2.38), is, by
JS, 11.2.29a, deterministic (and linear in time). Hentas integrable for any € R, .

<: W.lo.g.d = 1. If X; is integrable, we hav¢ (|z|> A |z]) F(dz) < oo (cf. Wolfe
(1971), Theorem 2) and hen@e|? A|z|)x v, = t [(|z]*Alz|) F(dz) < oo P-almost surely
for anyt € R, . By Proposition 2.7X is a special semimartingale. O

PROOF OF THEOREM 2.3. 1. The existence of, F' is stated in JS, 11.4.19. For the
integrability condition on’, cf. the previous proof. By JS, 11.4.19 and 11.2.29a the process
B is also linear and deterministic. The uniquenesk of F' follows at once.

2. This follows from Statement 3, sind@** uniquely determines the distribution of a
Lévy processX.

3. From Statement 1 (and JS, 11.2.29a) we know that the charactefifti¢s, C, v)”*
are of the formB(h), = bt — [(z — h(x)) F(dz)t, Cy = ct, v(dt,dz) = F(dz)dt. By JS,
11.4.19, we have

E(e™X) = exp (t (zu (b - /(x — h(x)) F(d:v)) - %uTcu
+ /(em —1—iu-h(z)) F(dm)))
= exp (t(zu b — %uTcu + /(ei“"” —1—iu-x) F(dm))),

where theF-integrability of (z+ — h(x)) e.g. forh(z) = xlg4 <1y has been shown in the
proof of Lemma 2.2. O

PROOF OF THE REMARKS 1. If X is deterministic, then its characteristic tripletés0, 0)©
for someb € R, since a deterministic local martingale startin@iis 0.

2. If X is a continuous Lévy-process withs 0, thenW := (Z=(X; — bt))er, is a
continuous local martingale witfiV, W), = t, hence a standard Wiener process (cf. JS,

11.4.4).
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3. This follows from the definition and from Equation (2.2).
5. The “if"-part follows from the proof of Lemma 2.2, where we have shown the local
martingale part of the special martingaleto be a martingale. O

PROOF OFLEMMA 2.6. By Theorem 2.3 we have=- 2. The converse follows from JS,
[1.4.19 and Statement 2 of Lemma 2.2. O

We will occasionally need the following statement relating the momentd_él/g process
to those of its Lévy measure.

Proposition 2.9 Let X be a real-valued integrable Lévy process with characteristic triplet
(b,c, F)E.

1. Foranyp € [1,00), we have equivalence between

(@) E(|X1[) < oo
(b) E(|Xy|P) < oo foranyt € R,
©) J 2P Ljez1y F(dr) < oo,

2. Foranyp € R, , we have equivalence between

(@) E(exp(plXi])) < oc.
(b) E(exp(p|Xy|)) < oo foranyt € R, .
(©) [exp(plz|) L1y F(dr) < oo.

If any of these conditions holds, théifexp(pX;)) = (F(exp(pX,))’ foranyt € R, .

PrRoOF We will only prove the second statement. The first one follows along the saese |
Fix p € RY.

(b)=-(a): This is obvious.

(a)=-(c): Since the distribution of; is infinitely divisible with Lévy measuréd”, it
follows from Wolfe (1971), Theorem 2 thd(exp(p|X;|)) < oo if and only if [ exp(p|z|)
Hep>1y F(dz) < oo

(c)=(b): Lett € R;. By Theorem 2.3, we have thaf, has an infinitely divisible
distribution with Lévy measuréF’. From Wolfe (1971), Theorem 2, we conclude that
E(exp(p|X:])) < 0.

It remains to show the equality(exp(pX;)) = (E(exp(X1)))" for anyt € R, . Firstly,
suppose that € Q, sayt = n/m for n,m € N*. SinceX has independent and station-
ary increments, we have th@t(exp(pX,)) = (E(exp(pX.)))™ and E(exp(pX=)) =
(E(exp(pX1)))™, which yields the claim fort. For arbitraryt € R,, consider a se-
guencet, Lmt in Q. Sincet — exp(pX;) is right-continuous, Fatou's lemma implies that
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E(exp(pX;)) < lim, .o F(exp(pXy,)) = !¢, whereC := log(FE(exp(pX;))). Again
using the independent, stationary increments, we have

E(exp(pXp41))
= FE(exp(pX; )E(eXp(pX[t]+1—t))

< elCelliF =00 _ (i1)e

SH1)C

for anyt € R,. Hence, the inequality is actually an equality. This is only possible if
E(exp(pX;)) = €', which proves the claim. O

2.3 Grigelionis Processes and their Derivative

In the previous section, we found Lévy processes to be in some sense “stocmastic li
functions.” Now we want to define a reasonable stochastic counterdaradlly linear (i.e.
differentiable or absolutely continuous) functions and their derivative. To tithivee focus

on Lemma 2.6. Since Lévy processes are the semimartingales whose integraleritics

are linear in time, we consider those processes whose integral chatastens pathwise
absolutly continuous in time to be a stochastic analogue of absolutly continuous functions.
For want of a shorter name we call théamigelionis processessince they are studied by
Grigelionis in a series of papers (cf. Grigelionis (1973)). Let us begin with a

Lemma 2.10 Let X be a special semimartingale with integral characteristiés C, v)’.
Then there exists a predictable, real-valued procdss .o/, a predictableR?-valued
process(b;)icr, , a predictableR**?-valued process$c,)cr, Whose values are symmetric,
non-negative definite matrices and a transition kerfefrom (2 x R, , P) into (R¢, B%)

such that for any € R, we have
t
Bt — / bs dAs,
0

t
Ct:/ CsdAs,
0

t
u([0,] x G) = / F.(G) dA, for anyG ¢ B
0

Remark. We usually drop the argumentin the notation of transition kernels froff x
R, ,P) into (R?, B?), as is done for stochastic processes.

Definition 2.11 We call a special semimartingalé as in the previous lemm@arigelionis
processor locally infinitely divisble procesg A can be chosen such that its pathgv) :
R, — R are absolutely continuous in time.

The following lemma shows that a special semimartingale is a Grigelpoisess if and
only if its integral characteristics are absolutely continuous.
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Lemma 2.12 Let X be a special semimartingale with integral characteristiés C, v)”.
Then we have equivalence between

1. X is a Grigelionis process.

2. There exist a predictablR?-valued processh; ).cr, , @ predictableR?*¢-valued pro-
cess(¢;)ier, Whose values are symmetric, non-negative definite matrices and a tran-
sition kernelF from (Q x R, , P) into (R?, B?) such that for any € R, we have

t
Bt:/ bsds,
0

t
C’t:/ cs ds,
0

t
v([0,t] x G) = / F,(G) ds foranyG € B
0

Definition 2.13 Let X be a Grigelionis process. We call any trip{étc, F)” with b, c, F
as in Lemma 2.18ifferential characteristicer aderivativeof X .

Remark. Grigelionis (1973) calls a similar object (the difference being that it cpomeds
to the truncation function(r) = x1; 1)(|z|) instead ofh(x) = x) local characteristicof

the process. We avoid this term here, since it is used by Jacod (1979) and M&8&2) to
denote the integral characterist{ds(h), C, v)’* (calledcharacteristicsn JS) or(B, C, v)?,

respectively.

Lemma 2.14 Any two derivatives of a Grigelionis process coincide outside gdme \)-
null setN e P.

By Lemma 2.6 the derivative of any integrable Lévy process can be chosen ué&om
and constant. Moreover, it coincides with its characteristic trigtet. general Grigelionis
processes one may interpret the derivative, F')” so that, locally around € R, , the pro-
cess statistically resembles a Lévy process with éft), Brownian part with covariance
matrix ¢;(w) and local jump intensity"'((w, ¢), -). It would be nice to support this way of
talking with an appropriate limit theorem.

Remark. A Grigelionis processY with derivative (b, ¢, F)” has (P-almost surely) only
continuous paths ifand only # = 0 (P ® \)-almost surely.

Examples.

1. Let X be a deterministic process with absolutely continuous, cadlag pathsYe.g.
R, — R? differentiable). ThenX is a Grigelionis process with derivativeX;)cg . ,
0,0)".
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2. Let X be aR-valuedIt6 processi.e. X; = X, + fot s ds + fot oy, dW,, wherelV is a
standard Wiener process amgdr are predictable, locally bound@dvalued processes
with o > 0. ThenX is a Grigelionis process with derivativg, o2, 0)”.

One should be aware that the analogy between derivatives for deterministiofisnc
on the one hand and differential characteristics for Grigelionis processég other hand
is limited. A differentiable functionY : R, — R? is uniquely determined by, and its
derivative (X;).cr, . But it is generally not true that, given some stochastic bes3js,
(F)ier,, P), as well as the starting valu€, and the derivativeb, c, F')” of a Grigelionis
processX : Q — D(R?), the whole proces¥ as a mapping could be recovered. Usually,
not even the distributio®®* of X (onD(R?)) is uniquely determined by the given informa-
tion (unless the derivative is deterministic). As an example, consideg fitiered probabil-
ity space(2, F, (F,)er, , P) and two real-valued, independent standard Wiener processes
U,V onthat space. Moreover, we define a stopping fime: inf{¢ > 0: U; = 1}. ltiseasy
to see that bott/” andV” are Grigelionis processes with derivati@e (1o 7/(t))ser, , 0)".
But sinceP(lim, ,, , U =1) = P(Ur =1) =1# P(Vr = 1) = P(lim,, ,,, V! = 1),
the laws ofU” andV'” obviously differ.

Nevertheless, this non-uniqueness is not important from a practical point of view. For
use in applications we are rather interested in an analogue of ordinary wiifexjuations.
In these the derivative is not given explicitly, but in terms of the unknown mwiyrocess
itself. The stochastic translation would be that we are given the deeMatic;, F; of a
Grigelionis process( at timet as a deterministic function of the current vallig{w) (or,
more generally, the pasiX;).cj0,4(w)). As in real analysis, the question of existence and
unigueness of solutions arises. It is immediately clear that we can only hope épredni
ness in the sense of distributions, since even for a deterministic deeivatil, 0)” (which
corresponds to any standard Wiener process), only the distribution is detdyrutenot
the process itself as a mapping : Q@ — D(R?). We formally introduce the stochastic
counterpart of an ODE under the notiomartingale problemn Section 2.7. The term is
approximately in line with Jacod (1979) and Jacod & Shiryaev (1987), where the integra
characteristic§ B(h), C,v)’* are considered instead ¢f, c, F')” (making their approach
more general).

Proofs
PROOF OFLEMMA 2.10. This follows from JS, 11.2.9 and Equation (2.3). O
PROOF OFLEMMA 2.12. 1 = 2: Since A is predictable, one can find a non-negative,

predictable proces§u)icr, such thatd = [ a,dt (cf. JS, 1.3.13). Now leb, = bay,
¢ = g, Fy(dr) := Fy(dz)a, foranyt € R, . d

PROOF OFLEMMA 2.14. This follows from Lemma 2.19 and 2.18 in the following section.
O
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PROOF OF THE REMARK If its compensator is 0, theny® = 0 by JS, 11.1.8(i). ThusY
is continuous. O

2.4 Extended Grigelionis Processes

Unlike linear functions, Lévy processes may have jumps, but the probability of ja gim
any fixed time is still 0. The same is true for Grigelionis processes. fabtsnakes them
useless for discrete-time models, where any process changes its valuefowg &.g. in-
teger) times. Therefore, we want to extend the class of semimartingades consideration
slightly to be able to apply the results to discrete-time and mixedgstts well.

Definition 2.15 Let X be a special semimartingale. If in Lemma 2.10 the procesan be
chosen as
Ay=t+) 1le(s)foranyt € R,
s<t
where© C R} is a discrete (and hence at most countable) set of times, then W& il
extended Grigelionis process

Lemma 2.16 Let X be a special semimartingale with integral characteristiés C, v)’.
Then we have equivalence between

1. X is an extended Grigelionis process.

2. There exists a discrete sét C R’ , a predictableR¢-valued process$b;):cr a
predictableR?*?-valued process$c;);cr, Whose values are symmetric, non-negative
definite matrices and a transition kernglfrom (2 x R, , P) into (R?, B¢) such that
foranyt € R, we have

t
Bt:/bsder > AB,
0

s€0N[0,t]

t
C, = / s ds,
0

v([0,t] x G) = /Ot Fi(G)ds + Z v({s} x G) foranyG < B“.

s€0N[0,t]

3. There exists a discrete sét ¢ R, a (¥ ® B, )-measurableR’-valued process
(bt)ier, , @ (F@ B, )-measurabl®R?*¢-valued procesé:,)cr, Whose values are sym-
metric, non-negative definite matrices and a transition kefhEbm (xR, , FRB ;)
into (R?, B%) such that for any € R, the equations in Statement 2 hold.
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Definition 2.17 For any choice as in the previous lemma, we ¢all P*¢. b, ¢, F, K)¥ ex-
tended (differential) characteristiad the extended Grigelionis proceds where the tran-
sition kernelK from (Q x R, P) into (R?, BY) is defined by

[ vt x G) +20(G)1— w({t} xRY) ifteO
(@) = { 0 else.

Remarks.

1. For P-almost allw € Q and anyt € © we have thatX ((w, t),-) is a probability
measure.

2. Foranyt € ©, we haveAB, = [ = K,(dx) P-almost surely.
3. Foranyt € © and anyG € B¢ (or anyt € R, and anyG € B¢ with 0 ¢ G) we have

PAYXT— (@) = K,(G) P-almost surely

4. Intuitively, an extended Grigelionis process with extended differert@lacteristics
(©, P* b, c, F, K)¥ is a locally infinitely divisible process with derivativg, c, F')”
plus some jumps at fixed timeése ©. These are characterised by the conditional
jump distributionsk, for t € ©. The initial distributionP*° has been added to the
characteristics for later use.

The extended characteristics are unique in the following sense.

Lemma 2.18 Let X be an extended Grigelionis process with extended characteriglics
P* b c, F,K)”. Then

1. Foranyt € R, we have
t
/ /(|x|2 A lz]) Fy(dz) ds < oo P-almost surely
0
There is a P @ \)-null setN € P such that for anyw, t) € N we have
[ e Al F(,),d0) < o0,
There is an evanescent séte P such that for anyw, t) € N¢ we have

/|:U|K((w,t),d:v) < 0.

2. Let (@,PXO,E, c, 17, IN()E be other extendgd characteristics & Then there is a
(P®X)-null setN € P such thab, ¢, F andb, ¢, F' coincide outsidéV. Moreover, we
haveK ((w,t),-N (R4 \ {0})) = K((w,t),-N (R \ {0})) up to indistinguishability.
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Lemma 2.19 Let X be a special semimartingale. For any discrete @etC R’ there is
equivalence between

1. X is a Grigelionis process with derivativ, c, F')”.

2. X is an extended Grigelionis process with extended characterigtic®*°. b, c, F,
(c0)ico)”

In a discrete-time setting the extended characteristics are particahsy.

Lemma 2.20 Assume that the filtration as well as the adapted procésae discrete (in
the sense of Definition A.4 in Appendix A). Then there is equivalence between

1. X is an extended Grigelionis process.

2. X is a special semimartingale.

3. For anyt € N* we have[ |z|PA*!9-1(dz) < co P-almost surely
In this casgN*, P*0,0,0,0, K)” are extended characteristics féf, where

K PAXdT1 for ¢ € N*
o fort € R, \ N*.

Remark. It should be obvious how to transfer Lemma 2.20 to an arbitrary discrete set
© C R, i.e. if we consider ®&-discrete filtration and &-discrete process in the following
sense. We call the filtratiof¥,),cr, (or the process\’) ©-discreteif the mappingt — F;

is constant (resp. the mapping> X;(w) is constant forP-almost allw € ) on the open
intervals between neighbouring points@fJ {0, co}.

For later proofs we now relate extended differential characteristicseaménartingale char-
acteristics as in Jacod (1979) and JS.

Lemma 2.21 Let X be a special semimartingale arda truncation function as in JS, Def-
inition 11.2.3.

1. If X is an extended Grigelionis process with extended characteri®icB*°, b, c, F,
K)E, then its characteristic$B(h), C,v)’* in the sense of JS, Definition 11.2.6 are
given by

v([0,4] x G) ::/Oth(G)ds—ir 3 KJ(G\{0}) (2.4)

s€0N[0,t]

B(h); := /lt bs ds + Z x K (dz) +/ (h(z) — z) v(ds,dz) (2.5)

d
0 s€0n[0,1] [0,¢] xR

t
Cy ::/ csds (2.6)
0
foranyt e R, ,G € B
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2. If the semimartingale characteristi¢8(h), C,v)’* of X can be written as in Equa-
tions (2.4) — (2.6) for some discrete $&tC R , some predictabl®&?-valued process
(b)ier, , SOME predictabl&?*¢-valued procestc;);cr . Whose values are symmetric,
non-negative definite matrices and some transition kerfigl§ from (2 xR, , P) into
(R?, B4), where K is a probability measure fow, ) € 2 x © and 0 (as a measure)
for (w,t) € Q x (R \ O), thenX is an extended Grigelionis process with extended
characteristic§©, P*, b, ¢, F, K)¥.

The following result concerns stochastic integrals with respect to extegadgélionis pro-
cesses.

Lemma 2.22 Let X be an extended Grigelionis process with extended characterigics
n,b,c, F, K)¥, and letH" = (fiﬂfj)teﬂe+ be predictable, locally bounded processesifar
{1,....d%},j € {1,....d}. ThenY, defined by := 37| [ HIdX{fori=1,...,d,
is an extended Grigelionis process with extended characteristics), b, ¢, F, K)Z, where

d
T 37,8
b; - Z HZ bta
B=1
d .
& => H ¢ H,
By=1

F(@) Z/la\{o}(iﬂijﬂ> Fi(dz),

J=1

K,(G) = / 1G<zd: Hﬁxﬂ') K, (dz)

J=1

foranyt € R, anyi, k € {1,...,d'} and anyG € BY.
We need the following technical result for Chapter 4.

Lemma 2.23 Let X be an extended Grigelionis process with extended characteriglics
PXo b, ¢, F, K)¥. Moreover, le{S,),cr, be another filtration or¥ such that for any € R,
we haveF; C G, C o(F, U C), whereC is a sube-field of F that is independent ¢f,,  :=
0(Uier, F1)- Then on the spac, F, (5¢)wer, , P), X is still an extended Grigelionis
process with the same extended characteristics.

Proofs

PROOF OFLEMMA 2.16. 1 = 2: We haveB, = [/ b,dA, = [ bids + Y corpqbs =

fot bs ds + > conp,g ABs, and similarly forC' andv. Note thatC' is, by definition, contin-
uous.
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3 = 1: From the proof of JS, Proposition 11.2.9 and Equation 2.3, it follows that
Lemma 2.10 can be chosen as

A= ZVa(Bi — (2" — h'(z)) * V) + Z Va(C7) + (|z> A1) v

i=1 ij=1

Thus, A is absolutely continuous with respect(to+ > ., lo(s))icr, . Statement 1 now
follows as in the proof of Lemma 2.12:42. O

PROOF OF THE REMARKS 1. This follows from JS, 11.1.17b.

2. We haveAX; = AB; + A(z * (u* —v)); = AB; + AX, — A(x * v);. Hence,
AB; = Az xv), = [z K;(dzx) P-almost surely for any € ©.

3. P(AX; € G\{0}|Fi-) = E(u* ({t} x (G\{0}))|Fi-) = E(w({t} x (G\ {0})) +
W s (u —v)|Fo), whereW (s, 2) = 1y« fop (8, ©). Sincev is predictable and by JS,
1.2.27, the right-hand side equalé§{t} x (G \ {0})) = K,(G \ {0}). O

PROOF OFLEMMA 2.18. 1. SinceX is a special semimartingale, we have, by Proposition
2.7,

//|x|2/\|x| (dryds+ 3 /|x|2/\|x dz) = (|22 A o)) * v < 00

s€ONI0,t]

P-almost surely for any € R, . This implies the first statement.

2. Let & denote a countable-stable generator @8 and defingV := {(w, t) : b(w, t) #
b(w,t) of c(w,t) # &(w,t) or F((w,t),G) # F((w,t),G) for someG € &}. One easily
sees thatv € P and(P ® \)(N) = 0. Similarly for K. O

PROOF OFLEMMA 2.19. 1 = 2: Take® = &.
2 = 1: By Remark 2 we havA\B; = [z ¢¢(dz) = 0 P-almost surely for any € ©.
Hence, X is a Grigelionis process. O

PROOF OFLEMMA 2.20. A discrete process is a semimartingale if and only if it is adapted
(cf. JS, Subsection 1.4g). Moreover, we ha€R, \ N*) x R¢) = 0 P-almost surely, since
p (R \N) x R?) = 0.

2 = 3: By Remark 3 we hav@>X!7i-(G'\ {0}) = v({t} x (G\ {0})) for anyG € B?
P-almost surely. Sincé,_ = J,_, and by Proposition 2.7, we haygz| PAX5-1(dz) <
1+ [(Jz]* A |z|) v({t} x dz) < co P-almost surely for any € N.

3 = 1: It suffices to prove thak is a special semimartingale. The form of the integral
characteristics in Lemma 2.16 then follows from the fact thiais discrete. Byv((R; \
N*) x RY) = 0, by PAXelFe-1(.\ {0}) = v({t} x (- \ {0})) for t € N* and by assumption,
it follows that (|z|> A z]) * v < 0+ 3 cnenpo S 12] PAYP=1 < oo P-almost surely for
anyt € R, . By Proposition 2.7X is a speC|aI semlmartlngale
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The shape of the characteristics follows once more from Remark 3. O

PROOF OFLEMMA 2.21. 1. This follows immediately from Remark 2 and Equation (2.3).
2. By Equation (2.4) we have thdt,(G \ {0}) = v({t} x G\ {0}) for anyt € O,
G € B. Statement 2 then follows from Equation (2.3). O

Proposition 2.24 Let X be an extended Grigelionis process with extended characteristics
(©,n,b,c, F, )P andIV : QxR xR — R? a predictable mapping with’* € Gy,.(p™)

fori =1,...,d. Then the local martingal® := W * (1 — v) is an extended Grigelionis
process ifR? with extended characteristi¢®, <o, 0,0, F, K)”, where

F(G) = / Levoy (Wt 2)) Fy(dx)

foranyt € R, and anyG € B?. (We do not say anything aboit here.)

PROOF SinceY is a special semimartingale without drift and continuous local martin-
gale part, we only have to prove that the compensatoof the jump measurg® is ab-
solutely continuous with respect té from Definition 2.15. Note that, by definition of
W (u* — v), we have, up to an evanescent &Y, 1g¢ (t) = W (t, AX;)1gc(t). Hence,
p([0,8] X G) = [ guma Lavioy (W (s, 2))lec (s) p* (ds, dz) + 1" ((© N [0,¢]) x G) for
anyt € R,, G € B?. By the form ofv in Lemma 2.16, we haveY ([0,#] x G) =

Iy [ Lengoy (W (s, @) Fy(dw) ds + v ((© N [0,4]) x G) for anyt € R, G € B, wherev”
denotes the compensatorof. By Lemma 2.16 we are done. O

Remark. The previous proposition still holds if we replagé with any integer-valued ran-
dom measur@ whose compensator is absolutely continuous with respect to the prdcess
in Definition 2.15.

PROOF OFLEMMA 2.22. If X = X, + B+ X°+ z x (u* — v) denotes the decom-
position of the special semimartingak in the sense of JS, 11.2.38, we obviously have
Yi= [ Hi-dBs+ [; H -dX¢+ (30, Hia9)«(u* —v), where the terms are a predictable
one of finite variation, a continuous local martingale, and a discontinuous local métinga
respectively. Moreover, fronB, = [\ b, ds + > scorog ABs andC; = [ ¢, ds for any

t € R, we immediately obtain that the first two of the integral charactesisﬁ; C, ) of

Y are asin Lemma 2.16, but wiﬁ,ﬂEinstead ob, c. By Proposition 2.24 it follows that also
(ijl HIz7) % (u* —v) and hencd” altogether is an extended Grigelionis process. More-
over, we have that the extended characteristics afe (O, 50,3, c, f, IN()E, whereF is, by
Proposition 2.24, as in Lemma 2.22. It remains to show #a of the claimed form. By
Remark 3 in this section we have thai(G) = PAY!l%- (@) foranyt € © and anyG € B,
SinceAY; = Y0 | HIAXY, it follows that Ky(G) = [ 1a(37_, Ha9) PAYI%e (dx),
which, by PAXt¥:- = K, yields the claim. O
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PROOF OFLEMMA 2.23. Firstly, we prove that aniff;),cr, -local martingale is also a
(G¢)ier, -local martingale. Since any,)cr, - stopping time is also &5;).cr, - stopping
time, it suffices to prove the claim for martingales instead of localtimgales. By Ja-
cod (1979), (9.29) we have to show thatE (X |F )|S:) = E(X|F;) P-almost surely
for any bounded random variable and ang R,. By Bauer (1978), Satz 54.4 we have
E(E(X|F)|o(FUC)) = E(E(X|Fw)|F:) P-almost surely. Taking?(-|G;) yields the
claim.

By Lemma 2.21 we have that the characteristigéh), C, v)”° of X are given by Equa-
tions (2.4) — (2.6). By JS, 11.2.42 this is equivalent to the fact that for any bouatied
function f : R — R, the process

Y o= f(X) - / D (X, ) dB):— 5 > /0 Dyf(X,)dC?

_<f(X, +z)— f(X ) - ZDZf(Xf)hl(fU» “

is a local martingale. By the reasoning above we havelthistalso a(G;).cr, -local mar-

tingale. Again applying JS, 11.2.42, the characteristicsXofelative to the spac€?, 7,

(St)ier, , P) are still(B(h), C,v)’*. Statement 2 of Lemma 2.22 now yields Lemma 2.23.
O

2.5 Itd6's Formula for Extended Characteristics

It6's formula can also be expressed in terms of extended characterl§tios look upon
these as a derivative (as in Section 2.3), then we may call it a stocbhain rule.

Theorem 2.25Let X be an extended Grigelionis process with extended characteristics
(©,PX0 b c, F,K)¥, and f : R?” — R a function such thaif(X) is a special semi-
martingale and one of the two following conditions is fulfilled.

1. fecC?
2.b=0,c=0,F=0.

Then f(X) is an extended Grigelionis process R with extended characteristid®,
piXo) & F,K)E, where

ZDaf (X0 )by + Z Dosf' (X )ci?

a,@l

+/ (fi(xt, ) — (X, ) — iDafi(Xt)x) F,(dz),
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d
& = Z Dafi(th)C?ﬁDﬂfj(th),

a,,é’:l

F(G) = / Lovoy (F(Xe +2) — F(X0)) Fi(de),

R(G) = / Lo(f (Xe +2) — F(X,)) Ki(d),
foranyt € R, ,4,5 € {1,...,d'},G € B?,

Remark. Sufficient conditions forf(X) to be a special semimartingale are each of the
following:

1. For anyt € R, one hasf, [(|z|> A |z]) Fy(dz)ds < oo and [ |z| K,(dz) < oo
P-almost surely, wheré’, K are defined as in the previous theorem.

2. There is som@/ € R, such that for any: € R? one hag|Df(z)|| < M.

Proofs

PROOF OFTHEOREM 2.25. Regardless of whethdr is a special semimartingale or only
a semimartingale, we have

WO[0,4 x G) = / La(f(Xo + 1) — f(Xo) ¥ (ds, da)

[0,t]x R4

and hence for its compensatoi ™)
V0.0 G) = [ (X ) — F(X) vlds, da)
[0,t] x R4

_ //1G (X, +1) — (X)) Fy(dz) ds
S /1G F(Xoo +2) = F(X,0)) Ky (dr)

s€ONI0,t]

for anyt € R, and anyG € BY with 0 ¢ G. Thus in the situation of Theorem 2.25,
the third part of the integral characteristid8, C, 7)’ of f(X) is as in Lemma 2.16 resp.
Definition 2.17, but with?, K instead ofF’, K.

Assume that the second condition holds. Theand henceg (X') areO-discrete. There-
fore, we haveB, = 3, o0 AB, andCy = 0 for anyt € R, where(B, C,7)’ denotes
the integral characteristics gff(X) Hence,f(X) is an extended Grigelionis process and
the statement is proved.
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Now let f € C2. By Jacod (1979), (3.89) we have that

Fi(X) = fi(Xo) + Z/ Do fH(X,_)dX e

* / (F(Xee +2) = F(X0) (5 = v)(ds.da)
[ ]

+ Z /Daﬂf ) d(X e, X7,

+ /[O,t]de (f (Xo_+1)— ZD FiX )y(ds,dx)

foranyi =1,...,d"and anyt € R, , whereB denotes the predictable part of finite variation
of X. One immediately sees that the second term is the continuous martingala#rird
term the discontinuous martingale part and the last three terms the predictdtuéfiate
variation of the special semlmartlngayfé(X) Elementary calculations yield that the first
two of the integral charactenstuﬁi% C, v)! are as in Lemma 2.16, but with ¢ instead of

b, c. O

PROOF OF THE REMARKS 1. Firstly, observe thaf(X') is a semimartingale, either by JS,
1.4.57 (if f is aC?-function), or by the fact thak” and hencef (X)) has only finitely many
jumps in any interval0, ¢] (in the casé = 0, c = 0, F = 0). By the first part of the proof
of Theorem 2.25 and the assumption, we have that

(2P A Ja]) « /& //|x|2/\|a:| (@ryds+ 3 /|I|K (da)

$€ON[0,¢]

P-almost surely for any € R, . By Proposition 2.7f(X) is a special semimartingale.
2. By the mean value theorem, we hayé¢X, +x)— f(X; )| < M|x|. Hence, by the
first part of the proof of Theorem 2.25,

(2” A fa]) 5

_ /[Ot]xw (IF(X- 4 2) = SO A (Kot 2) = F(X,0)]) w(ds, da)

< (Z\/[2 VM)(|:U|2 A z]) * v

P-almost surely for any € R, . SinceX is a special semimartingale, Proposition 2.7 yields
that f(X) is a special semimartingale as well. O
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2.6 Girsanov's Theorem

Girsanov's theorem tells us how the extended characteristics behave undesoartedy
continuous change of the underlying probability meagtre

Theorem 2.26 Let P be a probability measure off2, F, P) with P < P and denote by
Z the density process d@t relative to P (cf. Definition A.5 in Appendix A). Moreover, let
X be an extended Grigelionis process with extended characterigicB*?, b, ¢, F, K)*
that is aﬁ-special semimartingale. Thel is an extended Grigelionis process relative
to P and its extended-characteristics(©, PX°, b, ¢, F, K)¥ are given as follows. There
exist a(P @ B¢)-measurable mappiny : 2 x R, x R? — R, and a predictable process
B:0Q xR, — Rsuchthatforany e Ry,ie {1,...,d} we haveP-almost surely

//|x (s,x) — 1)| Fy(dz) ds + Z /|x (s,x) — 1)| Ks(dz) < 00,  (2.7)

$€ON[0,t]

iaﬂa
s Ms

ds < 00,

/Ot(Zﬁa‘W 7>d$<oo,

a,y=1
and such that forany e R, ,i € {1,...,d}, G € B we have

PY(G) = BE(1¢(X0)Zo),

V=) B+ /xi(Y(t, z) — 1) Fy(dx), (2.8)
FiG) = [ 16(a)Y (t.2) Fldo) (2.9)
Ri(@\10)) = [ 100y ()Y (t.2) Koldo) (2.10)

Moreover, a(P @ B?)-measurable mappinyy : Q x R, x RY — R, and a predictable
process3 : Q x R, — R? meet all the above conditions if and only if

L E([ig noyxme ZeU (¢, @) ¥ (dt,dz)) = E( [ oy pa Y (8, 2)Z,-U(t, ) i (dt, dz)) for
any (P @ B?)-measurable mapping : 2 x R, x R — R, (whereu™ denotes as
before the random measure of jumps\of,

2. (2, X% = [[(>o B Z, ) dt foranyi € {1,...,d}.
Remark. For X to be aP-speciaI semimartingale, any of the following conditions suffices.

1. [Z,M'] € ./c(P) for anyi € {1,...,d}, whereM is the P-local martingale part
of the P-canonical decomposition of thié-special semimartingal& .
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2. [Z, M%) € .,.(P) foranyi € {1,...,d}, whereM? is the purely discontinuous
part of theP-local martingale)/ in Condition 1, i.e M4 = z * (u* — v).

3. For somé? @ B?)-measurable mapping : Q@ x R, x R — R, meeting Condition
1 in the previous theorem, we have that for any R .

t
/ /(|x|2 A |z))Y (s, ) Fy(dr) ds < oo P-almost surely,
0

/|x|Y(t, z) Ki(dr) < oo P-almost surely.

The following lemma shows how to obtaihandY” if the density process is of exponential
form, which is often the case.

Lemma 2.27 Assume that in Theorem 2.2B,is of the formZ = ([, 3, - dX{ + (Y —
1) x (i — 7)), where the integer-valued random measien R, x R? is defined by

([0,1] x G) = pX([0,] x G) +e0(G) Y (1 —p¥({s} xRY))

s€0N[0,t]

(foranyt € Ry, G € B?, v denotes the compensator of 5 : Q@ x R, — R? is

a predictable process anti : Q x R, x R? — R, a predictable mapping such that
[Y(t,z) K;(dz) = 1 P-almost surely for any € ©. Thens andY” meet the Conditions 1
and 2 in Theorem 2.26 (even if we do not assumexthiatalso aP-special semimartingale).

Proofs

PROOF OFTHEOREM 2.26. Observe that, by the definition of the extended characteristics
and by Remark 2 in Section 2.4, Equations (2.8) — (2.10) and the claim concerrangoe
rephrased as

;;([o,t]xa):/o /IG(S)Y(s,x)FS(dI)—i- 3

s€ON[0,t

/ Lovoy ()Y (5, 2) K, (da), (2.11)
]

B = B;+Z/O c;aggdH/O /xl(Y(s,a:)—l)Fs(dx)
a=1

+ Z /g;‘l(Y(S,!L') - 1) Ks(dl'),
]

s€ON[0,t

ét - Ct

foranyt € R, ,i € {1,...,d},G € B, where(B, C,v) and(B, C, %) denote the integral
characteristics oX relative toP and P, respectively. Using Equation (2.3), we rephrase
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this once more by the statement thi&t(h), C, 7)’S are the characteristics of relative to
P, where

BZ = Bi(h —i—Z/ 3% ds + h' (x) (Y — 1) * v

for anyt € R, . Observe that Condition 1 is a rephraseYof_ = lex (Z|P) in the no-
tation of JS. Theorem 2.26 now follows from JS, Theorem I11.3.24 if we replace (2t[) w
|h(z)(Y —1)| % v, < oo P-almost surely for any € R, . But note thatz — h(z)| * v, < 0o
and|(z — h(z))Y|*v, = |z — h(z)| *7, < co P-almost surely for any € R, holds anyway,
since X is a P- and P- -special semimartingale (cf. Proposition 2.7). Hence, the stronger
inequality|z(Y — 1)| * v, < co P- almost surely for any € R, is also met. O

PROOF OF THE REMARK 1. It suffices to show that/ is a P-special semimartingale. By
Jacod (1979), (7.29) or JS, 111.3.11, this follows fra# M?] € .o7,.(P)fori € {1,...,d}.

2. It suffices to show thad/? is aﬁ-special semimartingale. This follows again from
Jacod (1979), (7.29) or JS, 111.3.11.

3. By JS, 111.3.24, we have that (2.11) holds for tﬁecompensator ofi* evenifX is
not special. The claim now follows from Proposition 2.7. O

PROOF OFLEMMA 2.27. SinceZ is by definition a solution to the SD&7;, = 7, §; -
dXi+ Z,_(Y(t,z) — 1) (i — v)(dt, dx), one easily verifies that Condition 2 holds fér
Moreover observe that, by definition of the integral with respe¢fite ), the jumps ofZ
are, up to an evanescent set, given by

Z (Y (t, AX;) — 1)1ga\ (o3 (AX;) — 0 ift¢ o
AZ,
{ Z (Y(t,AXy) —1)— [Z, (Y — 1) v({t} xdz) ifteo.
Sincerv({t} xdm) = K,(dz) foranyt € ©, we have thaf (Y —1)v({t} xdx) =0and
henceAZ, = 7, (Y (t,AX;) — 1) foranyt € R, . Thisin turn |mpl|esZt Zi_+AZy =
Zy Y(t,AX;) = Z; Y(t,x) for p*-almost all(t,z) € R, x R¢, Thus, Condition 1 in
Theorem 2.26 also holds. O

2.7 Martingale Problems

Now we are ready to define the promised stochastic analogue to ODE's. Foasbese
mentioned in the previous section we will not do this in terms of Grigelionis pseses
their derivative, but consider instead the respective extended notions.sIedttion the
stochastic basi€?, F, (F,)cr. , P) is no longer given. Let us fix some

Notation. By (D¢, D?, (Df),cr, ) we denote th&korohod spac®? := D (R?) of cadlag
functionsR, — R? with its Borelo-field D? := D(R?) and the canonical filtration
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(D)ier, = (D(R?),)ser, (cf. Appendix A, Definition A.7).P? stands for the predictable
o-field onD? x R, .

Definition 2.28 1. A martingale problen{®, 7, b, ¢, F, K)™ in R? is given by

e adiscrete sed C R7,

e a probability measurg on (R¢, BY),

o aP!-measurable mappirig: D¢ x R, — R? such thatf; |b,(@)| ds < oo for
any(w,t) e DY x R,

e aP?-measurable mapping: D¢ x R, — R?*? whose values are symmetric,
non-negative matrices such thaf’._, [ |c¥(w)| ds < oo forany(w,t) € D¢x
Ry,

e atransition kernel from (D¢ x R, , P?) into (R?, B?) such thatF((w, t), {0})
=0and ] [(|z%| A |2]) F((@,s),dr)ds < oo for any (@,t) € D x Ry,

e atransition kernek from (D? xR, , P?) into (R?, B¢) such that for anyw, t) €
D¢ x R, we have[ |z| K((®,t),dz) < oo and

_ J 1 ifteo

K((@,0),R) = { 0 else.

2. We call aR?-valued extended Grigelionis proce&son a filtered probability space
(2, F, (F1)ter,, P) (or, more exactly, we call the tup€(2, F, (F1)er, , P), X)) so-
lution-processo the martingale problert®, n, b, ¢, F, K)M if (©,1,b,¢, F, K)F is a
version of its extended characteristics, where we défife) := b,(X (w)), & (w) =
(X (w)), F((w,t),-) := F((X(w),t),-) and K ((w, t),-) := K((X(w), 1), -) for any
(w,t) € A xRy

3. For any solution-process the law P~ on (D¢, D9) is called asolution-measuréo
the martingale problem.

Remark. Strictly speaking, a semimartingale on (2, F, (F)icr, , P) is cadlag only up
to an evanescent set, so thgtX (w)) etc. may only be defined faP-almost allw € .
However, by Jacod (1979), (1.1) we can defi&’) (up to indistinguishability uniquely)
by taking a(%;)cr, -predictable version of(X), whereX is a (F7),cx, -semimartingale
with cadlag paths (foall w € Q) andX = X up to indistinguishability.

If two processes solve the same or similar martingale problems, we dahélyashare the
same (resp. a similagynamic This term will also be loosely applied if we talk about the
extended characteristics of an extended Grigelionis process. Before wegrmmber of
results about martingale problems for later use, we give some examples shoatingri-
ous probabilistic models can be obtained as particular martingale problems.
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Examples.

1. Letn be a starting distribution ofR?, B¢) and@ a Markov transition kernel from
(R?, BY) into (R?, B?) such that[ |z| Q(y,dz) < oo for anyy € R?. Moreover, let
(2,3, (F)ier,, P), X) be a solution-process to the martingale probl&h, 7, 0,0,
0, K)M, where the transition kerndl’ from (D¢ x R, , P4) into (R?, BY) is defined
by

_ Qo 1,G+ @) ifteN
K((@,t),G) =
@n.e)={ e

forany(w,t) € D¢ x R, , G € B Then(X,);en is aMarkov chaincorresponding

to the initial distributiory; and the transition kernét'.

2. Consider now an ordinary differential equation or, more specifically, thalimélue

problem
z(0) =g, 2'(t) = f(z(t),t) (2.12)

for somez, € R? and some continuous functigh: R? x R, — R?. Then any solu-
tion to this initial value problem is a deterministic solution-process to thgingale
problem(a, ., b,0,0,0)™, whereb : D¢ xR, — R? is defined by (@) := f (&, )
forany(w,t) € D? x R, . Moreover, if((Q, F, (F1)ier ., P), X ) is a solution-process
to this martingale problem, theR-almost all paths ofX are solutions to the initial
value problem (2.12). Hence, there are only deterministic solution-procesdes to t
martingale problem if uniqueness holds for the initial value problem (2.12).

3. Let((Q, T, (F)ier,, P), (Z, X)) be a solution-process to a martingale problg¥h,
1n,0,0,0, K)™ in R? such that for any((@',&?),t) € R* x (N*\ {1,2,...,(pV
q) — 1}) we have thatk (((@', ©?),t),-) is the image ofV (0, 1) under the mapping
RoR 2z (z—wp,2—0i +Y 0 piwi,+ > b Yw)_,;), wherep, ¢ € Nand
©1,- - 0p,U1,...,9, € R are given. ThenZ,),cn- is a sequence of independent,
N(0, 1)-distributed random variables. Moreover, we have that

Xi—p1 X1 — o= Xo py =Zi+ N Zpa + ...+ 02

P-almost surely forany € N\ {0,1,...,pV ¢}. Therefore(X,)cmo,1,.. pvq} IS @
ARMA(p, q) time series

4. Consider a one-dimensiordiffusionsatisfying the SDE
dX; = w( Xy, t)dt + o( Xy, t) dW;, Xy = z9

wherez, € R, u,0 : R x R, — R are given continuous functions andl is a
standard Wiener process. Tha&nhis a solution-process to the martingale problem
(D, €40, b,¢,0,0)M, whereb(w,t) = u(wy, t), c(w,t) = (o(wy,t))? for any (w,t) €
R xR,.

The following lemma relates our martingale problems with those from JSpiDefi 111.2.4

and Jacod (1979), Probléeme 12.9. These two use a slightly different notation for the sam
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object: S (H; X |Py; B, C,v) in Jacod (1979) correspondsA0H, X |Py; B, C,v) in JS.

Remark. If  denotes a probability measure @& andY is the canonical process on
D9, thenY, *(A) — n(A) for any A € B uniquely defines a probability measure on
(D4, 0(Y;)), which we denote again by(l'image réciproquen Jacod (1979), p.395).

Lemma 2.29 Let (O, n,b, ¢, F, K)™ be a martingale problem i¢ as in Definition 2.28.

1. Let(Q,F, (F1)ier, , P) be afiltered probability space antl a R?-valued semimartin-
gale on that space. Then we have equivalence between

(@) X is a solution-process to the martingale problé@ n, b, c, F, K)™

(b) P is a solution to the martingale problenio (X), X |(P|,(x,)); B(h),C,v) on
(2, F, (F1)ier, ) in the sense of JS, Definition 111.2.4, where the mappiB(s) :
OxR, - R, C: QxR — R and the random measureon R, x R?
are defined by

B(h), = / ds+// F((X, 5),dz) ds

+Z/ s),dz),

s€ONI0,t]

¢
Cy ::/ cs(X) ds,
0

0([0,4] x @) ::/0 F((X,5),G)ds+ 3 K((X,5),G\ {0})

s€ON[0,t]
foranyt € R, , G € B?. Moreover,P*o = .
2. f((Q, 7, (F1)ier,, P), X) is a solution-process to the martingale problem, th@h?,

D (DY)ier, , PY),Y) is a solution-process as well, wherehere denotes theanon-
ical proces®nD? (i.e.Y;(w) = w; forany (v,t) € D¢ x R,).

3. On the spacéD?, D%, (DY),cr, ) with canonical process’, consider the (JS-sense)
martingale problems(a(Yy), Y |n; B(h),C,v), where B(h),C,v are defined as in
Statement 2, but oR¢ instead of2. Then we have equivalence between

(@) P is asolution-measure t®,n,b, c, F, K)M
(0) P € s(c(Yo),Yn; B(h),C,v).

In particular, (0, n, b, ¢, F, K)™ has a unique solution-measure if and only(if (1),
Y|n; B(h),C,v) has a unique solution.

Now we turn to the connection of martingale problems and stochastic diffdregtiations
(SDE's).
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Theorem 2.30Letz € R?, letbh : D¢ x R, — R¥ andu : D% x R, — R¥*? be
predictable. Then the following statements are equivalent.

1. Pis aweak solution (or solution-measure) to the SDE
dX; = b(X)dt +u(X)dW,,, Xo=2x

(in the sense of Jacod (1979), Definition 14.79), wh&relenotes &? -valued stan-
dard Wiener process.

2. P is a solution-measure to the martingale problém, <, b, c,0,0)™, wherec :=

uu .

The preceding theorem deserves a short reflection. In applications stochasiberema
are often modelled by SDE's with respect to Wiener processes. This coehmoae is,
by Theorem 2.30, also natural from the point of view of martingale problems as long as
one considers only models with continuous paths @Fe= 0, K = 0). The situation
is less obvious in the discontinuous case. Although formally martingale problertis (wi
O = ©) can be transformed into a weak sense SDE with respect to a Wiener peraks
a Poisson random measure (cf. Jacod (1979), Théorémes 14.80, 14.45, 14.53), the choice
and the meaning of the coefficients is not evident. Therefore we think that, dpiecihe
discontinuous case, martingale problems may be the more intuitive concept from the point
of view of modelling.

The following theorem states that the existence of a unique solution-measureate a m
tingale problem carries over to related problems with different drifffaaents in the con-
tinuous case. Its proof is based on a Girsanov transformation.

Theorem 2.31 Let (@, n, b, ¢,0,0) be a martingale problem iiR? having a unique solu-
tion-measureP. Moreover, leth : D? x R, — R? be aP¢-measurable mapping such that
3 1hs(@) Tes(@)h (@) | ds < oo for any (@,) € D¢ x R,.. Then the martingale problem
(@,n,b+ ZZZI hec*, ¢,0,0)™ has a unique solution-measuf&, which is, in addition,
locally equivalent taP (cf. Appendix A, Definition A.5). The density proces#ofelative
toPisZ:= ([, hs-dX;), whereX denotes the canonical processDf.

The next two technical lemmas are for later use.

Lemma 2.32 Let ((22, F, (F})er, , P), X) be a solution-process to a martingale problem
(©,m,b,¢, F, K) in R?. Then((2, S, (S¢)er,,P), X) is also a solution-process to the
problem, whergS;),cr, denotes any sub-filtration ¢§;),cr, to whichX is adapted or the
P-completion of such a filtration ang = J resp.J7.

Lemma 2.33 Let ((22, F, (F;)er, , P), X) be a solution-process to a martingale problem
(©,n,b,¢c, F, K)M in R?. Assume that2, F) is a Blackwell space (cf. Remark 2 below).
Fixt € R, andlet® := {s —t : s € © N (t,0)}. For fixedw € Q we definer € R,
the mappings : D¢ x R, — R?,¢: D¢ x R, — R and the transition kernels, K
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from (D¢ x Ry, P’) into (R?, BY) by » := X;(w), bs(@) = s (1(X (w), @
s (UX (@), @), F((@,5),7) == F((1(X (W), ), 1 +5), ), K((@,5),) 1= K(

t+s),-) forany(@,s) € D? x R, , where

| Xs(w) forsel0,t)
UK W), @) = { ws_y fors e[t c0).

Then bothPXt+s)ser Tt () and pXe+sdser lo(Xuue0t) )y gre for P-almost allw € €
solution-measures to the (random) martingale prob(é&ne,, b, ¢, ', K)M

Remarks.

1. Lemma 2.33 still holds if we replad€, F, (F,)cr. , P) with its P-completion(€2,
S.I‘P, (gjtp>t€R+7 P)

2. Blackwell spaces are defined in Dellacherie & Meyer (1978), 111.24. AnysRapace
with its Borelo-field as e.g(D?, D) is a Blackwell space (cf. JS, p. 65). Moreover,
if (J%)icr, is the canonical filtration of a cadlag processandd = F,_, then(Q2, J)
is also a Blackwell space.

Proofs

PROOF OF THE EXAMPLES 1. Sinceb = 0, ¢ = 0, F' = 0, we have thatX; = X, +
> sconpg AX, foranyt € R,. By Remark 3 in Section 2.4 we obtalf(.X; € G|F,_) =
PAX”'JV (G X 1) = K((X,t),G—X,_1) = Q(X;_1,G) P-almost surely for any € N*,
G € B®. Therefore, aIsaP(Xt € lo(Xp, ..., X; 1)) = Q(X,_1,-) P-almost surely for any
t € N*, and the claim follows.

3. Similarly to Example 1, it follows that

P(Z, € G, X, e H|F, ) = K((Z,X),1),(G—Z ) x (H—X, 1))
_ / 1e(2) 1y (z + zp: 0 Xo i+ Xq: ﬁiZt_i> N(0,1)(dz)

P-almost surely for € N* \ {1,2,...,(pV q)} andG, H € B. This shows the claim.
4. This will be shown in Theorem 2.30. O

Proposition 2.34 Let (0, F, (%,)ier, , P) be a filtered probability spaceX a R?-valued
semimartingale on that space anda probability measure o (X,). By (G¢)icr, We de-
note a sub-filtration of F;),cr,, to which X is adapted or theP-completion of such a
filtration; moreover,§ := F resp.F”. Assume thaf is a solution to the martingale prob-
lems(o(Xy), X|n; B(h),C,v), whereB(h),C, v are as in JS, 111.2.3, but with predictabil-
ity also relative to the filtration(G;);cr, . ThenP is a solution to the martingale problem
j(U(XO)v X|77; B(h)v C, V) on (Qv S, (9t>teR+7 P)
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PROOF By JS, 11.2.42, we have that

o= () - /Df yannyi - 1 /Dwf dci

- (Fx_+ ) ZDf )

is a(F:)ier, -local martingale for any boundee-function f : R* — R. Since the last three
terms are(S,).cr, -predictable and, moreover, of finite variation, they are, by JS, 1.3.10,
(G¢)ter, -locally bounded. Hencg, is a(G;).er, -locally bounded J;)cr, -local martin-
gale. By Jacod (1979), (9.18), (##(i), one has thal” is also a(5;)cr, -local martingale.
Again by JS, 11.2.42, the statement follows. OJ

PROOF OFLEMMA 2.29. 1. (a)=(b): By Lemma 2.21 the characteristicB(h), C, v)”*
are given by the equations in (b), which yields the claim.

(b)=-(a): By the integrability conditions oR, K in Definition 2.28, we have thatz|> A
|z|) * v, < oo P-almost surely for any € R, . Therefore,X is a special semimartingale
(cf. Proposition 2.7). The claim now follows from Statement 2 in Lemma 2.21.

2. By Statement 1/ is a solution to the martingale problenir(X,), X|(P|s(xy));
B(h),C,v) on ((2, F, (F)er, ), X). By Proposition 2.34 one may replat#;);cx, with
the canonical filtration§, ),cr, of X. The corresponding martingale problem on the space
(D%, D% (DY)ser, ) (Which is calleds(o(Ys), Y |n; B(h),C,v) in Statement 3 of Lemma
2.29) is the image of that problem in the sense of Jacod (1979), (12.65). By Jacod (1979),
(12.66), we have thabX € (o (Yp),Y|n; B(h),C,v). The claim now follows from the
inclusion (b}=-(a) in Statement 1.

3. By Statement 2, we have that (a) is equivalent to

(c) (D4, D (D)ser,, P),Y) is a solution-process t®, n, b, ¢, F, K)™

Statement 1 implies that (c) is equivalent to (b). O

PROOF OF THEOREM 2.30. By Jacod (1979), (14.80), the first statement is equivalent
to the assertion thaP is a solution to the martingale problemio(X,), X|e,; B, C,0)

on the spacéD?, D% (D¢),cr, ) with canonical process(, where B, = [ by(X)ds,

Cy = fot us(X)us(X)" ds for anyt € R,. The claim now follows from Statement 3 of
the previous lemma. O

PROOF OFTHEOREM 2.31. Related versions of this theorem can be found in Revuz & Yor
(1994), Theorems IX.1.10 and IX.1.11.

Firstly, we will show the existence part. For anye R, define a stopping tim&, on
(D4, DL (DY) ser,, P) by T; := inf{t € R, :exp(} [ |h]c,hy| ds) > r}. By assumption,
we havel, 1 oo for r 1 oo and henc®® = DI, = o(U,enDY, ) (cf. Jacod (1979), (1.9a)).
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We define a new filtratiorfS, ),cr, on (D¢, D7) by G, := D%.. Observe thatS,),cr,

is right-continuous, sincé; | T, for r | r (cf. JS, .1.18). By Lemma 2.29, Statement
2 we have thatX is a solution-process to the martingale problemn, b, c,0,0)M. Ac-
cording to the Novikov condition (cf. Revuz & Yor (1994), Proposition VIII.1.18J; is

a uniformly integrable martingale starting in 1. Therefore, we may definenfprae R,

a probability measur#” ~ P on D? by dP"/dP := ZIr. By use of the stopping theo-
rem (cf. JS, 1.1.39b) one easily shows tifit|g, = P"|g, for » < +'. Since(D? DY) is

a Polish space, there exists, by lkeda & Watanabe (1989), 1V.4.1, a probabilitymaéas
on (D4, D7) such thatP’|s, = P"|g, foranyr € R,. SinceZ" = & ([, 1jo.1,1hs - dX?),

it follows from Lemma 2.27 and Theorem 2.26 thi@b?, D¢, (Dd)t6R+, Pr), X) is for any

r € R, a solution-process to the martingale problemn,, b, ¢, 0,0)M, whereb(™) := b +
Z L hee® 1o, By Statement 3 of Lemma 2.297 is a solutlon to the martlngale prob-

lem 4( (Xo), X|n; B™,C,0) on (D9, DY, (DY),cg, ), X), where B := fo
Cp = [) es(X)ds for anyt € R, . By JS, 1.2.21 the processas") : X X, — B and
NI = MTipN[d — C4 are PT-local martingales fof, j € {1,...,d}. The stopping

theorem implies that this also holds for the stopped proce(gﬁé@)Tr, (N)Tr - Now
define the processd®, M, N by B, := [)/(b, + >%_ hec®)ds, M, := X, — Xy — B,
NY := M'MJ — CY for anyt € R,.. Since(M)" = MT, (NOHTr = (N3)T
and sinceP", P’ coincide onD4, , we have thaf\/™, (N*/)”" are P'-local martingales for
anyr € N. HenceM, N¥ are alsoP’-local martingales for,; € {1,...,d}. By JS,
[1.2.21 we have thaf”’ is a solution to the martingale problenv (X,), X|n; B,C,0) on
(D4, D, (D)ser, ), X). Statement 3 of Lemma 2.29 yields th2ttis a solution-measure
to the martingale problertw, n, b + Zizl hec™, ¢,0,0)M as well. By JS, 111.3.3 and P’
are locally equivalent. The fact th4tis the density process &f relative toP follows from
an easy calculation using the martingale property of the proceSses c N.

In order to show uniqueness, assume that there are two solution-me&SuPésas in
Theorem 2.31. By applying the existence part of the theorem/tinstead ofh, we have
that there are probability measur®s & P', P" ' P, defined bydﬁ”|®§/dP”|®§ =
dﬁ’|®§/dP’|@§ = &(— [, hs - dX,), for anyt € R, which are solution -measures to the
original martingale problert, 7, b, ¢, 0,0)™, whereX” := X — Jo (bs +Za L h(X)
¥ (X)) ds denotes the continuous local martingale parKofeIatlve toP’ as well asP”.
Since the martingale probleitw, , b, c,0,0)" has a unique solution-measure, we have
P’ = P" and, by the positivity of ' (— [ h, - dX;), alsoP' = P", which yields the claim.

U

PROOF OFLEMMA 2.32. By Lemma 2.29P is a solution to the martingale problem
2(0(Xo), X|(Plo(xo)); B(h),C,v) on (2, F, (F1)ier, ) WhereB(h), C, v are defined as in
Statement 1 of this lemma. Proposition 2.34 implies that we may substituge (G;):cr )
for the spacg, F, (F;).er, ). Again by Lemma 2.29 the statement follows. O

Proposition 2.35 If (X;).cr, is a cadlag, adapted process such thak),cq, is a martin-
gale, then(X;)cr, is a martingale as well.
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PROOF Fix T' € Q. It suffices to show thatX;).,c is a martingale. By JS, 1.1.42
there exists a martinga(e’?t)teﬂg+ with X, = E(XT|¥,) P-almost surely for any € R, .
Since X and X are cadlag and coincide d@ N [0, 7], we have thatt” = X7 up to
indistinguishability, which implies th&tX}),cjo 1 is @ martingale. O

Proposition 2.36 Let (2, F, (F})«cr, , P) be a filtered probability space such th@e, ) is
a Blackwell space. Fix € Ry and define the filtratioiG; ) ;cr, on (2, F) by G, := F,, for
anys € R,. LetX be a local martingale o2, &, (¥;)er, , P). Then the process, de-
fined byX, := X,,,— X, foranys € R, , is alocal martingale ofi2, F, (G.)cx, , P17 (w))
for P-almost allw € Q, whereP!?t denotes the regular conditional distribution of the iden-

tity given theo-field &,.

PROOF Let (T, ).en be a localizing sequence fo¢. One easily shows that the sequence
(T,,)nen, defined byT}, := (T, — t) v 0, is a sequence of stopping times @h 7, (9s)ser,)
with T, 1 oo PI%t(w)-almost surely forP-almost allw € €. We will now show thatX 7
is a (2,7, (s)ser, , Pt (w))-martingale for any» € N and P-almost allw € Q. Fix
n € N. SinceX™ is (9s)ser, -adapted and cadlag, it suffices to prove tbﬁf")sew is
a Pt (w)-martingale forP-almost allw € € (cf. Proposition 2.35). We will only prove
the martingale equality; the integrability follows along the same linesrFixc Qt with

r < s. Itremains to be shown that there i®anull set/N € F such that, for anys € 3 and
anyw € N¢, we have[ (X7 (@) — XT(@))E(14|S,) (@) P7*(w,d) = 0. By a Dynkin
argument it suffices to consider a countable generating algebra (which alwalgsiexas
Blackwell space) instead of alf € F. Therefore, we may let th2-null set/V depend on
the chosen set € F. So, we are left to prove that for aly € F and anyF’ € J,, we have

// <)}5ﬁl(w) - X0 (@)>E(1G|9r)(u7) PP (w, dw)1(w) P(dw) = 0.

But, by definition of conditional probabilities and by’» (o) = X w) — Xy (@), the
left-hand side equalg$ (X7, (w) — X/r.(w))E(1¢|S,)(w)1r(w) P(dw), which is 0, since
F, C G, = F,,, and sinceX ™ is a P-martingale. O

PROOF OFLEMMA 2.33. By Lemma 2.29P is a solution to the martingale problem
2(0(Xo), X[(Plo(xo)); B(h),C,v) on (Q,F, (F))er, ), WhereB(h), C, v are defined in
Statement 1 of that lemma. By JS, 11.2.21 this implies that the procédsés := X (h)
—B(h) — Xo, M(h)IM(h)i — C(h) for anyi,j € {1,...,d}, andg * u* — g * v for
anyg € 7 *(R?) are local martingales, where we refer to JS for notation to avoid lengthy
definitions here. But note that”*(R?) can be chosen countable (cf. JS, 11.2.20). Let now
t € Ry be fixed as in Lemma 2.33. Define a new filtrati®h);cr, on (22, F) by G, := F,4,

for anys € R;. Moreover, defingg;),cr, -local martingales\ (h) etc. by M (h), :=
M(h),4s—M(h), foranys € R, (and accordingly for the processe h)' M (h)i —C'4 (h)
andg * u* — g xv). Proposition 2.36 yields théﬁ(h) etc. arePl7t(w)-local martingales for
P-almost allw € Q2. Again by JS, 11.2.21, this implies that fdt-almost allw € 2 we have
PP (w) € 4(a(Ys), Y[(PP(w)]sro)); B(h),C,7) on (2,7, (Ss)ser, ) With fundamental



2.8. Existence and Uniqueness Theorems 65

process(Yy)ser, = (Xits)ser,, WhereB(h); := B(h)i1s — B(h)i, Cs := Cis — Cy,
v([0,s] x G) == v([t,t + s] x G) for s € Ry, G € B Fixw € . Observe that we have
birs (X (W) = bigs (U( X (W), (Xigs)ser, (w)) = by(Y (w)) (and likewise fore, F, K) for any

s € R,. Therefore, we have by definition &f(%), C, v that

B(h), = / du+// F((Y,u),dv)du+ Y _ / (z)K((Y,u),dz),

u€dN[0,s]

50, 5] x G) :/ F(vu),@dut Y R((Y,u),G\{0}).
0 u€®N[0,s]
By Lemma 2.29, Statement 1 we can therefore conclude(thatF, (5;)ser, , PP (w)),
Y') is a solution-process to the martingale probl(@nsxt ,b,¢, F, K)M. Therefore( P

(W)Y = PYIP(y) = pWsderiTt() is a solution- measure to this random martingale
problem for P-almost anyw € Q. The proof works basically unchanged fofX, : u €
0, ¢]) instead ofF;. O

PROOF OF THE REMARKS

1. By Jacod (1979), (1.1)X is indistinguishable from a(t;);cr, -adapted procesg.
It follows from Lemma 2.32 that(Q2, F, (F1)er, , P), X) is also a solution-process
to the martingale problert®, n, b, ¢, F, K)™. Moreover, it is easy to see that for any
Blackwell space-valued, measurable mappthg 2 — (F, £), any version of the
regular conditional distributio®Z!”* is a version ofPZ'% as well. This shows the
claim.

2. If the filtration is the canonical filtration of a cadlag procésandd = F,,_, then
F = o(X), where X here means the mapping — (D¢, D?). Using Theorem
[11.25 in Dellacherie & Meyer (1978), one easily verifies that if théield ¥ on ) is
generated by a Blackwell space-valued mappihghen((2, ¥) is a Blackwell space
as well. O

2.8 Existence and Uniqueness Theorems

We have motivated martingale problems as stochastic analogues of ordinargrdiée
equations. In order for them to be useful in practice, we need some existence qué-uni
ness results. Statements of this kind are proved in this section. We r&avénséxample

2 in Section 2.7 that ODE's can be interpreted as specific cases of mirgonghlems.
Since existence and uniqueness results for ODE's usually rely on some kind difitapsc
and growth conditions, we cannot hope for more for arbitrary martingale problemssThe a
sumptions in the following theorem, which is explained in greater detail helmexactly

of this kind.
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Theorem 2.37 Let (O, n,b, ¢, F, K)™ be a martingale problem iit?. We make the follow-
ing assumptions.

Existence: Suppose that = uu ' for someP?-measurable mapping: D¢ x R, — R%*?,
Moreover, assume thdf can be written as a SUrR' = k; + ko + k3 Of transition
kernelsk,, ko, k3 from (D¢ x R, P4) into (R?, B?) with the following properties.

1. There is someé/; € R, such that for anyw,t) € D¢ x R, we haves, ((w, 1),
R?) < M;.

2. For any3 € R, there is an increasing mapping/, : R, — R, such that
for any (0,t) € D? x R, with ||@||; := sup{|@| : s € [0,#]} < B we have
Ko((w, 1), RY) < My(t).

3. There exist a finite measureon thep-dimensional spheré? := {x € RF+! :
|z| = 1} (for somep € N), a(P?® B(SP) ® B, )-measurable mapping: D¢ x
R, x S? x R, — R? withg(-,+,-,0) = 0 and a(P? @ B(S?) ® B, )-measurable
mappingp : D¢ x R, x S? x R, — R, such that for anyw,t) € D¢ x R, we
have

ra((@,1), 0) = p((@,1), )74 (o)
(i.e. the measure;((w,t), ) is the image of the measuyé (&, t), -) under the
mapping (n,7) — g(@,t,n,r)), where the transition kerngl from (D¢ x
R?, P?) into (S? x R, , B(SP) ® B?) is defined by

p((w,t),d(n,r)) := p(w,t,n,r)drT(dn).

Linear grovvth conditionS' There are measurable mappings;, My, M5, Mg : R, — R,
with fo s)ds < oo fori = 3,4,5,6 and anyt € R, such that for any{@,t) €
D? x R+ We have

@) = [ 1+ ) (@) )| < Mafe)(1 4 )

Dl @) < Mu()(1+ o)),

ij=1

[ sl wal(@.),d0) < 201 + 2]

/|$|2f€3((w,t),dff) < Ms(t)(1 + [|@]]7)%,
where||w]]; := sup{|ws| : s € [0,]}.

Regularity conditionson p: There is & B, @ B(S?))-measurable mapping : R, xS? —
R, such that for anyit,n) € R, x S? we have

1. p(w,t,n,r) # 0 ifand only ifr € (0, R(t,n)] \ {oc},
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2. fTR(t’") p(w,t,n,7)dr < oo foranyw € D4, r > 0,

3. The mapping(-,t,n,-) : D¢ x((0, R(t,n)]\{c0}) — Ris continuous and in its
first argument Fréchet-differentiable with continuous derivative(-, ¢, n, ) :
D{ x ((0, R(t,n)] \ {o0}) = “(D{,R).

4. For any € R, there exists a measurable mapping : R, — R, with
[° M7(7) dF < oo for anyr > 0 and such that

| D1 p(@, t,n,7)|| < Mz (r) (2.13)
foranyw € D¢ with ||@||: < 3and anyr € (0, R(t,n)).

(Observe that by predictability the mappiag— p(@, ¢, n,r) is D¢ -measurable and
thus depends only ol@,),c0,q. Therefore, we may identify the mapping, ¢, n, -) :

D? x R, — R with a mappingD¢ x R, — R (which we call againp), where
D¢ := {a : [0,t] - R? : o cadlag;. By endowingD¢ with the sup-norm| - ||;
(i.e.||al]y :==sup{|as| : s € [0,¢]}), we obtain a Banach space and hence continuity,
Fréchet-differentiability etc. as above make sense. If we Vidijtgw, ¢, n,r) for o €

D? in the sequel, then this is to be understoodas((w;)sejo.4, . 1, 7).)

Local Lipschitz conditions: For any 3 € R, there exist measurable mappingig : R, x
SPxR, - Ry, My : R xSPxR, =Ry, L : R, =R, Ly: R, — Ry,
Ly:Ry xSP - Ry, Ly: Ry x SP xRy — Ry with Ly(+, -,0) = 0 such that for any
t € R, the following conditions hold.

1. Foranyn € S?,r € R, and anyw € D¢ with ||o]|} < 3 we have

R(t,n _
([FE Dy p(@, 8, n, 7| dF)?
p(w,t,n,r)

S MS(ta n, T)a
p(&},t,n,r) S M9(t7n7T)7
where we sett/0 := 0.
t
/ Li(s)ds < oo fori=1,2,
0

t
/ /L%(s,n) Mg(s,n,r)drT(dn)ds < oo,
0 Ry

t
/// L3(s,n,7)My(s,n,r)dr T'(dn) ds < .
0 Ry

3. Foranyw,w € D? with ||w||; < 8, ||@|| < 3, anyn € SP and anyr,7 € R,
we have

b(w) — /x(/ﬁ ko) (w, 1), dz) — (@) + /x(m ko) (@, 8), )

< Li(8)]lw — @7,
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> W) ~ @ < La(e) (o — Bl

l9(@,t,m,7) = g(@, £, 0, 7)] < Ls(t,n)|r — 7,
lg(w, t,n,r) — g(w,t,n,r)| < Ly(t,n,r)||w — o]}

Under all these conditions there exists a unique solution-measure to the given martingale
problem.

Before we turn to some corollaries we want to explain the assumptions of Th&bg&m
For the drift and diffusion coefficients ¢ (or b, u) we assume local Lipschitz and linear
growth conditions, as is well-known from results on SDE's. There is ho conaitid.
The jump transition kernek’ is decomposed into three parts. The first omg pas to be

of bounded jump intensity/;, but faces no additional condition. Another patt)(is of
locally bounded jump intensity/, and must fulfill a growth, but no Lipschitz condition.
Finally, we have a third par;, which is of more complicated structure and only comes into
play if the local jump intensity is infinite. The kerne} is the image of another kerngl
under some mappingthat has been introduced to add some flexibility, but which can often
be chosen very simple (e.g(w,t,+1,7) := +r in the casel = 1, p = 0). The radial
part of the measurg is assumed to have a denspythat is in some sense continuously
differentiable, which is a hidden local Lipschitz condition. The mappia¢so has to fulfill
Lipschitz conditions in the first and the fourth argument. The rolg ahdp may become
clearer in the two examples below.

The proof of Theorem 2.37 basically works by transforming the martingale problem
into a stochastic differential equation with respect to a Wiener procetsa éixed Poisson
random measure, so that existence and uniqueness results for SDE's can be @pdied.
transformation has to be carried out sufficiently smoothly. Otherwise, iffszhitz condi-
tions on the coefficients of the martingale problem do not carry over to the corresgondi
SDE. This is difficult for the jump part. In a sense, the key idea underlying thisopthe
proof is an application of the simple result that for axjy ,;-distributed random variable
X and any probability measutg on (R, B), the random variablégl(X) is Q-distributed,
WhereFé1 here denotes the pseudo inverse of the cumulative distribution funictioh ¢).

Corollary 2.38 For any discrete-time martingale proble(®, n,0,0,0, K)* in R¢ there
exists a unique solution-measure.

The following corollary considers the case that the process is constant beta@amps
and the jump intensity is bounded.

Corollary 2.39 Let(©,n,b,0, F, K)™ be a martingale problem (iR?) and M € R, such
that for any(w, ) € D¢ x R, we haveF'((w,t),R?) < M and,(w) = [z F((@,t),dx).
Then there exists a unique solution-measure.

If the situation is basically as in Corollary 2.39, but the jump intensity is dobally
bounded, one has to add a growth condition.
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Corollary 2.40 Let (0©,7,b,0, F, K)™ be a martingale problem ifR? with b;(w) = [=
F((@,t),dx) forany(,t) € D¢ x R,. Suppose that for any € R, there is an mcreasmg
mapping)M,; : R, — R, such that for any@,t) € D? x R, with |o||; < 3 we have
F((@,t),R4) < Ml( ). Moreover, assume that there exists a measurable mapping
R, — R, with fo Msy(s)ds < oo for anyt € R, such that for anyw, ) € D¢ x R, we
have [ |z| F((w,t),dx) g M,(t)(1 + [|@|]7). Then there exists a unique solution-measure.

If there are no jumps present (or only at fixed times), one may apply the following

Corollary 2.41 Let (©,n,b,¢,0, K)™ be a martingale problem ifR?. Suppose that =
wu' for someP?-measurable mapping : D¢ x R, — R¢*¢, Moreover, we assume

Linear growth conditions: There are measurable mapping$,, M, : R, — R, with
fo s)ds < oo fori = 1,2 and anyt € R, such that for anyw,?) € D? x R, we
have

b (@)| < My () (1 + [[@]l),

Z Ju (@)* < Ma(8)(1 + [|@[17)*.
2,7=1
Local Lipschitz conditions: For anyﬁ € R, there exist measurable mappings: R, —
R,, Ly : R, —>R+Wlthf0 s)ds < oo fori = 1,2 and anyt € R, such that
the following condition holds. For anye€ R, and anyw,© € D? with |||} < 3,
l@|l; < B we have
|be(w) = 01 (@0)] < Ly (8)]Jw — @7,

Z [u’ () = uf (@)” < Lo(t)(lw — @II})*.

i,j=1

Then there exists a unique solution-measure.

The following corollary applies to quite general situations where the jump ityassocally
bounded. Observe that no Lipschitz condition on the jumps is needed here.

Corollary 2.42 Let(©,n,b,c, F, K)M be a martingale problem i¢. We make the follow-
ing assumptions.

Existence: Suppose that = uu ' for someP¢-measurable mapping: D¢ x R, — Ré*<,
Moreover, assume that for amyy € R, there is an increasing mappingy; : R, —
R, suchthatforanyw,t) € D¢ xR, with ||o]|; < we havel'((@,t), R?) < M,(t).

Linear growth conditions. There are measurable mappings,, Ms, M, : R, — R, with
f[f M;(s)ds < oo fori = 2,3,4 and anyt € R, such that for anyw, t) € D¢ x R,
we have

0@~ [ F(@1),d0)| < M1+ o)
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Z|u @) < Ma()(1 + [|®]17)%,

i,j=1

/val F((@,1),dz)| < My(t)(1 + [|@]]7)-

Local Lipschitz conditions: For anyﬂ € R, there exist measurable mappings: R, —
Ry, Ly : Ry —>R+Wlthf0 s)ds < oo fori = 1,2 and anyt € R, such that
the following condition holds. For anye R, and anyw, @ € D¢ with [Jw||; < 3,
|@]l; < B we have

‘bt(w) —/xF((w,t),dm) — by(w) +/xF((w,t),dm) < Ly (t)]|w — @],

Z [uf! () = uf @)° < La(t)(lw - @II7)*.

i,7=1
Then there exists a unique solution-measure to the given martingale problem.

The following last corollary leads to processes with independent increnenigmark 5
below).

Corollary 2.43 Let (©,7,b, ¢, F, K)M be a martingale problem iiR? such thath, ¢, F, K
are deterministic (i.e. they do not depend®rE D¢). Then there exists a unique solution-
measure.

Remarks.

1. By Corollary 2.38 any discrete-time martingale problem (i.e: 0, ¢ = 0, F' = 0),
e.g. for Markov chains and ARM@, ¢) time series (cf. Examples 1 and 3 in Section

2.7) has a unique solution-measure. But one should be aware that in the case of time

series models this tells us nothing about the existensgatibnarysolutions.

2. For ODE's (cf. Example 2 in Section 2.7) we have, by Corollary 2.41 in the case

c=0,0 =g, K =0, existence of a unique solution fffulfills local Lipschitz and
linear growth conditions. This is in line with Picard-Lindel6f type theoremseid
analysis.

3. For diffusions (cf. Example 4 in Section 2.7) we obtain (by Corollary 2.41) the usual

existence and uniqueness results under local Lipschitz and linear growth conditions.
Note that there is a much stronger result by Stroock and Varadhan in the case of non-

vanishing diffusion coefficient (cf. JS, Theorem I11.2.34).

4. In a martingale problem of the for®, =, ([ = F(dx))icr, , 0, F, K)™ there is no
diffusion and no real drift part. The ter(rf = F}(dz)),cr, just means that the jumps
are not compensated as it would be done in the £as@. Such a martingale problem
corresponds to enultivariate point processBYy Corollaries 2.39 and 2.40 we know
that a unique solution-measure existg'ihas globally bounded jump intensity or if it
has locally bounded jump intensity and meets an additional growth condition.
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5. By Corollary 2.43 martingale problems with deterministic coefficients baweique
solution-measure. f = ¢(, then the solution-processes are processes with indepen-
dent (and in the case of time-independent coefficients also stationary) imteeme

If the jump measurd; is infinite, one cannot apply Corollaries 2.38 to 2.42, but has to fall
back directly on Theorem 2.37. We present two examples where the role of the mappings
andp becomes apparent in the proof.

Examples. Both of the following martingale problems may be considered as stock price
models, where the same events not only change the return prii¢ess also increase the
volatility X? of the stock. The difference between the two models is that in Example 1
volatility can be interpreted as amrival rate of price changes, whereas in Example 2 itis a
measure of the averageeof stock price jumps.

1. Fix parameters € R, a, 3, 0,70 € R, 71 € (o, 00). Lety be the measure qiR, B)
with \-densityz — Eﬂe*‘f‘. For any((w!,w?),t) € D? x R, we define the measure
F(((@',@?),t),-) as the image of(w?)p under the mappin® — R?, z — (o, |z|),
whereh : R — R is aC'-function such that(z) > «/2 andh’(z) € [0, 1] for any
r € R, andh(z) = z for anyz € («,00). Moreover, define the drift by, (w) :=
(p, —(@F — @) B+ [ 2oF ((w,t),d(x1,22))) forany (w,t) = ((w',&?),t) € D2 xR, .
Then the martingale problenw, ¢, 4, b,0, F, 0)™ in R? has a unique solution-
measure.

For a solution-processY!, X?), we interpretX? as a volatility. It increases due to
positive jumps (which also affect!) and is pulled back towards the lower bound
« by the drift term— (w7 — «)8. The term [z, F((w,t), d(x1,24)) just offsets the
compensation of the jumps. Therefor€? always stays above. The functionh
(which is the identity for values above) is only introduced to make the martingale
problem meet the conditions of Theorem 2.37.

2. Fix parameterg € R, o, 8,0, 29 € R}, 2, € (o, 00), and lety, h be as in the previ-
ous example. For anj(@', ©?),t) € D? x R, we define the measure(((w', @?),t),
-) as the image op under the mappin®® — R?, x — (oh(0?)x, h(0?)|x|). More-
over, define) as in Example 1. Then the martingale problgm = ,, ), b, 0, F, 0)™
in R? has a unique solution-measure. As in the previous example, the furictias
been put in to allow for the application of Theorem 2.37.

Of course the existence of a unique solution can only be a first step if you want to apply
martingale problems to real-world phenomena. You also need efficient nuhadgicathms
for explicit calculations. More specifically, one may ask for procedures yigl8i(f (X))
if X is a solution-process to a given martingale problem an@®? — R some continuous
mapping. Whereas there is extensive literature for martingale problems wjtimops (i.e.
for SDE's driven by a Wiener process, cf. e.g. Kloeden & Platen (1992)), $kessidealing
with the jump case. Since discontinuous models are of equal interest especfaignce
applications, we hope to address this question in future research.
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Proofs
PROOF OFTHEOREM 2.37. The proof will be broken down into many steps.
Definition 2.44 A stochastic differential equation (SDEP, 7, a, u, w, Q)P is given by

e adiscrete seb C R7,

a probability measurg on (R¢, BY),

aP?-measurable mapping: D¢ x R, — R?,

e aPl-measurable mapping: D¢ x R, — R4,

a Lusin space? :L'Jf:1 E; with its Borelo-field €, whereE, E,, E5, E, are open
subsets of (cf. Jacod (1979), p. 66),

e a(P?® &)-measurable mapping : D? x R, x E — RY,

e a measuré) on E such thaiQ,, Q, areo-finite, Q3 is finite, andQ4(E) < 1, where
Qi) == Q(-NnE;) fori =1,2,3,4.

Remark. By the previous definition we refer to the SDE

dXt = (lt(X) dt"‘Ut(X)th"‘/

i w(X,t,x)(p1—q)(dt, dm)+z /E w(X, t,z) py(dt, dz),

(2.14)
wherep; is an extended Poisson random measur o E with compensatay;(dt, dz) :=
Qi(dz)dt fori =1,2,3 andqs(dt, dz) := Q4(dz) >, o es(dl).

S€EO

Definition 2.45 1. A tupel (2, F, (Ft)ier, . P, W, p), X) is calledsolution-process to
the SDE (2.14) off), T'] (or, more exactly, to the SDE, , a, u, w, Q)°P¥ on[0,T])
if

o (0, F, (Ft)ier,, P) is afiltered probability space,
e W is aR?-valued standard Wiener process (on that space),

e p is an extended Poisson measurelRn x E with intensity measurg =
2?21 ¢i, whereg;(dt, dz) := Q;(dz) dt for i = 1,2, 3 andqy(dt, dx) := Q4(dx)
(> 5o €5)(dt) (Moreover, define the extended Poisson measyrea R, x £
by p;(dt, dx) = 1g,(z) p(dt,dz) fori = 1,2, 3,4),

e X is aR¢-valued semimartingale on the above space With = 5,

o [ ]as(X)|ds < co P-almost surely for any € R,

. f(f |u¥(X)|? ds < oo P-almost surely for any € R, and anyi, j € {1,...,d},
3 fg [w(X,s,2)?Q(dzx) ds < oo P-almost surely for any € R,

. f[o,ﬂxE |w(X, s, x)| p2(dz, ds) < co P-almost surely for any € R,
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e T'is a stopping time,
e X is a solution to Equation (2.14) df, 7] (i.e. we have
TNt TAht ) )
Xrne = Xo+/ ay(X) ds+2/ u (X) dW?
0 =170

T / W(X,5,7) (p1 — q1)(ds, dz)
0, At x E

4

—|—Z/ w(X, s, x)p;(ds,dx) (2.15)
[0,TAYx E

1=2

d

foranyt € R, P-almost surely).
2. The tupel is callegolution-process to the SOET = oo P-almost surely.

3. The lawP* on(D<, DY) of a solution-process (dR. ) of the SDE is callegolution-
measurdo the SDE.

Let (©,n,a,u, w, Q)°PF be a SDE inR?. We introduce three kinds of conditions.

Integrability conditions (I) For anyw € D¢ and anyt € R, we have

t
/ la,(@)| ds < oo,
0

Z/ [u¥ (@) ds < oo,

i,j=1

/0 /Iw(w, 5,2)|? Qu(d) ds < oc.

Lipschitz conditions (L) For anys € R, there exists a measurable mapping R, —
R, with fo s)ds < oo foranyt € Ry, such that for any € R, and anyw, w € D¢
with [|w|]; < ﬁ ||w||t < 3, we have

jar(w) — ar(@)] < L(t)[|w — @ll7,

Z Jur’ (w) = uf (@)* < L(#) (lw = @1},

i,j=1

/E w(w, t, ) —w(@,t,2)]* Qi(dr) < L(t)([lw — &|})*.

Moreover, for any3 € R, there are increasing mapping$, : R, — R, and
H:R, — E(i.e.H(s) C H(t) for s < t) with Q2(H(t)) < My(t) for anyt € R,
and such that for anye R, , anyw € D? with |o]|f < fand anyz € E, \ H(t), w

havew(w, t,z) = 0.
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Growth conditions (G) There exists a measurable mappivig: R, — R, with f(f M(s)
ds < oo for anyt € R, such that for anyw, ¢) € D¢ x R, we have

jar (@) < M) (1 + |©]l7),

d
> P < MO+ [1©]),

ij=1

[ 10@,8.) Qu(de) < M) + 0]

/Iw(w,t, 2)| Q2(dr) < M()(1 + [[«]l7),
Remark. The growth conditions (G) imply the integrability conditions (1).

Lemma 2.46 Assume that the Lipschitz conditions (L) hold. Moreover, suppose that the
processes and X on (2, F, (F1)er, , P, W, p) are solution-processes to the SDE (2.14) on
[0, T], and thatX, = X, P-almost surely. TheX” and X are indistinguishable.

Proposition 2.47 Let M be a locally square-integrable martingale witll, = 0 andT" a
stopping time. Then there is a constarg R, independent o8/ and7’, such that

1
1M |51 < el| (M, M)7)]] 1.

PrROOF. SinceM™ is a local martingale, there is, by Jacod (1979), (2.34), a constant

R, suchthat| M"||s1 < ¢/2||([M”, M"]s)?||11. SincelM”, M"] € .o} (cf. IS, 1.4.50c),

it follows from Lenglart et al. (1980), Théoréme 4.1 and Dellacherie & Meyer (1,982)
VII.41.3 that B(([MT, M7T])2) < 2B((MT,MT).)2) = 2E(((M,M)T)z), which
yields the claim. O

PROOF OFLEMMA 2.46. Define the stopping timé := inf{t € R, : X, # X,}.
By definition we have thafS— = X5-. By predictabilitys — a,(@), @ — w (@),
o — w(w,t,r) areDE -measurable mappings for ang R, (cf. JS, 1.2.4a). Sinc®? is
generated by the projections strictly befor follows thata, (w) etc. depend only o/ 4.
Hence, we have,s(X) = ains(X), uns(X) = uns(X), w(X, tA S, 2) = w(X,tAS, z)
foranyt € R,, z € E. By Equation (2.14) this impliex 7S = XTAS_ Assume now that
P(S < T) > 0. Then one can findd € N, N € N such thatP(||X®[|z, < #—-1,5 <
N,S<T)> %P(S < T). Now choosd. andH as in the Lipschitz conditions (L) relative
to this 5. We define
! 1 1

R = T/\(S\/lnf{t>5:(|Xt|\/|Xt|)>50r/SL(S)d8>1+m

orpo({t} x H(N)) +ps({t} x E) > 00rt € OUIN, oo)}).
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Observe that, sincg ([0, ] x H(N)) < oo andgs ([0, t] x E') < oo for anyt € R, , there are
P-almost surely only finitely manyin any compact interval such that({¢t} x H(N)) +
ps({t} x E) > 0 (cf. IS, 11.4.10). ThereforeR is a stopping time withk > S P-almost
surely andP(R > S) > 0. By Equation (2.15), the triangular inequality, Proposition 2.47,
JS, I1.1.33a and (L), we have

I = X = ()~ (5,00 (1= ) )
+/0. (GS(X)_% ds) +zd:(/ u-sj()?))de)R_
([ t@x) = aznas) | +ZH(/

+ZH(/ “(X,s,2) — i(}?,s,l"))(pl—(h)(ds:dx))R

VAN
=
E
=
=
~—
=

H/O a,(X) = ay(X)] ds| +c§: H(/f(“ij(X) () ds)
*Z H(/OR/W(X,S,x) — w'(X,5,7))” Qi (dz) ds)é‘
< p(10c- D ([ e as s v [

1 . SR
< IR - X,

M

IN

Lt

Lt

L(s) ds)%)>

where || - ||s: is defined in Definition A.8. This clearly is impossible, sing&? —
X ||ls1 < 28 and P(XF~ # XB7) > 0. ThereforeP(S < T) = 0, and the claim
follows. O

Lemma 2.48 Suppose that the integrability conditions (I) and the Lipschitz conditions (L)
hold. Moreover, fix3 € R, and a spac€(2, F, (F;)icr, , P, W, p) as in Definition 2.45.
Assume that there existsdg-measurableR?¢-valued random variableX, with P*° = p.
Then there is a solution-proce&sto SDE (2.14) (on that space) ¢h 77|, wherel#X :=

inf{t € R, : | X|); > f}.
PrROOF We define a sequence of stopping tini&s ),,cn recursively byR, = 0 and
— _ ! 1 1
Rn+1.:1nf{t>Rn.t€®ort>Rn+10r nL(S)d8>1+m
orpy({t} x H(R, +1)) + p3({t} x E) > 0}.

As in the proof of Lemma 2.46, we have for ahy € R, thatp,({t} x H(M)) + ps({t} x
E) > 0 pathwise only for finitely manyin any compact interval. Henc&,, 1 oo P-almost
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surely. By assumption there is a solution-process to the SDB,dty]. In order to prove
the lemma, it suffices to show that, given a solution-procesm [0, 7°X A R,] for some
n € N, there exists a procesé that coincides with\ on[0, 7% A R,] and solves the SDE
on|0, 75X A R,

Fix n € N and letX denote a solution ofd, 7%X A R,]. We define an operatdr :
St — St (cf. Definition A.8 in the appendix) by

F(Y), = (XR” +/0 1o(8)as (Y AB) ds+§:1/ o.mc ()l (Y AB) dW?
Rpy1—

—i—/[ - Lio,r e (s)w(YAB, s,x) (p1 — q1)(ds, dm))t YANGS
foranyY € S',t € R,, where we defineAS € R? by (zAB)! := (2 vV (—f)) A 3 for
anyr € R?, i € {1,...,d}. Now letY, Y € S, By basically the same calculation as in the
proof of Lemma 2.46, we hayiF (V) — F(Y)||s: < L[(YAB)Rn+1- — (YAB)Frt1||g1 <
Y - Y s:. Banach's fixed point theorem yields that there is a unique fixed points’
of F. LetS := R, .1 A T?Y and define the adapted, cadlag process

4
T v 43 [ w80 pl{S) x do)lsimy
i=1 Y E

By the fixed point property of we have that’ #» = F(Y)f» = X% Aj3. HenceY, X are
indistinguishable o0, R,] N [0, 7%X™) = [0, R,] N [0,T7Y). By Y = F(Y), byY; =
V;ABandX % = Y on[0, T%Y) and byp;((R,, Rny1) X E) = 0fori = 2,3, 4, we obtain
thatY solves SDE (2.14) oft, R, AT?Y) = [0, S). As in the proof of Lemma 2.46, one
shows thatYs~ = Y5~ impliesa, (X) = a,(Y), us(X) = u,(Y), w(X, s, z) = w(Y, s, z)
for anys < S. Hence,X also solves the SDE (2.14) o0, S), and, by its definition, also
on [0,5]. Sincel0, R, A T#X] c [0,5], both X and X are solutions to SDE (2.14) on
[0, R, A T%X]. By Lemma 2.46 it follows thaf coincides withX on[0, R, A T7*]. It
remains to be shown thét, &, 1 A T%X] C [0, S]. Observe that of, R,+1) N [0, 5] we
haveY = XAp, and thereford0, R,,1) N [0, T%X] = [0, R,41) N [0, T%Y]. From here,
[0, Royr AT?X] C [0, S] easily follows. O

Lemma 2.49 Suppose that the Lipschitz conditions (L) and the growth conditions (G) hold.
Moreover, fix a spac€), F, (F;)«cr, , P, W,p) as in Definition 2.45. Assume that there
exists aF;-measurableR¢-valued random variableX, with P*> = 5. Then there is a
solution-processy to SDE (2.14) (on this space and &1 ).

Proposition 2.50 For a probability spacé(), F, P), let (F,,),n be an increasing sequence
of sube-fields and(a, ) cn a sequence iR, with >~ ja, = co. Foranyn € Nlet 4, €
F, such thatP(A,1|F,) > a, P-almost surely. Then we ha¥&lim sup,,,., 4,) = 1.

PROOF We will show by induction onn (for fixed n) that P(NjZ™AS) < [Thim (1 — ax)
foranyn € N, m € NU {—1}. The claim then follows as in the proof of the usual Borel-
Cantellilemma (cf. Bauer (1978), Lemma 35.1). There is nothing to prove fer—1. The
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induction step follows fronP (N2t AY) = E(1 tmao B(Lyo  [Faim)) < [T (1—
ak)(l an—i—m-l—l)- U

Proposition 2.51 For any square-integrable martingal®/ and any stopping tim& we
haveE (sup, ¢y o) (M — M)} |Fp) < AE((M — MT)2% |Fr) P-almost surely.

PROOF. Fix C' € Fr. We have to show thal (1¢ sup,¢jy o) (M — M")7) < E(1c4(M —
M™)Z%,). This inequality follows immediately if we apply Doob's inequalifysup, ., X7)
< 4FE(X2) (cf. JS, 1.1.43) to the square-integrable martingale- (X;),cr, on the filtered
probability space(2, &, (9;)icr, , P), whereX; := (Mry, — My)le and G, := Fpyy for
anyt € R,. O

Corollary 2.52 For any locally square-integrable martingald and any stopping timé
we haveE (sup,¢r o) (M — MT)}|Fp) < 4E((M — M", M — M"),|Fr) P-almost surely.

PROOF. By localization it is enough to consider the case thiais a square-integrable mar-
tingale. The previous proposition implies that we ha@@up,cr .., (M — M7)}|Fr) <
AE(M — M")2|F7) = 4E((M — M", M — M"Y |Fr). O

Proposition 2.53 Let i, be a random measure dR, x F with compensator and w :
2 xR, x E — R anon-negative predictable mapping. Then we have for any stopping time
T that

E((wlric) * pieo|Fr) = E((wlpme) * veo|Fr) P-almost surely

PROOF. It suffices to show thali((wlj ric) * fieslr) = E((wl 1) * veolp) for any
F € F7. This follows from the definition of the compensator, since by JS, 1.2.5 the map-
ping (w,t,r) — w(w,t,x)1r(w)lp e (t) is predictable and non-negative. O

PROOF OFLEMMA 2.49. By Lemma 2.48 there is a solution-proc&sd) on [0, 7V-X™"]
forany N € N. For anyN,N' € N with N < N’ we have by Lemma 2.46 that
XM X () coincide on0, TN-X™ A TN X1 and hencg VX" < TV X p_almost

surely. We can therefore define a procésdy X|[O7TN,X(N)} = X(N)|[0,TN,X(N)} for any
N € NandX| . vxope = 0. It remains to be shown thatyen[0, TVA] =
UNGN[O,TNX(N)] = R+. We define a sequende®,),cn of stopping times recursively

by Ry := 0, Ry1 = inf{t > R, : t € ©U [n+ 1,00) or p3({t} x E) > 0}. Asin
the proof of Lemma 2.48, we have, 1 oc P-almost surely fom — oo. Therefore, it
suffices to show thald, R,,] C U,en[0, TV*] (up to an evanescent set) for anye N.
We proceed by induction. For = 0 there is nothing to prove. Now fix € N and as-
sume thaf0, R,,] C U,en[0, TV*]. We define another sequenc®,, ) .cn of stopping times
recursively bySy := R,,, Syy1 = inf{t > R,V S, : [| X} > 2||X||&m +1} ARy 1. Byin-
duction onm it follows that[0, S,,] C Unen[0, TV¥] and hence tha?( is a solution-process
on|0, S,,] foranym € N. By ty := 0, tx1; := inf{t >t : ft s)ds > 552} we define
a sequencély)ien in Ry with ¢, T co. Moreover, let4,, := {S < R,y N {Thereis a
k € Nsuchthat, < 5,1 < S,, <ty foranym € N}. If we Af;; for infinitely many
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m € N, then we haves,, = R,,,, for somem € N. Therefore, it remains to be shown that

P(limsup,, ., AS) = 1. By Proposition 2.50 it suffices to prove thafA4,,,|Fs,,) < 3

for anym € N. Fixm € N and note thafy := X5+ is a solution-process dfl, S,,1].
Sinceps, p, have no mass ofR,, R,.1), we have that the following inequality holds on
At

XS +1 < |IX|I% (2.16)

S

5+ [ s e (s)lan () ds
d . " _

+ Z H/O 1]5m75m+1}(3)u?(X) dWsj

+Z H / 15,851 (W' (X, 5,) (p1 — 1) (ds, de)

IN

*

o0

*

o0

+/ Lio.s,0 (8)|[w(X, 5,2)| pa(ds, dz). (2.17)
[0,Sm+1]xE

On A,,,1, we have that, < S,, < Spi1 < try1 for somek € N and hence that

fS:H M(s)ds < 2048d6 Therefore, we obtain

Sm41
Bt [ Losape@lan(E)lds

Fs,)
Sm+1
< B(la [ MO 5+ 1)]5, )
Sm
< —(IX5 |, 4+ 1).
< X+ 1)
By making use of Corollary 2.52, we have

)

< 4E<1Am+1/ 115,501 (8) (U (X ds‘ffgm>

0

1Am+l H/ 1Sm,Sm+1] Z](X) dWs]

Sm+1
< AB(Ly [ M) (X 1155, )

1
128

Similarly, we obtain by Corollary 2.52 and JS, 11.1.33a

< (X515 + 1)

% 2
oo)

< 4B(1a,., / [ b (90 (Fo,2))? Qutn) |5,

E(umﬂ [ [, w0 (K, 5,2) 0 = ) )
IXE

(X5 {15 + 1)%.

<
- 128d3
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Finally, it follows from Proposition 2.53 that

E(lAmH/ s, (9)|w(X,5,2)| pa(ds, do)| 5,
[0 Sm+1}><E

= E(lAm+1/ Lo,s,.1¢ (s Nw(X, s, z)| ga(ds, dz) ‘?sm)
[O,Serl] E

< —(||IX5m|E, + 1).

< SX5 5 +1)

By Inequality (2.16), at least one of the last four terms in (2.17) has to be greater tha

1(J]IX 5|z, +1). The conditional probability that this is the case for the first of these equals

P(ane 0 { [ s @anDlds > L0 + 1} [75.)

4 5 Simt1 s ,
< 1 1 . ‘ ) <L
(XS + 1) (Amﬂ/o 0,510 (8)]as(X)] ds|Fs,, ) < S

For the other terms in (2.17) we get similar estimations. Altogether, we Réxg, 1|5, )
= P(A,,11 and Inequality (2.16) holdss,,) < 1. .

Lemma 2.54 Suppose tha®, = 0 andn = ¢, for az, € R?. Moreover, assume that the
integrability conditions (I) and the Lipschitz conditions (L) hold. Then there is at most one
solution-measure to SDE (2.14).

PROOFE By @4 = 0 we have thap is a homogeneous Poisson measure. We define the
Pd-measurable mapping: D¢ x R, — R by

G, = at—/E(w(t,x) h(w(t, 7)) Q1 (dx) +Z/ ) Qi(dz),

whereh : R? — R? is given byh(z) := z1y,<1;. A straightforward calculation shows
that ((2, F, (F)ser, , P, W, p), X) is a solution-process to SDE (2.14) if and only if it is a
solution-process to the SDE

in the sense of Jacod (1979), (14.73). (There is in fact a small differencecdd (B979),
(14.73), a solutionX is assumed to be cadlag, but orif§;).cx, -adapted, whereas for us,

it is only P-almost surely cadlag, but;)cr, -adapted. But by Jacod (1979), (1.1), it is
easy to transform either type of solution into the other.) & F, (F)ier, , P, W, p), X)
and((Q, 7, (?t)t6R+,P W, p), X) be solution-processes to SDE (2. 14). Then they are both
solution-processes to SDE (2.18) as well. This implies thdtand P are solution-
measures to SDE (2.18) in the sense of Jacod (1979), (14.79). By Jacod (1979), (14.94),
we havePX = P¥ if we can prove pathwise uniqueness for SDE (2.18). Therefore, it re-
mains to be shown that {2, F, (F,)er,, P, W, p), X) and ((Q2, F, (F)ier, , P, W, p), X)

are two solution-processes to SDE (2.18) (on the same space), then w& have up to
indistinguishability. By the above equivalence two such procedsesd X are solution-
processes to SDE (2.14) as well. The claim now follows from Lemma 2.46. O
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Lemma 2.55 Under the assumptions of Theorem 2.37, there is a solution-measure to the
martingale problem.

PrROOF. The idea of the proof is to define a SOP, 7, a, u, w, Q)*PF having solutions
which also solve the martingale problem. To this enddet, u be as in Theorem 2.37.
Moreover, definen,(w) := by(w) — [ (k2 + £1)((@,t),dx) for any (0,t) € D? x R, .
Define E ::Uf:1 E;, whereE, := S? x R, and E,, E5, E, are disjoint copies oR.

It is straightforward to show that the topological suin(i.e. the disjoint union of thev;
endowed with the sum topology, cf. Querenburg (1973), Definition 3.28) is a Lusin space
whose Borel sets are the unions of Borel subsetg0ft,, F3, Fy. Fori = 1,2,3,4, we
define the measum@; on E; by @, := T @ A|g,, Q2 := Alr,, @3 := Ajo,m], Q4 := A|jo,1-
As in Definition 2.44() := 3"'_, Q;. Moreover, define th€P? © B(S?) ® B, )-measurable
mappingw; : D¢ x R, x SP x R, — R? by wy(@,t,n,¢) := g(w,t,n,® (w0, t,n,{)),
where® : D¢ x R, x S x R, — Ry, (w,t,n,7) — fo’Op(w,t,n,ﬂd’F and®! :
D? xR, x SP x R, — Ry,

sup{r € R, : ®(w,t,n,r) > ¢} ifthis setis non-empty
0 else.

(Ca,t,n,C)»—>{

Let the predictable mapping: D? x R, — R? be given bya;, = b, — [ (k1 + k2)i(dx).
Fori = 2,3,4, choose(P? ® B)-measurable mappings; : D¢ x R, x E; — R? such
that Q5" [pay oy = Fa(@,1), Q5> |gargoy = #1(w, 1) for any (@,1) € D x Ry,
and QZ"‘(@’“'HW\{O} = K(@,1)|gay oy for any (@,t) € D¢ x ©. By My we denote the
mapping M, in Theorem 2.37, chosen relative to W.l.o.g., Mf IS increasing ing as
well. Assume that for any3,n € N, any (w,?) € D? x [0,n] with ||@||; < $ and any
x & [0, M (n)] we havew,(w,t,z) = 0. Finally, definew : D x R, x E — R by
w = Y1 wilg,. We have to show thab,, ws, w, actually exist. We will do this only
for ws, since the argumentation is similar fas, w,. Firstly, defineA®" = {(©,t) €
D? x R, : ||o|lf €]8—1,08],t €]ln — 1,n]} for anys,n € N. The A% are predictable
sets (cf. JS, 1.2.6), and we hall¢ x R, =U,, sen A?". For3,n € N, define the transition
kernelxs ™ from (D9 xR, P%) into (R?, BY) by k5" ((@,1), G) := 146 (@, t)k2((@, 1), G).
Fix 3,n € N for the moment. Since)"((w,t),R4) < MP(n) for any(@,t) € D¢ x R,
there is, by Jacod (1979), (14.50) and Exercise (14.4}%x B)-measurable mapping
wi™ DY xRy x R — R with wi™(w, ¢, z) = 0 for z ¢ [0, M} (n)] andss ™ ((w, 1), G) =
[ Lavgoy (wd™ (@, 1, 7)) Qalo.1sny (do) for any (w,t) € D4 x Ry and anyG' € B%. Now
definew, : D¢ x Ry x R — RY by wy(@,1,2) 1= 35 e Laswn (@, )Wy (@, 1, 2). Itis
easy to verify thatv, has the above properties.

The rest of the proof of Lemma 2.55 will be broken down into several propositions.

Proposition 2.56 Fix (w,t,n) € D¢ x R, x SP andG € B,. ThenfR+ Levgoy (@ Hw, t, n,
C)) dC - fRJr 1G(T)p(@7 ta n, T) dr.

PROOF By a Dynkin argument it suffices to prove the proposition for &y= [r(, o)
with o > 0. One easily verifies that for any € R, we have equivalence between
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O L(w,t,n,C) > ryand®(w,t,n,re) > . ThereforefR+ 1g(® Yw,t,n,())d¢ = ®(w,t,
n,ry) = fR+ la(r)p(@, t,n,r)dr.

Proposition 2.57 Fix (w,t) € D¢ x R, . ThenQ’l’“(‘z”t")|Rd\{0} = k3(@w, 1).

PROOF. By the previous proposition we have for afiyc B¢ with 0 ¢ G that
peG) = [ [ 1@t @0, 0) dcrn)
Ry
— [ [ tatof.ton ot dr D
Ry
= [ ety ton ) @0, den,r))
SPxR4
= r3((w,1), Q).
O

Proposition 2.58 Let ((2, &, (F).er, , ), X ) be a solution-process to the SO, n, a, u,
w,Q)%PE. Then itis a solution-process to the martingale problem.
PROOF By Q§’2(“—”t")|Rd\{0} = ky(w, t) etc. we have that

4

S / (@, 1, )| gs(ds, da)
[0,t]xE

=2

= //|x ko + K1) ((w,t),dx) ds + Z /|x|K ((w, 1), dx)

s€ON[0,t]
< //|:U|2/\|x| (0, s),dr)ds + Z /|x|K (@,t),dr)
s€0N[0,t]
1 sup (w2 4 1)((@, 5), BY. (2.19)
s€[0,t]

By Definition 2.28 and the assumptions in Theorem 2.37, we have that this expression is
finite for any(w,t) € D? x R,. We may therefore rewrite the solution to Equation (2.14)
asX = Xo+ B+ X+ X1 WhereBt foas )ds+ S0 QfOth w(X, s, x) q;(ds,dx),

X7 = ijl fo wi(X)dWi, X =30 f[O,t}XE w(X, s, x) (p; — q;)(ds,dz) for anyt €
R, . SinceB is predictable and of finite variatiok ¢ is a continuous local martingale and
X4 is a discountinuous local martingale, we have tNais a special martingale. Denote
its integral characteristics by, C, u)’. From the above equations we see tBaandC

are as in Lemma 2.16 with = a,(X) + >0, [w(X,t,2) Qi(dz) = a;(X) + [ (kg +
k1)((X,1),dz) = b (X) ande; = uy(X)uy(X) T = ¢;(X) for anyt € R, . By the continuity

of ¢ we have that\ (w; * (p1 — ¢1)): = [ w(X, ¢, z)p: ({t} x dz) up to indistinguishability.
Therefore, Equation (2.14) yields that we ha¥&, = [ w(X,¢,z)p({t} x dz) for any

t € R,. Sincep is an integer-valued random measure, we havg (w) € G \ {0} if and
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only if p(w, {t,z}) = 1 for somer with w(X,¢,z) € G\ {0}. This yieldsu™ ([0,#] x G) =
Jogee Lavoy(w(X, s,2)) p(ds, dz) foranyt € Ry, G € B, It follows that

v([0,t] x G) = /[Ot] Levjoy (w(X, s,2)) q(ds, dx)

Z/ /lg\{o} w;i (X, s,2)) Qi(dr) ds + Z /lg\{o} wa(X, s, 7)) Qs(dx)

$€ON[0,¢]

for anyt € R,, G € B’ From the deflnltlon of they;'s and by Proposition 2.57, it

follows that we have/([0,¢] x G) fo G)ds + 3 sconpg Ks(G\ {0}), whereF, =
(K3 + Ko + k1) (X, t) and K; = K (X). ThereforeX is indeed a solution to the martingale
problem. O

Proposition 2.59 Fix (¢,n) € R, x S?. Then the mappin®?¢ x (0, R(t,n)) — R, (@,7)
®(w,t,n,r) is continuously Fréchet-differentiable with partial derivativBs®(w, t, n,r)
= [P Dy p(@, t,n,7) dF € (D% R) andDy®(w, t,n,7) = —p(@, t,n,7) € L(R,R).

PROOF. Firstly, observe thab? is a Banach space relative to the nokm— [|w||; (for
completeness, cf. Billingsley (1968), Section 18 and JS, Subsection VI.landg, inte-
grals of (D¢, R)-valued functions (as ifv, ® in the proposition) are meant for any single
argumenty € D?. This interpretation is consistent with the usual integral for Banach-
space valued functions on an interval (cf. Flett (1980), Section 1.9, in partiExkrcise

4). In order to prove that the mapping,r) — ®(@,¢,n,r) is continuously differen-
tiable, it suffices to show that the partial derivatives® and D,® exist and that they
are continuous (cf. Lang (1993), Theorem XIIl.7.1). Fix> 0. For anyN € N, the
mappingD¢ x [r, R(t,n) A N] = R, (©,7) — p(&,t,n,7) is, by assumption, continu-
ous, D, p exists and is also continuous. Hence (cf. Lang (1993), Theorem XIi1.8.1), the
mapping®” : D¢ - R, & — ertn yan P(w,t,n,T) dr is differentiable with derivative
DN (@) = [FEN Dy p(@, t,n,7) dF. SinceDsp(-,t,n,7) is continuous oD ¢ and by
(2.13), dominated convergence yields tha" : D¢ — (D¢ R) is continuous, i.ed™

is of classC!. Also by dominated convergence, one shows thatMors oo, ¥ (w) con-
verges tob(w, t, n, r) for anyw € D¢ and, moreoveD®" converges uniformly on any ball
{© € D¢ : ||o[; < B} to the mapping? — (DL R), @ — [ Dyp(@,t,n,7) dF.

By Lang (1993), Theorem XI11.9.1, it follows that the mappiB§ — R, @ — ® (@, t,n,r)

is differentiable and its derivative is as claimed. The same dominate¢egence argu-
ment as ford" shows thatD; ® is continuous inv. The statement concernirg,® simply
follows from the fundamental theorem of calculus. O

Proposition 2.60 Fix (¢,n) € R, x SP. Then for any > 0, the mappind®(-,¢,n,0))~"
((¢,0)) = Ry, w+— & Y@, t,n, ) is continuously Fréchet-differentiable with derivative
fq) wtn( Dlp(@,t, n,r)dr

p(@,t,n, @~1(@,1,n,())

Moreover, the mappinB? — R, , w — ®~'(w, t,n,() is continuous.

D1 ® M w,t,n,¢) € (DY R), w—
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PROOE In the previous proposition we show that the mapping ®(w, ¢, n, r) is continu-
ous for anyr > 0. Hence, the set®(-, ¢,n,0)) ((¢,00)) = Uken(®(-, £, 1, 1)) (¢, 00))
is open. Define amapping : D¢ x (0, R(t,n)) xR, — Rby F(@,r,() := ®(@,t,n,r)—(.
Fix ¢ > 0. For anyw € (®(-,t,n,0))7'((¢,0)), there is a > 0 such that[™ p(@, ¢,n,7)
dr > (. By continuity of® we have®(w, t,n,®~'(@,t,n,¢)) = ¢, henceF (v, ®~'(&, t,
n,¢),¢) = 0. Note thatd < r < & 1(w,t,n,¢) < R(t,n).

By the previous proposition, the mappihgs continuously Fréchet-differentiable. More-
over, for any(@,r,¢) € D¢ x (0, R(t,n)) x R, the derivativeD, F (@,r,() = D,®(@,
t,n,r) = —p(w,t,n,r) # 0is a toplinear isomorphism in the sense of Lang (1993), p.67.
Fix (@,¢) € D¢ x R} with @ € (®(-,¢,n,0))*((¢, 00)). By the implicit function theorem
(cf. Flett (1980), (3.8.1)) there is a neighbourhdédf (&, ) and a contiAnuous mapping

~

h : U — (0,R(t,n)) such thath(w,() = & Y(w,t,n,¢) and F(©, h(©, (), () = 0 for
any (@,E) € U. Moreover,h is continuously differentiable. Since(-,-,-,r) > 0 for
0 < r < R(t,n), we have thaf > ®='(&,¢,n, ) if and only if ®(, ¢, n, ¢) > 7 (and like-
wise for “<”). Thus,h(w, Z“) =& '(0,t,n, Z) for any(&,g) € U. By the implicit function

theorem (cf. Flett (1980), (3.8.1)) we have
Dh((j), C) = _(DZF((Da (I)_l(wa t,n, C)a C))_l © D(173)F((I), (I)_l((j}, t,n, C)a C)
Hence by the previous proposition,

D@ Y@,t,n,() = Dih(@,()
1
- D® (@, t,n,® Y@, t
ot ot 1@ b @@ 6n. )

1 R(t,n)
= — — — Dlp((ﬂ,t, n,;:)d;'\:
p(wa ta n, (I)il(wa ta n, C)) /<I>_1(G),t,n,C)

as claimed. It remains to be shown that the mapfiijg— R,, & — &~ '(@,t,n,() is
continuous in any € D¢ with ®(@,t,n,0) < ¢, i.e. with®~!(®,t,n, ) = 0. This follows
by straightforward limit arguments from the continuity®fand the positivity of. O

Proposition 2.61 Fix (t,n) € R, x SP as well as{ > 0 andw,w € D¢. Then we have

|¢71(w7 t? n? C) - (bil(w’ t? n? C)|

< /1 o1 (wrA@-w),t,n,0)£0}
- 0 p(w—i_)‘(w_w>7tana(1)_1(w+)‘(w_w)7t7n7C))
R(t,n)
3 IDup(w + A@ = w), by, 7| [l — &)} dF dA
o~ LHw+A(w—w),t,n,Q)
PROOF Firstly, observe that we have equivalence betwkel{w, ¢, n, () # 0 and®(w, t, n,
0) > (. LetG := (®(-,¢,n,0))*((¢,00)) and define

Ao = sup{X €[0,1]: Forany\ € (0, ), we havev + A\(v —w) € G},
A1 = inf{\ € [N\, 1] : Forany)\ € (\;,1), we havev + A(w — w) € G}.
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Due to Proposition 2.60 and Lang (1993), p.337, the mapping[0,1] — R, A —
o Yw+ Mw — w),t,n,() is continuous or0, 1] and continuously differentiable on the
intervals(0, A\p) and(\y, 1) with derivative

h,()‘) = D1<I>_1(w+)\(@—w),t,n,()(w—w)
fq> w+/\w ) tnODlp(w+)\(u’)—w),t,n,ﬂ(w—Gj)d?
plw+ M@ —w),t,n, @ Hw+ MA@ - w),t,n,())

In the case\y # A\, we havei()\g) = 0 = h();). Thisimplies® ' (w, t,n,{)—d (v, t,n,
¢) = h(0) = h(1) = —(h(1) — k(A1) — (h(Xo) — R(0)). By the continuity ofp and the
fundamental theorem of calculus, we obtain

|q>71(w7t7 n, C) o (I)il(watﬂna C)| < llm(“b(l - 5) - g()‘l + 5)| + |h()‘0 - 5) o h(5)|)

— lim ‘/ d)\‘ ’)\)d)\D
e—0 A\
= / |7 (ML fa-1 (s r@-w) tin, )0} AA.
0

(Observe that the final estimate also holdyit= 0 or A; = 1.) This implies the claim. [J

Ao—¢€

Proposition 2.62 Fix (t,n) € R, x S? as well asv, @ € D¢ with |||}, ||@]|; < 8 € Ry.
Then we have

/ 1w, £, C) — (@, £, m, C) P dC
R

< Mg(t,n,r) dr([|w = wll)?,
Ry
whereMy is chosen relative t@ as in Theorem 2.37.

PROOF By the previous proposition, the left-hand side is less than or equals the following
expression:

/ / 1{¢—l(w+,\(mw),t,n,g)¢o}
Ry w+)‘ ),t,n,tI)—l(w+)\(cD—w),t,n,())

t,n) 2
[ IDipfe + 3@ = ).t |7 dCa( - ol @20
d

-t W+A(‘Diw)7t7n7<)

By Proposition 2.56 we may replace the integration relativé vath an integration with
respectto- = @ (@, t,n, (). Therefore, (2.20) is less than or equals

o -aiy [ [ RS CEPRE

R(t,n) - ~\ 2
(/ | Dip(w + A(w w),t,n,ﬁHdT) dr d\

p(w + )‘((D o w),t,n,r)

In view of the definition ofA/g, the claim easily follows. O
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Proposition 2.63 The Lipschitz conditions (L) and the growth conditions (G) hold for the
SDE(©,n,a,u,w, Q)°PE.

PROOEF Lipschitz and growth conditions farandu are given in Theorem 2.37. Fixp3 €
R, . Letw, & € D¢ with ||w||F, ||@||F < 3. By definition we have

/|?Uth‘ ( 7t7x)|2Q1(de')
//R (w,t,n, @ (w, t,n,0)) — g(@,t,n,® (@, t,n,))[>dC T (dn)

IN

2// g(w,tm, 8w, 1,1, C)) — (@, £ m, & (w, £, m, )2 dC T (dn)
Ry

4o / / 19(@, 0, & (w,,m,C)) — 9@, 8, m, @ (@, 8, m, () d¢ T(dn).
Ry
(2.21)

By the Lipschitz conditions from Theorem 2.37 and by Proposition 2.56, the first term is
dominated by

[/ (@ o, ) T () o !
< 2//R+Li(t,n,r)p(w,t,n,r)drF(dn)(Hw—w||2‘)2. (2.22)

By the Lipschitz conditions from Theorem 2.37 and by Proposition 2.62, the second term in
(2.21) is dominated by

2 -1 oF&-1(~ 2
2 / 13(t,n) /R+|d> (y8,1,0) — & (@, 1, m, ) dC T(dn)

< 2/L§(t,n) My(t, n, ¥) dr T(dn) (|l — @||)2 (2.23)
Ry
Adding the terms (2.22) and (2.23) up, one obtafris)(w, t, z) — w(w, t, z)|* Qi (dz) <
L(t) for someL : R, — R, such thatf0 s)ds < oo foranys € R, .

Keepf € N fixed. For anyt € R, deflneH( ) := [0, M ([t + 1])] (as a subset oF}).
Then we have),(t) < MZ ([t + 1]) andw(w, t,z) = 0 for any (w, t,z) € D? x [0,] x E,
with ||w||f < 8,2 € By \ H(t).

By definition and Proposition 2.57, we hayew (@, ¢, z)| Q2(dz) = [ |z|ka((,1), dx)
resp. [ |w(@,t,2)> Q:(dz) = [ |z]* ks3((@,t),dx) for any (@, t) € ]Dd x R, . Hence, the
growth conditions (G) follow from the assumptions in Theorem 2.37. O

Lemma 2.55 now follows from Proposition 2.63, Lemma 2.49 and Proposition 2.58.]

Lemma 2.64 Under the assumptions of Theorem 2.37 there is at most one solution-measure
to the martingale problem.
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PrOOF. Let ((Q, F, (F)ier,, P), X) and ((Q, 7, (g"t)teR+, P), X) be solution-processes to
the martingale problem. By Statement 2 of Lemma 2.29 we may assume without loss of
generality that(2, F, (F))icr, ) and (2, F, (F,)icr, ) both equal(D?, D%, (D%),cx, ) and
X = X is the canonical process dd’. Let (t;)ren be an increasing sequenceln
such thatty = 0, © C {t; : k € N} andt, 1 oo for & — oo. It suffices to prove that
pX'" — pX"™ for anyk € N. We proceed by induction. We hawe*o = 5 = PXo. As-
sume that for giverk € N, X% has the same distribution und&rand P. Observe that
both (D?, D, (DY) ek, , P), X'*+1-) and (D?, D?, (DY),cx,, P), X"*+1) are solution-
processes to the martingale problgfm [0, ¢,],7, b, ¢, F, K)™, whereb(@) := 1, ,b(®)
imi S PR (X2 )sem X1 o0 S B(GEEE em X
and similarly forc, F, K. By Lemma 2.33P" " tx+s + andPtkts + are P-
respﬁ-almost surely solution-measures to the (random) martingale prqhﬂiea},g, c, ﬁ,
0)M with = := X, , by(@) := by, +.(1(X ", )) etc. for anyw € D¢, where

L(th(w) D)y = Xl (w) fors e [0,)
T @y, fors € [ty, 00).

Fix w € D?. By Lemma 2.29,P" tt:i;_)sewm( ) and P ::i;_)se‘h‘xtk( ) are for P-
resp. P almost allw € D¢ solution-measures to the (random) martingale probief(lXo)
X|e,; B(h),C,7) on the Skorohod spad¢D?, D7, (D?)cx, , P), X), where B(h), C, v
are defined as in Statement 2 of Lemma 2.29, but relatlbed;cza and the truncation func-
tionh : RY — RY, z — 2ly,<1y. If we define the mappmg@(h) : DY x Ry — R,

U:DIXR, — RX G DIXR, xE — REbYb(h), = be+ [ (h(z)—z) Fy(d), Us(@) ==
1[0 tpy1— tk)(s)utk+5( (th _)) wS(w) = 1[07tk+1_tk)( )1Ef(x)w(L(tha‘D)atk + S,l‘), then
we have thaB(h), = [ b(h), dr, Cs = [ Ua, dr, 7([0,5] x G) = [ [ 1\ 0y (@(r, 7))

(@1 +Q2+Q3)(dm) dr for anys € R, G € B?(cf. the definition ofwl, w, and Proposition

bpt1— t t
2.57). By Jacod (1979), (14.8QpXu+s Jexe X () and P fes Dseny XN () are for P-
resp.P-almost allw € D¢ solution-measures to the SDE

dX, = b(h), ds + Ty W, + h(i,) (dps — dg,) + (@, — h(i,)) dps (2.24)

in the sense of Jacod (1979), (14.79), whers a homogeneous Poisson random measure
onR; x E with compensatoy(dz,ds) = (Q1 + Q2 + Q3)(dx) ds. As in the proof of
Lemma 2.54, we have that a probability measure is a solution to the SDE (2.24) if and only
if it is a solution-measure to the SD®, ¢,, a, u, w, Q)°PE, wherea : D? x R, — R? is

given by

i, ::Z(h)s+/(w(s,x) W@ (s, 7)) Q1 (dz) Z/ ) Qi(da).

We will now verify the conditions (1) and (L) for the coefficienisu, w, firstly to make sure
thata is well-defined, and secondly to be able to apply Lemma 2.54. Note that, by definition

A= Bt [ b)) o)) — [ 1) (o))

_ bs_/x(%lJr%z)s(dx),
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where ther; are defined (parallel th, ¢, F) by 7;(w, s, dz) = 110,404 ) (8) i (1 (X", @),
t+s), ). Now observe thaf. (X", &) —u(X"%, w)|l; ., < [lo—wl[; and|[o(X™, )7 ., <

| X%||; + ||@||t for anys € Ry, w,@ € D Hence, the Lipschitz and growth con-
ditions (L), (G) and therefore also the implied integrability conditions @) the SDE
(2, g4, a, U, w, Q)°PE with

0(8) = a0 (Bus (X2~ [0+ (X, 2). 0+ 5) ) )

etc. follow as in Proposition 2.63 from the conditions in Theorem 2.37. By Lemma 2.54
we can now conclude thap™ute Jrexsl X () — pOYGLs Dt X () for Ploxny =
P|,xuy-almost allw € D, Thus, PX™'" = PX**'" ie Pl = Plpy . By

k+1— k41—
Remark 3 in Section 2.4 we have that(X (w), tx11), -) IS a version oA Xtk iy~ (w)
for P« -almostallw € D? and likewise forP. This impliesP*" = PX" and hence

g1~
we are done. O

Theorem 2.37 now follows from the Lemmas 2.55 and 2.64. O

PROOF OFCOROLLARY 2.43. We will not use Theorem 2.37 for the proof of Corollary
2.43 since, in the case of unbounded jump intensity, the jump me&suraist have a
continuous density around 0. For PII, however, this restriction is not necessary.

By Lemma 2.29, it suffices to show that the martingale probleniX,), X |n; B(h), C,
v)on (D%, D% (DY).cr, ) has a unique solution, whefg(h), C, v are defined in that state-
ment. By JS, I11.2.16 this is indeed the case. Moreover, we know from JS, [l.4d 3%,
[1.4.19 that forn = ¢y, any solution-procesk’ is a process with independent increments,
which, in addition, has stationary increments if and only if the coefficients ahdmingale
problem are constant (i.e. they do not depend, @ither). O

PROOF OF THE EXAMPLES 1. Chooseu = 0, := e_; +¢; on S°, Ky := Ky := 0.
Moreover, defing : D? x R, x S° xR, — R? andp: D2 x R x S x R, — R, by
g(@,t,n,r) = (onr,|r|) andp(w, t,n,r) = h(@?)e(r), wherex? denotes the second com-
ponent ofw (notw squared). One easily verifies that the measy(éw, t), -) in Theorem
2.37 indeed equalB((w, t),-) for any (w, t) € D? x R, . Observe that

[ 0IF(@.0).dar,22)) = [ olelh(@) e do < 200+ 311)

and
[ REF(@ @) = [0+ @) e de < 1+ oo+ [6]7)

for any (w,t) € D? x R,, wherey := [|z|e"lldz < oo. From these inequalities
the growth conditions easily follow. Now l&R(¢,n) := oo for any (t,n) € R, x S°.
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We haveD,p(w,t,n,7)(w) = te "h'(@f)w and hencd|D;p(w,t,n,r)|| < +e " for any
(@,t,n,7) € D? x Ry x S° x R, and anyw € D?. Since [ e " dr < oo, the reg-
ularity conditions onp hold. It is straightforward to verify the Lipschitz conditions for
b. Moreover, we may takd.;(t,n) := 1 + o and Ly(t,n,r) := 0 for any (t,n,r) €
R, x S x R,. It remains to show the integrability conditions involvidig in Theorem
2.37. Sincep(w, s,n,r) > 1" and||Dip(w,s,n,r)|| < Le " for any (w, s, n,r) ), it
suffices to prove thaf,” re”([™ te ™ dF)? dr < co. We denote the integrand byr). By

application of I'Hospital's rulre (cf. Heuser (1990a), (50.1)), it follows tl@t converges to
0 forr — 0. Therefore,(r) is bounded ono, 1], and we hav%1 t(r)dr < co. Moreover,
fr°° re~"dr < oo foranyr > 1. By Theorem 2.37 we can now conclude that the martingale
problem has a unique solution-measure.

2. All definitions will be as in the previous example, exceptd@ndp, which will now
be given byg(w, ¢, n,r) := (onrh(w?), |r|h(@})) andp(w, t,n,r) := ¢(r). The bulk of the
proof follows as above, but note that this timeéoes not depend an and henceD;p = 0.
ChooseLy(t,n,7) := (1 + o)r for (t,n,r) € R, x S° x R,. The integrability condition
containingZ, in Theorem 2.37 now follows fronf™ r?Le™"dr = [“re™"dr < co. O

2.9 Martingale Representation

It is well-known that any local martingale can be written as a stoahextégral with respect
to a Wiener process if the latter generates the underlying filtration. Theisitua more
complicated for arbitrary semimartingales instead of Brownian motiat.aNly does one
need two integrals instead of one (the first one with respect to the continuousianadl-
gale part (as in the Brownian case) and the second with respect to the caegemgasure
of jumps of the semimartingale), but this reprensetation also holds only under ocosditi
connected with martingale problems (cf. JS, Theorem 111.4.29). A sufficient condg
given in the following

Theorem 2.65Let (22, F, (F,)er,, P) be a stochastic basis with = F,_, and letX be

a R?-valued special semimartingale on that space. Assume(fhatr, is the canonical
filtration of X or its P-completion. Moreover, suppose thdtis a solution-process to a
martingale problem as in Definition 2.28, which has a unique solution-measure (e.g. by
Theorem 2.37). Then for any local martingalé there is a proces#l € L2 .(X¢) and a
mappinglV’ € Gioq(1*) such that

M:Mo—l—/ Hs-dXsC—i—/ W(s,z) (u~ —v)(ds,dz)
0 [0,-]x R4
(for notation cf. Appendix A). MoreoveV/ is an extended Grigelionis process. In partic-

ular, all local martingales have the representation property relativeXt¢cf. Appendix A,
Definition A.9).
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Corollary 2.66 Under the conditions of the preceding theorem we have that fof'anyR ,
and anyF-measurable, integrable random variallle there areH andW as in Theorem
2.65 such that for any € [0, 7| we have

t
E(Y|F;) = E(Y|%) +/ H, - dX; +/ W(s,z) (p™ —v)(ds,d).
0 [0,t]xRd

Proofs

PROOF OF THEOREM 2.65. By assumption((€2, &, (F)ier, , P), X) is the solution-
process to a martingale problei®, , b, ¢, F, K)™ having a unique solution-measure. By
Lemma 2.29P is a solution to the martingale problentv (X,), X|(P|,(x,)); B(h),C,v)
relative to(€2, F, (51)icr, , P) and X, whereB(h), C, v are defined in that lemma. Assume
that P is another solution to this martingale problem. Again by Lemma 2.29, Statement 1
both PX and P are solution-measures to the martingale probi€m;, b, ¢, F, K)™, and
henceP* = PX. This implies thatP, P coincide on ther-field o(X) generated byX .
Since¥ equalss(X) or its P-completion, we have that = P. From JS, I11.4.29 we can
now conclude that any local martingale has the representation propertyedtaty which

is to prove. By JS, 111.4.7 and Proposition 2.24,is an extended Grigelionis process[]

PROOF OFCOROLLARY 2.66. The procesd/ defined byM, := E(Y|F;) for anyt € R,
is a martingale. O



Chapter 3

Markets, Strategies, Prices

In this chapter we generalize the approach presented in Section 1.2 to a contimmus-
setting. One should note that discrete-time models are always regarded lespesal

case of this more general framework. Contrary to the introduction, we attgubrtamce

to mathematical rigour. We rely heavily on the notions of Chapter 2 (mainlydecR.2

— 2.4). The proofs are again located at the end of each section. For a discussion of the
economical motivation, application and limitation of our approach we referehder to
Section 1.2.

3.1 The Market Model

As in Subsection 1.2.1, we confine ourselves here to frictionless markets Viirittea
number of traded securities. We work mathematically with a filtered fmbtyaspace
(Q,F, (Ft)ier, , P) in the sense of Section 2.2) here denotes the set of possible states
of the market in a more or less abstract sense. dHfield F; represents the information
that is available to traders up to timelt is assumed to be the same for any investor. We
treat the market as a random system governed by some objective probabilgyrenBa
which is neither subject to personal beliefs nor usually a risk-neutral mefaswentingent
claim valuation. We assume that the probability of various events is, in plad¢nown to
the investors, either intuitively by market experience or by statisticservation. As in the
introduction, we consider securities ternted. . , n, which are modelled by their respective
price processes’, ..., S". As anumeraireby which all other securities are discounted,
Security0 can be interpreted as the benchmark for risklessness. We assume thhtdts va
SY is positive for anyt € R, . By Z' with Z; := S;/S) for anyt € R, we denote the
discounted price process asset. TheR"*!-valued stochastic procegs= (Z°,...,2")

on the given filtered probability space is often caliedrket For the rest of this chapter we
make the following weak

Assumption. The R**!-valued stochastic procegs= (7°,...Z") is an extended Grige-
lionis process with extended characteristies P7, b, c, F, K)*.

90
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Using the usual embedding (cf. Appendix A) one may treat discrete-time settiagson-
tinuous-time framework.

Definition 3.1 Let © be a discrete set. We call the market= (79, ..., Z") ©-discreteif
t — JF; is constant and — Z; is P-almost surely constant on the open intervals between
neighbouring points o® U {0, co}.

As usual, trading means picking(a + 1)-dimensional, predictable stochastic process
o, termed therading strategy ¢! denotes the number of securitiegou hold at timet.
In continuous-time models an appropriate choice of the set of admitted traditepstsais
not easy. If one allows too many portfolios, then even very decent modelscantdirage
opportunities, e.g. modified versions of the doubling strategy. If one restricts ttheose
strictly, one may lose a number of perfect hedging strategies of the Black-Sdipé&e We
do not follow the classical choice proposed in Harrison & Pliska (1981) for twsorea
Firstly, the value process of the portfolio is assumed to be bounded from belogh) elgj.
in a discrete-time stock price model with normal log-returns may prohibi éve short-
sale of a single stock. In addition, the set of admissible strategies dependsphistisated
way on some equivalent martingale measure, which is not very intuitive froetanomic
point of view. Instead, we introduce two kinds of portfolios for the matk&, ..., Z").

Definition 3.2 1. We call any predictabl®"*!-valued stochastic process= (¢°, ...,
©") a(trading) strategyor portfolio. The set of all strategies is denotéd

2. We call a strategy < 2 feasibleif it is of the form

m—1

¢ =Yolmy,m) + Z Yilyr i)
i=1
wherem ¢ N, 0 =Ty < Ty < ... < T, are stopping times ang; is a bounded
Fr,-measurable random variable fo= 0, ..., m. The set of all feasible strategies is
denoted byS.

We think that “real” trading resembles feasible portfolios. Nevertlsehe often consider
general predictable strategies as limiting cases of feasible ones.tAs introduction, we
distinguish between different kinds of traders. speculatoris free to choose his portfo-

lio among the whole ofl (resp.&) whereas dedgeris confined to some subsgt C A
(respNMNGS C 6). We consider usually only fixed positions in certain securities as in Sub-
section 1.2.1, or alternatively, short-sale restrictions. Both situatmmespond to convexly
restricted sets of strategies in the sense of the following

Definition 3.3 Let Mt C 2A be non-empty. We say thai is convexly restricted for some
q € Nthere ardP ® B"*')-measurable mappings, ..., ¢? : O x R, x R**! — R such
that for somey € {0, 1,. .., ¢} the following conditions hold.
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1. For any(w,t) € Q x R, the functiong’(w,t) : R**! — R is convex for anyj €
{1,...,p} and affine forany € {p +1,...,q} (cf. e.g. Rockafellar (1970)).

2. Forany(w,t) € Q x R, we have{y) € R*™! : g7(¢)) < 0foranyj € {1,...,p}} #
@.

3. M= {p e A:Foranyt € R, we havey/(p;) < 0forj € {1,...,p} andg/ (¢;) =0
forje{p+1,...,q¢}}.
We call the constraintsg*, ..., ¢g? < 0, g?*', ... g7 = 0" fixedif the mappinggw, ¢, z) —
gl(z)(w) := g/ (w, t,z) do not depend ofw, t).

Example. Let J C {0,...,n} andy’ € R for anyj € J. Then the sefit := {p € A :
¢/ (w,t) =7 foranyj € J, (w,t) € Q x R, } is convexly restricted with fixed constraints.
This is the state of affairs for the hedger in the introduction.

Analogously to Section 1.2, we now define the corresponding gain processes.

Definition 3.4 Lety € 2 be locally bounded (cf. Lemma A.1 in the appendix). The process
(G(¢)t)ier, defined byG(y); = f[f p, - dZ, for anyt € R, is calleddiscounted gain
processof .

Remark. By Lemma 2.22(7(y) is an extended Grigelionis process.

In the continuous-time setting arbitrage is defined as in the introduction, btiveeta
feasible portfolios.

Definition 3.5 We call the trading strategy € & arbitrageif there is &' € R, such that
Gr(p) > 0 P-almost surely an®(Gr(¢) > 0) > 0. If there exists such a strategy, we say
thatthe market allows arbitrage

Lemma 3.6 We have equivalence between

1. The market allows arbitrage.

2. There are bounded stopping timEs < T, and a bounded¥,-measurableR"*! -
valued random variable> such that) - (Zr, — Zr,) > 0 P-almost surely and® (1) -
(Z1, — Zr,) > 0) > 0. (If the market ig9-discrete, one can even chodge = s,
T, = t for two neighbouring points, ¢ in © U {0}.)

The following lemma expresses the well-known fact that the existence efjaivalent
martingale measure (EMMinplies that the market allows no arbitrage.

Lemma 3.7 If for any T" € R, there is a probability measur®* on ¥, such thatP* ~
Plg,.andZ" (or atleastZ” — Z;) is a P*-martingale, then the market allows no arbitrage.

Note that no equivalence is claimed in the previous lemma. Observe al€01tiey contain
“arbitrage,” but that we do not consider it as such as long as it is not feasible.
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Proofs

PROOF OF LEMMA 3.6. 1 = 2: Lety = Yylion) + Yo, ¢ilinm,,) € & andT € R,
with Gr(p) > 0 andP(Gr(e) > 0) > 0. W.l.o.9.,7;,, < T. Moreover, let: € {1,...,m}
be maximal with the property tha®(Gr, ,(¢) < 0) > 0 or Gg,_,(p) < 0 P-almost
surely. In the second case we haye | - (Zr, — Zr,_,) = Gr,(¢) — G1,_,(p) > Gr,(9)
which is, by assumption, non-negative and positive with positive probabilityhdrcaise
P(Gr,_, () <0) > 0defineA := {Gr,_,(¢) < 0} € Fr,_,. Then we have thaP(A) > 0
and(14¢x_1)(Zr, — Zr,_,) = 14(Gr,(¢) — Gr,_,(9)) is strictly positive on4. Now we
consider the case that the marke®igliscrete. Since any teriy, 1., ) in the definition of
¢ can be written a3 ", liryve, 17,1 at,,,) Where® U {0, 0o} = {to, 11, ...}, it follows from
the above proof that, T}, TZ in Statement 2 can be chosen such that Ty <T, <ty

for somel € N. If we setw = Ylr <t n{To<tiy }0» then we haveb is Fy, - = Fy-
measurable and - (Zyy, — Ztl) V- (Zr, — Z7)).
2 = 1: The strategy) - 1), 1) is an arbitrage. O

PROOF OF LEMMA 3.7. Assume that there exigt T}, 15 as in Statement 2 of Lemma 3.6.
Moreover, letl’ € R, with 7" > T,. By Doob's stopping theorem (cf. JS, 1.1.39) we have
E*(¢ - (Zr, — Z1,)) = ¢ - E*(E*(Zr, — Zo|F1,) — (Z1, — Zy)) = 0, whereE* denotes
expectation relative t&*. Sincev - (Z7, — Zr,) > 0 P- and henceP*-almost surely,
this impliesy - (Z7, — Z7,) = 0 P*- and henceP-almost surely, in contradiction to the
assumption. O

3.2 Optimal Strategies

As in Subsection 1.2.2, we define optimal strategies in terms of local maxiorizaitex-
pected utility. We begin by defining utility functions as in the introduction.

Definition 3.8 u : R — R is calledutility functionif
1. u is three times continuously differentiable.
2. The derivatives’, «”, u"" are bounded anldm, ., u'(z) = 0.
3. u(0)=0,u(0)=1
4. u/'(z) > 0foranyz € R
5 u"(x) < 0foranyz € R
k := —u"(0) is calledrisk aversion

Alhough all we do can be done with any utility function in the sense of the previous defini-
tion, we usually focus on standard utility functions.
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Definition 3.9 For anyx € R}, the functionu, : R — R, = — +(1 + kz — V1 4 x22?) is
calledstandard utility functiorwith risk aversiork.

Remarks.

1. Foranyx € R,z € R we have

(x) =1 ~ "(x) -
u(r)=1—-—, u )= —"—"",
; V1 + k222 (1 + K222)2

/

u, (z) = uy (k).

In particular,u, is a utility function.

2. One may wonder why we claitiim,_, ., u/(z) to be finite, which rules out utility
functions as e.gu(z) := 1 — e *. One reason is that we would otherwise have
to impose strong moment conditions in order to obtain hedging strategies, derivativ
prices etc. Such a limitation of the set of models under consideration consradict
intentions. Secondly, observe that the expected utility of the &{AG,(¢))) in
Subsection 1.2.2 has an easy interpretation, especially for standard utildtyons.

For smallx it is close to the expected gab( AG,(y)), whereas for large risk aversion
it approximates twice the expected IGSOAAG,()). For arbitraryx it is something
in between.

For the rest of this section, the utility functianand its risk aversiom: is fixed (unless
otherwise stated). In Chapter 1 we define optimal strategies in terms ¢bdakegains

AG, over one period. Since there is no shortest possible time-span in a continuous-time
framework, a transfer of this approach is not evident. However, by means oftangm
argument, we will be able to define a natural counterpart. To begin with, we define the
expected utility of a strategy for arbitrary (short) time intervals.

Definition 3.10 For anyy € 6, t,t' € R, with ¢t < ¢’ we define thexpected utility o in
the intervallt, '] by

Ulp,t, 1) = { Bu(Gr(e) = Geol)) 1 ElfuG() = Gurli]) <
(We setGo_(¢) :=0.)

The limiting behaviour of the expected utility for small time intervals \ater be expressed
in terms of local utility in the sense of the following

Definition 3.11 For anyy € R**!, ¢ € R, we call theR?-valued random variabl;(z)),
v:(1)) local utility of ¢ in ¢, where

L) = / u(t - ) Ki(de)

L+
V() == by — §/€¢ ch + /(UW cx) — - x) Fy(dr).
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Remarks.
1. Note thaf;(v) = E(u(v - AZ;)|F,) P-almost surely by Remark 3 in Section 2.4.
2. T'y(¢) andv;(v) do not depend on® becauseZ® is constant.

The following lemma shows that the local utility is well-defined and unique detsome
null sets.

Lemma 3.12 Letp € 2.
1. There exists a versidi';(¢:), 7:(¢+))ier, Of the local utility ofy, int for anyt € R,

2. Let(Ty(vr), ve(t))ter, and ('ft(cpt),%(cpt))t@&+ be two versions of the local utility
of ¢, in t for anyt € R, . Then we have

@) Ty(¢(w))(w) = Ty(p1(w))(w) up to indistinguishability.
(b) There is soméP @ \)-null setN € P such thaty,(¢:(w))(w) = Fi(pr(w))(w)
for any (w,t) € N°.

3. Up to an evanescent set forand a(P ® A)-null set for~, Definition 3.11 does not
depend on the choice 6f in the extended characteristics &f.

For Theorem 3.14 below, we need the following integrability conditions.

Definition 3.13 1. We say that the markét = (Z°, ..., Z™) meetgegularity condition
(RC 1) if there is a= > 0 such that for any € R, we have

t
E /|b5|1+€ds < 00,
Z /|c”|1+5ds < 00,
1+¢
< |:U|2/\|x|) (dx)) ds><oo,

E( /|x|Kt(dI)>1+E> < 0.

2. We say that the market meeegularity condition (RC 1")if it meets (RC 1) or if it
is ©-discrete.

The following theorem states that for small time intervals, the expeadikiy of a feasible
strategy can be approximated by an expression that depends only on the local utility.

Theorem 3.14 Assume that regularity condition (RC 1) holds. l,et &. For anyt € R,
we have

U((p, tv tl) = E(Ft(cpt)) + 0(1)7
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whereo(1) — 0 for ¢’ | ¢t. Moreover, for\-almost allt € R, \ © we have

Ulp,t,t') = E( /ttl vs(©s) ds) +o(t' —t),

where

o =t) 5 0fort | ¢.

t
t—t
Remarks.

1. Definition 3.10 can be extended to abitrary locally bounded strategies. Therethe pr
vious theorem holds for any bounded= 2.

2. If Z (but not necessarily the market) @discrete, then we even hatgp, t,t') =
E(Ty(py)) if t' — ¢ is sufficiently small.

In discrete-time models we can do without the regularity condition (RC 1) ifevesider a
slightly different notion of expected utility.

Definition 3.15 For anyy € &, t,t' € R, with ¢ < ', we define theonditional expected
utility of ¢ in the interval¢, ¢'] by

Ulp,t,t') = { ?gc’ﬂ(%@) — G (9)|F1) Zlfe(lu(Gﬂ(cp) — G (9)]|F) <

Lemma 3.16 Assume that the market@-discrete. Letp € G,¢ € R,.. Then we have

U(gp, 12 t,) = Ft(SOt)

if t > tis small enough.

As in the discrete-time setting in the introduction, we want to call aejyap optimal
(relative to a given set of strategi@®8 C 2 and a utility functionu) if it maximizes the
expected utility for very short time intervals, where heegy shortis to be understood in a
limiting sense. By Theorem 3.14 (or Lemma 3.16) we know that, up to a small &drpr
resp.o(t’ — t), the expected utility depends monotonicallylofie,), v:(¢:). Therefore, it
makes sense to call a strategy optimal if its local utility is maxiocoshpared to all strategies
in 9.

Definition 3.17 Let 9t C 2A. We call a strategy € 9t u-optimal for 9t if the following
conditions hold:

1. P-almost surely and for anye R, we have
2. Outside soméP ® \)-null setN € P we have

Y (pr) > (@) foranyg € 9.
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A u-optimal strategy is generally not feasible. Hence, from a practical poivieaf it is
only useful as a limiting object, i.e. if we can approximate the optimal portéoiits local
utility by feasible strategies.

Definition 3.18 Let ¢ € 2 and(¢™).en @ Sequence i®. We call (¢™),,cn anapproxi-
mating sequenckr p € 2 if

1. P-almost surely we have

Ly (ef") =ty [y(p;) foranyt € R,.

2. Outside soméP ® \)-null setN € P we have
(@) " ).

3. Outside someP @ (A + ) o €5))-null set we have

m M—+00

o P

Definition 3.19 A set9t C 2 is calledregularif, for any ¢ € 9, there exists an approxi-
mating sequencer™)en in G N M.

The following lemma states that the 2eof all strategies, which corresponds to the specu-
lator, is regular.

Lemma 3.20 For any ¢ € 2 there exists an approximating sequengé®),cn. If ¢ is
locally bounded, then the approximating sequence can be chosen su¢halvabst surely
we haveG (™) ™% G(¢p) uniformly on any intervalo, ¢].

Corollary 3.21 Lett C 2A be convexly restricted with fixed constraints. THgiis regular.
More precisely, forp € 90t the sequencgp™),,en in Lemma 3.20 can be chosen@n 1.

The following theorem gives necessary and sufficient conditionsoptimal strategies,
which permits explicit calculations. Its corollary focuses on the hedger frabs&tion
1.2.2 and represents a continuous-time counterpart of Lemma 1.2.

Theorem 3.22 Let9t C 2A be convexly restricted by constraints ..., g7 < 0, g**', ...,
g? = 0 such that the mappingg (w,?) : R*"!' — R are differentiable for anyw,t) €
QxRy,je{l,...,q}. Moreover, letp € M. Theny is u-optimal forOt if and only if the
following two conditions hold.

1. P-almost surely and for any € R, there exist\,,...,\, € R with \; > 0 and
Nig? (o) =0forj=1,...,psuch that

q
/xiul(épt -x) Ky(dx) — Z)\jDigj(got) =0 fori=0,...,n.

Jj=1
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2. Outside soméP @ A)-null setN € P, there exist\,..., A\, € R with A; > 0 and
Nig?(p) = 0forj =1,...,psuch that

bi—ﬁci'-cpt—l—/xi(u'(cpt- x) — 1) Fy(dx) Z)\ D;ig’(¢;) = 0 fori=0,.

j=1

Corollary 3.23 Let9 = {p € A : ¢} = o' foranyi € {k,...,n}, t € R, } for some
k €{0,...,n+ 1} and some/*, ... " € R. Moreover, letyp € 9. Theny is u-optimal
for 901 if and only if the following two conditions hold.

1. P-almost surely and for anye R, we have
/ZUiU,((pt'ZE)Kt(dZL') =0fori=1,...,k—1.
2. Outside soméP @ A)-null setN € P we have

bi—mcj-gpﬁ/xi(u’(%-x)—1)Ft(d;c):0 fori=1,....k—1.

Remark. The preceding corollary also holds for predictable procesées. ., " instead
of fixed real numbers.

Especially in markets with redundant securities, optimal strategedaa from unique.
However, the following result shows that they do not differ by much as fdreisfinancial
gains are concerned.

Lemma 3.24 Let9Mt C 2 as in Theorem 3.22. Moreover let o € 9 be locally bounded
u-optimal strategies fofJi. Then we havél(¢) = G() up to indistinguishability.

So far we have not shown that optimal strategies actually exist. Sufficterditions are
given below.

Definition 3.25 We say that the markef = (Z°,. .., Z") meetsregularity condition (RC
2) if the following two conditions hold.

1. P-almost surely and for anye R, , there exists @ € R**! such that
/xiu'(w-x)Kt(dx) =0 fori=0,...,n
2. Outside soméP @ \)-null setN € P, there exists @ € R**! such that

bl — kel - ¢+/ " (- x) = 1) Fy(dr) =0 fori =0,...,n
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Remark. Althoughu andx appear in the above definition, condition (RC 2) does not depend
on the chosen value afif one works with standard utility functions.

Theorem 3.26 Assume that regularity condition (RC 2) holds. 0BtC 2 be asin Theorem
3.22 with the additional condition that alf’ are affine functions. Then there exists-a
optimal strategyy € 9t for 9.

Corollary 3.27 We have equivalence between
1. The market meets regularity condition (RC 2).

2. 2 contains au-optimal strategy foRl. In other words, there exists a strategy that is
u-optimal for the speculator.

Let us turn to discrete markets as in the introduction.

Remark. If the market isN*-discrete, then Lemma 2.20 yields that

nw) = [ty P = B(u( 3 vaZ)

311) P-almost surely.

Hence, maximization of — T';(¢) is exactly what is done in Subsection 1.2.2. Moreover,
we have

/xiu'(% cx) Ky(dr) = E<ul ( Z wiAZf)AZf
j=1

Fin).
Therefore the conditions in Corollary 3.23 and Lemma 1.2 coincide as well.

One may wonder whether regularity condition (RC 2) means a serious restriction of
the class of markets under consideration. For practical purposes this is not éhelTtas
following theorem shows that in discrete markets (RC 2) is equivalertidabsence of
arbitrage.

Theorem 3.28 For ©-discrete markets we have equivalence between

1. For anyT € R, there is a probability measurg* on ¥, such thatP* ~ P|s. and
(Z — Zy)" is a P*-local martingale.

2. The market meets regularity condition (RC 2).
3. P-almost surely we have for arye © and anyy € R**! the implication
Ky(—H")=0= K,(H") =0,
whereHY := {z € R**! : ¢ - z > 0}.

4. The market allows no arbitrage.
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Remark. In particular, we have 1= 2, where

1'. For anyT’ € R, there is a probability measui®* on ¥, such thatP* ~ P|s,. and
ZT'is a P*-martingale.

Unfortunately, we doubt that any of the above inclusions holds for continuous-time sharket
as well.

We need the following results for Section 3.4.

Lemma 3.29 1. Foranyyp € 2, x > 0 we have

v € Aisu,-optimal ford < kp € A is u;-optimal for.

2. Letky, ...,k > 0ands = (37 k; ')~ If pU) € 2Ais u,,-optimal for2A for any
je{l,...,p} thenthe sumy_"_, ¢ is u,-optimal forsL.

3. If ), ..., o) are as in the second statement and addition@ll§_, ¢/ = 0 for
i = 1+ 1,...,n, then there exists a;-optimal strategyy € 2 with ©* = 0 for
t=1+1,...,n.

4. 1f oM ... P are u-optimal strategies foRt with S7_ Ui = 0 fori = [ + 1,

..., n, then there exists a-optimal strategyp € A with ¢’ =0fori =1+1,...,n.

Proofs

PROOF OF LEMMA 3.12. 1. We have to show that the integrals exist. By Lemma 2.18,
there are versions df, K such that o2 x R, we have identically/ || K;(dz) < oo and
J (P A Jz]) Fy(da) < oo. Sincefu(t) - )| < supyeg |u'(y)][¢ - x| < supyep [/ (y)|[1)]|z]
for any ¢,z € R**' we have[ |u(¢y - x)| Ky(dx) < sup,eg |u'()|[¢] [ 2] Ki(dz) <
. For anyy,z € R, there existd,, v, € [0,1] such thatu(y - ) — ¢ -z =
Y-z (- x) — 1) = (¢ - 2)?0u" (01999 - z). Therefore,|u(y - z) — ¢ - x| <
(2> A J2) ([ supyeg [u” ()] + [ supyer [w'(y)]). Since [(|z* A |2]) Fy(dz) < oo,
it follows that [ |u(¢ - z) — ¢ - 2| Fy(dx) < oo as well.

2. and 3. This follows immediately from Statement 2 in Lemma 2.18. O

PROOF OFTHEOREM 3.14. We prove the theorem for any bounded 2. Fixt € R, .
For the proof of the first statement, observe that

w(Ge(p) — Ge(p)) = U(Wt AZ + /Otl Lio e (s)es - dZs>-

Since the mean value theorem implies

t’
<suplu/ (@) [ Lo (o). -z,
0

TER

t/
‘U<<Pt -AZp+ / Lio,ge (8) s - dZs) —u(p; - AZy)
0
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it suffices to prove thaB(u(p, - AZ)) = E(Ty(¢,) and E(| [} 1pgc(s)ps - dZ,|) —

0 for ¢ — ¢. The assumptiorE(( [ |z| K;(dz))'**) < oo |mpI|es thatf|x ({t} x
dz) and hencef |z|u?({t} x dz) is integrable, where/?, v denote the jump measure
of Z and its compensator. Therefofe(y; - AZy)| = [|u(p - x)| p?({t} x dz) <

suD,er, |0/ (@)|l¢e] [ |2 n” ({t} x dz) andTy(¢r) < sup,er, [0/ (@)]|oe] [ 2] v({t} x dz)
are integrable as well. Moreover, we have

ue AZ)=Tle) + [ Lg(ule-a) o < v)dsda). @)
[0,6] xRn+1
Integrability of the first two terms implies that the third term is intddeaas well. From
JS, 1.2.27, it follows thaty ([, ;, gns1 11y (s)u(es - ) (07 — v)(ds, dz)|F;-) = 0 P-almost
surely and henc& (u(p; - AZ;)) = E(Ty(¢)). If (B, C,v)! denotes the integral character-
istics of Z, then

t/ t/ t
/ Lyggo(s)ps - dZ, = / Li,nc (8)gs » dBs +/ Li,e (8)ps - dZg
0 0 0

" / Loge(s)ps - @ (n? —v)(ds,dz)  (3.2)
[0,£/] xR+

for anyt’ € R,. The first term on the right-hand side of Equation 3.2 quﬁﬁlm - by ds

for ¢ > ¢ small enough, which implies its uniform integrability n 7| for T > ¢ small
enough. The second term is a square-integrable martingale on any compact inté@rjal
sincey is bounded and(3 ) Ofo |ci7| ds) < oo by assumption (cf. JS, I11.4.5d). More-
over, the Iast termis unlformly integrable on any interall’] by Proposition 2.8. Hence,
fo 0,4 -dZg is unlformly integrable as well. By right-continuity of the stochastic

mtegral thls |mpI|esE |f0 (s)ps - dZs|) — 0 fort' — .

We will now turn to the proof of the second statement. tet R, \ ©. Define the
processY = (Yy)per, by Yy = fot Ly ge(s)ps - dZ,. By Lemma 2.22)Y is a special
semimartingale, and, by Remark 2 in Section 2.5, so(1S). Moreover, we havelY, =
Lioge (t')pr - AZy, and hence\Yy (w) = 1y yo (') pr (w) -  for M,fz-almost all(w,t',z) €
Q x R, x R**! (in the sense of Jacod (1979), (3.10)). From, = 0 P-almost surely and
by 1t6's formula (cf. Jacod (1979), (3.89)), we have

U(Gt’(@),_ G (¢)) = u(Yry)
= u' (Y, ) dYS

+

(u(Yi + - 1) — u(¥i2) - Lo go(s) (17 — v)(ds,dr)

0 )xn 1
1 [t

/ W (Vi) dA, + / W (Vo) d(Y*, Y,
0

" / u(Vi 4 @y ) —u(Ve ) — (Vi gy - ) L e (s) v(ds, do)
0,t'] ><R"Jrl

+
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for anyt’ > t, where A denotes the predictable part of finite variation of the special semi-
martingaleY’. As in the proof of Lemma 2.22, we conclude thaf® = 1 o (s)ps - dZ¢,
d(Y, Yy = Lpge(s) Yorj—o whc? ¢l ds anddA, = 1y 40 (s)ps - dB,. It follows that we
have for any’ > ¢ with [¢,¢] N © = @:

u(Gul(g) — Gr(p)) = / (i) ds (3.3)
+/ UI(Y;,)l[Oyt]O(S)QOSdZSC (34)
0
[ ) = u(Yi) T (s) (6~ ) (ds,da) 35)
[0,t']xRn+1
" / (! (Ye) — L)gs - by ds (3.6)
= W) + ) cap ds @7)

/t,/ (Ve s 0) = u(Vs ) = ulpy - 7) = (W (V) = D, - x) Fy(de) ds.
(3.8)

Sinceyp is bounded, the integrand(y; - =) — ¢, - x| in the definition ofy,(y;) is dominated

by some multiple ofz|?> A |z| (cf. the proof of Lemma 3.12). Therefore, the integrability
of ftt' vs(s) ds follows from the regularity condition (RC 1). It remains to be shown that
the expectation of the remaining terms (3.4) - (3.8)(i8 — ¢) for ' | ¢t. Sinceu/(Y._)y

is bounded and?( > i lcd]ds) < oo, it follows from JS, 111.4.5d that term (3.4) is

a square-integrable martingale (on any compact intgt&l]) starting in0. Hence, its
expectation equal8. If we denote the upper bound ¢f| by M € R, , then|u(Y,_ +

@s - ) — u(Ys_)| < sup,g [u'(y)|M|z|. Moreover, (RC 1) implies thagft " (s

|z]) v(ds, dx) ft [(Jz* A |z|) Fy(dz) ds is integrable for’ > ¢ small enough. Together,
we obtain from Proposition 2.8 that term (3.5) is a uniformly integrable martingale @i

for T > ¢ small enough. Hence, its expectatiordias well. Letp := 1 + &, ¢ > 0 with

>+ = 1, wheree is chosen as in regularity condition (RC 1). Define the increasing
functionV : Ry — R, by

Vem [ (b 3160+ ([ Ak Fia)) s

4,7=0

SinceV is absolutely continuous, it is differentiable Malmost allt € R, (cf. Elstrodt
(1996), VII 4.12). Assume for the rest of the proof that differentiability holdis ihhen we
havevt’ — O(1) for ' | t. By Jensen's inequality, it follows that( (7 [ |b,| ds)?) <

ft bs|Pds) = O(1) for ¢ | t and likewise forE/(( mft iio|c] ds)?) and
E((t, [(Jz|* A |z]) Fs(dz) ds)P). If M € R, denotes an upper bound [gf|, then the
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triangular inequality and Holder's inequality yield

1
t—1

1 (7
t,_t/ 1] ds
t

By dominated convergence, the first factor convergésfto ¢’ | ¢. Since the second factor
isO(1) for ¢’ | t, we have that the expectation of term (3.6)(8 — ¢) for ¢’ | ¢. Similarly,

it follows that term (3.7) i®(t' — t) for ¢’ | ¢t. By Taylor's formula with integral remainder
(cf. Heuser (1990b), p. 284-285) and the mean value theorem, we obtain

/tt,(u'(ys) 1) bds]| | <

sup |u'(Ys)—1|-M
s€[L,t']

La Lp

[(u(Yoe + s - 7) —ulYi2)) = (ulips - ) = 0) = (' (Vi) = D)y - ]
= |([ 0tz = e )1 = 2 = 005 = )
< ((2sup " @IYe]) A (3sup )] +1) ) Ml
Similarly, the second order Taylor formula and the mean value theorem yield tha
Yy + oy -2) —u(Yso) — /(Y )y - 7) — (uliy - 2) — 0 — o, - )|
= | /Ol(u"(ys T2y 1) — (2, - 1)) (1 — 2) da(ipy - 2)?

((sup b @)I1Ya1) A (2500 1)) ) 121

yeR

IN

Together, we obtain by Holder's inequality that

1 1_ ; /tt/ (U(Ys— + s x) —u(Yyl) —u(ps - 2) — (u'(Yes) — 1) s - 35) Fs(dgc)dSHLl

< 1Yo sup@hfu(y) | + M2 (y)]) A sup(M(BJu’(y)] + 1) +2M2|u’ (3) )
yeR

y€eR
1" )
s [ e ke F) s
t

As for (3.6), (3.7), it follows that the expectation of term (3.8)(s — ¢) for ¢’ | t. O

La

Lr

PROOF OFREMARK 2. If Z is discrete, thenu(Gy(¢) — Gi_(¢)) = u(AG(p)) =
u(pAZy) P-almost surely for any > ¢ with (¢,¢'] N © = @. The claim now follows from
E(u(py - AZy)) = E(T'(¢y)) (cf. the proof of the previous theorem). O

PROOF OFLEMMA 3.16. By Equation (3.1) we have
u(Gu(p) — Gi-(¢)) = ulpr- AZ;) = T'i(¢1) +/[ - Ly (s)u(ys - o) (u” —v)(ds, dx)
0,t] x Rn+1

for anyt’ > t with (¢,¢] N © = @. From JS, 1.2.27, it follows that the conditional expecta-
tion givend,_ of the last term equal® (cf. JS, 1.2.27). This implies the claim. O
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PROOF OFLEMMA 3.20. First step:W.l.0.g., we assume, = 0. Moreover, suppose that
p is locally bounded. The general case is considered in the fifth stel ket + M + A
be a decomposition of the semimartingafesuch that the components &f are locally
square-integrable martingales ande 77¢ (cf. JS, 1.4.21, 1.4.17). BYS;)ren denote a
localizing sequence of all componentsidfsuch that, in additiony°+| < k for anyk € N
(for existence cf. the proof of Lemma A.1). Moreover, define for Any N the stopping
time T}, := Sy Ainf{t > 0: >, Va(4’), > k} and letO®, be the set of thé smallest
elements oB. Obviously, we havd, 1 oo P-almost surely fok — oo. For anyk € N,
we define the finite measureon (2 x Ry, P) by

Tr—

> (o 1 d(M?, M?) l
2214;_(2 n+1{(E((MZ Mi)g,) +Z/ Lo dVa(d),
+(Pe (Apm+ Y gs))(o)>

SEO

for anyC' € P. Note that the first part contains the Doléans measudd M/ in JS, p. 48.
Since|p*| < k for anyk € N, we have[ |¢'|?du < 4 and hencey’ € L*(Q x Ry, P, p1)
fori=0,...,n

Second stepiVe now show that there is a sequeigé)),cy in & such thaty® — ' in
L*(Q x R, P, u) fori =0,...,n. One easily sees that it suffices to find an approximating
sequence separately for each comporénSince any non-negativ@measurable mapping
Y : Q x Ry — R can be pointwise approximated from below by a linear combination of
indicator functions, it follows from the dominated convergence theorem (e.g. BEQIAS),
Satz 15.4) tha{> " _ a;lsi : p € N, Cy,...,Cp, € P, ay,...,a, € R} is dense in
L*(Q2 x Ry, P, ). Therefore, it suffices to show that for afy € P, ¢ > 0, there exists
aC € Psuchthatly € & and [(1o — 15)?dp = p((C\ O) U (C'\ C)) < =. Define
the ringR = {(H x {0}) UUze{1 _____ AT - H € Fo,p € N, andTy < ... <
T, bounded stopping tim¢sObserve thatz € S for anyC € R. SinceR generate® (cf.

JS, 1.2.2), there exists@ € R such thalu((C \ C)U (C'\ 0)) < ¢ (ct. Billingsley (1979),
Theorem 11.4).

Third step: Denote by(p")),cy a sequence i® as in the second step. Sing€) con-
verges tap in u-measure, there is a subsequence, which we denote agéj'hy:y, such
thato® — ¢ p-almost everywhere. By definition ¢f this implies thatp) — ¢ outside
some(P ® (A + >, .0 €s))-null set. Since the mappings — I';(y)) andy — v,(¢) are
continuous, it follows thaty™®),cx is an approximating sequence.

Fourth step: It remains to prove the convergenc&o)) — G(p) P-almost surely
uniformly on any interval0, T']. By taking subsequences and by a diagonal procedure, it
suffices to prove that, for any € N, ||G(¢") — G(¢)]|3, - — 0 in probability. Fixk € N.

We have

E((1G(") - G(¢)lI7,-)?)
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< QZE( H/ iy d(M)Sn Oo)2>
+22E( H/ i by (AT Oo)2> (3.9)

The first term on the right-hand side of (3.9) is dominated by

SZE( [0 gty aany ary,)

3

< Syt DEO M) + 1) (60— o) du

(cf. Doob's inequality, e.g. as in Corollary 2.52 (for = 0)). The second term on the
right-hand side of (3.9) is dominated by

2Zn:E<(/Tk_ ol — 90§|dva(Ai)s>2>
< 2kZE( /Tk— (P4 — g dva( 49,

< 25 [0V =) dp.

Since [ (¢! — ¢)? dp converges td for | — oo, it follows that||G (") — G ()5, — 0
in L2(Q, F, P) and thus in probability.
Fifth step: If ¢ is not locally bounded, define the bounded stratggg 2 by @' =

arctan(y') fori = 0,...,n. Let ) be an approximating sequence@stmg the conti-
nuity of tan, v, T, one eaS|Iy shows that the sequente, defined by := tan(p®), is
an approximating sequence fore 2. O

PROOF OFCOROLLARY 3.21. We have to show that the approximating sequépt8 ey
in the second step of the previous proof can be chosénhrirdt. Note thatht = {p € 2 :
o(w,t) € M forany(w,t) € 2 x R, } for some convex set/ C R"*!. For anyl € N, let
(D) peqr, 2m+ny be @ partition of z € R**' : |z*| < Ifori=0,...,n}into cubes of edge

.....

length2/1, and fix a pointrl, € D, N M for anyp, i € N with D!, N M #+ @. Now define for
12(n+1)

anyl € Nastrategy" € AN by " := 37 " 1,11y Dominated convergence
yields thatp®? — ¢ in L2(R, x Q,P, ) fori = 0,...,n. As in the second step of the
previous proof, one shows that! (D) € P can be replaced with sonté” € R. So, one
obtains an approximating sequencesim 1.

If ¢ is not locally bounded, one argues similarly as in the fifth step of the previous proof
by substituting for ¢ andM := {z € R+ : (tan(z°), ..., tan(z")) € M} for M. O

PROOF OF THEOREM 3.22. =-: We will only show the second statement, because the
proofs are very similar.
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First step:For any(w, t) € Q x R, defineM (w,t) C R**! by M(w,t) := {yp € R** :
¢ (w,t,p) < 0forj =1,...,pandg’(w,t,¢)) = 0forj = p+1,...,q}. Then we have
M={ped:pw,t)e Mw,t)forany(w,t)}. Let N € P be a(P®\)-null set such that
Y (0r) > vi(y) forany g € 9. Fix (w,t) € NC. Since the mappingg are predictable
and convex, one can find, for any € M (w,t), a strategyp, € 2t such thatp,(w) = .
Indeed, one may defineby ¢(w, s) := ¢+ 1az,6) (V) +£(0, 5) - Lz 5)c (1), whereg (w, s)
is defined as the unique elementid{w, s) with the smallest Euclidean norm. For existence
and predictability of we refer to the last two steps of the proof of Theorem 3.26. Therefore,
we havey,(p;) > () for anyy € M(w,t). Define a mapping : R**! — R by

h() == —1 - by + %w%tw — /(u(w -x) — - x) Fy(dz).

Note thath(v)) = —,(¢) for anyy € R,

Second stepiVe will now show that: is a convex function. Since — —1) - b, is linear
andc; is non-negative definite, this is evident for the first two terms (cf. Roclaféli970),
Theorem 4.5). Moreover, the mappigg— ¢ - z — u(¢ - ) is convex for anyr € R**!,
definite (cf. Rockafellar (1970), Theorem 4.5). Since integration is a linear tog®erat
follows that the mapping — [ (v - = — u(y - z)) Fy(dx) is convex as well (cf. Rockafellar
(1970), Theorem 4.1). Henck,is convex by Rockafellar (1970), Theorem 5.2.

Third step: We will show thath : R**' — R is differentiable with partial deriva-
tives D;a(v) = —bi + kY7 /i — [2'(u'(¢p - z) — 1) Fy(dx) for any v € R,

i € {0....,n}. The claim follows at once if we have proven that we may interchange dif-
ferentiation and integration in the integral relativeffo Observe that for any, 2 € R**!

we have|z'(u' (¢ - ) — 1)| < |z] - (1 + sup,g |[v/(y)]) and, by the mean value theo-
rem, |o(u'(¢ - #) — D] < |zllv) - 2]sup,eg [u”(y)| and hencela’(w'(v - ) — 1)| <
(1 4 sup,eg [v/(y)| + || - sup,er [u”"()])(|z]> A |z]), where the first factor is bounded

in a neighbourhood of any € R*™! and the second factor i§-integrable. By Billingsley
(1979), Theorem 16.8 it follows that we may differentiate under the integral sign.

Fourth step: We define theordinary convex progranfP) in the sense of Rockafellar
(1970), p.273 by the convex functidn: R**! — R, the setC' := R**! and the constraints
¢ < 0forj =1,...,p,¢° = 0forj = p+1,...,q. From the first step, we know
that ; is an optimal solution to (P). By Rockafellar (1970), Theorem 28.2 there exists
a Kuhn-Tucker vectof )y, ... \,) for (P). It follows from Rockafellar (1970), Theorems
28.3 and 25.1 that € 0h(¢:) + >_1_4 X097 (1) = {Vh(pr) + 377, AV (1)}, where
df denotes the subdifferential andf the gradient of a functiorf. This implies0 =
Dih(¢:) + "1, Dj\ig’ (@) for anyi € {0,...,n} and hence the claim.

«: Fix (w,t) € N¢, where N denotes th&€ P @ \)-null set in Theorem 3.22. By
Condition 2 and Rockafellar (1970), Theorem 28-3js an optimal solution to the above
ordinary convex program (P). Thereforgp;) < h(1) and hencey,(¢;) > (1) for any
Y € M(w,t). The statement concerniig(y,) follows along the same lines. O
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PROOF OFCOROLLARY 3.23. Apply Theorem 3.22 to fixed constraipts= 0, ..., g" **+!
= 0 given byg’ (&) := -1 — k- Hiforanyj € {1,...,n—k+1}, £ € R**L, Elemen-
tary calculations yield that the conditions in Theorem 3.22 are for any fixed equivalent
to those in Corollary 3.23. O

Proposition 3.30 Let f : R**" — R be a convex function and,y € R"*'. Then the
mappingf : [0,1] = R, A — f(Az + (1 — X)y) is convex as well.

PROOF For anyu, A1, A; € [0, 1] we have

FI = +prs) = f((Mz+ (1 =2)y)(1 = p) + oz + (1 = Ao)y)p)
< fuz+ (1= A)y)( =)+ fez + (1= A)y)p

= f)1 = p)+ fA)n,

which implies thatfis convex by Rockafellar (1970), Theorem 4.1. O

PROOF OFLEMMA 3.24. Fix(w,t) € Q x R, (outside somég\ @ P)-null set as in the
proof of Theorem 3.22). In the proof of Theorem 3.22 we show ¢hap, are solutions to

the ordinary convex program (P). Moreover, we obtdireoh(¢) +3j_, \;j0g’ (¢1) and,
using the same arguments,c oh(¢:) + >_5_, A;09°($1), where(Ay, ..., A,) denotes a
Kuhn-Tucker vector for (P) which, by definition, does not depend on the particular solution.
By Rockafellar (1970), Theorem 23.5 £ajb) this implies that the convex mappiﬁg:

Rt — R, ¢ — h(Y) + > i1 A’ (1) achieves its infimum irp, and$;, and hence by
convexity of the minimum set, inany € E := {Ag;+(1—X)¢; : A € [0, 1]}. In particular,

we have);¢/(¢)) = 0 foranyj € {1,...,q}. Now define mappings, h, hs, hy : [0,1] —

R by

hi(A) = h(dp+ (1= V@)
ha(A) == =b- (Ao + (1 = A)¢r)
M) = s+ (L= NE) e+ (1~ )3

m) = [ O+ (1= 030 -2~ ul(ec+ (1= NF) -0)) Fi(da),

Observe thatiy, = ho + hs + h4 IS constant. By Proposition 3.3@y, hs3, h, are con-
vex. Thereforeh; = hy — hy — hy IS also concave and hence affine. This implies that
0 = Wi\ = Ky — &) Telor — 30) = kT for ¢ = ¢i*(¢, — 1), wheree;’” de-
notes a symmetric matrix satisfying/’c;’*> = ¢,. Hence, we have’ = 0 and therefore
hi(N\) = k(or — @¢) Ter(Mgy + (1 — N)@y) = 0 for any X € [0, 1], which yields thaths is
constant. Thushy, = h; — hy — h3 is concave and hence affine. In the proof of Theorem
3.22 we have shown that we may differentiate the mappirg [ (v/'(¢ - z) — ¢ - ) Fy(dx)
under the integral sign. Since the derivative of an affine function is constaritnitiiss that

hy(1) = [ 2-(pe= &) (1—u'(pp-x)) Fy(dx) andhiy(0) = [z (0 —50) (1= () Fy(dx)



108 Chapter 3. Markets, Strategies, Prices

are equal. We obtaitn= [(¢; -z — @1 - x)(u'(pr - ) — v/ (@1 - x)) Fy(dzx). The product un-

der the integral sign is negative @rbecause: is a strictly decreasing function. Therefore,
(pr — @) - = 0 for F-almost allx € R**™!. In particular,h, is constant. This implies that

hy = hy — hy — hy is constant as well. Hende, — ¢;)b; = 0. Similarly, one shows that
P-almost surely and for anye R, we have(p; — ¢;) - z = 0 for K;-almost allx € R**!.

Now observe thati(y) — G(9) = [,(¢s — @s) - dX,. By Lemma 2.22 and the preced-
ing results,G(p) — G(p) is an extended Grigelionis process with extended characteristics
(0,£0,0,0,0, (g9le(t))ier, )F. Thus,G(p) — G(¢) = 0 up to indistinguishability. O

PROOF OF THEREMARK. This s true, since (x) = u/(kx) foranyx > 0,z € R. O

Proposition 3.31 For k,d € N* and a measurable spacg, ), let3,,..., 5 : T x R? —

R be (§ ® BY)-measurable mappings that are continuous in the second argument. Then
there exists 45 © B¢)-measurable mapping : T’ x R? — R that is also continuous in the
second argument and such that for gay ) € I' x R¢,

Blw,¥) <0 & (B (w,y) <0fori=1,....k).
PrRoOOF Defined : R¥ — R by §(z) := inf{lz —y| : y € (R_)*}. Thend is a
continuous mapping witld(z!,...,2%) < 0 & (2¢ < Ofori = 1,...,k). Now let
Blw,¥) = (B (w,¥), ..., B (w,¥)). .

Proposition 3.32 1. Ford € N and a measurable spa¢€, ), leta, 3 : ' x R? — R
be (G ® B?)-measurable mappings that are continuous in the second argument. Then
the mappingy : I' — R, w — sup{a(w,v) : ¢ € R with B(w,7) < 0} is G-
measurable.

2. If, moreover, for any € I there is a uniqué (w) € R? with a(w, §(w)) = y(w) and
B(w, ) < 0, then the mapping : I' — R? is G-measurable as well.

PROOF 1. W.l.o.g.«« < 0. Otherwise considet(w, 1) :== — exp(—a(w, ¥)). Moreover, by
letting ¥ — oo, it suffices to prove&j-measurability ofy* : I' — R, w > sup{a(w, ) : ¢ €
R? with |¢] < k andf(w,v) < 0} for anyk € N. Fix k € N. For anyl € N the mapping
YT = R, w = sup{a(w, ) — (0 V B(w,v)) : ¢ € R? with || < k} is G-measurable
because it suffices to take the supremum overatl Q¢. Fix w € I for the moment. For
any closed setl c R? with 3(w,+) > 0 on A we have, by uniform continuity of on the
compact sefy € R? : |¢| < k}, thatinf{l(0 V B(w,)) : ¢ € Awith|¢| < k} 1 oo
for | — oo. By continuity of o there exists for any > 0 an open setd® containing
{1 € Ry : B(w,-) < 0} and such thatup{a(w, ) : v € AY with || < k} < y(w) +e.
Together, we obtain that"! | +* for I — co. This implies thaty* is G-measurable.

2. Denote byﬁ :I'xR? — R a(§@B4)-measurable mapping, continuous in the second
argument and such thatw, 1) < 0 if and only if 3(w, 1) < 0 andy(w) — a(w, 1) < 0 (cf.
Proposition 3.31). Then we have

§'(w) = sup{t’:p € R with B(w, ) < 0andy(w) — a(w, ) < 0}
= sup{¢’ : ¢ € R? with B(w, 1) < 0}.
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foranyi € {1,...,d}. By Statement 1§ is aS-measurable mapping. O

PROOF OF THEOREM 3.26. First step: Fix (w,t) € N¢ with ¢ ¢ ©, whereN is a null
set as in the second condition of Definition 3.25. If we define the mappasyin the proof
of Theorem 3.22, then (RC 2) implies that there i & R**' with VA(¢)) = 0, i.e. such
that0 € 0h(vy). By Rockafellar (1970), Theorem 23.5 £ajb), this implies that. attains
its finite infimum ing.

Second stepWWe now show that is constant in its directions of recession. If the direc-
tion of y € R**! is such a direction, thenis an element of the recession coné:pfvhich
equals the recession conefaf € R"™! : h(z) < minh} ={z € R*"! : h(z) = minh}
(cf. Rockafellar (1970), Theorem 8.7). By definition, this means Ahettains its minimum
iny 4+ Ay forany A € R, in particular imZ = 1 + y. With the same arguments as in the
proof of Lemma 3.24, it follows that-b, = 0, ¢,y = 0, -2 = 0 for Fj-almost ally € R**!.

An easy calculation shows that this implie& + \y) = h(p) foranyp € R**' )\ € R.
Thus,h is constant in the direction of.

Third step:By Rockafellar (1970), Corollary 27.3.8,attains its infimum subject to the
given constraints. By Rockafellar (1970), p.264 the set of optimal solutioasM (w, t)
is convex (M (w, t) is defined as in the proof of Theorem 3.22). Since it is also non-empty
and bounded, the projection theorem (cf. Alt (1992), 2.17) yields that it contains a unique
element of minimal Euclidean norm, which we denote fyw). For (w,t) € N with
t ¢ O, let p,(w) be the point of minimal Euclidean norm M (w, t). For(w,t) € Q x ©
(or more exactly, outside the evanescent set of regularity condition (RC 20efimep, (w)
analogously as above, but with respect to the fundtigh) := — [ u(y - z) K(dz) instead
of h. Hence, we have defined a mappipg 2 x R, — R"“ meetmg Condltlons land?2
in Definition 3.17.

Fourth step: It remains to show thap is predictable. By Proposition 3.31 there ex-
ists a(P @ B"')-measurable mapping : 2 x R, x R**' — R that is continuous
in the last variable and such thgt(w,¢,v) < 0 < ¢ € M(w,t)). Hence, the map-
pingy : @ xR, — R, (w,t) — sup{w(¢¥)lye : ¥ € M(w,t)} is P-measurable
(cf. Proposition 3.32). Again by Proposition 3.31, there exist® & B"*')-measurable
mapping3 : Q x R, x R™*!' — R that is continuous in the last variable and such
that (B(w,t,0) < 0 & ¢ € M(w,t) and(w,t) — v(1)1ye(w,t) < 0). Observe that
there is a unique) € R"*! (namelyp,(w) (for t ¢ ©)) such that the following three
conditions hold: v/ € M (w,t); v(¥)1yc(w,t) = F(w,t); || = sup{—|¢| : ¢ €
M (w, t) and, ()1 ye (w, ) = F(w, )} Now apply Statement 2 of Proposition 3.32 to

the mappingsy((w,t),v) := —|¢| and 8. We obtain thatw,t) — ¢;(w)lge(t) is a
predictable process. By considerifignstead ofy one similarly shows that the mapping
(w,t) = i (w)le(t) is predictable as well. O

PROOF OFCOROLLARY 3.27. This follows immediately from Theorem 3.26 and Corol-
lary 3.23. O
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PROOF OFTHEOREM 3.28. 4 = 3: First step:If Statement 3 is violated, then there exists
at € © such that the set/(w) := {y € R**! : K;,(—HY) = 0, K;,(H") > 0} is not
P-almost surely empty. Observe that the §ete Q : M(w) # @} equals{w € Q :
There is a) € R"*! with (w V) € g_l({()} x R% )}, where the mapping : 2 x R**' —
R? is defined by(w, ) — ([ 1(—c0)(¥ - z) Ki(dz), [ 1(0,00) (¢ - ) Ki(dx)). Sinceg is
(F;— ® B"*1)-measurable, it follows by the projection theorem (cf. Sainte-Beuve (1974),
Theorem 4) thafw € Q : M(w) # @} is F -measurable. This implies that the set
= ({weQ: Mw) =2} x{0})Ug ({0} xR:) C @ x R"*is (F] @ B"H)-

measurable By Sainte-Beuve (1974), Theorem 3 there exi&fs-emeasurable mapping
€ : Q — R with (w,€(w)) € G foranyw € Q. Leté : Q — R be aF,_-measurable
mapping thatP-almost surely equalg. If s is the nearest neighbour to the left/win ©,
then¢ is F,-measurable by definition @-discrete markets.

Second stepWe show that - (7, — Z;) is non-negativeP-almost surely and positive
with positive probability. By Lemma 3.6, this implies that Statement 4 isaténl. Firstly,
we have that

Bt (€ (2~ Z)IF) = [ 1cmo (€ ) Kildr) =0

where the first equality follows from Remark 3 in Section 2.4 (and the Fatt4, = Z,_,
Fs = F,_) and the second equality from the definitiorfoHence, we obtaig- (7, — Z;) >
0 P-almost surely. Similarly, we hav@(1 (g o) (& (Zi— Z))|Fs) = [ Lo,00)(§-2) Ki(dx) =
K,(H¢) P-almost surely, wherd®(K;(H¢) > 0) = P(M(w) # @) > 0. Therefore,
P(E-(Z,— Z,) > 0) = E(K,(H*)) > 0.

3 = 2: Lett € ©. We have to show tha?P-almost surely there existsyac R with
[ @'/ (¢ - 2) Ky(dz) = 0 for anyi € {0,...,n}. Fixw € Q. This is equivalent to saying
that P- almost surely there existsia € R"“ with 0 € 8h(w) where the convex function
h: R — R (for fixedw € Q) is defined by — — [u(y - ) K;(dz). It suffices to
show thath is constant in all its directions of recession (cf. Rockafellar (1970), Theore
23.5 (b}=-(a) and Theorem 27.1(b)), for differentiability bicompare the proof of Theorem
3.22). If the direction of) € R"*! is a direction of recession &f then for any: € R**! the
mappingR; — R, A — h(z+ ) is decreasing (cf. Rockafellar (1970), p.265). Fet 0 it
follows thatg : Ry — R, A = — [w(A-2)1_ge () Ky(dz) — [ W' (A - 2)1 50 (2) Ky(dz)
is a decreasing function. The utility functianis concave and its derivative is bounded
from above. Hence) — “(Q;”) converges for) - z < 0 and A — oo from below to
limy, o u'(y) =: u'(—00). This implies thatf “22) (¢ - 2)1_p (v) Ki(dx) converges
for A — oo to u/(—o0) [(¢ - z)1_pu(z) Ki(dz), WhICh is strictly negative if and only if
Ki(—HY) # 0. In this case, the first integral in the definition @frows asymptotically
linearly for A — oco. Since the second integral is bounded from below-byip,  u(y)
andg is decreasing, this is impossible. Therefore, we must #gye- HY) = 0, which by
Statement 3 implie#(;(H¥) = 0 and hence) - + = 0 for K;-almost allz € R**!. This
implies that the mapping — h(z + \y) is constant for any € R**!'. Hence, the claim
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follows.

2 = 1: This will be shown in Theorem 3.36 and the following Remark 3.

1 = 4: Assume that Statement 1 holds but the market allows arbitrage. For aasta-of
tion assume thad = N*. By Lemma 3.6 there isac N* and a boundeft;_;-measurable,
R"*!-valued random variablg¢ such that) - (Z; — Z;,_,) is non-negative’-almost surely
and positive with positive probability. Take* relative tot as in Statement 1. By JS, 1.1.64
we haveE™* (¢ - (Z, — Zy 1) |F11) = - (E*(Z|F-1) — Z1-1) = 0 P*-almost surely. Since
V- (Zy — Z;1) > 0 P*-almost surely, this implies - (7, — Z;, 1) = 0 P*- and hence
P-almost surely. Thus we have obtained a contradiction. O

PROOF OFLEMMA 3.29. 1. This follows from Corollary 3.23 and..(y) = ) (xy) for any
k >0,y €R.

2. In the proof of Theorem 3.22 we have shown that 2 is u-optimal if and only
if, for fixed (w,t) € Q@ x Ry, p(w,t) is an optimal solution of some convex functién
Since the set of extremal points of a convex function is convex, it follows thatanvex
combination ofu-optimal strategies (fo?l) is u-optimal for<(.

Now if 1) € A is u,,-optimal for2, then, by Statement k,;o/) is u;-optimal for L.
Therefore, the convex combinatioh’_, ;') ' >7_ ¢19) is u;-optimal for2(, which, by
Statement 1, yields the claim.

3. This follows immediately from Statements 1 and 2.

4. As in Statement 2, we conclude tt%aE?zl ¢ is au-optimal strategy foRl. [

3.3 Trading Corridors

As in Subsection 1.2.3, we define regions of strategies whose local utility does notdeviat
too far from the optimal value. Since we are dealing with two kinds of locaityti the
general frameworkI{; for ¢t € © and~, for the quasi-continuous part between fixed jump
times), we let the trading corridor also depend on tiibty bandwidthseq, ;.

Definition 3.33 Let 9t C A be convexly restricted witly!, ..., ¢¢ as in Definition 3.3.
Assume that a:.-optimal strategyy € 9t for 9t exists and fixe;,eo € R,. Let J :
Q x Ry — P(R**!) be a mapping with

J(w,t) € M(w,t) = {peR"* :¢/(y)) <0forje{l,...,p}
andg/ (1)) =0forj € {p+1,...,q}}

forany(w,t) € @ xR,. We callJ a(u, ey, e2)-trading corridorfor 9t if the following two
conditions hold.

1. P-almost surely we have for artyc R, that

e J(w,t) & Ti(y) > Ti(er) —e1.
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2. Outside soméP ® \)-null set we have
V€ J(w,t) & 1Y) > 1lpr) — e

Lemma 3.34 Let91 C A as in Theorem 3.22. Assume that-@ptimal strategyy € 9 for
21 exists (e.g. by Theorem 3.26). Then we have outside 8BmgA + >, £¢))-null set:

1. J(w,t) is a non-empty convex set.
2. If ¢ is an element of the boundary &fw, t) in M (w, t), then

[i(¢) =T(pr) —e1 forte®
Y(V) = V(o) —e2 fort e Ry \ ©.

Proofs

PROOF OFLEMMA 3.34. Fix(w,t) ¢ N, whereN is a(P @ \)-null set as in the second
condition of Definition 3.17. With the same notation as in the proof of Theorem 3.22, we
have that/(w,t) = M(w,t) N {¢ € R : h(y) < h(py) + &2}. SinceM (w,t) andh

are convex, this is a convex set containingw). From the continuity of., it follows that

h(v)) = h(p;) + €2 on the boundary off (w,t) in M(w,t). Fort € ©, the proof works
similarly. O

3.4 Derivative Pricing

While the definition of optimal trading in continuous-time was complicated by ttie &

a minimal time span, we can easily transfer the approach concerning teripating to

our more general setting. In this section we assume that a markatleflyingd), ...,[ as

in the previous sections is given. More specifically, suppose that the underlyingsppic
cessZ = (Z°,...,7") is an extended Grigelionis process on some filtered probability space
(92,3, (F¢)ier, , P) and meets regularity condition (RC 1'). Denote its extended characteris-
tics by(©, P b, c, F, K)¥. Moreoverderivatived+1, .. ., n are given by their discounted
terminal priceX* at timet; fori =1+ 1,...,n. The X’ are assumed to ki -measurable
random variables. We want to calculate derivative prices under the sam@p@isons as in
Subsection 1.2.4. Suppose that the derivative market is almost exclusively dedninyat
speculators. More specifically, we assume that all speculators apgptimal strategies
(with possibly differing risk aversior) and that the union of the portfolios of these specu-
lators containg derivatives. By Statement 3 of Lemma 3.29 this implies that there exists a
ui-optimal portfolio for the speculator that has a zero position in any deraaiifus, the
derivative price processes have to be neutral in the sense of the following

Definition 3.35 We call the stochastic processgs!, ..., Z" neutral price processe®r
the derivativeg + 1, .. ., n if the following conditions hold.
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1. Z = (Z°,...Z") is an extended Grigelionis process.
2. Z! = X' P-almost surely for any > t; and anyi € {I +1,...,n}.

3. The convexly restricted sét := {p € A : ¢ = 0forany: € {I +1,...,n}}
contains au;-optimal strategy for!.

Remarks.

1. In particular, the markef meets regularity condition (RC 2). Moreover, by Statement
1 of Lemma 3.299)t contains au,-optimal strategy foR( for anyx > 0.

2. If we substitute an arbitrary utility functiom for the standard functions,, then, by
Statement 4 of Lemma 3.29 and the same reasoning as above, we also end up with
neutral prices, but this time defined relativatostead ofu;.

3. Regularity condition (RC 1') is only assumed to ensure that maximization af loc
utility is an intuitive concept (by Theorem 3.14 and Lemma 3.16). Mathematidally
IS not necessatry.

The following theorem corresponds to Lemma 1.7 in the introduction. It provides saffici
conditions for neutral derivative prices and allows one to compute them by means of a
equivalent martingale measure.

Theorem 3.36 LetT' := sup{t;y1,-..,t,} and fixs > 0 (e.g.x = 1, cf. Remark 2 below).
Assume that the following conditions hold.

1. The marketZ = (Z°,...Z") meets regularity condition (RC 2), i.e. there exists a
u,-optimal strategyp € 2 for 2.

2. o is locally bounded (cf. Lemma A.1 in the appendix).

3. The local martingald. := #(N) is a martingale, whereV = (N, )cr, is defined by

AT
N, = —/@/ s - dZ; +/ <1@o(s)(u;(g05 cx) —1)
0 [0,tAT] xR+

ACRED) — I\ (ds. du
o) e e )~ .

Here, the random measureonR, x R**! is defined by

([0, x G) = p? ([0, x G) +0(G) Y (1= p#({s} xR*™))

s€ON[0,t]
(for anyt € R, G € B"*!) andv denotes its compensator.

4. TheP*-local martingaleZ” — Z, is a P*-martingale, where the probability measure
P* is defined by~ := L.
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5. The market i®©-discrete, or alternativelyJ;).cr, is the canonical filtration (or its

P-completion) of an extended Grigelionis procéssuch that all local martingales
have the martingale representation property relativé'tge.g. a process as in Theo-
rem 2.65).

6. Foranyi € {{+1,...,n}, there exist,n € &, M € R such that

T T
M+ | &-dZ,<X'<M +/ ns - dZ,. (3.10)
0 0

Then there exist up to indistinguishability unique neutral price procegses. .., 2" for
the derivativeg + 1,...,n such that the market = (Z°,..., Z") allows no arbitrage on
[0,T]. These are given by

7} = E*(X'|Far) foranyt € R, , (3.11)

where E* denotes expectation with respectro.

Remarks.

1. In Section 3.2 we justify the use afoptimal strategies only in markets where regu-

larity condition (RC 1') holds. For a satisfactory foundation of the derived prmee
should verify that (RC 1') holds in the enlarged marKet (7°,..., Z") as well.

. P* does not depend on the choice of theoptimal strategyy nor on the derivatives

[+1,...,n. The conditional expectatioris* (X *|F;,r) depend neither op nor onT’
as long ad’ > t;. Moreover,P* and hence its conditional expectation is independent
of the chosen risk aversion

In ©-discrete markets Conditions 2 and 3 in Theorem 3.36 automatically hold ¢at lea
¢ can be chosen in that way). If, in additio, — Z{ fori = 0,. .., is bounded from
below by a constanb € R, then Condition 4 holds as well.

. Assumption 3 in the previous theorem holds if the followimyikovtype condition

is fulfilled: For the random variable

K

Or = —2/0 o ct¢tdt+// z) (log (u! (cpt-x))—l)—Fl) Fy(dz)dt

2
/fu' (1 X K>t(dx to <fu’ g;t(%)'?t(diOKt(dx)

we haveFE (exp(Cr)) < oco. (For the last integrand, we set0 = 0, log(0) = —oo,
0-00=0.)

teON[0,T]
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5. Assumption 4 in Theorem 3.36 hold¥df= & (resp.K; = ¢, for anyt € ©) and

Z/ &% |dt+/0T/(|:r|/\ |:v|2)Ft(da:)dt> < 00

i,j=1

6. Assumption 6 in the previous theorem means that the derivatives capbehedged
If we replace it with the following two weaker conditions, then the existestatement
and Equation 3.11 (but not necessarily the uniqueness) still hold.

(@) E*(|X*) <oofori=1+1,...,n

(b) The P-semimartingalesz’*!, ..., Z" defined by Equation 3.11 arB-special
semimartingales.

7. For the proof of Theorem 3.36 it suffices to assume that Condition 6 holds with a
Fy-measurable, integrable random variablenstead ofM € R.

In discrete-time models the previous theorem looks a little easier.
Corollary 3.37 LetT := sup{t;41,...,t,} and assume that the following conditions hold.

1. The market = (Z°,...,7") is ©-discrete and allows no arbitrage. Moreovef —
Z} is bounded from below by a constante R fori =0, ..., 1.

2. Foranyi € {Il+1,...,n}there exist,n € &, M € R such that
T ) T
—M + gs-dngXlquL/ ns - dZs.
0 0

Define the probability measurB* (the same as in Theorem 3.36) by its Radon-Nikodym

density
H - AZy)
s€0N[0,T] (s - x) K(dz)
wherep € 21 is a u,-optimal strategy fo2l. Then there exist up to indistinguishability
unique neutral price processeg*!, ..., Z" for the derivatived + 1,...,n. These are
given by
7! = E*(X'|Far) foranyt € R,, (3.12)

whereE* denotes expectation with respectro.

Remark. N*-discrete markets can be expressed in terms of the transition prolesbiliti
P(A|F,_) foranyt € N*, A € F,. Relative to the pricing measure, the corresponding
transition probabilities are given by

?t1> )

u, (@t . AZt)
P (AlF,_)=F al 1
(AlFe-0) (E(u;«ot VAR
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where theJ,_;-measurabl®'*! -valued random vectap, is chosen such that

/xuf{(cpt - x) PAZtl?t‘l(d:v) =0.

Observe that, in order to compute the transition probabilities ffom to F; relative toP*
(for fixedt € N), all we have to know are the corresponding probabilities relative. tbhe
past up to time — 1 or the future beyondof the model are irrelevant. Derivative prices can
now be recursively obtained from

Zi, = E'(Z}|F ).

Often one is not really interested in the Radon-Nikodym density of the pricingunea
P*, but rather in the dynamic of the price processes relativé‘to

Corollary 3.38 Suppose that’ = (V1,...,V*) is anRRf-valued stochastic process such
that (Z,V) = (Z°,...,Z,, V1, ..., V¥)is an extended Grigelionis process with extended
characteristics(©, P4V b,z F, K)F. Assume that Conditions 1-3 in Theorem 3.36 or
Condition 1 in Corollary 3.37 hold. I#!,...,V* are P*-special semimartingales, then
(Z,V) is an extended Grigelionis process relative R, and its P*-characteristics(©,
PZV) b e F,K)P are given by

b=0 fori=0,...,1,

l

/@ZE@“@? / <u;<;<pf‘xa)—I)Ft(da:)fori:l—l—l,...,l—l—k,

F(G) = / ( (ng )) F,(dx) foranyG € B+,

~ ! JR—
K(G) = / lo(z)—o (Za 0 P17 K,(dz) for anyG € BH++*
fu a=0 Pt xa) Kt(dx>
for anyt < T, where inb = (8°, ..., b"**) etc. the indices, . .., [ correspond to” and the
component$+ 1,...,l+ kto V. Foranyt > T, we haveb,, ¢;, Fi, K;) = (b, ¢, Fy, K3).

Remarks.

1. The statements and proofs in this section still hold if one substitutes aragayrlitility
functionu with risk aversions for the standard utility:,.. If the processeg?, ..., 7'
are continuous, then the resulting pricing meagtirand hence the neutral derivative
prices are independent of the choice of the utility functiofand ofx). In the jump
case this is generally not true. It is an open question how strongly the prices are
affected by the particular shape@afWe hope that this dependence is not very large.

2. We are interested in easily checkable sufficient conditions for Conditiofidanrem
3.36 and for integrability condition (RC 1) for the enlarged market (7°,..., Z").
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Proofs

Proposition 3.39 Let V!, V2 be special semimartingales. ¥ is a semimartingale with
V! < X < V2 thenX is a special semimartingale as well.

PROOF Let B := 3, AX;ljjax,>1y andX := X — B. By JS, 1.4.24,X is a special
semimartingale. MoreoveR has pathwise only finitely many jumps on any finite interval.
Sincel’? — V! is a special semimartingale, we have, . |(V2—V,") — (V2= V)| € -7,

loc

(cf. JS, 1.4.23). By Jacod (1979), Exercise 2.8 we hW € .o/;" and hence
VI, (AVH2 € o). Let (T,).en be a sequence of stopping times with 1 oo
P-almost surely and such thét < 7, : |AX,| > 1} < n, E(sup,ey, [(V2 — V}!) —

(V& =V < oo, E(\/Zthn(AVZI)Q) < oo and|VZ — Vit| < non{T, > 0}. From
AX| < (V2= V1) 4 |AV!| we can now conclud®a(B)r, = >, 5 [AX;[11ax, 513 <
nsup,e, (V2 = V') = (V5 = Vi)l +n+ 3, p [AV[1{ax, 51y for anyn € N. Since

=3 e, AV I ax, 51y < \/% > i<t |AV}H?, we obtain that (Va(B)r,) < oo as well.
Therefore,B € .o}, and hence it is a special semimartingale (cf. JS, 1.4.23). This proves
the claim. ]

PROOF OF THEOREM 3.36. First step: We show thatN is well-defined and strictly
positive onR, . Firstly, note that([0,¢] x G) = [; Fi(G)ds + > sconpo, 1Ks(G) for
anyG € B"" t € R,. Since|u.(ps-x) — 1] < Supy6R|u"( )|@s||z| and sincep

is locally bounded and; [(|z[?> A |z|) Fi(dx)ds < oo P-almost surely for any, we
have thatf ; .. lec(s)(|ui(es - ) — 1 A (s - @) — 1]) v(ds,dz) € 77 and
hencee Q/ljc by JS, 1.3.10. Thereforelge (s)(ul.(ps - ) — 1) is in Gioe(p) (cf. IS,
11.1.33c). Moreover, one easily verifies that'| « v, = 3 ., 1e(s) = [© N [0,7]] for

W (w,s,z) = loc(s )MLK) By JS, 11.1.28, this implies that’ € Gioc(y). To-
gether, we obtain that the integrand in the stochastic integral with respact-tv is in
Ghoc(11) @and hencéV is well-defined. Observe that, by definition of the integral with respect

to u — v, the jJumps ofiV are given by

ules 8201 jfteo. (3.13)

! AZ) -1 ift ¢ 0o,
AN, = { Uy (04 t) ¢
[ ul,(ps-T) Ks(dT)

Sinceu!. > 0, we have that\ V, + 1 is positive, which, by Jacod (1979), (6.5), implies that
N is positive as well.

Second stepSince Ly is a positive random variable witB(L;) = 1, we have that
P* is a well-defined probability measure equivalentio From the boundedness of as
well as Lemma 2.27 and Condition 3 in the remark following Theorem 2.26, it foltbais
Z° ..., Z" are P*-special semimartingales. Assume that . .., V* are arbitrary processes
as in Corollary 3.38. By Theorem 2.267, V) is an extended Grigelionis process relative
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to P*. Corollary 3.23 yields that, outside sorfi®@ ® \)-null set, we have

0= b Z T + /a:’ <uf€<2l: @f‘xa) — 1) Fy(dr)
a=0

fori = 0,...,l andt < T, since the first + 1 components of Z,V) are (2°,..., 7).
Therefore, the shape of th&*-characteristics in Corollary 3.38 follows immediately from
Lemma 2.27, Theorem 2.26 and the fact that (1 — v) = 0. In particular, we have that

Aégz/xif(t(dx) T ! /xu(Zg@ )thx

o= Ogotxa>F(

fori =0,...,landt < T (cf. Remark 2 in Section 2.4), whefe denotes the predictable
part of finite variation of Z, V) relative toP*. The lastintegral equalpzu’, (3", _, ¢&a®)
K,(dz), which is 0 by Corollary 3.23. Altogether, we obtain tti&)” = 0 for anyi €
{0,...,1}, and hence thatZ — Z,)" is a P*-local martingale.

Third step: We will now prove thatX*! ... X" are P*-integrable. Since&Z” — Z,
is a P*-uniformly integrable martingale and hence of class (D), it follows that— 7, is
P*-integrable for any stopping time Since¢, n in Condition 6 are inS, this implies that
the X are P*-integrable as well.

Fourth step:By Equation (3.11) we defin®*-martingalesz'+!, ..., Z". We will now
showthatZ'*!, ..., Z" areP-special semimartingales. Fixc {I+1,...,n}andletM, ¢, n
be as in Condition 6. By Lemma 2.22 we have that/ + [, & - dZF andM + [ n, - dZT
are extended Grigelionis processes and hence special semimartingalesvévion® have
that

T t
Zi = B*(X'|F) < M+E*(/ ns - dZT|5,) = M+/ n, - dZ7
0 0
for anyt € R, where the last equation follows from the martingale propertj{)'@lg -dZT.
Similarly, one showsZ" > —M + [ &, - dZT. By Proposition 3.39 we have that is a
special semimartingale.

Fifth step: We will now show thatZ = (Z°, ..., Z") is an extended Grigelionis process
relative toP. If the market is©-discrete, this follows immediately from Lemma 2.20 and
the subsequent remark. Otherwise Ydbe as in Condition 5. W.l.0.g., we may assume that
the set of fixed jump times in the extended characteristias sfalso®. By Y**, v¥* we
denote the continuous martingale part and the compensator of the jump mesofré”
relative toP* instead ofP. By Girsanov's theorem (cf. JS, 111.3.24) we have tfiat*, Y**)
andv*([0, -] x G) are absolutely continuous with respectdp=t + Y __, 1o(s) in the
sense of Lemma 2.10. In particuldr®* is an extended Grigelionis process relative to
P*. By JS, IlI1.5.24 allP*-local martingales have the representation property relativé to
Therefore,Z' can be written a$Zi)" = Zi + Jo Hi-dYS* +Whs (¥ — v¥) for some
H' € L} (Yo), W' € Gie(n”) (both relative toP*) for i = 0,...,n. By JS, I1.4.7
one obtains that the first integral is an extended Grigelionis process reafi/e The last
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termW x (p¥ — v¥*) and henceZ  is, by Proposition 2.24 and the following remark, a
P*-extended Grigelionis process as well. Sidt¥e. . ., Z" are P-special semimartingales,
Theorem 2.26 yields th& is an extended Grigelionis process relativé’to

Sixth step:We will show thatZ'*!,... Z" are neutral price processes for the deriva-
tives! + 1,...,n and thatZ = (Z°,...,2Z") allows no arbitrage off0, 7]. Denote by
(0, P%.b,e F,K)” the extended characteristics Bfrelative toP. Application of the
second step (| e. Corollary 3.38) fg+!, ..., Z" yields for the extended characteristics
(0, P*% b,e, F, K)F of Z relative toP*:

b= b KZ Tl 4 /:UZ (ufﬁ(zl: @?‘xo‘> — 1) Fy(dx) (3.14)
a=0

0 (T2
(G clw = (dx
@)= 1ot e e

foranyi € {0,...,n},t € [0,T]. In particular,

Ag,f:/xif(t(da:):fu;( l 1a~)K(dx /xu(zgp ) K (dr) (3.15)

Za:o Spt :L‘a

for anyi € {0,...,n}, t € ©N[0,7], where B denotes the predictable part of finite
variation of theP*-special semimartingalg. SinceZ — 7, is a P*-local martingale, we
haveB” = 0. Therefore, Equations (3.14), (3.15) and Corollary 3.23 yield that the strategy
¢, defined byp* := ' fori = 0,...,landg’' = 0fori =1+ 1,...,n, isu.-optimal for

2A. Thus,Z*t ..., Z™ are neutral price processes for 1,...,n. Moreover, the market

7' = (Z°, ..., Zz™)T allows no arbitrage (cf. Lemma 3.7).

Seventh stepWe show thatP* does not depend on the choice of the optimal strategy
o. Letp = (¢°,...,7") be anothem,-optimal strategy for the speculator in the market
(Z°,...,Z"). In the proof of Lemma 3.24 we have shown that outside the usual null sets we
havec,(¢; — @) = 0 andy; - & = @, - = for Fy- resp.K;-almost allx € R**L. In particular,
we havelW x v = 0 for anyW € Go.(p) of the formW (w, t,z) = g(w,t, pi(w) - ) —
g(w,t,p(w) - ), whereg : Q@ x Ry x R — Ris a(P ® B)-measurable mapping. By JS,
11.1.34 it follows that(W s« (u—v), W« (u—v)) = 0 and hencéV «(u—v) = 0. This implies
that the stochastic integrals relative/to- v in the definition of N coincide regardless of
whether we insert the strategyor ¢. Indeed, just observe that the integrand is of the form
g(w, t, op(w ) x) for some predictable. Similarly, we have thaf, ¢, - dZ¢ — fo' &s-dZC =
f[) Ps — 905 ch =0 Slnce fo Ps — (Zs) : dZsC7 fo(gps ch f[) Ps — CS((ps
©s)ds = 0 by JS, 11.4.7. Together, we obtain that the Iocal martingales the same fop
ando.

Eighth step: We will show that, up to indistinguishability, there are no other neu-
tral price processes for the derivatives such that the extended maxkes alb arbitrage.
Otherwise, letZ!*!, ..., Z" be another set of such processes. By definition, there is a
strategygp = (¢°,...,¢,0,...,0) that isu.-optimal for the speculator in the market
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(2°,...,Z',Z"%, ..., Z"). Using Corollary 3.23, this implies that?’, ..., &) is u,-
optimal for the speculator in the market®, . .., Z!). By the seventh steg; and(¢°, . . .,
¢') lead to the same measufé. Fixi € {/+ 1,...,n}. From Condition 6 and a simple
arbitrage argument, it follows that

t t
M+ [ &-dZ,<Z} <M +/ ns - dZ, (3.16)
0 0

for anyt € [0, 7. ThereforeZ”l, cee Zn are P*-special semimartingales (cf. Proposition
3.39). Application of the second step (i.e. Corollary 3.38ytb', ..., Z" yields as before

5@:5,’;—/12[:5;%? / ( (ng )—1)E(da;), (3.17)

Aézz/xiﬁt(daj):fu;(@t-;)?t(dx / (ng )Kt (da)

foranyi € {0,...,n},t € [0,T], where now, B etc. correspond to thB-characteristics of
(Z°,..., 7', Z*' ..., Z") andb, B etc. to theP*-characteristics of the same process. By
Corollary 3.23 and the,.-optimality of (2°, ..., ', 0,...,0) it follows that B” = 0, which

in turn implies thatZ!+1 — 55“, e zn — Zg are P*-local martingales. Since they are
bounded from below and above by uniformly integraBlemartingales (cf. Equation 3.16),
it follows that they are of class (D) and therefaPé-martingales with the same terminal
valuesX'*!, ... X" asZ*!, ... Z". ThisimpliesZi = Zifori =1+1,...,n. O

PROOF OF THE REMARKS 2. We have already shown in the seventh step of the preceding
proof that P* and henceE*(X*|F,,r) does not depend on the choice @of Moreover,
observe that for different choices @fthe corresponding measur&$ coincide on thes-
field I with the smallest inde¥’. The independence af follows from Statement 1 in
Lemma 3.29, from:_(y) = u/(ky) and the definition ofV in Theorem 3.36.

3. Since the definition op on the open intervals beween neighbouring point3 dbes
not affect its local utility, we may choose ©-discrete withy, = 0. By Lemma A.1,p is
locally bounded. Let us assunie= N* for ease of notation. Firstly, observe thyitis a
discrete local martingale. Therefor&; () is a discrete local martingale as well. Since itis
non-negative, it is a supermartingale (cf. Jacod (1979), (5.17)) and in partictdgrable.
By JS, p.15 this implies that”(N) is a martingale. Fix € {0,...,l}. If Z' — Z} is
bounded from below by € R, then(Z%)” — Z! — D is a non-negative locdP*-martingale
and therefore &*-supermartingale (Jacod (1979), (5.17)), in particulat &l)” — 7 are
integrable. This implies thdtz?)” — Zi is a P*-martingale (cf. JS, p.15).

4. Observe thav({t} x R**!) = 1¢(t) for anyt € R, . Moreover, we have for any
predictable mapping’ : Q x R, x R**! — R thatWW, := JW(t,z)v({t} x dz) =

(t) [ W (t,x) Ki(dz) in the sense of JS, 11.1.24. In the cd8¥s, z) = loc (s)(uy(p; -
) — 1)+ lo(s )# we thus havél, = lo(t). The claim now follows directly

[ uk(psT) Ka(dz)’
from application of Jacod (1979), (8.44) t6 (V).
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5. Relative toP*, the local martingaleZ — Z, can be decomposed & — 7, =
Z* + [ x(p—v*)(ds, dx), whereZ“* denotes thé>*-continuous martingale part & and
v* the P*-compensator gi. From Girsanov's theorem (cf. Theorem 2.26), we conclude that
(Zet, 7e%0), = [l ds fori = 0,...,1. The integrability condition in Remark 5 implies
that Z¢*' are square-integrablB*-martingales ori0, T|. Also by Girsanov's theorem we
have that

z|? A lz]) v (dt,dx) = ! o> A |z|)ul (¢ - x) Fi(dr) d
L Qe Al tda) = [ ol A o ) R a
< sup |ul(y) / / (]2 A J2]) Filde) dt.

yeR
The second condition in Remark 5 and Proposition 2.8 yieldithat;: — v*) is a uniformly
integrableP*-martingale orj0, 7') fori =0, ..., .
6. This follows immediately by skipping the third, fourth and eighth step in the proof of
Theorem 3.36. O

PROOF OFCOROLLARY 3.37. Condition 1 in Theorem 3.36 holds by Theorem 3.28. For
Conditions 2—4, cf. Remark 3. The shapelg} follows from JS, 1.4.63. O

PROOF OF THE REMARK Firstly, observe thak, = P2%71 py Lemma 2.20. The ex-
pression forP*( A|F,_,) follows as Statement 3 in Proposition 1.6. O

PROOF OFCOROLLARY 3.38. This has already been shown in the second step of the proof
of Theorem 3.36. O

3.5 Price Regions

As in Subsections 1.2.5 and 1.2.6, we now want to relax the assumption that non-speculators
are not present in the derivative market in order to obtain reasonable pgams and
improved derivative models. As in Chapter 1, we will introduce two notions of suppl
consistent prices. The first one leads to price regions and models that ar@erfroimn an
economic point of view but lead to difficulties on the mathematical side. Thed®#gms

will be relaxed by defining approximate prices, although at the expense of a weakesit

ical foundation. In the following two sections we will work exclusively witandard utility
functions (but cf. Remark 4 in Section 3.6). The general setting is as in thiepsesection,

I.e. we are given underlyings . . ., [ and derivatives+ 1, . .., n at maturity. As before, we
assume that there are many speculators in the market who all trade otbtimal strate-
gies for different values of. By Lemma 3.29 the union of all these portfolios is again a
u,-optimal strategy for some > 0. Contrary to the previous section, we do not assume that
this union portfolio contains no derivatives. Instead, we suppose that it contairtartns

p' € R shares of derivativefor i = [ + 1,...,n. This implies that their price processes
have to bex, p'*!,. .., p*)-consistent in the sense of the following
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Definition 3.40 Let x > 0, p't!,..., p" € R. We call stochastic processgs™!, ..., Z»
(k, p"*1, ..., p*)-consistenfor the derivatives + 1, ..., n if the following conditions hold.

1. Z =(Z°,...,Z") is an extended Grigelionis process.
2. Z! = X' P-almost surely forany > ¢; and anyi € {{+1,...,n}.

3. The convexly restricted séft := {p € A : ¢' = p' foranyi € {I +1,...,n}}
contains au,-optimal strategyp for 2.

Remarks.

1. Since(k, p't, ..., p")-consistent prices are identical(ty xp'*?, . . ., kp™)-consistent
processes, it usually suffices to consider the easel.

2. Neutral price processes are, 0, . . ., 0)-consistent price processes (for aty> 0)
and vice versa.

The following lemma means that, p'*!,. .., p")-consistent prices are “usually” condi-
tional expectations under some equivalent martingale measure that is givemgdea
u,-optimal strategy for the speculator.

Lemma 3.41LetT := sup{t;i1,...,t,} and fixx > 0, p"*1, ... p* € R. Assume that
ZW L Zmare(k, piTY, ..., p)-consistent price processes for the derivatiied, ..., n
and that the strategy in Definition 3.40 can be chosdn-almost surely pathwise bounded
on|[0, T']. Define the local martingalé := #(N) by

tAT .
Nt = —/ﬁ?/ Qs - dZs
0

u, ((Ps : I) — =
tf o (te® e ) -1+ tals) ) () s, ),
[0,tAT]xRn+1 Jul(ps - T) Ky(dT)
whereZ = (Z°,..., Z") and the random measurgsv are defined as in Theorem 3.36, but
relative toZ instead ofZ, and K denotes the last component in the extended characteristics
of Z. Suppose that” is a martingale so that we can define a probability meagdtey

4 .= Ly. ThenZ — Z, is a P*-local martingale. IfZ is a P*-martingale, then obviously

7! = E*(X'|Far) foranyt € R, (3.18)

and any; € {l +1,...,n}, whereE* denotes conditional expectation with respecPto

In Subsection 1.2.5 we define price regions as the set of all price processes thspaod
to moderate values of external supply', ..., p”. This is repeated here.

Definition 3.42 Fix x > 0 and asupply bound- > 0. We say that processeg8*t!, ..., 2"
belong to thexr-price regionif they are(k, p'*!, ..., p*)-consistent derivative price pro-
cesses for somet!, ..., p" satisfying|p’| < rfori=1+1,...,n.
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Remark. By Remark 1 the:r-price region only depends on the produet

Although the previous lemma looks similar to Theorem 3.36 formally, the analogy is
very limited. In Lemma 3.41 we do not show that p'**, ..., p")-consistent price pro-
cesses really exist. Moreover, the density prodedses not help in computing the deriva-
tive prices, since it depends on the unknown procegées ... Z". We will use the latter
fact to define an approximate notion of consistency as in Subsection 1.2.5. For both the com-
putation of au,-optimal strategy fofJt, as well as for the definition af, we substitute the
known neutral derivative prices as an approximation for the unknown consistensgesce
More precisely, we proceed as follows.

1. LetT :=sup{t;1,...,t,} and fixe > 0, oL, ... p" € R

2. Assume that the conditions in Theorem 3.36 or Corollary 3.37 hold. There are then
unigue neutral price processgs!, ..., 7",

3. LetpeM:={peA: ¢ =pforanyi € {I+1,...,n}} be au.-optimal strategy
for 9 in the marketZ = (Z°, ..., Z"). Such a strategy exists by Theorem 3.26 and
can be computed using Corollary 3.23. W.l.o.g.gdet= (0,...,0, o1, ..., p").

4. Assume thap is P-almost surely pathwise bounded n7’]. This is no restriction
if the market is9-discrete (cf. Remark 3 following Theorem 3.36).

5. Now define the local martingale:= & () by

AT
N, = —H/ O - d7§ +/ (196(5)(%(@5 -x) —1)
0 [0,¢AT] xRn+1

U;(g@s-l‘) -7 s. dx
Tt i) (P

+ 1@(8

whereZ = (Z°,...,Z") and the random measurgsv are defined as in Theorem
3.36 but relative td& instead ofZ, andK denotes the last component in the extended
characteristics of.

6. Assume thaL” is a martingale (This holds automatically if the markebisliscrete,
cf. Remark 3 following Theorem 3.36). Define the probability meaguigy % =
L.

7. Assume that thé-local martingaleZ” — 7, is aﬁ-martingale, whereZ = (Z°,. ..,
Z"). This holds automatically i®-discrete markets, if‘— Z¢ is bounded from below
by a constanD € R fori =0, ..., (cf. Remark 3 following Theorem 3.36).

8. Define processes!*!, ..., Z" by taking a cadlag version ofi := E(X|F,.r) for
anyt € R, , whereFE denotes expectation with respectito
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Definition 3.43 Z!+, ..., Z™ will be called(x, p'*, ..., p")-approximate price processes
for the derivatives + 1, ..., n.
Lemma 3.44 Let Z”l, ce 7" be (k, p*1, ..., p")-approximate price processes for the

derivatives!/ + 1,...,n. Then the markef = (2°,..., 2!, Z!*',..., Z") is an extended
Grigelionis process and allows no arbitrage ¢h 7]. Moreover, we haveZ! = X* P-
almost surely forany > ¢; andany: € {{ +1,...,n}.

Remarks.
1. As for consistent prices we have tiat p'*!, ..., p")-approximate prices are identi-
cal to(1,kp!™L, ..., kp")-approximate prices. Moreover, neutral price processes co-

incide with(x, 0, ..., 0)-approximate processes (for any> 0).

2. The key idea in Definition 3.43 is to use neutral price processes as a zerabiappr
mation to consistent prices in steps 3 and 5. This suggests repeating stepatto
this time using the (presumably) better first approxima@‘hl, cee Z" instead of
Z* .., Z™. It would be interesting to know whether an iteration of this procedure
leads, under suitable conditions,(ta p!*!, ..., p")-consistent prices in the limit.

We now define approximate price regions as in Subsection 1.2.5.

Definition 3.45 Fix x > 0 andr > 0. We say that processgg*!,... Z" belong to
the approximatexr-price region if they are(x, p'*', ..., p")-approximate derivative price
processes for somé*!, ..., p" satisfying|p’| < rfori=1+1,...,n.

Let us make a final remark concerning, p'!, ..., p")-consistent and -approximate
price processes iIN*-discrete markets.

Remark. In the remark following Theorem 3.37 we observe that the transition probadbilitie
for the pricing measur&* are given by

uy (py - AZy)
P (AlF, )=F a 1 _ A
(A3, 1) = B( B oAz T I ) (3.19)
foranyt € N*, A € F;, wherey, satisfies
/xiu:{(@t -x) PAZT1(dg)y = 0fori =0,..., L (3.20)

Similar equations hold for the pricing measures in this section. Recall thablowaés
the equivalent martingale measure leading to neutral derivative prigesithe Equations
(3.19) and (3.20) denotes the underlyings' price progess(Z°, ..., 7).

Now let Z instead denote the joint procegs = (Z2°,..., 2!, 2"+t ... Z"), where
ZH1 ..., Z™ are the neutral price processes from Section 3.4. Moreover: fix p’ for any
ie{l+1,...,n},t € N". Then Equations (3.19) and (3.20) yield the probability measure
P leading to(x, p'*!, ..., p")-approximate price processes in Definition 3.43.
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Finally, one may replac& again with a joint procesg = (Z°,..., 2!, Z'* ... Z"),
but this time with(x, p'*1, ..., p")-consistent price process&s'!, ... Z". We fix again
ot = p'foranyi € {I+1,...,n},t € N*. With this choice, the Equations (3.19) and (3.20)
yield the pricing measur@* in Lemma 3.41, leading t¢x, p'**, ..., p")-consistent price
processes.

Proofs

PROOF OFLEMMA 3.41. Firstly, note that (RC 2) holds due to Corollary 3.27. More-
over, one may choosg, = (0,...,0,p"*! ..., p") w.l.o.g. With that choice, the pathwise
boundedness af” implies that it is locally bounded (cf. Lemma A.1). In order to establish
the claim, just apply the first two steps of the proof of Theorem 3.36 ilastead ofZ. We
obtain thatP* is a well-defined probability measure equivalenti@nd thatZ — 7, is a
P*-local martingale. 17 is a P*-martingale, Equation (3.18) clearly holds. O

PROOF OFLEMMA 3.44. Firstly, note thatv and P are well-defined (cf. the first two steps
of the proof of Theorem 3.36). From the boundedness, o&s well as Lemma 2.27 and
Condition 3 in the remark following Theorem 2.26, it follows th&t . . ., 7" areﬁ-special
semimartingales. Application of Theorem 2.26%e= (Z°, ..., Z") yields that

=Tt [l - ) Figae)

= _ u, (o1 - @) N7
@) = [1et0)pe e

foranyi € {0,...,n},t € [0,7] and hence

i i 7 _ 1 i (o 1) I (da
ABt_/a; Ro(dz) = M;@,f)ﬁ(dﬁ)/”ﬁ“” VK, (dx)

foranyi € {0,...,n},t € ©N[0, T], where(®, P% b,¢, F,K)” and(©, P% b,¢, F, K)*”
denote theP- respﬁ-characteristics of andB is the predictable part of finite variation

of the ]S-special semimartingalg. From theu,-optimality of ¢ and Corollary 3.23, we
conclude that B))” = 0 for i = 0,...,[ (but not necessarily for = [ + 1,...,n). This
implies thatZ” — Z, is a P-local martingale. The>-integrability of the random variables

X' follows as in the third step of the proof of Theorem 3.36. By definitiin', ..., Z"
areﬁ-martingales. As in the fourth and the fifth step of the proof of Theorem 3.36 we have
thatZ = (Z2° ..., 72", ZH 5”) is an extended Grigelionis process relativé’toFrom
Lemma 3.7 we conclude that’ allows no arbitrage. O

PROOF OF THE REMARK This follows as before from Corollary 3.23 and from the proof
of Statement 3 in Proposition 1.6. O
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3.6 Improved Derivative Models

As in Subsection 1.2.6, we now want to use consistent and approximate prices to ¢onstruc
models that are consistent with initially observed market prices. The@esedting is as in

the previous two sections, i.e. we are given underlyings.,/ and derivatives+1,...,n

at maturity. Moreover, we assume tligtis the trivial o-field {2, Q} or its P-completion

and that the initial priceg'*!, . . ., p™ of the derivatives are known. As before, we work with
standard utility functions,.

Definition 3.46 Stochastic processe€*!, ..., 2" are called(p'*!,. .., p")-consistenfor
the derivatives + 1, .. ., n if the following conditions hold.

1. Z% . Zmare(k, pitY, ..., p*)-consistent price processes for the derivatived,
...,n for somex > 0, p!*!, ... p* € R. (By Remark 1 following Definition 3.40
one can in fact choose anrye.g.x = 1.)

2. Zi = p' P-almost surely fos =1 +1,...,n.

As indicated in the previous section, we are usually unable to compute consistestex
cept in very simple models. Since in practice one may still prefer to wittka model that
does not contradict the initially observed derivative prices, we use appretintainsistent
prices instead.

Definition 3.47 We call stochastic processeg*!, ..., Z" approximately(p'*!, ..., p")-
consistenfor the derivatives + 1, . . ., n if the following conditions hold.

1. 7% Znare(k, pitL, ..., pt)-approximate price processes for the derivatives
1,...,nforsomex > 0, p"*t, ..., p" € R. (By Remark 1 following Lemma 3.44 one
can in fact choose any, e.g.x = 1.)

2. Zt = p' P-almost surely foi =1 +1,...,n.
Remarks.

1. Note that, in general, (approximately)*', ..., p")-consistent prices do not exist if
the initial prices(p'™!, ..., p") are not consistent with the absence of arbitrage.

2. As any reader may observe, the previous two sections leave many open quesgions
concerning existence, unigueness and numerical computation of consistent prices (for
details cf. Subsections 1.2.5 and 1.2.6).

3. In Definitions 3.40 and 3.43 we may replace the constant sypply. .., p" with
a predictable supply proce¢g™, ..., pi')icr, . In this way we can obtain settings
with stochastic external supplyWe refer to Subsection 1.2.6 for a discussion of how
models of this type can be used in practice.

4. As before, one may replace the standard functigns the previous two sections
with some other utility function.
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3.7 American Options

Our aim is to extend the approach in Section 3.4 to markets where some of tha- deri
tives are American options. The setting is as follows. The underlyings,! are given

by their discounted price processgs= (Z°,...,Z") on the filtered probability space
(Q,F, (F)er,, P). Z is assumed to be an extended Grigelionis process that meets inte-
grability condition (RC 1'). As in Section 3.4, derivatives 1, . . ., k are given by theiff, -
measurable discounted terminal pri¢éat timet, fori = [+1, ..., k. Moreover, the market
contains securities + 1, . . ., n representinghmerican optionsThese are characterized by
their respective discounted exercise price proceségwhere for anyi € {k + 1,...,n},

Y is assumed to be B, -valued, cadlag, adapted process with= (Y?) (i.e. staying
constant after;) for somet; € R, . This is to say that, at any timee R, one may re-
turn the option; and getY;’ in exchange. As in Subsection 1.2.7, we have to make some
assumptions to be able to price American options.

1. We base our derivation once more on the condition that the typical speculator has a
zero position in the securitidst+ 1, ..., n. But note that a speculator no longer corre-
sponds to an investor who can choose his portfolio freely in the set of akgiea(.

When the market price of an American option meets its exercise phiee ttis likely

that any trader with a long position in this security will return it. So,capp@&ors may

not be able to maintain a short position in the option beyond this first reasonable exer-
cise time. As long as the market price is still higher than the exercise, frowever,

we may safely assume that no trader returns the option, which implies tisioits

sale is not yet restricted.

2. An American option can be exercised at any stopping timeHence, an investor
may use it as a substitute for a usual contingent claim with terminal discouaitesl v
Y at maturity. In Section 3.4 we define and derive unique neutral prices for this kind
of derivative. For the definition of a corresponding notion for American options, we
assume that the price of these securities is at least as high as the necéralf pne
various implied options of European style.

The following definition takes these aspects into account. As in Section 3wlovkewith
standard utility functions,..

Definition 3.48 We call the stochastic processgs™!, ..., Z" neutral price processe®r
the derivatives + 1, .. ., n if the following conditions hold.

1. Z+1 ..., Z" are adapted processes whose pathg’aaémost surely cadlag.
2. Z! = X' P-almost surely forany > ¢; and anyi € {l +1,...,k}.

3. If o441,...,0, are bounded stopping times and(ﬁ’““, e 5”) are neutral price
processes (in the sense of Definition 3.35) for derivativeg, . . ., n with discounted
terminal valueY fori = k +1,...,n, then(Z")” < (Z%)° up to an evanescent set
fori=Fk+1,...,n.
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Foranyt) € R,,i € {k+1,...,n}, define thenext reasonable exercise timg :=
Ttlo,i /\Tt20,i, Whereftlo,i =inf{t >ty: Z}_ =Y} andTEO,i = inf{t > ty: Z! = Y}'}.
Moreover, define foranye {k + 1,...,n} and anyt € [to, c0)

VA if ¢t < 7,00t ="t
Z,=Q Zi . ftFt>mnandZl, =Y
Z;'to,i if to £t > 7,4 andeﬁO,i_ + tho,i_ (and hencéﬁto,i =Y ).

Tto,i

Then we have

(@) 7, <ty Vvt foranyt, € R, andanyi € {k+1,...,n}.

(b) The market(Z;)ic(iy,00) = (Z,?,...,Zf,?f“,...,??)te[to,oo) is an extended

Grigelionis process o2, J, (F})icp1,50), P) that allows no arbitrage, and the
convexly restricted sellt := {p € A : ¢ = 0foranyi € {Il +1,...,n}}
contains au,-optimal strategy foRl.

Remarks.

1.

Strictly speaking, we have defined extended Grigelionis processes, ssatgionly
on a stochastic basis with index &t. Nevertheless, it should be clear what we mean
by the corresponding notions @R, co) in Condition 4 of the previous definition.

The conventiot;’ = Y (instead of, e.gY; = 0) for anyt > ¢; is made for math-
ematical ease. Economically it means that, at the last possible sxeirtiet;, the
option is automatically converted ini¢ units of the numeraire and hence practically
vanishes from the market.

. Atfirst glance it may seem more intuitive to define the next reasonablesxéroe

asinf{t > t, : Z! = Y/}. However, in continuous-time one can easily construct
examples where the market price comes arbitrarily close to the exgyoie (i.e.
Zi =Y} forsomet), but does not really reach it before expiration.

Condition 4a in Definition 3.48 means that the option reaches or has already reached
its terminal valugr}’ at timet;.

7' stands for the option that is exercised at the next reasonable time and coiverte
shares of the numeraire. In contrast4g this security can be held short even when
the option has vanished from the market by early exercise. Therefore theigondit
4b, which corresponds to a zero position in the derivatives for a speculatog faci
short sale restrictions, makes sense for the secufities=k +1,. .., n.

The following two theorems correspond to Theorem 3.36 and Corollary 3.37.

Theorem 3.49 LetT := sup{t;;;...,t,} and fixk > 0 (e.g.x = 1). Assume that

1.

Conditions 1-3 and 5 in Theorem 3.36 hold.
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2. E*(supyepor) |2t — Zo|) < oo, whereP* is defined in Theorem 3.36.

3. Foranyi € {I{+1,...,k} there exist,n € &, M € R such that
T ) T
—M+/ gs-dngXlgMjL/ ns - dZs.
0 0

Foranyi € {k+1,...,n} there exist € G, M € R such that for any < [0,7] we
have

t
0

Then there exist up to indistinguishability unique neutral price processes for theatieeis
l+1,...,n. Fori € {l+1,...,k} these are the processes in Theorem 3.36. iFar
{k+1,...,n} we have

1. Z'isthe smallesP*-supermartingale dominating’ (i.e. Z* is a P*-supermartingale,
we haveZ! > Y} P*-almost surely for any € R, , and if Z* is another such process,
then we haveZ! > Z! P*-almost surely for any € R,).

2. 7} = esssup{E;(Y!|F,) : o [t,00)-valued stopping time P-almost surely for any
teR,.

Corollary 3.50 LetT := sup{t;41,...,t,} and fixx > 0 (e.9.x = 1). Assume that
1. Condition 1 in Corollary 3.37 holds.

2. Foranyi € {l+1,...,k} there exist,n € &, M € R such that
T ) T
—M+/ fs-dngXlquL/ Ns - dZs.
0 0

Foranyi € {k+1,...,n} there exist € G, M € R such that for any < [0,7] we
have

t
0

Define P* as in Corollary 3.37. Then the assertion in Theorem 3.49 holds. Moreover, we
have

i _ vy fort > T
t maX{Ys’.jil, E*(Z;J |9’~5j71)} for Sj-1 <t< S

foranyi € {k+1,...,n}, where0 = sy < s; < ... < s, = T With {s¢,...,5n} =
0, 71N (©U{0,T}).
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Remarks.

1. The processes’ in Theorem 3.49 are called tigmell envelopef Y. Itis well-known
that in complete models the unique fair price processes are also given & aéian
Snell envelope under the equivalent martingale measure (cf. Lamberton & keapeyr
(1996)). In view of Statement 2 in Theorem 3.49 and the complicated Definition 3.48,
one may wonder why we have ndéfinedneutral American option prices to be the
supremum of all neutral European option price processes with terminal Valfos
arbitrary stopping times. However, this easier concept already implies by definition
that an American option is not worth more than the best of its implied Europglan st
derivatives (i.e. th@ossibilityto choose the exercise time has no value in itself). We
are interested in whether this fact can be deduced from weaker assumtnzne-
fore, we prefer the seemingly more awkward Definition 3.48.

2. Most remarks in Section 3.4 carry over to this slightly more generahgett

3. Itis an open question whether one can also define price regions and improved deriv
tive models for American options in the spirit of Sections 3.5 and 3.6.

Proofs

Proposition 3.51 Let X be a cadlag adapted procegs,€ R, 7 := inf{t > t, : X; =
0}, A:={X,_=0andX,, #0}. Thenr, = 71,4 + ool 4¢ is a predictable stopping time.
(More preciselyy, is indistinguishable from a predictable stopping time.)

PROOF By Jacod (1979), (1.1) we may assume that the filtration is complete. Note that
Ta = inf{t € Ry : 1yx, 20)Lit,00) 7 0 @NA X" = 0}. Moreover,(w,t) € [74] implies
X/ =X, =0andt > t,. Therefore (w,?) € {1{x,,20}1(t9,00) 7 0 ANAX]" = 0} € P.
By JS, 1.2.27 and JS, 1.2.13 we have thats a predictable stopping time. O

PROOF OFTHEOREM 3.49. Here and also occasionally in other proofs, we apply results
stated only forP-complete filtered probability spaces. Following Jacod (1979), (1.1), the
statements nevertheless hold in incomplete spaces as well.

First step: Define Z'*+1, ..., Z* by Equation (3.11) and**!, ..., Z" by Statement 1.
Their existence follows from Fakeev (1970), Theorem 2. (Strictly speakirkgpdava1970)
yields only the existence of minimal right-continuous supermartingales, wher@&gamd
thus for us) supermartingales are supposed to be cadlag. In the second step weashow t
Zk+1 .. Z™ have left-hand limits as well.) Since by assumptigh= Y/ for anyi €
{k+1,...,n},t €[T,0), Fakeev (1970), Theorem 1 yields that

7l = esssup{E*(Y!|F,) : o [t,00)-valued stopping timg
= esssup{E*(Y}|F,) : o [t, T]-valued stopping timg

P-almost surely for any € [0, T].
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Second stepBy definition Z*!, ... Z* are adapted and cadlag. In additiaff;"!, . . .,
Z" are also adapted and right-continuous. From the proof of Theorem 2 in Fakeev (1970),
we conclude that the mappirtg— E*(Z}) is right-continuous foi = k£ + 1,...,n. By
Métivier (1982), Corollary 10.10 and the right-continuity of tH& this implies thatP*-

almost all paths of*+!, ..., Z™ are cadlag. The second condition in Definition 3.48 follows
from Theorem 3.36.
Third step:SinceY;. meets Condition 6 in Theorem 3.36, we have (27 AL

in Condition 3 of Deflnltlon 3.48 is uniquely given tﬁf E* (Y} |Frn) for anyt € R+
i€ {k+1,...,n}. (Wlo.g., we have assumed thgt< 7 fori = k + 1,...,n.) Fix
i € {k+1,...,n}. From the definition and Doob's stopping theorem (cf JS, 1.1.39) we
have thatZl =Y < Z! and hencg Zi)7 = E*(Zl Frae) < E*(ZL|Fra) < (2]
P*-almost surely for any € R, where the latter inequality follows again from Doob's
stopping theorem. Thus we have shown Condition 3 in Definition 3.48.

Fourth step: We will now show that(?i)te[to,oo) is a P*-martingale for anyi € {k +

.,n}, to € Ry. Fixi, to. Foranym € N, let us define the stopping time, := inf{¢ >
to: Z; <Y} +1/m}. Form — oo we haveo,, 1 7, P-almost surely. Using Condition
2 in Theorem 3.49, one easily shows t&t(sup;c o |M + f(f & - dZg|) < oo for any
M € R, ¢ € 6. Since the process’ is dominated by a process of the fofh+ [, &,-dZ],
it follows that E* (sup,c( 17 [Y7]) < oo. From Fakeev (1970), Equation (24) it follows that
((Z")7™ )teto,00) is @P*-martingale for anyn € N. Using Doob's stopping theorem (cf. JS,
1.1.39), we obtain thatZ. ),.cy is a uniformly integrabléd, . )cn-martingale relative to
P*. From the martingale convergence theorem (cf. Bauer (1978), Korollar 60.3), we can
now conclude thatZ’. ),,cn convergesP*-almost surely and iriLl(P*) to ao(UpnenTs,, )-
measurable random variable Let A := {Z;'W_ = Yl Nz, # Yi}. SinceZ', Y’

are cadlag, we havB = 7, 14+ Z;, 140 = Z%,i. For anyt € [ty, 00) this implies
that (with the conventiofv_1, 0| := [0¢])

7; = Z(ngml]amﬂ,am}( ) + Rl (Umenl0,0m])¢ (t)

meN
= > E (B (RIFo)I) o100 () + B (RIF)LG,cnf0.0ne (1)-

meN
Doob's stopping theorem (cf. JS, 1.1.39) yields thatE* (R|F5,,) [F1) Lo, 1 ,0,0)() = E*(R
F4) L 1.0 (t) P-almost surely. Therefor&, = E(R|F;), which implies that Z,) ic(z, o)
is aP*-martingale.

Fifth step: Let M, ¢ be as in Condition 3 in Theorem 3.49, chosen relativeto De-
notery4 = (Tto,i)A- ThenTA = (Ttlo i)AlﬁAQ for A1 = {Z}rl = YTil 7} N {Zéo 7é
] t,i t0»i

YitandA, = {r,, < 72,} € T . By Proposition 3.51 and JS, 1.2.10 it follows
that7, is a predictable stopplng tlme We may therefore define the predictable pgocess
and the Iocal martingal& byf = {(1,m, ) — i) @NAU = =/ g, - dZT. Note that
A Eliy) -dZ7| < 16,127 L =2 | FromE*(sup,eg, |27 — Z|) < oc it easily follows
that £* (sup,cg, |Ui] < 00), which implies thatU is a P*-martingale (cf. JS, 1.1.47). Note
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that Z,, = Vi la+Y: lyo <M+ [0 & dZ] —1aA(fy & - dZ])y, = M + Ur.

Since(Z,) e[ty ) @andU are bothP*-martingales, it follows that < Z < M + U, for any
t > t,. From Lemma 2.22 and Proposition 3.39, we concludelthad hencéZ, )< o)
is aP-special semimartingale.

Sixth step’As in the fifth step of the proof of Theorem 3.36, it follows tl(ﬁﬁ)te[to,oo) =
(20,..., 7872, , Z, )icito.0) 1S @n extended Grigelionis process relativelto Con-
dition 4b in Definition 3.48 now follows exactly as the sixth step of the proof of Throre

3.36.

Seventh stepLet Zl“, ce Z" be another set of neutral price processes for the deriva-
tivesl + 1,...,n. Fixts € R,. Moreover, fixi € {k +1,...,n} for the moment and let
be alt,, T]-valued stopping time. Sinde< Y} < M + [/ &11,(s) - dZ,, Theorem 3.36
yields that(E*(Y}|}))«r, is a neutral price process for a derivative with terminal value
Y. By Condition 2 we havég’0 > E*(Y;|5,) P-almost surely. Sincé} is the essential
upper bound of random variables of the typgY/|F,,), it follows thatZ;, > Z; P-almost
surely.

Eighth step:Fix ¢, € R,. By Condition 4b there is a,-optimal strategy foRl of
the formg = (3°,...,3%,0,...,0) for the market(Z,)iciiy00) = (2°,..., 2L, Z11, ..
Z?)te[to,oo). Since the local utility ofp in the market(Z)tE[tom) is the same as the lo-
cal utility of (2°,...,¢") in the market(Z,),c,,) and furthermore the local utility of
all optimal strategies coincides, we may assume (hat. .., @) = (¢°,...,¢'), where
(©°, ..., ¢") is the strategy used for the definition Bf in Theorem 3.36. Applying Corol-
lary 3.23, it is easy to show th&p?, ..., ¢’ 0,...,0) is also au,-optimal strategy foR( in
the market(Z0, ..., Z, ZI*, ... ZF (ZF) 7 (2T ) el o0), WHETEGL 14, - . ., 00
are arbitrary stopping times. Fix> 0. For anyi € {k + 1,...,n} define the stopping
time o, := inf{t > #, : Z < Y + 1}. The third condition in Theorem 3.49 yields that
0<(Z)y < (YN +1<Lp M+ [T 1,(5)E - dZ, for someM € R, € € &. A
simple arbitrage argument shows that (Z9)7 < §+M+f(f 10,0,](s)&s - dZ, for anyt €
[to, T']. Since the right-hand side isfaspecial semimartingale, Proposition 3.39 yields that
((ii);’i)te[to,oo) is aP-special semimartingale as well foe {k+1,...,n}. By basically the
same argumentation as in the eighth step of Theorem 3.36, we conclud(eﬁﬁ&t)te[to,oo)
is a P*-martingale. It follows thatZ!, = E*((Z))5|F;,) < E*(Y)5|F;,) + 1 < Zi + 1
forie {k+1,...,n}andZ = E*(Zi|F,,) = E*(X4|F,) = Zi forie {I+1,...,k}.
In view of the previous step, the proof is complete. O

PROOF OF COROLLARY 3.50. As in Corollary 3.37, Conditions 1-5 in Theorem 3.36
are met. Furthermore, we ha¥ (supc(o 71 |2 — Z51) < 3-scpomne BX (121 — Zi]) < o0,
which yields the assumptions in Theorem 3.49. The recursion formula for the Snétiave
can be found in Gihman & Skorohod (1979), Theorem 1.8 @oer N*). O
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3.8 Continuous Time Limits of Discrete Time Models

Any continuous-time market can be converted to discrete-time byatstrithe index set

R, to eN for somes > 0. By lettinge — 0 the model can be viewed as the limit of

a sequence of discrete-time markets (which are treated in a continnoai$réime by the
embedding in the appendix). In this section we show that under suitable conditions the loca
utility and u-optimal strategies also converge to the respective notions in continuous time
This is satisfactory for two reasons. Firstly, it supports the interpogtaf local utility as a
conditional expected utility for an infinitesimal time interval (cf. Lem®116 and Theorem
3.54). Secondly, for numerical computations we may approximate continuous-time snarket
by neighbouring discrete models and vice versa. As in Section 3.1 we consider et mark
Z = (Z°...,Z") defined on a filtered probability spa¢®, ¥, (F;)icr, , P). We denote

the extended characteristics 6y (0, P? b, ¢, F, K)”. u denotes a utility function.

Definition 3.52 Let X be a discrete subset Bf, . For anyt € R, we denote

t77 = sup{s € Y U{0,00}:5 <t}

t%* = inf{s € DU{0,00}: 5>t}
%77 = sup{s € LU{0,00}:5 <t}
%t = inf{s € LU{0,00}: 5>t}
AST o S s

We define thenesh-sizef ¥ as||X|| := supeg, [t — 7.

Definition 3.53 Let > C R, be a discrete set. We call-discretized markete stochastic
process Z;").cr, on the filtered probability spad€?, &, (F7)icr, , P), WwhereF; := Fys-
andZ := Z»- foranyt € R, . If Z* is an extended Grigelionis process, then we denote
by (T*,~*) = (T'*,0) its local utility.

Remark. If Z meets regularity condition (RC 1), thefi* is an extended Grigelionis pro-
cess. If, in addition, the market allows no arbitrage, then the same is truefor.

Theorem 3.54 Let (%,,)en be a sequence of discrete subset®ofsuch that]|%,,|| — 0
for m — oo. Assume that the mark&tmeets integrability condition (RC 1). Then we have
for any compact sett ¢ R***:

2118 % (¥) = Ty(¥)] ™70 in L' for anyt € Ry,
pe

]_ m—oo .
sup WFEE%H (1) = v(1)] =370 in L' for A-almost allt € Ry,
YEA "

where theA-null set in the second statement does not depend on the chosen sequence
(Em)meN-
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Remark. In particular, we have that for any € R**!,

[, () ™3 Ty(y) in probability for anyt € R,

WFE’;H(@A) "% 4(1)) in probability for \-almost allt € R, .

Theorem 3.55 Let (X,,)men be a sequence of discrete subsetRofsuch that|:,,|| — 0
for m — oco. LetM C R" besuchthaft = {p € 2A: ¢, € Rx M foranyt € R, }isa
set of strategies as in Theorem 3.22. We make the following assumptions.

1. The markeZ meets the regularity conditions (RC 1), (RC 2).

2. There exists a-optimal strategy foP)t in the marketZ and in any of the markets
Z*¥m (e.g. by Theorem 3.26). We denote these with 9t resp. o= ¢ 9. W.l.o.g.,
we assume? = 0 and(¢>")° = 0 for anym € N (cf. Remark 2 following Definition

3.11).
3. Theu-optimal strategyp is strictly optimalin the following sense.

(a) P-almost surely and for aniyc © we have
[y(pe) > Ti(y) foranyyy € ({0} x M)\ {¢}.
(b) Outside soméP © A)-null set we have

V() > v(¢) foranyyr € ({0} x M)\ {¢;}.

Then we have
1. o . ™5 ¢, in probability for anyt € ©

2. o =3 ¢y in probability for anyt € R, outside some-null set that does not
depend on the chosen sequefitg, ) ,cn.

Remarks.

1. Strict optimality is needed to ensure that theptimal strategyp is unique. Other-
wise, we cannot hope for convergence.

2. It would be nice to have convergence results for pricing measures (e.jverdtat
the total variation distance, cf. JS Subsection V.4a), neutral prices stemisprices,
approximate prices, price regions etc. as well. These questions should be atldresse
in future research.
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Proofs

PROOF OF THE REMARK Z* is an adapte®&-discrete process. Using Remark 2 in Section
2.4, we may decomposgasZ; — Zy = [, by ds + > sconpo ] T Ks(dr) + [71dZ¢ + o *

(u —v), foranyt € R, . Using regularity condition (RC 1), JS, 111.4.5d and Proposition
2.8, we conclude that — 7, is uniformly integrable on any intervéd, 7'|. In particular,
E(|Z; — Z4||Fs) < oo P-almost surely for ang,t € R, with s < ¢. By Lemma 2.20 and
the following remark this implies that™ is an extended Grigelionis process. One easily
sees that any arbitrage in the market is also an arbitrage in the markgt Hence, the
second claim follows. O

PROOF OFTHEOREM 3.54. First step: Fix ¢t € R, . By the remark following Definition
3.11 we have that for any € R

T, () =Tu@)] = B (Zisnt = Zpn--))|Fizn--) — B - AZ|F,)]
< Bl (Zpms — Zimm ) —u(ts- AZ)||Fpom ) (3.21)
+|E(u(y - AZ)|Fiom—-) — E(Y - AZy|Fy)] (3.22)

In the next two steps, we consider the terms (3.21) and (3.22) seperately.

Second stepBy the mean value theorem and the Cauchy-Schwarz inequality we have
thatu(+ (Zgm+ — Zisn--)) —u(-AZ)| < supyee [0/ )11 Zisns — Zisn—-— Zit-Zo |
Since 7 is cadlag, the right-hand side converges t&@-@&lmost surely forn — oc. As
Z — Zy is uniformly integrable on any bounded interval (cf. the preceding proof), we also
have convergence ih'. This implies thatup,c, E([u(¢ - (Zgm+ — Zism—-)) — u(t -
AZ)||F - ) also converges ! to O form — oo.

Third step: Lete > 0 and M := E(AZ;). Chooseyy,...,¢, € A such that for
any ¢ € A, there is ayy € {¢1,...,1%,} at moste := ¢/(3M sup,x [u'(y)|) away.

By the martingale convergence theorem (cf. JS, 1.1.42) we have that, for aay A,
|E(u(i)- AZ)|F2) — E(u(i) - AZ)|Fysm—)| =% 0 P-almost surely and i '. It follows
that (| E(u(vi- AZ)|Fo) — E(u(i- AZ) | Fmm——)|) < 5 foranyi € {1,...,r} and any
m large enough. By the mean value theorem we haveltfiat- AZ;) — u (1) - AZy)| <
E|AZ;|sup,cg [u/'(y)| for anyyy € A. Using the triangular inequality, we obtain for suffi-
ciently largem that

E((sup |E(u(v - AZ)|F ) — Bu( - AZ)|F)])
PYeA

IN

E( sup E(ju(v - AZ) = u(tigy) - AZ)||Fimn—) )
peA

+ 30 B(IB (v - AZ)I5 ) — Bl - AZ)[Fsn—)))

+ E(sup E(lu(y - AZ) — u(tiy) - AZt)||fﬂ_)>
PeEA

IN

EM sup [u'(y)] + r— + &M sup [u'(y)| = e.
y€eR 3r y€eR
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Thereforesupyc 4 |E(u(v) - AZy)|Fpm--) — E(u(y - AZy)|F-)| — 01in L' for m — oo.
Recalling the first and the second step, this yields the first statement anerh&.54.

Fourth step:Letp := 1 + ¢, ¢ > 0 with 1 + - = 1, wherez is chosen as in regularity
condition (RC 1). Define the increasing functloﬁé V2 V3(y) : Ry — R and the real
valued processés*(v), V3(v) (for any € R**') by

v /tE(|bs|p+i 9+ ([ (el el ) s,
v [ (s 010 [l k) Fa) ds

1,7=0

Vi) = / E(ly()) ds,
Vi), = / ()] ds,
Vi) = / () ds.

Firstly note that the finiteness &f!, V2, 173(¢) follows from the integrability conditions

(RC 1) (forV3(x) cf. the proof of Theorem 3.14). Since these functions and processes are
absolutely continuous, there is)anull set N ¢ R, such thatV!, V2, V3(y) are differ-
entiable for anyy € Q**! (cf. Elstrodt (1996), VI1.4.12, VII.4.14). Moreovely can be
chosen such that*(v), V5(¢) are for anyy € Q**! P-almost surely differentiable in any

t € N°. Moreover, the finite derivatives are given by the respective integraradisaged in

t. Fixt € (N U ©)°. Similarly to the first step, we have for agyc R"*! that

1
WFE:’ZHW) — ()

1
= B (Zenes = Zion-)) = Ay, (1) | Fpom-)| (3.23)
+ |E(()|Fmm-) = ve()].
Fifth step:Lets > 0,

L:=1+ ksup |[¢| + sup |u'(y)| + 2sup 4] sup |u" ()],
YeA yeR yeR
andM := E(|b,| + Y7, |/ | + [ (|2 Alz]) Fi(dz)) < co. Choose)y, ..., 1, € A such
thatforany) € A, thereis a);yy € {¢1,...,1,} atmost := ¢/(3M L) away. By the mar-
tingale convergence theorem (cf. JS, 1.1.42) we havelthag, (v;) — £ (7 (Vi) |Fizn-)| < 5
for anyi € {1,...,r} and anym large enough. By applying the mean value theorem to
andv’, we obtain that

[(u(yp - 2) — - 2) = (u(Wigy) - T) — Vi) - T)|

< (Jaf* A le])Z(1 + sup [u'(y)| + 25up [ sup [u"(y)])
yeR r(ZeA yER
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foranyyr € A. Moreover, we have) "t — vy citbip | = (4 = Vi) et + i) <
28 5o lct’ |supge 4 1| Summing the various terms up, it follows that for large

B( sup () = 1)) < ELM == (3.24)
PEeEA

As in the third step, we can now conclude thap,, 4 | E(v¢(¢)|Fysm-) — % (¢)| — 0in L}
for m — oo.

Sixth step:Let m € N be so large that™ ,t*=+*f]N© = @. Fix ¢ € R**! for
the moment. Define the proceSs ) cr, by Y, := ¢ - (Zs — Zysm-)1(imm— o) (). By It0'S
formula (cf. Jacod (1979), (3.89)), we obtain as in the proof of Theorem 3.14 that

W - (Zpmt — Zppm-)) — ATy (1)

tEm++

- / Lgmje () (Y= )b - dZC (3.25)

+f oo () (u(Ve + 00+ 2) —u(Yio) (u” — v)(ds, o)~ (3.26)
[0,t5m ++]xRn+1

tEm++

[ ) - s 327)
i /mm (' (Ye) = Dby~ ds (3.28)
41 /1t imH (u"(Y, ) — k)Y cpds (3.29)

t:m/ (Ve +v-a) —u(Vy ) = u(g-2) = (@(Ys ) = 1) - 2) Fy(d) ds.

(3.30)

As in the proof of Theorem 3.14, it follows that the terms (3.25), (3.26) are uniformly
integrable martingales (as processes of the upper integration limit). Heeae;onditional
expectation givet¥;s,,- equals O.

Seventh steplet e > 0 andL as in the fifth step. Sinc&? is differentiable int, there
exixts al > 0 suchtha(V?); < M ands— (V3. .+ —V2,.-) < M form large enough.
Choosey, ..., ¢, € ANQ""! such that for any) € A, there is al;y) € {¢1,..., ¢, } at
mosts := /(3M L) away. The differentiability of (), V4 (), V5 (7,/;) in t yields that we

have st [hr " 7a(t) ds "=5 ~,(1h) P-almost surelycs— (5 |y (¢)] ds =5

tEm++ m—0

[7u(1)| P-almost surely andE (s [ [ (4)| ds) =5 E(|3(w)]) for any ¢

tEm++ m—0

Q'*'. By Elstrodt (1996), Korollar VI1.5.5 it follows thatos— [is,. . 7s(¥) ds —
t m++

Y(¥) in L' for any € Q**'. Therefore, we have thaf(| s [, 7s(¥i) ds —
Y(i)|) < 5 foranyi € {1,. r} and anym large enough. The estimate (3.24) im-

t m++

plies that E(supc , | x5 fzm_ — % (Viwy)) ds|) < EML = £ and likewise
E(supyea [7:(¥) — %)) < 5 for m Iarge enough. Adding terms up as in the third
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and the fifth step, we can conclude that

tEm++

s [P [ )=t ds

’lpeA Xm—

?tEm—>‘ 7774_*>O>O 0

in L.
Eighth step:Firstly, observe thatup,c s, — jum++ [v/(Y;-) — 1] is bounded and con-
vergesP-almost surely to 0 forn — oo. By domonated convergence, this implies that

|| sup,epmm— =+ [0/ (Vs )=1|[[z« = 0form — oco. Moreover, Jensen's inequality and the
t=m++ t=m++

differentiability of V! in ¢ yield that E (s [iom- 105 d8)P) < s [isn- E([bs]P)
ds = O(1) for m — oco. Together, we obtain with Holder's inequality that

tESm++

%Ijﬁ‘E(/ﬂm (u'(Yeo) — 1)bs-wds)‘

1 tEm++
S b dsH 50
L4 t2m+tl;m— |s| Ip

for m — oo. This implies thatup,c 4 27| E( tzmﬁ (' (Ys=) — D)bs - 0 ds|Fizm-)| — 0
in L' for m — oo. With basically the same proof, we prove the convergence for the term
(3.29) instead of (3.28).

Ninth step:As in the proof of Theorem 3.14, it follows that

< sup u'(Y,-) — 1]

SE [tzm - 7t2m ++]

PYeA

t=m++

Z‘é‘j‘mw/ / ooy = ulied)
—u(y- @) - (W) = - o) Fy(de) ds

tEm++

1
2 2
< (2‘;§|¢| VI)TZM /tzm (|7 A ]) Fy(dz) ds

((3 sup |[u'(y)] + 1 + 2 sup |u"(y)|>

yER yER

A sup || (25up u” (y)] 4 sup [u"(y )|)>.
SE[tEm — tEmt+] yeER yeER

As in the eighth step one shows that the first factor is bounded, the second conodrges t

L4, and theL?-norm of the third factor i€)(1) for m — oco. This yields the same kind of

convergence for the term (3.30) as for (3.28) and (3.29).

Tenth stepSummarizing steps 6—9 shows-convergence to 0 of Term (3.23), uniform-
ly over ally € A. In view of the fourth and the fifth step, this implies thap, 4 |ﬁ
nganW) — ()| = 0in L* for m — oo, and hence the proof of Theorem 3.54 is com-
plete. O

PROOF OFTHEOREM 3.55. First step:Fix t € ©. According to Bauer (1978), Satz 19.6,
it suffices to show that for any subsequelEg,),.cn of (3,,)men, there is a subsequence
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(X0 Ymen Of (X)) men SuUCh thaf,ptz,, — ¢y P-almost surely forn — oco. Let (X)) nen be
given. From Theorem 3.54, it follows that for any € N there is a subsequentg’ ), .cn
of (X7,)men such thabup,.z, () |Ft2%+(w) — I'y(¢)| — 0 P-almost surely form — oo,
where K v (0) denotes the closed ball with radi®é around 0. By a diagonal procedure
we can even find a subsequer(ééﬁl)meN of (X! )men and aP-null setN; € F such that
SUDye A |th%+(¢) — T'y(¥)| ™=5° 0 pointwise outsideV; for any compact sett ¢ R"+!,
Moreover, Conditions 3 and 2 imply that outside sofaull set N, we havel',(p;) >
T, (¢) foranyy € ({0} x M)\ {p:}. Fixw € (N; U N,)¢ ande > 0.

Second stepWe will now show that the existence oféa> 0 such that for any) €
({0} x M) \ K:(¢:) we havel';(¢;) — ¢ > T'y(1), where K< (¢,) denotes the ball with
radius$ aroundy;. Assume that there is no suéhThen there exists for any € N* some

€ ({0} x M)\ K¢(g¢y) with Ty(¢y) > Ty(p1) — . Since the mapping — I'y(¢)
is concave (cf. the proof of Theorem 3.22), the same holds for/aog the straight line
between;/;k and ;. By convexity of{o} x M this |mpI|es that for any: € N there is a
¥ e ({0} x M)n OK < (¢;) with Ty () > Ti(gy) — L. Since the set{0} x M) N OK < (o)
is compact, the sequen(:ek)keN has a cluster pomp € ({0} x M)NOK: (i;). Moreover,
by continuity of the mapping — I';(1)) we havel,(v)) > T'y(y;). Thisi |s a contradiction
to the assumption thap, is the unique maximal point of the mappigg} x M — R,
¢ = Ti(y). ,

Third step:From the uniform convergence in step 1, it follows tb"%i;%r ()—Tw(y)] <
‘5 foranyy € ? (¢:) and anym € N large enough. In view of the second step, this implies
th,’i (Y) < T gﬁ (¢:) foranysp € ({0} x M) N K. () \ K (cpt) and anym € N large
enough. Since the mappirg0} x M) N K.(¢) — R, ¢ — [m o (¢) is a continuous
function defined on a compact set, it attains its supremum. Because of the abguality,
the maximal point, say),,, is situated in the open bal- (¢1). Therefore, the concave

function{0} x M — R, ¢ — ron v (¢) has a local maximum it,,,, which is, by concavity,

also a global maximum (cf. Rockafellar (1970), p.264). Since the set of extremal pbints

a concave function defined on a convex set is convex and since there is no éperhin

Y e ({0}x M)m?g(g;t)\l(g (¢1), any extremal point of the mappiri§0} x M)NK . (¢;) —

R, ¢ — F v (v)) mustlie inM NK < < (ip¢). In particular, this is truefcxpzz'f, , Which yields

|l — tz” .| < e form large enough. This shows Statement 1 in Theorem 3.55. The second
statement follows along the same lines. O
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Examples

In this chapter our goal is to illustrate our approach in concrete settings. \dechagen
primarily classical examples of different kinds. We perform explicit nuoscalculations
only in those cases where we can do without sophisticated algorithms. The egargle
not intended primarily for model comparison or testing, nor to give new insights into the
implications of these settings. Rather, we want to suggest how our approach nppfibd a

in practice. As in the previous chapters, proofs are to be found at the end of angtgurise
For easier readability we do not note all of the regularity assumptions in tieerstats, e.g.

if they depend on the choice of parameters. In these cases we comment at thenigegfinni
the respective proof.

4.1 A Two-period Model

The following two-period model is one of the simplest market models altogetharerN
theless, it should become evident how to pass from here to any multiperiotyssith a
finite state space. To begin with, we consider a market consisting of twoitses. The
first one represents the bank account and serves as the numerai# (iel). We de-
note the second security 5" and call it stock. Its dynamics is given in Figure 4.1. The

Zy A Z
0.40 121
0.40
110 % 110
0.40 99
0.40 110
0.40 0.40
100 100 400
0.20 90

0.40 99
0.40
81

Figure 4.1: The market model

140
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Y1 P2
0.0321
0.0354 0.0354
0.0393

Figure 4.2: Strategy of the speculator far= 1

large numbers denote the possible prices at timd), 1, 2, whereas the small ones indicate
transition probabilities (e.g. we hav&(Z, = 99|Z! = 90) = 0.4). Suppose that we are
working with a filtered space whose filtration is generated &%, Z!). In the language of
the preceding two chapters the stochastic prot8%sZ') has the extended characteristics
({1,2}, 01,1000, 0,0, 0, K)*, where

Kt:{o fort ¢ {1,2}

g0 ® (0.4gg 71  +0.4e9+0.2e g, ) forte {1,2}

4.1.1 Derivative Pricing

By means of Corollary 3.23 or the remark following Corollary 3.37 (or Lemma 1.2) we ca
now easily compute a,-optimal strategyp for 2l (i.e. for the speculator). Note thaf as

well asy} for ¢ ¢ {1,2} can be freely chosen. Foe {1,2}, ¢} is the uniquely determined
F;_1-measurable random variable represented in Figure 4.2. The upper, middle, and lowe
branch correspond to the respective transitions firto 7| in Figure 4.1. With the help of
Corollary 3.37 (or Equation (1.4)) we can determine the probabilities under the equivale
martingale measurE* that is needed to obtain neutral derivative prices. These are given in
Figure 4.3, where one can also find the corresponding probabilities relativeTtbe small
numbers on the branches indicate the transition probabilities with respgtt which have
been computed as in the remark following Corollary 3.37. Of course multigitafithese
conditional probabilities also yield8*. Now let us consider a European call option on the
stock with discounted strike pri€, i.e. a derivative with terminal valu€? = (Z1—95)V0.

The corresponding neutral price procegsis obtained by Equation (3.11) (or Lemma 1.7)
and can be found in Figure 4.3 as well.

4.1.2 Hedging

Assume that you are a bank trading in the market with securities 0, 1, 2 agire#.3. You
have soldl 00 options to a customer and want to hedge your risk by investing in the stock.
We suppose that you do this by choosing @ -optimal strategy for the set of all portfolios
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Zy
Z
0.0816 0.16
0.1224 0.16
0.0816 0.08
0.1224 0.16
100 0.1837 0.16
7.37 ' '
0.1224 0.08

0.0816 0.08

0.1224 0.08

> 0.0816 0.04

Figure 4.3: Neutral option prices and pricing measure
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with fixed valuep? = —100, which corresponds to a very risk-averse attitude. In this
case maximization of the expected utility is almost equivalent to minngithe expected

loss. In order to compute the optimal portfolio using Corollary 3.23, you need the extended
characteristics of the process = (7°, 7!, Z%). Since this process is discrete, they are
given by (1,2, 1,100,7.37), 0, 0, 0, K)¥ (cf. Lemma 2.20 and the following remark), where
K:() = E(AZ; € -|F,_) for i = 1,2 can be obtained from Figure 4.3 and the transition
probabilities in Figure 4.1. The resulting,,-optimal strategyp is noted in Figure 4.4. As

for the speculator in the previous subsectiph,and ¢, for ¢t ¢ {1,2} can be arbitrarily
chosen. Observe that using Lemma 1.2 instead of Corollary 3.23 yields the sante tasul

the same manner we can now compute the optimal hedge if you have bought 100 options
(i.e. p? = 100 instead ofp? = —100) (cf. Figure 4.5). Observe that the strategies in Figure
4.5 are not just the negative of those in Figure 4.4, as would be the case foerfieet
hedgein a complete model. This is due to the fact that we are working with an asymmet
utility function that distinguishes possible losses and gains. Note also tha-iatimal
portfolios are not pure hedging strategies. This becomes apparent if we chooseadnesll v

for the risk aversion: and the fixed positiop? as we do in Figure 4.6<(= 1, ©? = —1).

On the upper branch the optimal humber of stocks is 1.032. This may be surprising, since
¢35 = 1 would be a perfect hedge for this part of the market (cf. Figure 4.3). This property of
overhedging is due to the fact that-optimal trading is, by the shape of the utility function

u,, @ Mixture between minimization of expected losses and maximization oftexigains.

For smallx the expected gains are more important, whereas for lathe losses become
predominant so that the narhedging strategys adequate.

4.1.3 Trading Corridors

Trading corridors allow you to choose a reasonable strategy without acceptingityoam
too large transactions. In Figures 4.7 and 4.8 we calcilatg, <)-trading corridors for the
hedging problems in Figure 4.4 resp. 4.5 and two values(d® and0.01, respectively)z
here corresponds tg in Definition 3.33 (or= in Definition 1.4). ¢, is irrelevant since we
are working in a discrete-time model. The boundary points of the trading corridotsecan
numerically easily obtained by Lemma 3.34. In Figures 4.7 and 4.8 we only indicate the
possible intervals fop' sincey? is fixed. Sinceluig(z) &~ x A 0, the utility bandwidthe
has an intuitive interpretation. Choosing- 10 (resp.0.01) means sorting out the strategies
whose expected loss does not exceed the optimal value by moreGhaesp.0.02). In
Figure 4.8 one may make an interesting observation. Even for the very sioalkva 0.01

the allowed intervals are surprisingly large. This means that thereamparatively broad
range of portfolios with approximately the same expected utility. In partictilshows that
multiplying the strategies from Figure 4.4 byl produces an almost optimal portfolio for
the problem in Figure 4.5. The converse, however, is not true.
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100

—100

76.3 85.7
—100 —100
31.7

—100

Figure 4.4: Hedging strategy fok = 100, ¢? = —100

—68.1 —73.2
100 100
—20.6
100

Figure 4.5: Hedging strategy for, = 100, ©? = 100

()
()< (")
("

Figure 4.6: Hedging strategy fok = 1, ¢? = —1
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Y1 € 90%6

[08.9, 102.3]
100, 100]

( )

[73.8,78.8] [83.2, 88.2]

([76.3,76.3]) ([85.7,85.7])
[ ]
[ ]

29.0, 34.5
([31.7,31.7))

Figure 4.7: Trading corridor forp? = —100, x = 100, 5 = 10 (0.01)

Y1 € 90%6

[—101.1,—-97.7]
([~100, —100])

[—77.6, —59.7] [—87.0, —61.8]
([~76.3, —62.2]) ([~85.7, —64.3])

[—33.1, —9.9]
([-31.7, —12.7])

Figure 4.8: Trading corridor forp? = 100, x = 100, £, = 10 (0.01)
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Z3 Z3 Zs
26
15,15, 15]
15
15,15, 15]
4
15
[7.03,7.37,7.64] [6.14,6.43, 6.72] -
[7.06,7.37,7.64] [6.15,6.43, 6.70]
0
4
0.96,1.14, 1.33] .
[0.96, 1.14, 1.32]

Figure 4.9: Lower, neutral, upper prices far = 0.2

7 Zy Z;

26

[15,15]<15

4

(5,8.5) (5,7.5)<15
(Ov 2) <

Figure 4.10: Arbitrage bounds

S O = O Ot
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85 r
8¢

7.5\

[as

65 | N
60\ O\
55 OO

5L

Figure 4.11: Consistent and approximate prices as a function of external supply

4.1.4 Price Regions

The concept ofir-price regions is based dm, p*)-consistent (resp(x, p?)-approximate)
price processes. The computatior(ef p?)-approximate prices is relatively straightforward
(cf. Section 3.5, in particular the remark following Definition 3.45, or altévely Subsec-
tion 1.2.5). On the other hanék, p?)-consistent processes are usually hard to obtain, but
since our model is a simple multiperiod market with a finite state spaceawapply the
recursive algorithm sketched in Subsection 1.2.5. In Figure 4.9 we list2h@ice regions
for the derivativeX? = (71 —95) v 0 in the market from Figure 4.1. More precisely, the up-
per triplets contain thél, 0.2)-, (1,0)- and(1, —0.2)-consistent prices at each time. Below
one can find thé¢1,0.2)-, (1,0)- and(1, —0.2)-approximate prices, respectively. Since the
numbers in the middle correspond to zero supply, they equal the neutral option poites fr
Figure 4.3. To be very strict, we have not shown thattReprice region actually consists of
all prices between the upper and the lower value, which correspond to mimohalaximal
external supply, respectively. But we believe that this holds in at leagtisimodels of this
kind. For a comparison, we note the arbitrage bounds for the option in Figure 4.10. In Figure
4.9 one can observe a certain difference betweep’ )-consistent and -approximate prices,
but it seems to be small from a numerical point of view. One may wonder whethetithis
holds for arbitrary values gf*. In Figure 4.11 we plot the initigll, p?)-consistent (straight
line) and(1, p*)-approximate (dashed line) option prigg as a function of the external sup-
ply p2. As one may expect, the prices increase (resp. decrease) with growingaiéesp.
supply) to the upper (resp. lower) arbitrage bound. The difference becomes thetdozates
medium-sized positive values of external supply. In Subsection 1.2.5 and Sectioe 3.5
raise the question as to whether an iteration of the procedure leading to appeoginas
yields a better agreement with consistent prices. In our simple exampls thifaict true,

as the dotted line in Figure 4.11 indicates. It corresponds to a single repetititapsfEto

5 on page 26 resp. steps 3 to 8 on page 123.
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Zy Zi

Z3 Z3
110
15,15

100 100
7.00 6.10,6.11

90
0.93, 0.94

AAA

Figure 4.12: Improved model fozZ = 7.00

4.1.5 Improved Derivative Models

If the option priceZ? on the market equalg00 instead of its neutral value37, one may

want to take this into account by working withh0-consistent price processes in the sense

of Section 3.6 (or Subsection 1.2.6). The improved market models can be found in Figure
4.12, where the prices on the left (il&, 6.10; 0.93) correspond to th&.00-consistent price
process and the prices on the right (iLg; 6.11; 0.94) to the approximat&.00-consistent
process, respectively. The value of the external supplgading to the initial priceZ? =

7.00 must be determined numerically. For an initial valtie= 7.70 we obtain the numbers

in Figure 4.13. Based on the market model in Figure 4.13, we can now once more tackle
the hedging problems from Subsection 4.1.2 that lead to Figures 4.4 and 4.5. The resulting
strategies are listed in Figures 4.14 and 4.15. The numbers on the left (respaggimt)
correspond to the numbers on the left (resp. right) in Figure 4.13, i.e. to consistesd Qri
approximately consistent prices, respectively.
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Zy Z
72 72
110

15,15

100 100
7.70 6.76,6.79

90
1.36,1.37

/N /N /N

Figure 4.13: Improved model foZ? = 7.70

()
©3
~100

73.0,73.0 82.1,82.4
—100 —100
29.2,29.3
—100

( 100, 100

Figure 4.14: Hedging strategy foZ? = 7.70, x = 100, ¢* = —100
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()
©3

—100, —100
100

—67.3,—67.4 —73.8,—73.7
100 100

—21.0, —21.0
100

Figure 4.15: Hedging strategy foZ? = 7.70, x = 100, ¢* = 100

7z 7 7
26

15< 15

4

15

7.41 6.46 5
0

4

1.17< 0

0

Figure 4.16: Neutral option prices if the stock is the numeraire
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4.1.6 Change of Numeraire

In this final subsection we want to examine the effect of a numeraire change on ithe opt
prices. To this end, let us assume that the market considers the stock tckiessrinvest-
ment and the money market account as risky. We repeat the calculations froegthaing

of the section for the markef = (Z°, Z'), whereZ? := Z'/Z' = 1 now is the discounted
numeraire andZ?® := 27°/Z' = 1/Z' stands for the risky bank account. The discounted
payout of the option is now given hy2? = X2/Z! = (1 — 952°) v 0. If one computes the
corresponding neutral derivative price procé\%sand reconverts the values into multiples of
the bank account by setting? := Z22'/7° = Z2Z', then one obtains the price process in
Figure 4.16. A comparison with Figure 4.3 shows that the prices differ, though not greatly
when compared to the unsuitable choice of the numeraire in this subsection. Ndtesthat
value Z? = 15 coincides in all option pricing models we have considered in this section,
since it is the only value consistent with the absence of arbitrage.

4.2 Models with Continuous Paths

Since the formulas become much easier when jumps are absent, it is wortlrovigfzeat
some of the results from the previous chapter for models with continuous paths.

4.2.1 Hedging

We consider a market with three securities 0, 1, 2, where the first one denotesibeaire.

Since the corresponding discounted price processes are assumed to be continuous, their
extended characteristics are of the fdwn P(%0-%:%) b, ¢, 0, 0)” for R?-valued respR?*3-

valued processdsandc. Assume now that you have sold one share of Security 2 and you
want to hedge the risk.

Lemma 4.1 Theu-optimal strategy for the hedging problepd = —1 is given by

A
= ' ket
foranyt € R, , wherex := —u"(0) denotes the risk aversion of the applied utility function.
(As usualy® can be arbitrarily chosen.)

Remark. For large values of the u-optimal strategies deserve the name hedging strategy.
One may call the limiting strategy; = ¢;?/c;! for kK — oo pure hedge It coincides with

the strategy derived by Follmer & Schweizer (1991) (Theorem (3.14)), which exllasa
different optimality criterion.
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4.2.2 Trading Corridors

For the computation ofu, £1, €5)-trading corridors the parameter is irrelevant, since the
fixed jump part’; of the local utility is0. Trading corridors can be easily computed for the
above hedging problem.

Lemma 4.2 The(u, g1, e5)-trading corridor for the hedging problem? = —1 is given by

261 251

1 1

© —”—(0 —|—”— x {—1
t K}C%l, t lﬂJCtll] { },

wherep! andx are defined as in Lemma 4.1.

J(w,t) =R x

4.2.3 Derivative Pricing

Suppose you are in a market consisting of only one underlying besides the numeraire. Again,
the extended characteristics of the corresponding discounted price pibcessZ’, Z1)

is of the simple form(@, P(%0-%) b, ¢,0,0)” for someR?-valued respR**2-valued pre-
dictable processdsandc. The following lemma characterizes the equivalent probability
measureP* from Theorem 3.36 that allows computation of neutral derivative prices.

Lemma 4.3 The density process of P* in Theorem 3.36 is of the form

tAT 11 tA\T 1\2

b 1 (b})
L, = (— —stL“——/ d d)
P /0 T )y T ®

for anyt € R, . Moreover, theP*-extended characteristics ¢£°, Z') on [0, T'] are given
by (@, PZ5:%) 0, ¢, 0,0)".

Remarks.
1. Note thatP* is independent of the applied utility function.

2. The measur®* in Lemma 4.3 is calleaninimal martingale measurey Follmer &
Schweizer (1991) (Theorem 3.5). It is used to determine hedging strategiesethat ar
optimal in a locally quadratic sense. Note that this equality only holds in theeafas
continuous processes.

4.2.4 Price Regions and Improved Derivative Models

Since we have no result concerning the existence of consistent prices (¢onS&&),

we confine ourselves to indicate the density process of the probability meéée&ding

to (k, p?)-approximate prices for a derivative. The setting is as in the previous subsec-
tion. Denote byZ? the neutral price process of a derivative given by its terminal value
X2 attimeT > 0. Denote the joint extended characteristicsof= (7°, 7!, Z?) by

(@, P\75:707%3) 1, 2,0, 0)F.
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Lemma 4.4 Letx > 0, p> € R be given. The density proceEsof Pin step 6 before
Definition 3.43 is given by

B AT 512 1 AT o
L, =L, exp (np2</ = dzZy" ZtQ’C) + —(/pr)Q/ (ﬁ — E?) ds>,
o G 2 0 Cs

S

foranyt € R, , whereL is the process in Lemma 4.3.

Proofs

PROOF OFLEMMA 4.1. Suppose thaf! # 0 outside some evanescent set. Otherwise an
optimal strategy does not necessarily exist.

By Corollary 3.23 a strategy Is u- optimal for the set of all strategies withf = —1 if
and only ifo] — kello} — kef?o? = 0,i.e.if ] = ; < bfl foranyt € R, . O

PROOF OFLEMMA 4.2. We have to assume that = 0 outside some evanescent set as in
the previous proof.

Fix (w,t) € Q x R,. We have that) € J(w,t) if and only if * = —1 and~,(¢) >
v(p}) — e1. The latter condition is equivalent to

_1,€611<(¢1 . <101)2 + (¢1 . 901)<2901 9 bl . 2Ct ) _9 €1 ) >0
2! t ! ket cHt kept)
which in tumn is equivalent to)! — ¢;)* < 2. This implies the claim. O

PROOF OFLEMMA 4.3. Note that the conditions in Theorem 3.36 depend on the particular
model and have to be checked.

By Corollary 3.23, a strategy = (¢, ¢!) isu-optimal for2l if and only if b} — kel ] =
0,i.e.ifp; = %c”l—tll The shape of the Radon-Nikodym density and offtieextended char-
acteristics o(ZOt, Z') then follows from Theorem 3.36 and Corollary 3.38. O

PROOF OFLEMMA 4.4. Note that the assumptions in the steps before Definition 3.43

depend on the particular model and still have to be checked.
As in the proof of Lemma 4.1, one verifies that the strategg step 3 on page 123 is

given byp! = o~ me for anyt € R, . HenceL in step 5 is of the form

_ TAL
L =exp ( — / kol dZYe — kp? 27"
0
1 TNt TNt 1 TNt
- —/ (kpy) ey’ ds — / K pgp’ey” ds — / (kp3)*cy’ dS)-
2 Jo 0 2 o

The claim now follows from a simple calculation. O
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Figure 4.17: Stock price and European call price

4.3 The Black-Scholes Model

The aim of this section is to show that our approach is applicable to this nosiaabshodel
and yields the same formulas. The setting is as follows. Consider a matked woney
market account and a stock whose price proces8eS! solve the stochastic differential
equations

dsy = rSYdt
ds; = uS}dt+ oS} dw,

or, in discounted terms,

dz) = 0
Az} = (u—n)Z}dt+oZ} dW,, (4.1)

whereSj := 1, S§,0 € R%, r, u € R are given andV’ denotes a standard Wiener process.
Of course, the solution to these equations@te= ¢, S} = S§ exp((u — % )t + aW;). By
Lemma2.227 = (Z° Z') is an extended Grigelionis process with extended characteristics
(9,201,51),0,¢,0,0)7, whereb) = 0,b, = (n—1)Z}, & =)' =¢,° =0,¢' = (¢7})%.
Assume that the filtration is the canonical filtration(6P, S') (or equivalently, ofZ! or of

W) or its P-completion.

4.3.1 Derivative Pricing

Lemma 4.5 LetT € R, be given. Then regularity condition (RC 1) and Conditions 1 to 5
in Theorem 3.36 are met. Relative to the pricing meagtiréwhose density may be found
in Lemma 4.3)(Z°, Z') has the extended characteristics, £(1,51), 0, 6,0, 0)” on |0, T7.

Remarks.

1. TheP*-dynamic of(Z° Z') is the same as thB-dynamic but with drift) instead of
u—rfor Z1.
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Figure 4.18: Optimal hedge and trading corridor

2. As is well-known, there exists but one equivalent martingale measu#g- am this
model (cf. Harrison & Pliska (1981), p.246). Hence, any approach to derivatise pri
ing that is based on an EMM yields the same results in this setting. Inylartiall
consistent and approximate prices as in Section 3.5 coincide with the neuteal pric
process. Moreover, the price regions consist only of a single process.

Now we turn to the explicit computation of derivative and especially Europafroption
prices.

Lemma 4.6 LetT € R, and X? = g(Z/) for a measurable random variable: R — R.
Suppose that there afd;, M, € R with |g(z)| < M, + M,|z|for anyx € R. Define a map-
pingCrs : Ry xRy — Rby(y,v) — [ g(yexp(y/vx —3)) ¢(x)dx, wherep : R — R de-

notes the density of the standard normal distribution. Then the unique neutral price process
Z? for the derivative with terminal valu&? at 7' is of the formZ? = Cps(Z}, 0*(T — t))
foranyt € [0, 7).

Corollary 4.7 Let K € R. For the European call optiolk? = ((S} — K) Vv 0)/S? =
(ZL — e "TK) v 0, the neutral price procesg? is of the form

log(Zte'T/K) o _ log(Zte'T/K) o

Z2:Zl<1><t—+—\/T—t —Ke o ——1—— — /T —t
! ! oT —t 2 oT —t 2

for anyt € [0,7), whered : R — [0, 1] denotes the cumulative distribution function of the

standard normal distribution.

Figure 4.17 shows a sample path$f and the corresponding European call prie =
Z%8% for S} = 100, r = log(1.05)/250 (i.e. 5% /year),u = log(1.09)/250 (i.e. 9% /year),

o = 0.2387/1/250 (i.e. an annual volatility 023.87%), where time is measured in trading
days (= 1/250 year).

4.3.2 Hedging

Consider a market with three securities 0, 1, 2, whgteZ! are as in the previous subsec-
tion andZ? denotes the neutral price process of a European call option with the strike price
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K € R and expiration daté” € R, . Assume that you have sold one option and you want to
hedge your risk.

Lemma 4.8 Theu-optimal strategy for the hedging problepi = —1 is given by

log(Z}e™™/K) 1 p—r
=0 ="~ VI —t —
& oVT —t o * kZ} o2

foranyt¢ € [0,T), wherex := —u"(0) is the risk aversion of: and ® is defined as in
Corollary 4.7. (As usualp, can be arbitrarily chosen.)

Remark. As noted previouslyy-optimal strategies deserve the name hedging strategy only
for large values of the risk aversien Indeed, forx — oo the portfoliop! in the previous
lemma converges to the first term, which is geefect hedger duplicating strategyor X2

in the Black-Scholes model. The second term equalstbptimal strategy of a speculator.

4.3.3 Trading Corridors

We can easily obtain &u, =y, ¢5)-trading corridor for the above hedging problem using
Lemma 4.2.

Lemma 4.9 The(u, £, e2)-trading corridor for the hedging problem? = —1 is given by

1 281 1 1+ 281 1
i V UthSOt V & aZt1

wherey' andx are defined as in Lemma 4.8.

J(w,t) =R x x {—1},

In Figure 4.18 we plot the-optimal strategy from Lemma 4.8 and the stock component of
the trading corridor in Lemma 4.9 for the sample paths from Figure 4.17. The chosen values
of the parameters are= 100, K = 100, ; = 10,000. Note that the width/2e,x~ /0 Z}

of the allowed interval forp! hardly changes over time singg is approximately constant.
Nevertheless, for options closing roughly at the money, one has to rebalance the hedging
portfolio more and more often towards the end because the optimal waleleanges more
violently.

Proofs

PROOF OFLEMMA 4.5. Observe thap, = - 57 is awell-defined locally bounded
t

RCy

process such that = (0,') € A is u-optimal for %, e.g. by Corollary 3.23. More-
over, we have thaV, = —« OTM @, - dZ¢ = —E==Wr,, in Theorem 3.36 which implies
that Condition 3 is met. Note thaf.Z')” is a stochastic exponential of a Wiener process

without drift and hence @&-martingale. By JS, 111.3.8 this implies th&Z')” and hence
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7T is a P*-martingale. Assumption 5 holds since the filtration is generated by the stan-
dard Wiener procesd’ and any local martingale has the representation property relative
to W (e.g. by Theorem 2.65). Sincg&! = Z¢exp((u — r — %)s + oWW,), one easily

shows thatsupse[o lt]E((Zl) ) < oo for anyt € R,. This implies that®( [} (b,)? ds) =
—r)? [V E ?)ds < oo and similarly E( [;(ct')? ds) < oo for anyt € R+ Hence
|ntegrab|I|ty COI’]dItIOI’l (RC 1) holds. O

PROOF OFLEMMA 4.6. By Theorem 3.36, we have thégt = E*(g(Z+) Ifﬂ [ g(wr_y)
P*Ziss)s>0%¢(453) P-almost surely for any € [0, 7]. By Lemma 2.33P*(%é+s s>o|5ft( ) is

for P-almost allw € (2 a solution to the random martingale probléen ;1 b ¢,0,0)™

in R with b, = 0 for s < T — ¢t andé,(w) = (ow,)®. By Corollary 2.41 this mar-
tingale problem has a unique solution. W denotes a standard Wiener process, then
Y, = Z}(w) exp(—";s + oW ) is obviously a solution-process to this martingale problem
on[0,T — t]. Therefore, we havé? = [ g(Z} exp(—% (T — t) + ou)) N(0,T —t)(du) =
Cps(Z}, (T — t)) P-almost surely for any € [0, 7. O

PROOF OFCOROLLARY 4.7. The well-known pricing formula is obtained by integration
(cf. Lamberton & Lapeyre (1996), Remark 4.3.3). We will now show that integrabilit
condition (RC 1) holds in the enlarged market. Denote(fbye(lzé,zg),'g, ¢,0,0)" the ex-
tended characteristics ¢f = (Z2°, 7', Z%). Since we have already shown that (RC 1)
holds forZ = (2°, Z"), it suffices to show thaf, £ ([2[2) ds < oo, [ B(|2121?) ds < oo,
and [ B(|?*|?)ds < oo for anyt € R,. Itis enough to consider = T, becauseZ?

is constant ofiT’, o). The claim follows if we can show thab?| < [b}], [c22| < [M],
and|c??| < [¢;!| for anyt € [0,T) since we have shown that integrability condition (RC
1) holds forZ ande = 1. For fixedm € N, define the stopping timé&,, := inf{t €
Ry :t =T —LorZz < -}. Denote by(@,s(l,zéyzg),g, ¢,0,0)F the extended char-
acteristics ofZ7=, i.e.b = b=, ¢ = ¢». Let f : R — R® be aC2-function with
ft,2) =1,z zd)(log(z\//f(‘;m + VT — 1) - Ke_’"TQD(% — 2T —1)) for any
(t,2) € [0,T — 1] x [L 00). SinceZ = f(t,Z}) for anyt € [0,T,,], application of
It6's formula (cf. Theorem 2.25) and the fact thfatis a solution to the partial differential
equationD, f3(t, z) + 5(02)? Doy f3(t, z) = 0 yields

0
bt = b%
D2f3(t7 Ztl>bt1

0 0 0
a=10 ot Do f3(t, Z} )}t
0 Dgfg(t Zl) 11 (Dgf?’(t Zl))2 11
foranyt € [0, T,]. One easily verifies that for artye [0, 7— L] the mapping-1, o) — R,

¢ Dyfi(t,z) = ®(BELEED) 4 5T —1) is positive, increasing, and converging
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to 1 for = — oo (cf. Lamberton & Lapeyre (1996), Remark 4.3.6). Hence, we have
Dof(t,Z})] < 1 on [0, T], which implies[?| = [?] < [B], [& = [&2] < [&}'],

|c22| = [¢72| < |ct| for anyt € [0, T]. By lettingm — oo it follows that this also holds on
[0,T]. Hence, we are done. O

PROOF OFLEMMA 4.8. By Lemma 4.1 we have that the optimal strategy is given by
a4, 1b

¢y = s + L= foranyt € [0, 7], whereb, ¢ are as in the previous proof. From the proof
¢ ¢ 2 1 -7
of Corollary 4.7, it follows thay = D, f3(i, 7)) = ®(8Zlle D) o 5 /T —7) for any
t

ovT—t
t € [0,7,,] and hence for any € [0,7'), becausen can be chosen arbitrarily small. Since
é’% = L7, the claim follows. O
PROOF OFLEMMA 4.9. This follows immediately from Lemma 4.2. O

4.4 Models with Independent Discrete Returns

In this section we consider a discrete-time version of the model from theopiegection.
As before, the market consists of two assets 0, 1, namely the numeraire tuk.a\t/e
work on a stochastic basi$), F, (F;)cr, , P), Where(JF,)cr, is a discrete filtration (cf.
Definition A.4). We assume that the discounted price progéds discrete and, moreover,
given by

Z! =7} (1+¢,) foranyt € N*,

whereZ; € R* and(e,)en- is a sequence of identically distributed random variables (with
distribution@ on (R, B)) such that, is independent of; ; for anyt € N*. Assume that

[ |z| Q(dz) < oo and moreover)((0,00)) > 0, Q((—o0,0)) > 0. By Lemma 2.20 this
implies thatZ = (Z°, Z!) is an extended Grigelionis process with extended characteristics
(N*, £(1,21),0,0,0, K)*, where K;(G) = [1¢(0, Z_,x) Q(dx) for anyt € N*, G € B>
From Theorem 3.28 one easily concludes that the market allows no arbitrage.

Remarks.

1. If Q is a lognormal distribution with parameterg. +r + 02/2, 0=!, —1 (i.e. the law
of log(1 +¢&;)is N(u —r —0?/2,0?), cf. Johnson & Kotz (1970a), Chapter 14), then
the proces$Z});cn has the same distribution as in the model in Section 4.3. Or, to
put it another way, th&-discretized market of the Black-Scholes setting is a model
of the type above.

2. The conditions oid) are met in particular for-stable distributions, (o, 3, 1) with
a € (1,2], 0 € (0,00), B € [-1,1], p € R (cf. Samorodnitsky & Taqqu (1994),
Property 1.2.16 and p.16).

3. Under the above assumptions, Conditions 1-5 in Theorem 3.36 hold (cf. Corollary
3.37).
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4.4.1 Derivative Pricing and Hedging

The following lemma yields the dynamic ¢#°, Z') under the measurg* in Corollary
3.37 leading to neutral derivative prices.

Lemma4.10 LetT € N. The extended characteristi¢N*,5(1,%),0,O,O,f()E of Z =
(Z°, Z*) relative to the measur€* in Corollary 3.37 are given by

uy (Y1)
uy (Y1) Q(d7)

foranyt € {1,2,...,T}, G € B? wherey € R solves) = [ zu) (¢Yx) Q(dz).

Ri(©) = [160.212)5 Qi)

Remark. Relative toP*, the dynamic of Z°, Z') is basically the same as with respecfip
but with  instead of), where the probability measuég is given by its Radon-Nikodym
density

dQ uy, (V)

Q") = Tu(um) Q)

In other words{s;)cn- are independer@-distributed random variables undet.

foranyz € R

The following corollary shows how to compute derivative prices explicitly.

Corollary 4.11 LetT € Nand X? = g(Z}), whereg : R — R is a measurable mapping.
Assume that there argf, M, € R with |g(z)| < M; + M,|z| for anyz € R. Define a

mapping

T—[1] T—[t]

mT: Ry X R—= R, (y,t)b—>/g<yH(l—i—%))(@@)(d(m,...,xT[t]))

i=1 i=1

(i.e.m(y,t) = E(g(Y)), whereY =y ng;% +&,) for independen®)-distributed random
variableszy, 2o, . . .), Whereé is defined as in the preceding remark. Then the unique neutral
price processZ? for the derivative with terminal valu&™ at T’ occurs in the formz? =

n(t, Z}) for anyt € [0, T]. Moreover, the extended characteristi®g £,z8 0,21+ 0,0, 0,
K)fofZ = (Z° 7', Z?) are given by

RKi(G) = [ 16(0.02} n(e, 20,1+ 2)) = w(t ~ 1.2} 1)) Q)

foranyt € {1,2,...,T},G € B3

The preceding corollary allows relatively straightforward numericahputation of deriva-
tive prices and hedging strategies. Observe that

7(0.0) = [ alyexn(a)) (%5"R) ds),
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Figure 4.19: Logarithmic 1-day log-return densities

where the probability measufeon (R, B) is given byR(G) = [ 14 (log(1+z)) Q(dz) for

anyG € B and the asterisk denotes convolution. Hence in order to obtain prices, one may
simply calculate the convolutions @ (by means of characteristic functions) and perform

a numerical integration. Since the joint extended characteristics ef (Z2°, 7', Z?) are
known in terms ofr and(, one can now evaluate optimal hedging strategies numerically
by means of Theorem 3.22 and Corollary 3.23.

4.4.2 Lognormal Returns

In this subsection we consider tRediscretized version of the Black-Scholes setting as dis-
cussed in Remark 1. More specifically, we choS8e= e, St = 100, r = log(1.05)/250,

1 = log(1.09)/250, 0 = 0.2387/4/250 andQ as the lognormal distribution with parameters
—pu+r+0%/2,07t, —1. As before, time is measured in trading daysl(/250 year). Note
that the distribution of thing-return X;, = log(Z})—log(Z}_,) (namelyN (u—r—a?/2, c%))

is the same in this model and in the Black-Scholes setting. Moreover, it doeepend
ont. One easily verifies that the laws af; under the pricing measures, either from the
Black-Scholes model or from this section, are also independentBy P, ﬁ, P*, we de-
note the given probability measure, the pricing measure in the Black-Schole$, mode
the pricing measure in this section, respectlvely Accordingly, the dessfithe law of
the log-returnX; relative toP, P P* are calledf, f f*. Hence,f, f are the densities of a
N(u—r—o0?/2,0%-andN(—0?/2, 0?)-distribution, respectivelyf* does not correspond
to a normal distribution. The logarithms of these densities (being parabolg‘sﬁ)rare
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Figure 4.20: Time value and difference to Black-Scholes prices 1 day to maturity
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Figure 4.21: Time value and difference to Black-Scholes prices 10 days to maturity

110 120 130

RN

Figure 4.22: Time value and difference to Black-Scholes prices 60 days to maturity
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Figure 4.23: Hedging strategies 1, 10, 60 trading days to maturity

plotted in the upper diagram in Figure 4.19. The dashed line shayig) and is hardly
visible since it is very close to a solid line represenﬂhsgf) andlog(f*), which tally even
more. For better visibility we add two further graphs, indicating the diffezermetween
these functions. The dashed line on the left represepts) — log(f), whereas the solid
line markslog(f*) —log(f). On the right-hand side in Figure 4.19, we glag(f) —log(f*).
Observe that the distribution of the return under the continuous-time and the elisoret
pricing measure is very similar but not identical. Moreover, note that tberele model
is not complete and hence does not allow derivative pricing solely based on tmealote

arbitrage.

One may wonder how strongly the discretization of the Black-Scholes modelsaffect
option prices. Consider a European call option with strike plice: 100 expiring in 1, 10,
60 trading days, respectively. We define timee valueof the option ass? — ((S} — K) Vv 0),
whereS? = 725} is the current price of the option in undiscounted terms(@8¢— K) v 0)
its payoff if it were to expire immediately. Note that the time value of adpean call option
is non-negative since the even larger numsgr— Ke="("-%) v 0 is a lower arbitrage bound,
as one may easily verify. The diagram on the left in Figure 4.20 shows the @tae of
our European call one day before expiration as a function of the current stockJgrice
The dotted horizontal line represents the lower arbitrage bound. In fact, thelineliih
the left diagram consists of two curves, firstly the time value in the eliseiime setting and
secondly in the Black-Scholes model from the previous section. The tiny diffebetween
the two curves is plotted on the right, i.e. the Black-Scholes value is sligtebter than the
price in the discrete model. In Figures 4.21 and 4.22 we repeat the calculationfati@n
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ten and sixty trading days before expiration. Although we expect the differencedetire
prices to be small, we are surprised to note — especially in the casesifdheterm option
— that the relative deviation turns out to be so tiny.

Having seen that the effect of discretization to European call option pacegligible,
let us now turn to hedging strategies. Assume that you have sold one option and you want
to hedge your risk by trading in the stock according to.eoptimal strategy. We choose
the relatively large value = 100 for the risk aversion. In Figure 4.23 we plot the number
o} of shares of stock in they-optimal portfolio in terms of the current stock pricg.
The upper diagram corresponds to the option one trading day before expiration. The solid
line shows the optimal portfolio in the discrete model, whereas the dasheddiicates the
hedging strategy in the Black-Scholes setting. Observe that the stratdgesidnificantly.
For larger time horizons the difference gets rapidly smaller as the seconthieshgraph
indicate. In the diagram on the left (10 trading days before expiration), one tabseérve
a small difference which seems to have vanished in the right picture $pamding to 60
trading days before expiration).

From Figure 4.23 we may draw the following lesson. If you are functioning in a Black-
Scholes market (or in its discretized form — a negligible difference rmaadaption prices
are concerned), and can rebalance your portfolio only once a day, then the continuous-time
hedging portfolio seems to be reasonable if the option is still valid for the néaef Just
before expiration, however, one may do better. The dotted line in the upper diagram of
Figure 4.23 shows the hedging strategy in the continuous-time Black-Scholes model 1/2
day before expiration. It coincides quite well with the optimal portfolio in our disestime
model, where the last rebalance takes place one day before maturity.

It occasionally makes sense to mix continuous- and discrete-time modeise lbe-
lieves that the market reacts very rapidly, one should use a continuous-éimeviork for
the computation of derivative prices. On the other hand, if you can only affordde wn
a relatively coarse time grid, you are practically investing in ardigctime market. There-
fore, you may convert the model into a discretized market in the sense ofitioefi3.53
before you actually compute optimal hedging strategies. The above example shi@vetha
when you work with the option prices from the continuous-time model, the discietzat
has an effect on the optimal portfolio. However, for fine-meshed time griddiffezence
converges to 0 as shown in Theorem 3.55.

4.4.3 Stable Returns

As noted in Remark 2 abova;stable distributions with stability index > 1 are a possible
distribution( for the return. Stable distributions for stock returns were proposed as early
as 1964 (Mandelbrot (1963), Fama (1964)) for dealing with the observed heavy tails of
market data. For our numerical computations we consider the examplé&,, (o, 3, 1) with
a=1.9,0 = 0.2387/(v/250v/2), 3 = 0, 1 = log(1.09)/250. As in the previous subsection

the bank accoun$? = ¢ with » = log(1.05)/250 serves as a numeraire, where the time

is measured in trading days. Moreover, wedgt= 100. From a theoretical point of view,
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Figure 4.24: 1-day return densities
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Figure 4.25: Logarithmic 1-day return densities

one may want to replacg, (o, 3, ) with S, (0, 5, it)|r, + €054(0, B, 1) ((—00,0)), since
otherwise the stock price might jump to negative values. For the concrete cahresults
in this subsection, however, this does not make any difference. In the fotiqearagraphs
we will compare the implications of this model to those of the Black-Scholes maittel w
parameters, 1, o+/2. Note that, similarly to the previous subsection, the distribution of the
daily returne, = (Z} — Z} ,)/Z} , does not depend anneither under the given probability
measureP in this or in the Black-Scholes model, nor under the pricing meastireWe
denote byf, f, f* the densities of the law of,, relative firstly to the given probability
measure in this stable increment model, secondly to the given probabilityuregasthe
Black-Scholes setting and thirdly the pricing measttefor the stable increment model.
Hence,f is the density of), fof alognormal distribution with parametergi+r+0?/2, o2,
o', —1 and f* of Q*. Figure 4.24 shows that these densities behave very similarly. The
solid line marks botlf and f*, whereas the dotted line represents the lognormal deﬁsity
Of course, the difference between the distributions should become visible iailgheTthis
is indeed so, as the left-hand diagram in Figure 4.25 illustrates. The soliddsignating
log(f*) and the dashed line fdog(f) are hardly distinguishable, whereas the dotted line
for log(f) indicates that this distribution has thinner tails. The graph on the right in Figure
4.25 shows the differendeg(f*) — log(f).

The fat tails of the stable distribution lead to increased option pricegasill now see.
As in the previous subsection, we consider here a European call option with sicke pr
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K = 100, expiring in 1, 10, 60 trading days, respectively. Figures 4.26 — 4.28 correspond
to the Figures 4.20 — 4.22 in the lognormal case. The solid line in the diagrams ontthe lef
represents the time value of the European call for the stable model, the dashéat khe
Black-Scholes case and the dotted horizontal line marks the lower arbitrage bautite O
right, we plot the difference between the neutral price in the stable and thk-Btholes
model.

Figure 4.29 illustrates the disagreement between the Black-Scholes model atigt the
crete stable case from another perspective. By inversion of the BldukeScformula,
any European call price from the stable model can be converted into a tieabnetplied
Black-Scholes volatility. The graphs in Figure 4.29 show the implied annual Nyl ati
our European call as a function of the current stock price, the upper diagram one day be-
fore expiration, and the lower left and right graph for a remaining life time o&ld@ 60
trading days, respectively. The height of the abscissa indicates the annudityaathe
Black-Scholes model we used for comparisons (/.25002). What do the curves in Figure
4.29 mean? They indicate the kind of implied volatility smiles a Black-Schedtesomist
would observe if the real market followed a discrete stable return ppaegis neutral op-
tion prices. Note that these smiles do not imply that either of the models & liietn a
statistical point of view. Judgements of that kind can only be based on the analysda of r
market data.

Let us once more examine the,,-optimal portfolio for the hedging probleg? = —1
(i.e. one option has been sold short). Exactly as in Figure 4.23, the diagrams in Figure 4.30
show the number of shares of stock in the optimal hedging portfolio in terms of theaturre
stock priceS}. The solid line marks the strategy in the stable case, the dashed line thke Bla
Scholes hedge and the dotted line in the upper diagram the Black-Scholes hedge 1/2 day
before expiration. All in all, one may say that the optimal portfolios are quitdai to those
in the case of lognormal returns (cf. Figure 4.23). This is surprising and reassiiing
same time. It indicates that the hedging strategies seem to be quite robast agaation
of the underlying probabilistic model, even if the optipncesare strongly affected. But
one should be aware that this does not imply that the optimal portfolios perform equilly we
in the different models. In the continuous-time Black-Scholes setting the heggefest,
whereas in the discrete lognormal or even stable world there exists a sighifitance of
losing money.

Proofs

PROOF OFLEMMA 4.10. By Corollary 3.23, the,-optimal strategyy = (¢°, »') for 2
is any solution td®) = [ zu (p; - x) Ki(dx) = Z1, [ 2ul,(ZL 0tz) Q(dx), i.e. of the form
(¥, /7L ), whereg® is arbitrary andy is chosen as in Lemma 4.10. The form of the
characteristics now follows easily from Corollary 3.38. O

PROOF OF THE REMARK For anyt € N*, G € ‘B, we haveP**!71(G) = [14(x/Z] )
PAZ% (dy) = [16(2/Z) ) Ky(d(+', 2%)) = Q(G). This shows that the, are inde-



166 Chapter 4. Examples

0.005

94 96 98 102 104 106
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Figure 4.27: Time value and difference to Black-Scholes prices 10 days to maturity
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Figure 4.28: Time value and difference to Black-Scholes prices 60 days to maturity
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Figure 4.29: Implied Black-Scholes volatilities 1, 10, 60 trading days to maturity
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Figure 4.30: Hedging strategies 1, 10, 60 trading days to maturity
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pendent and have distributiafl?l relative toP*. O

PROOF OFCOROLLARY 4.11. Since(r(t, Z}'))wepp,r) @and the neutral price process from
Corollary 3.37 are discrete, it suffices to show the claimifer{0, 1,...,7}. We proceed
by backward induction. Fot = T, we haveZ? = X? = ¢(Z}) = =(t,Z}). Now,
assume that equality holds fere {1,2,...,7}. By Corollary 3.37, the assumption, and
the preceding proof, we have

Zi, = E'(Z|F)

= [ w62+ 2) P )
T-14

= // Ztl1 1+x) H l—i-Iz)(®@)(d(%,---,IT—[t}))@(d$)

i=1

= ’/T(ta Ztl—l)‘
The shape of the characteristics follows from
Ky(G) = E(le(Z) = Z) 1. 2y — Zy_y,7(t, Z)) — m(t — 1, Zy_y))|Fimn)

- /1G (O,x, w(t, ZL (1 +2)) —7(t -1, Ztl_l)) Pt (dr).

4.5 ARCH-type Models

ARCH-models have become popular for modelling financial time series becausexthey
plain leptokurtosis and persistency of volatility clustering (cf. Bolerst al. (1992)). We

focus here on a GARCH(1,1)-M stock price model for which option prices and hedging
strategies have been derived by Duan (1995) and Kallsen & Taqqu (1998). We compare our
formulas qualitatively to theirs. Our setting is similar to that of thevwus section. We

work on a stochastic basi$, &, (F;).cr, , P), where(F,)cr, is a discrete filtration. The
market consists of two assets 0, 1, namely the bank acctlunt ') and the stock price
processS! which satisfies the recursive equation

2

S} o
log (Stl 1) = p(or) — Et + 0Ey (4.2)

foranyt € N*, wherer € R, Sj € R}, u: Ry — R are given ande, )y is a sequence of
identically distributed random variables such thais independent off, ; for anyt € N*.
TheR?, -valued stochastic proceés; ). is given by the GARCH(1,1)-M equation

o; =w+ aloi_ig-1)” + Boy_y

foranyt € N\ {0,1}, with 0g,01,w € R}, a,3 € R, being fixed constants. The
distribution ) of ¢, is chosen asV(0,1) or, more generally, any distribution satisfying
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[’ Q(dx) < o for anyo € R,. From Lemma 2.20 one easily concludes that=

(Z°, Z') is an extended Grigelionis process with extended character(itics , 41, 0, 0, 0,
(0,55)

K)E, where

2

K(G) = /1G<0, 7L (exp (o) = %~ + o) 1)) @)

foranyt € N*, G € B2 If @ = N(0, 1), then it follows easily from Theorem 3.28 that the
market allows no arbitrage.

Remarks.

1. Equation (4.2) can be rewritten as

02

Z! =7} | -exp (u(at) — ?t —r+ atst> foranyt € N*.
The very similar model

2
7l =7 (1 + u(oy) — % —r+ at5t> for anyt € N*.

can be treated analogously.

2. If we let@ := N(0,1) and p(0;) := r + Ao, for someX € R;, then the above
model is the same as in Duan (1995). Moreover, it coincides for integer tinteshei
continuous-time ARCH-model in Kallsen & Taqqu (1998), Section 3. More pregisely
it is theN-discretized market (in the sense of Definition 3.53) of the model in Kallsen
& Taqqu.

4.5.1 Derivative Pricing

The following lemma yields the dynamic ¢6#°, Z') under the equivalent measur¥ in
Corollary 3.37, leading to neutral derivative prices.

Lemma4.12LetT € N. The extended characteristi@l*,5(07501),0,O,O,F)E of Z =
(Z°, Z') relative to the measur®* in Corollary 3.37 is given by
R = / 16(0. 2} exp(ji(or) + oy) 1)

u, ( ( 1) (exp(p(oy) + ovx) — 1))
fu ¢)(exp(p(oy) + opxr) — 1)) Q(d7)
)

foranyt € {1,2,...,T}, G € B2, wherefi(o,) = p(0)) — % —r,

Q(dx)

2 Zia\ ? 2
o, =w+ a(log <21 ) - M(Ut—1)> + Boi_y
t—2

foranyt € N\ {0, 1}, and for anyo € R the real numbei) (o) solves

0= / (exp(ii(o) + ow) = 1 )ul, (v(o)(exp (o) + ow) — 1)) Q(dw).
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Remarks.
1. Relative toP*, the(s;):en+ are no longer i.i.d. random variables. Instead, we have

u, (@b( o) (exp(p(ar) + o) — 1))

P*(e; € G|F1) = / fu (¢ (0y) (exp(fi(oy) + 047) — 1)) Q(d) Q(dx)

4.3)

P-almost surely forany € {1,2,...,7} and anyG € B.

2. The dynamic of 7} ), underP* in Lemma 4.12 is not the same as with respect to the
pricing measures of Duan and Kallsen & Tagqu, who obtain lognormal returns under
the EMM as well (cf. Equations (3.10) — (3.12) in Kallsen & Taqqu (1998)). Kallsen
& Taqqu consider a continuous-paths interpolation of the discrete GARCH(1,1)-M
model. Hence, their setting fits into Section 4.2. Indeed, their density of thegpric
measure is the same as in Lemma 4.3 (cf. Lemma 2.1 in Kallsen & Tagqu (1998)).
This is not surprising since their model is complete and hence allows only one equiv-
alent martingale measure. Similarly, one easily shows that the hedgatggstrin
Kallsen & Taqqu (1998), Theorem 3.6, is the limit of the portfolio in Lemma 4.1 for
infinite risk aversions. In this section, however, we are dealing with a discrete stock
price process. The relationship between both settings is essentiallynieeasabe-
tween the Black-Scholes model and its discretized counterpart in Subsécti@n
In fact, this is the special case if the GARCH parameters are0. Therefore, we
conjecture that the option prices and long-term trading strategies behave raliyeric
very similarly for the discrete GARCH-model and its continuous embedding.

Finally, let us remark that Duan's derivative prices coincide with thodgallsen
& Taqqu, although he works in the same discrete-time framework as we do in this
section.

Proofs

PROOF OFLEMMA 4.12. Note that Condition 1 in Corollary 3.37 (namely the absence of
arbitrage) depends on the choice of the distributipand still has to be checked for any
particular model.

By Corollary 3.23 a strategy = (¢°, ') is u.-optimal for 2l if and only if 0 =
J v (o-x) Ki(dz) = Zi_y [(exp(fi(or)+oux)—1)uy(0; Z,_y (exp(fi(or) +0,)—1)) Q(dw)
foranyt € R, . Hence, the optimal strategies are of the fauh, v'(0;)/Z; |), wherey(oy)
is as in Lemma 4.12. The form of the extended characteristicgfZ') relative toP* now
follows easily from Corollary 3.38. O

PROOF OFREMARK 1. Observe that, = (log(1+AZ} /Z} ) —Ji(0;)) /o, and P*A%1Ti-1
= K. Equation (4.3) now follows from a straightforward calculation using Equation.(4.3)
0
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Figure 4.31: Logarithmic 1-day log-return densities

4.6 Exponential Lévy Processes

In this section we want to consider a class of models that generalizes tble 8tholes
setting by replacing the Wiener process in Equation (4.1) with a quite arbiitéagyprocess.
Similarly to Section 4.3 we consider a market with a bank accofirt " for anyt € R,
and a stock whose discounted price procéssatisfies the stochastic differential equation

dZ} = (p—r)Z dt +oZ! dW; + /thl_ (p — q)(dt,dx), (4.4)

whereZ; € R, u € R, 0 € R;, W denotes a standard Wiener process ansl a ho-
mogeneous Poisson random measure with compengato ® H (cf. JS, 11.1.20). We
assume thaf{ is a fixed measure ofR, B) with [(|z|* A |z|) H(dz) < oo, [ |log(z +

Dy 1(@) H(dz) < oo, andH((—o0, —1]) = 0. The latter condition ensures that

does not jump to negative values (cf. Jacod (1979), (6.5)b). Defining

Xy=(p—r)t+oW,+ /a: (p — q)(dt,dx)
foranyt € R, , Equation (4.4) can be rewritten as
dz} = 7} dX,,

which implies that”! is given by the stochastic exponential®f i.e. 7' = Z] & (X) (cf.
JS, 1.4.61). Note thak is an integrable Lévy process with the characteristic triflet



172

Chapter 4. Examples

s

94

102 104 106

Figure 4.32: Time value and difference to Black-Scholes prices 1 day to maturity
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Figure 4.33: Time value and difference to Black-Scholes prices 10 days to maturity
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Figure 4.34: Time value and difference to Black-Scholes prices 60 days to maturity
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Figure 4.35: Implied Black-Scholes volatilities 1, 10, 60 trading days to maturity

r,o?, H)" inthe sense of Definition 2.4 (cf. Theorem 2.3). By Lemma 222; (Z°, Z') is
an extended Grigelionis process with extended character(m@su’zé), b,c, F,0)F, where
b =0,by =(u—r)Z_, ¢’ = =" =0,¢' = (0Z_)% F(G) = [ 1a\(0}(0, Zj_x)
H(dx) foranyt € R,, G € B>

Alternatively, we may consider a discounted stock price process of the form

Z} = Zyexp ((fi =)t + W, + / v (5 - @)(dt,dz)), (4.5)
[0,t] xR
whereZj € R:, i € R, 6 € Ry, W denotes a standard Wiener process, Ansl a
homogeneous Poisson random measure with comper?fsat@@ﬁ We assume thdf is a
fixed measure ofR, B), satisfying/ ( |x|2/\|x|) H(dz) < coand [ e”1 [1,00) (T ) H(dz) < oo
for some:= > 0. Defining the Lévy procesX by

%= —r)t+aWt+/ (5 — §)(dt, dx),
we can rewrite Equation (4.5) as
7' = Z exp(X),

where X is, asX above, an integrable Lévy process with the characteristic triplet

r, o2, fI)L. By It0's formula (cf. Theorem 2.25 and the following remark) we can now con-
clude thatZ = (7°, Z') is an extended Grigelionis process whose extended characteristics
(2, e0,21), b, ¢, F,0)" are given by = 0, b; = (i —r + 5 ” 4+ [(e* =1 —x)H(dz)) 2],
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A =0 = D=0, e = (G21)2 Fi(G) = [l (0, Z) (e” — 1)) H(dx) for any
t € R, G € B2 The following lemma shows that the processes of type (4.4) and (4.5) are
essentially the same.
Lemma4.13 1. Letji, 5, p, H etc. be as above. Define
~2
= ﬁ+%+/(e$ —1—2)H(dx),

o:=0,

H(G) = /1G(ef 1) H(da),

p((0,4] x G) ::/ Le(e® — 1) plds, dx)

[0,t]xR
foranyt € R, , G € B. ThenZ! from Equation (4.5) satisfies Equation (4.4).

2. Conversely, let:, o, p, H etc. be as above. Define

0.2

pimn=% = [ (o= logla + 1)) Hldo)

() ;:/1G(1og v+ 1)) H(dz),

50,4 x @) ::/ Le(log(z + 1)) p(ds, dz)

[0,t] xR
foranyt € R, , G € B. ThenZ! from Equation (4.4) satisfies Equation (4.5).

Remarks.
1. ForH = 0, we are of course back in the Black-Scholes setting of Section 4.3.

2. If 02 £ 0andH(G) = [1g(e® — 1)AN(ay — 303,03)(dz) for anyG € B, where
A € Ry, ay € R, 02 € R, are given parameters, then Equation (4.4) describes the
process considered in Griinewald & Trautmann (1996), Equation (2).

3. Thehyperbolic stock price modély Eberlein & Keller (1995) is of the form in Equa-
tion (4.5). Its introduction is based on the fact that hyperbolic distributions provide a
very good fit for daily stock return data. Fix constajts R, o,d € R", 5 € (—a, ).
Suppose that — |3| > 4. Define the mapping, s, : R — R by

gaﬁé( ) e ﬁ(/oo exp(—\/ 2y + Oz2|1'|) dy + e—a|x|>1R\{0}(x)
” | NSy my(JR(03/2y) + Y2 (0v/2y)) ’

where.J;, Y7 are Bessel functions of the first and second type, respectively. Then the

stock price process in Eberlein & Keller (1995), Equation (24) is as in Equatié (

if we defines := 0, H(dz) := Gape(T)dr.

4. 1 [|x[?+921y o) H(dz) < oo or equivalently [ 214971, ) H(dz) < oo for
somes > 0, then the marketZ?, Z') meets regularity condition (RC 1). This holds
in particular for the models in the preceding remarks.
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4.6.1 Derivative Pricing

For Z' as in Equation (4.4), the following lemma yields the dynami&ef (Z°, Z') under
the pricing measure.

Lemma 4.14 LetT € N. Assume that the integrability condition in Remark 4 above holds
and that there exists @ € R solving

0=p—71— Ko + /x(u;(wa:) — 1) H(dx). (4.6)

Then Conditions 1-4 in Theorem 3.36 hold. Moreover, the extended charactefi$tics
0,28y, by, 0)F of Z = (Z°, Z1) relative to the equivalent martingale measute lead-
ing to neutral price processes are given?lby& 0 and

F(G) = / 16(0, 71 )il (o) H(dx)

foranyt € [0,T], G € B.
Remarks.

1. UnderP*, the discounted stock price process has basically the same dynamic as

with respect toP, but relative tou, o, H instead ofu, o, H, wherep := 0, 0 := o,

g—g(x) := u! (yx) for anyz € R and the real numbey is given by Equation (4.6).

2. If Z'is expressed as in Equation (4.5), we have to replace the parar;Tn,e’feﬁ with
7i, 7, H to obtain theP*-dynamic of 7', wherefi := —Z- — [(e* — 1 — z) H(dx),
~ di

=0, {=(z) =y (¥(e” — 1)) foranyz € R. Again, v is given by Equation (4.6).

Ql

3. The existence condition in Lemma 4.14 is satisfied for the stock price process of

Grinewald & Trautmann as well as that of Eberlein & Keller. Note that the pr

ing measureP* for the hyperbolic model is not the same as the ENWI by Eber-

lein & Keller, which is based on an Esscher transform. The latter spomds to a
transformation%(x) = ¢Y* of the Lévy measure (cf. Keller (1997), Lemma 21).
Our transformation of the Lévy measure, on the other hand, is givej%l@y) =
ul.((e® — 1)) (cf. Remark 2). But note that for small values:obne may approxi-
matee’® ~ 1 +Jr ~ 1 — (Yr)x ~ ul, (¢ (e® — 1)) if ¥ ~ k. This explains why the
option prices derived by Eberlein & Keller coincide very well with our nelutedues.

The following lemma is helpful for numerical computation of option prices and hedging
strategies.

Lemma4.15LetT € N and X? = g(Z}), whereg : R — R is a measurable mapping.
Assume that there argf,, M, € R with |g(z)| < M; + M,|z| for anyz € R. Define a
mappingr : R, x Ry — Rbyn(t,y) := E(g(yexp(Ur_))), whereU is a Lévy process
with the characteristic tripletz, 72, H)" as in Remark 2 above. Assume that Condition 5 in
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Theorem 3.36 holds (e.g. if the filtration is the canonical filtratiofbbr its P-completion).
Then the unique neutral price procegs for the derivative with terminal valu&? at 7T is
of the formZ? = =(t,Z}) for anyt € [0,T)]. If w is of classC? on [0, T) x R, then the
extended characteristi¢®, £, 71 »(0,21)) 0,2, F,0)P of 7 .= (Z°, 7', Z?) are given by

0
by = (b —r)Z;
/ﬂbUQZtl_DQTr(t, Zl)
+ [(r(t, Zi- (L + @) — w(t, Z2)) (uy,(Y7) — 1) H(dx)
0 0 0
=10 (0Z])? (0Z} ) Dyr(t, Z})

0 (0Z! )’Dor(t,Z} ) (0cZ! Dyr(t,Z}!))?

F(0.0%6) = [ 1o (0,021,700, Z(1+0)) = (0. 20)) H(d)
foranyt € [0,T], G € B*, wherey € R is chosen as in Lemma 4.14.

Remark. One should still check that the regularity condition (RC 1) holds for the enlarged
market from a theoretical point of view.

We perform numerical calculations for the hyperbolic stock price model by means of
Lemma 4.15. The choice of the parametgrs- 0, o = 100, 6 = 0.005, 3 = 0 is guided
by estimations for German stock data by Eberlein & Keller (cf. Kell&97), p.89). For
option pricing we compare the results to a Black-Scholes model (cf. Sectiomé &g the
parametet = 0. 2387/\/5 0 is chosen such that the variangg of the return)?t coincides
in both models. Sinc& is a Lévy process, it follows that the distribution of the dadg-
returny; := log(Z}) —log(Z! ,) = X, — X,_, does not depend an We denote by, f*, f
the densities of the laws df; relative to the given probability?, the pricing measuré&*
leading to neutral derivative prices, and the equivalent martingale mzeésﬂmresponding
to the Esscher transform (cf. Eberlein & Keller (1995)), respectiv@lye hardly visible
dashed curve in the upper diagram of Figure 4.31 represgtits). Since it is a hyperbola
as opposed e.g. to the parabola in Figure 4.19, the distribution and hence the modal is calle
hyperbolic Very close to this line one can observe a solid curve markipgf*) as well as
log(f), where the latter is also of hyperbolic shape. To emphasize the differengastwe
log(f*) —log(f) (solid line) andlog(f) — log(f) (dashed line) in the lower left diagram, as
well aslog(f) log(f*) in the lower right graph. Since the difference betwéeyt ) and
log(f) is small, one may expect derivative prices basedvdandP to be very close, which
is indeed the case as can be seen in Figures 4.32 — 4.34.
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As in Section 4.4, we consider a European call option with strike gtice 100 expiring
in 1, 10, 60 trading days, respectively. The dashed curve in the left-hand diafjfagure
4.32 is the same as that in Figures 4.26 and 4.20. It represents the time value of the option
in the Black-Scholes model as a function of the current stock price. The same bplds f
the dashed lines in the left-hand graphs of Figures 4.33 and 4.34, which are hardly visible
since they are covered by solid curves. As before, the horizontal dotted &nksrthe
lower arbitrage bound. The solid curves in the left diagrams correspond to the pptien
in the hyperbolic model based on baftt and P. Obviously, there is no big difference
between neutral option prices and those from Eberlein & Keller. Even if onevieslin
neutral prices, one may therefore use the Esscher transform as an approxsivateit
is easier to compute. For the latter, it is not necessary to evaluateétheKhintchine
formula numerically in order to obtain the return distribution under the priciegsure.

In the diagrams on the right-hand side we indicate the difference of the hyperbolic option
prices and the Black-Scholes value. The solid lines correspond to neutra, pricereas

the dashed curves now mark the values obtained by Esscher transform. Obsétie t
difference between hyperbolic and Black-Scholes prices is of about the same alssrdut

for all time horizons. Relative to the time value of the option, however, it pidys a role

for short-lived options or possibly for options far in or out of the money.

As in Section 4.4, we also illustrate the differences by plotting implieatBIScholes
volatilities in Figure 4.35. The height of the horizontal axis indicates the annuallitglat
V25002, The solid (resp. dashed) curves mark the implied volatilities from tlaekBlI
Scholes formula if we insert the neutral (resp. Eberlein & Keller) optiongsrifrom the
hyperbolic model. As before, these curves should not be overinterpreted as a nstdel te
since they are not data-based. They only indicate the kind of inconsistency a Blacle$S
economist would observe in a hyperbolic market. Note that the smile is signifiacaghtort-
lived options and flattens out for long times to expiration.

Proofs

PROOF OFLEMMA 4.13. 1. Using the integrability conditions off and the mean value
theorem, one easily verifies théi{|e” — 1|2 A |e® — 1|) H(dz) < oo. By JS, 11.1.33c,
this implies that the mapping : Q@ X R, x R = R, (w,t,2) — e® — 1isin Gloc(p).
Sinceq := A ® H is the compensator gf, the same argument yields that the mapping
QxR xR = R, (w,t,2) = zisin Giee(p). SinceAw x (p— @)y = [w(x)p({t} x

de) = [xp({t} x dz) = Az x (p — q), for anyt € Ry, it follows from JS, 1.4.19 that
wx*(p—q) =xx(p—q)andhencéZ, w)* (p—q) = (Z;_x) x (p — q) (cf. IS, 11.1.30).
Application of Ité's formula as in Jacod (1979), (3.89) now yields fhasatisfies Equation
(4.5).

2. Using the integrability conditions oA and the mean value theorem, one easily ver-
ifies that [(|z|> A |z) H(dz) < oo, [ €®1j1 00y (x) H(dz) < oo, and thati is well-defined.
Sinceq := A ® H is the compensator of, it follows that the right-hand side of Equation
(4.5), which we denote big, has all the properties in that paragraph. Application of State-
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ment 1 in Lemma 4.13 yields that is also a solution to Equation (4.4). Since the SDE
(4.4) has, up to indistinguishability, only one solution, it follows that Z and the claim
is proved. O

PROOF OF THE REMARKS 2. We want to show that the integrability conditions far
hold. Itis obvious thaf7((—ooc, 1]) = 0. Moreover, [ |log(z + 1)[1_; _1)(X) H(dz) <
A [ |z N(ay — 50%,0%)(dz) < oo. Finally, we have thaf |z| H(dz) < oo and [ |z|®
H(dx) < oo because: +— €*#! is integrable for any normal distribution.

3. We want to show that the integrability conditions far hold. By Keller (1997),

Equation (3.1) the distribution of, has the Lebesgue density

2
Fapon(®) = MMVI ((js Jff—iﬂz) exp (= oo+ (w2 + Bl — 1)),
whereK; is the modified Bessel function of the third type with index 1. Fer +oo, we
havef, 3455 = O(exp(—alz| + Bz)) = O(exp(—4|z|)). Therefore,[ ¢3ll PX1(dz) < oo
and hence/ |z| P)?l(dx) < oo. By Lemma 2.2, Theorem 2.3 and Proposition 2.9, this
implies that[ (|z[2 A |z|) H(dz) < co and [ €1y ooy (2) H (dz) < oo.

4. One easily verifies that the two integrability conditions are indeed equiviél& and
H are related to each other as in Lemma 4.13. Note ffiat? A |z|) Fy(dz) < ((ZL)*V
\ZL|) [(Jz|*Alz|) H(dz) and similarly forb andc. In order to show that integrability condi-
tion (RC 1) holds, it suffices to prov@p,cj, y E((Z}_)*")) < sup,ep 0 E((Z5)*0F9)) <
oo for anyt € R,, where the first inequality follows from Fatou's lemma. Sidte =
Z} exp(X,), it remains to show thatup,cjo 4 £ (exp(2(1 + £)X,)) < oo. This follows
immediately from the integrability conditions féf and Proposition 2.9.

For the particular models in the preceding remarks, the integrability conditi@ens a

shown above. O

PROOF OFLEMMA 4.14. Firstly note that Condition 5 (and of course Condition 6 for any
particular claim) still have to be checked in order to apply Theorem 3.36. Byll@or 2.43
and Theorem 2.65, any local martingale has the representation property reldhied evy
processX if the filtration is the canonical filtration ok (or the P-completion). SinceZ!
and X generate the same filtration, it follows that Condition 5 holds if the givemfitin is

the canonical filtration of! or its P-completion.

For the predictable, locally bounded procesdefined by, = (0,v/Z/ ), we have by
definition ofy thatZ} (u—r)—r(cZ} )0+ [ Z} x(ul (Z} ¢ix)—1) H(dx) = 0, which
implies thaty is au,-optimal strategy foR! (cf. Corollary 3.23). Hence, the Conditions 1
and 2 in Theorem 3.36 hold. Fer— 0, we have that

uy () (log (uy () — 1) + 1
= (L4492 +0@?))((u,(Yo) — 1) + O((u, (o) = 1)%) = 1) + 1
= (14 ¢z +0@*)(Wr +0(z®) — 1)+ 1 = 0(z?).
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Moreover,u!. (¢x) and hence (¢z)(log(ul. (¢¥z)) — 1) +1 is bounded from above. Finally,
one easily shows tha{log(y) —1) > —1 foranyy € R’ and hence, (¢x)(log(u,, (vx)) —
1)4+1 > 0. Together, this implies that' := [(u],(¢Yx)(log(u,(vz))—1)+1) H(dz) < o0
Observe thaf'; in Section 3.4, Remark 4 is of the forfiy = T'(%¢%0+C") < oo, which
implies that Condition 3 in Theorem 3.36 holds.

Application of Corollary 3.38 and straightforward calculations yield that thereded
P*-characteristics of Z°, Z!) are as claimed in Lemma 4.14. Singé is strictly positive,
we can apply Lemma 2.22 t§ (Z,_ ) 'dz} = [(Z_)'Z._ dXt = X and obtain that
the P*-extended characteristics af are of the form(&, =, i, 52, H,0)” on [0, T], where
n=0,0=o0, jg( ) = u' (¢x). Hence X is a P*-Lévy process or[[), T] with characteris-
tic triplet (11, 2, )L (cf. Corollary 2.43 and the subsequent Remark 5). Observ%%h'm
bounded and hence the integrability condition in Remark 4 hold& fmistead ofH as well.
As in the proof of that remark, one may now conclude that,., ) E*((Z._)219)) < oo,
which yields that the integrability condition in Section 3.4, Remark 5 holds. He& medi-
tion 4 in Theorem 3.36 holds as well. O

PROOF OF THE REMARKS 1. This has already been shown in the proof of Lemma 4.14.
2. This follows from the first remark and application of Lemma 4.13.
3. Define a mapping: : R — R by h(¢) == —(u — r) + sko? — [(u,(yz) —
Yx) H(dz). As in the proof of Theorem 3.22, one shows thas a differentiable function
with derivativeh'(¢)) = —(u — r) + ko*p — [ z(ul,(¢x) — 1) H(dz) and that any of the
three terms in the definition df is a convex functlon of). Moreover, using the dominated
convergence theorem and the continuity.pf we conclude thak’ is continuous. 1&? # 0
as e.g. in the model considered by Grinewald & Trautmann (1996), then the increasing
mappingy — —(u —r) + o has arbitrarily small and large values. Since the third term is
increasing as well, the same must be true/forBy continuity of 2/, this implies that there
exists a zera) of A’ and we are done.

Now consider the model by Eberlein & Keller, whet§y) = —p — [ x(
1) H(dz). Fory — oo, monotone convergence yields tt}%&x ul (Yx) — 1) (d:v)
—fR z H(dx) = — [(e” —1)gap,s(7) de = —o0, where the last equality follows from the

fact thatgaﬁ,(g( ) behaves ag; around 0 (cf. Eberlein & Keller (1995), p.295). Similarly,
one proves thaf, _ z(u (Yx) — 1) H(dx) — —oo and hencé/(x) — oo for i) — oo. In
the same way, we obtafri(y)) — —oo for ¢y — —oo, which implies that there exists a zero
1 of b’ in this case as well. O

PROOF OF LEMMA 4.15. By Theorem 3.36 we have thaf = E*(g(Z} exp(Xr —
XF) = [ 9(Z) exp(@p_y)) P*Eeso=X0s20 () P-almost surely for any € [0, T].
Since X is a P*-Lévy process, we have th@t*(X+s—X0s0l% — pr(Xs20 Ag the P*-
characteristic triplet of\ is (i, 52, H), it follows that Z2 = = (t, Z}) for anyt € [0, T].
Application of 1té's formula (cf. Theorem 2.25) to the procéssZ;),.r and the mapping
f:00,T) x Ry — R3, (¢,2) — (1,2,7(t,2)) yields that the extended characteristics of
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Z = (2°, 7", Z?) are of the form in Lemma 4.15, but with a different dfiftfor the process
Z*%. By Corollary 3.38 applied t¢2°, 71, Z?) it follows thatEf — kpo?Zl Dy(t, Z} ) —
[(w(t, Z(1 + 2)) — «(t, Z1))(ul,(vx) — 1) H(dz) (for anyt € [0,T]) is the drift of Z*
under the equivalent martingale meastifeand hence 0. ThereforéQ, is indeed as claimed
in Lemma 4.15. To be very strict, It6's formula applies only to functipiisat are defined
and of clas€? onR x R. The way out is to argue by localization similarly as in the proof
of Corollary 4.7. O

4.7 Bivariate Diffusion Models

A closer look at stock return data reveals that periods of violent price charigasagé with
relatively calm intervals. This behaviour led to the introduction of ARCH @&RCH
models on the one hand and bivariate diffusion settings on the other. For the lagter, t
volatility is modelled by a stochastic process following its own dynamie adhsider a
market consisting of only one underlying besides the numeraire. Its discounted pGespr

is assumed to satisfy the stochastic differential equations

dz} = plo)Z} dt + 0,2} dW,
doy = a(Ut)dt+ﬁ(Ut)Utth; (4.7)

where continuous functions «, 5 : R — Raswell asZ}, oy € R, are given and¥, W de-

note standard Wiener processes with correlgtigire. (1, /W)t = pt for anyt € R, ). The
second SDE descibes the dynamic of the stochastic volatility of Security leByria 2.22

it follows that(Z°, Z', o) is an extended Grigelionis process whose extended characteristics
(2,(0,21,00), b5 ¢, 0,0)7 are given by

a(oy)

c = 0 (O'tZtl)Q pﬁ(at)Ztng

0 pBlor)Zlo}  (Blor)or)?

for anyt € R;. Note that the procesg' is P-almost surelyR* -valued, because it is a
stochastic exponential of a continuous process (cf. JS, 1.4.64). AssunaastaR’, -valued
process as well.
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4.7.1 Derivative Pricing
In order to compute neutral derivative prices, we need the following

Lemma 4.16 With respect to the pricing measuf& in Theorem 3.36, the extended char-
acteristics(, £ o 71,4, b, ¢, 0,0)7 of (2°, Z', o) are given by} = by = 0, b} = a(o;) —
pulor)B(or).

Remark. The preceding lemma shows that, relativétq the proces$Z°, 7!, #) has basi-
cally the same dynamic as with respecttpbut withz := 0, a(z) := a(z) — pu(z)5(z),
(3 := (3 instead ofu, a, (.

The following lemma helps to calculate option prices explicitly.

Lemma 4.17 LetT € R, and X? = g(Z}), whereg : R — R is a measurable mapping
such that there are\;, M, € R with |[g(x)| < M; + M,|z| for anyz € R. Assume
that, for anyz,z € R’ , the martingale problenia, =, ., b, ¢,0,0)™ in R? has a unique
solution-measure, where

a(w; ) — pu(@f )B(w;)
Wt wt pﬂ(wi)@t{(@t{)Q

Wt Wt Wt )2 (5(@2 )@2 )2

€ ]D2 x R, . Define a functiorCy,; : R%. x R%. x [0,7] — R

\//—\

forany (@,t) = ((@'
by

de(z, Z, t) =

T—t 5 1 T—t T—t
E<C’Bg<zexp (p/ 65dWs—§p2/ &fd!g)”/l_pQ/ (ﬁds)),
0 0 0

whereCps : R, x R, — R is defined as in Lemma 4.6 aiiti’, ) is a solution to the
stochastic differential equation

Go =z, doy = (a(G,) — pu(5,)8(6,)) ds + B(6,)5, AW, (4.8)

(cf. Remark 1 below). Then the neutral price process for the derivative withirtal value
X? attimeT is given byZ? = Cy4(Z}, 0y, t) for anyt € [0, T7.

Remarks.

1. The last assumption in the preceding lemma meangittiatr) is an adapted process
on some filtered probability space (not necessarily the given dfiels a standard
Wiener process on that space, ansblves the SDE (4.8).
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2. Recall that, by Theorem 2.30, martingale problems are closely relateddoast
tic differential equations. In particular note that(if', ) is a solution process to
the martingale problena, <. 4, b, 0,0)M, thens is a solution to the martingale
problem(@, =, b%,¢%,0,0)™. From Theorem 2.30, it follows that the law &fis a
solution-measure to the SDE (4.8). This in turn implies that procg$ses) as in
Lemma 4.17 necessarily exist.

3. If p = 0, then the definition of’,,, simplifies toCyu(z, z,t) = E(Cps(z, [, ' 52ds))
and the SDE fo# is the same as Equation (4.7), which is solvedbglative toP.

4. In the case = 0, a second order Taylor approximation fOgs(z, -) yields
1 T—t
Chra(z,2,t) = Cps(2,2) + §DQQCBS(Z, E)Var(/ 52 ds), (4.9
0

wheres is as in Lemma 4.17 antl := FE(/, s 52ds). Intuitively speaking, the
neutral price of an option can be approximated by the Black-Scholes price where the
constant variance is replaced with the mean over the remaining liéectfrtine option.

The second-order correction also takes the variability of the volatitty account.

4.7.2 Hedging

Consider now a markt with three securities 0, 1, 2 whgfeZ' are as in the previous
subsection and? denotes the neutral price process of an option as in Lemma 4.17. Assume
that you have sold one option and you want to hedge your risk.

Lemma 4.18 Under the assumptions of Lemma 4.17 ith@ptimal strategy for the hedging
problemy? = —1 is given by

plo) 1 (o)
¢y = D1Coa(Z}, 0, t) + p—i> 71 DyChi(Z}, 04, t) + ? o2
for anyt € [0,T), wherex := —u"(0) is the risk aversion of.. (As usual,x® can be

arbitrarily chosen.)

Remark. For p = 0 we have

L (o)
of = D\Cy(Z}, oy, )+7 o7

Using the approximation in Remark 2 in the previous subsection, we obtain

1 1 1 ., 1 (o)
Yy ~ DICBS(Zt 5 E) + —DggloBS(Z, E)Var O ds + 1 3 (410)
2 0 KZ; O;

whereY. andg are defined as in that remark.
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Figure 4.36: Time value and difference to Black-Scholes prices 1 day to maturity
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Figure 4.37: Time value and difference to Black-Scholes prices 10 days to maturity

0.002

11 120 130

Figure 4.38: Time value and difference to Black-Scholes prices 60 days to maturity
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Figure 4.39: Implied Black-Scholes volatilities 1, 10, 60 trading days to maturity
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Figure 4.40: Hedging strategy and difference to Black-Scholes 10 days to maturity
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4.7.3 Price Regions and Improved Derivative Models

Let us consider a market with underlyings 0, 1 as in the previous subsections anchtivteriv

2 as in Lemma 4.17. Price regions and improved derivative models for the poicess??

are based offrx, p?)-consistent or -approximate price processes. As noted in Chapter 3,
we do not know whethefx, p*)-consistent processes always exist in the continuous-time
framework, let alone how to compute them. Therefore, we focus on approximats.price

Lemma 4.19 Let the assumptions of Lemma 4.17 hold and fix 0, > € R. With respect
to the pricing measuré in Section 3.5 leading t¢x, p?)-approximate price processes, the
extended characteristic(sa,5(0726,00),3, ¢,0,0)" of (Z° 7', o) are given by@? = 5% =0,

b2 = 02 — kp2(1 — p2)(B(01))2DsCia(Z}, 0, 1) for anyt € [0, T], whereb is defined in
Lemma 4.16.

The following lemma helps in calculating option prices explicitly.

Lemma 4.20 Suppose that the conditions in Lemma 4.17 hold an fix0, 5> € R. More-
over assume that, for ary, z) € R% x R’ the martingale problen, (. ), 5, ¢,0,0)M
in R? has a unique solution-measure, where

a(@; ) — pu(@f)B(@7)
1oy (1) p* (1 — p*)((B(@7F))*D2Cha(@) @7, t)

(wtl—@g—)? pB(wi )w,_ (@i

for any (@, t) = (@', @?),t) € D? x R,. Define a functiory, : R% x R* x [0,T] — R

by Cha(z, z,t) := E(g(Z%_,)), where(Z!, ) is a solution-process to the above martingale
problem. Then théx, p?)-approximate price process for the derivative with terminal value
X? at timeT is given byZ? = Cyu(Z}, oy, t) for anyt € [0, T).

Remarks.

1. Since, relative td, the dynamic ofr is affected by the price process, Cq Cannot
be generally expressed in terms(dfs, as is the case in Lemma 4.17.

2. Hedging strategies can now be computed as in Lemma 4.18, bu€yiihstead of
Cyq. However, the following remark does not not make sense in this case.
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4.7.4 Qualitative Comparison to Black-Scholes

Explicit computation of option prices and hedging strategies necessitates thecalswu-
tion of stochastic differential equations. This is beyond our scope here. Instead] wee
the approximations (4.9) and (4.10) to illustrate how the results deviate qualittivem
the Black-Scholes case. As in the previous sections, we consider a Europeaptical
with strike price K’ = 100 expiring in 1, 10, 60 trading days, respectively. If we work with
the second-order Taylor approximation for the neutral option price, then Equations (4.9)
and (4.10) show that we need not specify the diffusion equation completely. It sufice
fix values forE(fOT o?ds) and Var(fOT o2 ds) for the three different time horizons. In the
case that? follows a shifted Ornstein-Uhlenbeck process, one can evaluate theseigsantit
explicitly. In order to obtain Figures 4.36 — 4.40, we inserted the values from agsrote
the form

d(o?); = —a((0?); — (%)) dt + BdW, (4.11)

with @ = o := 0.2387/4/250, o := 0.1, 8 := 2 - 10~°, andWW denoting a standard Wiener
processz anda, are chosen such that the meanspfcoincides with the fixed value in the
Black-Scholes models we consider in Sections 4.4 and 4.6 for comparison. Thewalue
0.1 intuitively means that a volatility shock has a half-life of abaut log(2) ~ 6.93 trading
days. We choose a very small value/for two reasons. Firstly, the reader may already
have observed that a shifted Ornstein-Uhlenbeck process is inadequate tohequiitive
quantitys?. Therefore, we consider Equation (4.11) only as a reasonable approximation
in a neighbourhood of2. By choosing a smalb we ensure thats?), hardly leaves this
neighbourhood. Secondly, the validity of the Formulas (4.9) and (4.10) is restrictedlto sma
values OfVar(fOT o2 ds), which is another reason to |8te small. As a consequence, we are
almost back in the constant volatility setting of Section 4.3 and thereforepttien prices
and hedging strategies hardly differ from the Black-Scholes model.

Indeed, the diagrams on the left in Figures 4.36 — 4.38 show the time value of the call
in the bivariate diffusion setting as well as the Black-Scholes pricivel to volatility e
as a function of the current stock price. As in the Figures 4.20 — 4.22 and 4.32 — 4.34,
the horizontal dotted lines mark lower arbitrage bounds. In the diagrams on the gght w
plot the tiny difference between the neutral option prices in the bivariatesthh setting
and their Black-Scholes counterparts. In contrast to the previous section, wharse
realistic parameters for the hyperbolic distribution, these price diffeena the right are
not meant to contain quantitative information, since the diffusion model for théilitgles
not obtained by statistical means. On the contrary, we chgaseessively small. Maybe
surprisingly, the M-shape (or W-shape if you rotate the graphs) of the price difesresc
well as the implied Black-Scholes volatility smiles in Figure 4.39 looky\&milar to the
corresponding curves in Figures 4.32 — 4.34 and 4.35 for the hyperbolic setting, although
the models are of quite different kind. However, in the hyperbolic case the deviadion
Black-Scholes is most pronounced for short-lived options, whereas in the bavdiffatsion
setting the differences seem to reach their maximum later, as thefslze smile in Figure
4.39 and also the diagrams in Figures 4.36 — 4.38 indicate. Note that the hight of theaabsciss
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in Figure 4.39 corresponds as in the previous sections to the annual volafiliz” of the
Black-Scholes model we use for comparison.

In the left-hand diagram of Figure 4.40 we plot the number of stocks in a hedging port-
folio as a function of the current stock price. The task is to hedg&uropean call options
10 trading days before expiration. We make use of the approximation (4.10) in the case of
infinite risk aversions. The curve in the right-hand diagram marks the difference between
the hedging portfolio in the bivariate diffusion and the Black-Scholes model.

Let us stress once more that the Figures 4.36 — 4.40 can only give a qualitative. ptcture
would be disirable to compare prices and strategies for model parametexgtbatbtained
by real — and preferably the same — market data.

Proofs

PROOF OFLEMMA 4.16. Note that the Conditions 1-6 in Theorem 3.36 depend on the
particular model and have to be checked.

By Corollary 3.23, a strategy = (g, ¢1) is u.-optimal for 2 if and only if b} —
kel = 0, i.e.p) = L7 The shape of the extenddtt-characteristics ofZ2°, Z', o)

now follows from Corolletlrf/ 3.38. O

Proposition 4.21 Let W be aR-valued standard Wiener process on a filtered probability
space(Q2, I, (F1)ier, , P), and letC be a subs-field of J that is independent df. More-
over, denote by a continuous adapted process tha€isneasurable. Then we have for any

T e Ry T
pfOTYs dws|@ _ N(O,/ Y52 ds) P-almost surely.
0

PROOF First step: Suppose that the predictable proc¥ss of the formY” = " | 1y, ...,
a;, where) < s; < ... < s,,, are real numbers and, . . ., a,, areC-measurable random
variables. TherfOTYs dWs =30 (W oar—Wiar) oy Fixw € Q. If we setg : D' — R,

W Yo (@ AT — Weiar)i(w), then

PfOTYdW\G(w) _ (PW)g
= KL N0, ((5i1 AT) = (51 AT)) (0i(w))?)

= N0, [ ve)as),

where the asterisk denotes convolution.

Second stepFor Y as in the assertion, there exists a sequentd,cy of processes
as in the first step with — Y; uniformly on[0,7] P-almost surely an(fOT YFEdw, —
fOTYS dW, P-almost surely fork — oo (cf. JS, 1.4.44). Using the dominated convergence
theorem, we obtairf f(z) Pl Y :IC(dz) = B(f( [T YFdW,)|e) =3 BE(f(f] Y, dW,)
©) = [ f(x) PJo Y- dWil€( 42} P-almost surely for any bounded, continuous functjon
R — R. This means thaP/ ¥¥ ?:I€(,,) converges forP-almost allw €  weakly to



188 Chapter 4. Examples

PJo Y- 4W:I€ (). On the other hand, we hayg (V)2 ds "= fo )?ds P-almost surely,

which implies thatN(O,fOT(Ys’“( ))2ds) =3 N(0, fO st) Weakly for P-almost
all w € Q (by the continuity theorem, cf Billingsley (1978) Theorem 26.3). The first step
and the uniqueness of the weak limit now yield the claim. O

PROOF OF LEMMA 4.17. Note that the conditions 1-5 in Theorem 3.36 depend on the
particular model and have to be checked.

By Theorem 3.36 we have tha? = E*(g(Z1)|F)) = [ g(@h ) P*Zerrdsen It
(d(@',w?)) P-almost surely for any € [0, T]. Note thatZ' ando are P*-almost surely
positive becausé and P* are equivalent. Fi)(w t) € Q x [0,7]. By the argument in
Remark 2 there exists a probability spa€e F, (7. s)ser, , P) and adapted processHs, &
on that space such th#lt is a standard Wiener process ahgolves the SDE (4.8) with
gy = o(w) instead ofz. It is easy to show that one can choose the space such that it also
supports another standard Wiener prod&sbeing independent @f¥’, 5). Now define the
processZ! on that space by

Zl =7\ w )“( /5uqu+\/1—p2/5’uqu>
0 0 s

One easily shows thdtZ!, 5,),cr, is a solution process to the martingale probléen

E(Z} W)t (w))> b, ¢, 0,0)™, which, by assumption, has a unique solution measure. Moreover,
application of Lemma 2.33 yields that*(Zits otte)sern [Tt (w) is a solution-measure to the
same martingale problem (for the condition concerniiig¥) cf. Condition 5 in Theorem
3.36 and Remark 2 following Lemma 2.33). Hence, we obtain

z@) = [ g@h) e i@ o)
. Tt . 1 T—t
= E(g (Ztl(w) exp (p/ Gy dW,, — §p2/ 52 du>
0 0
Tt . 1 Tt
exp <\/1—p2/ 6uqu—§(1—p2)/ 65du>>>
0 0

By Proposition 4.21 we have thath ' o: Wulo(@W) — N/(q, fOT_t 52 du) P-almost surely.
In view of the definition ofCz5, this implies that

7 (w)
_ /CBS( exp(p/OT;udW—%p/o adu \/1—7/ adu>
Coa(Z; (W), 0y(w), 1),

which yields the claim. O
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PROOF OF REMARK 4. Note that this remark only makes sense if the mapping
Cgs(z,v) is twice differentiable and the second order Taylor approximation

1
CBs(Z,U) ~ CBs(Z, E) + (’U — E)DQCBS(Z, E) + 5(1} — E)QDQQCBS(Z, E)

is reasonably good for the actual values e fOT*t 52 ds. The claim now follows immedi-
ately fromCy(z, 7, 1) = E(Cps(z, [} ' 52ds)). O

PROOF OFLEMMA 4.18. Firstly, note that we assume here without proof that the condi-
tions in Theorem 3.36 hold for the model under consideration, and that the mappirgg
of classC?.

By application of 1t6's formula (cf. Theorem 2.25) to the prodgsg;, 0;).cr, and the
mappingf : [0,7) x Rt x Rt — RY, (¢, 2,2) ~ (1, z,Cpa(z, z,1t), ), we obtain for the
extended characteristi¢e, ¢(; 71 72 ), 0, 0,0)7 of Z = (2°, 2, Z?, o)

e2 = DiCo(Z}, 04, ) (00 Z})? + DoCa(Z}, 04, t) poi B(01) Z} (4.12)

& = DaCoi( 2}, 04,1)(0:8(04))? + D1 Coa(Z;, 04, 1) poi B(04) Z; (4.13)

for anyt € [0, T). By Lemma 4.1 the,.-optimal strategy for the hedging problesh =
is given byp; = f%l L f’fl, which is of the form in Lemma 4.18. To be very strict, 1t0'
formula can only be applied if is defined and>? onR?. The way out is to argue by local-

ization as in the proof of Corollary 4.7. O

PROOF OF THEREMARK. Note that this remark only makes sense if the mapping) —
Cps(z,v) is of classC'!? . The approximation fop' then follows by differentiation. [

PROOF OFLEMMA 4.19. Note that the assumptions leading to Definition 3.43 and to
Lemma 4.17 depend on the particular model and have to be checked.

Similarly as in the proof of Lemma 4.18, one verifies that the strategy step 3on
page 123 is given by] = —5*(D\Cya(Z}, 01, t) + pi7 Zl L DyCoa(Z}, 00,1)) + 7T "U‘f for
anyt € [0,7]. By step 5 on page 123, the density procé§sof Pis given byLT =
A= Jolwps) d(Z10)] — [3(kp*) d(Z%°);). We may therefore apply Lemma 2.27 and
Girsanov's Theorem 2.26 to obtain the extendedharacteristics of Z°, 7', 7%, o) and
hence(Z°, 7', o). Note thath® = b' = 0 already follows from the fact thatz°, Z') are
P-local martingales (cf. step 7 on page 123). Moreover, we conclude from (4.12), (4.13)
and (2.8) that

/b\? = bZ_“SOtPUtB( )

— Kp (DZde(Zt y Oty t)(Utﬁ(Ut))Q + D1de(Ztl, Ot, t)pafﬁ(at)Ztl>
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foranyt € [0, T']. (Observe that, here, the superscript 2 correspondswiereas in (4.12),
(4.13), this was the case for the superscript 3.) Sorting terms yields the claim. O

PROOF OF LEMMA4.20. Note that the assumptions mentioned in the proof of Lemma 4.19
must be shown for any particular model.

By Definition 3.43 we have that? = E(g(Z})|F,) = [ g(@h ) PZisotra)seny I
(d(@',®?)) P-almost surely for any € [0,T]. Note thatZ' ando are P-almost surely
positive becausé® and P are equivalent. FiXw,?) € Q x [0,7]. The application of
Lemma 2.33 yields thaP%i+s7e+)se= 417 () s a solution-measure to the martingale prob-
lem (o, E(ZHw)o1(w))> 5, ¢,0,0)M. Since this martingale problem is assumed to have a unigue

solution-measure, the claim follows. O

4.8 Keller's Model

This section is an exception in that we do not present any pricing measuxatiyerprices,
or hedging strategies. We only want to show that advanced models incorporating a number
of features of real financial time series can often be easily expresgedns of extended
characteristics and hence within the framework of Chapter 3. Howeverciéxpimerical
calculations of prices, strategies etc. are rarely easily produceddelswith complicated
dependence structures and are beyond our scope here.

As an example we consider a market model by Keller (1997), Subsection 4.4.1, which
consists, as in the previous sections, of a bank acc§fluand a stockst. Since real markets
are often closed at night, no trade takes place in this period. In Kellentgncous-time
model this is taken into account by shrinking the nights to intervals of length rerteger
times. Hence, an overnight price change corresponds to a jump at the respeetes
time. The money market account is given & = exp(rqt + r,,[t]), wherery, 7, € R are
theintradayand theovernight interest raterespectively. Similarly, the stock price process
satisfiesS! = S} exp(R¢ + R?), whereR? is theintraday return processThe overnight
return processk” is assumed to be of the for@» = Y21 AR?, where(AR?)xen- is a
sequence of i.i.d. random variables whose distribufjasatisfies| e/*l Q(dx) < co. During
business hours the stock price jumps randomly at random times. More specifitatly; =
> ien Lin<n &, where(7;)en is an increasing sequence of stopping times with oo P-
almost surely and¢;),cn a sequence dk \ {0}-valued random variables. Conditionally on
the past, the distribution of jump times and sizes is given by

foranyl € N, whereExp,, denotes an exponential distribution with parameter and
the processeg) e, (¢1)ien are recursively defined by

ho :=0, hipq = v + a&l + Bh,
©o:=0, @11 := X +(1—T7-1) + I
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for some fixed constants, A\ € R, a, 3,7,0 € Ry, § = 0, 7_; := 79 := 0. Moreover,

R, and (7, &)y are assumed to be independent. In this market model the return process
exhibits normally distributed jumps seperated by exponential waiting timtesadtivity or
volatility of the market is reflected firstly by the variangeof the jump height and secondly

by the parametep, of the distribution for the waiting time; — 7, ; between successive
jumps. The recursive definition of these parameters intuitively means thatipef high

resp. low activity are likely to persist. This is the type of observedketanehaviour that

also led to the development of ARCH- and GARCH-models. The following lersimosvs

how to express this market model in the language of Chapter 2.

Lemma 4.22 As usual, we define the discounted price processeg’by= S°/S°% = 1,

Z' .= S1/S° Assume that the filtration of the underlying stochastic basis is the canonical
filtration of S* (or equivalently(S°, S1), (Z°, Z1), Z'). ThenZ := (Z°, Z') is an extended
Grigelionis process whose extended characterigfi€s £a,s1): 0, 0, F, K)¥ are given by

K(G) :/10(0, 2! (exp(a — 1) — 1)) Q(de),

= e [ 1600, ZL (€ = 1)) N(O, i) o),

leN
v =0,
by = /xl Fy(d(z", 2%)) — Z} o
foranyt € R, G € B2

Proofs

PROOF OFLEMMA 4.22. First step: We will show thatR? is an extended Grigelionis
process with extended characteristidg, o, 6%, 0, ¢, 0)”, where

Ftd(G) = Z Ly, T1+1 t) o111 N(0, huy1)(G),

leN
bl = / r F(dx)

foranyt € R, G € B.

By definition we have thaR? = z x u, where the random measureis given by
p(ds, dz) = Yo Lin<oo} E(n.e)(ds, dx). Since& # 0, it follows that the smallest fil-
tration (G;).cr, for which 4 is optional (in the sense of JS, I11.1.25) coincides with the
canonical filtration off?¢. Relative to this filtration, the compensatoof 1. is given by

v([0,t] x G)
Z// on+1 s)1g() (EXpml * 571)((13) N(0, hyyr) (dz)

= (Expg,,, * sn)([s, 00))




192 Chapter 4. Examples

foranyt € Ry, G € B (cf.JS, I11.1.33). SincdExp,,,, *&-)(A) = [, 1ir.00)(5) @141
exp(—is1(s — 1)) ds, it follows thatv([0, 1] x G) = [} F4(G) ds for anyt ¢ R,, G € B.
Therefore we can writ&‘ as

t
Rf://a:Fsd(dx)ds+x*(u—l/)t,
0

where the first term is predictable and of finite variation. Simcgethe measure of jumps of
R‘, we can conclude that, relative t8;).cr,, R? is an extended Grigelionis process with
the above characteristics. Sin&€ and R" are independent, it follows from Lemma 2.23
that this is also true relative to the canonical filtrationZdf(which is generated bj¢ and
R™).

Second stepBy Lemma 2.20,R™ is an extended Grigelionis process with extended
characteristic§N*, ¢, 0,0, 0, Q).

Third step:Note thatZ? = 1 andZ} = S} exp(R? + R™ — rit — r"[t]) for anyt € R,..
We will now apply Ité's formula (cf. Theorem 2.25) to the extended Grigelionis psoces
Y = (ta [t]v Rg? R?)t€R+ and the mappmq 'R — R2’ (yla Y2, Y3, y4) = (17 S& eXp(y3 +
ys — rdy; — 1™ys)). Straightforward calculations yield that the extended characteristics of
(Z°,Z') = f(Y) are indeed of the claimed form.

It remains to check the integrability conditions in Remark 1 following Theog25
to make sure thaf(Y") is a special semimartingale. Firstly note that:| K, (dz) is finite
for anyt € N* becausef el”l Q(dz) < oo. Moreover, the local boundedness of and
[ eI N(0,0%)(dz) < oo for anyo € R, imply that [* [ |z| Fy(dz) ds < oo P-almost
surely for anyl € N. Since by assumption 1 oo P-almost surely, we have in particular
7 [(|]? A |]) Fy(dz) ds < oo and the proof is complete. O

4.9 Interest Rate Models

Practically all the examples considered so far consist of or are inspirstbbly price mod-
els. This is not to suggest that our approach only works or is mainly aimed at this kind
of market. On the contrary, the general framework in Chapter 3 gives norgmete to
any particular kind of security. To demonstrate this we consider now shartitgerest
rate models and their implications on zero-coupon bond prices. More specifizallp-
cus on the Vasgk and the Cox-Ingersoll-Ross model (cf. Bjork (1997), Section 3). The
setting is as follows. The only underlying in our market is a short-term firedrme in-
vestments? = exp( [, r, ds) (i.e. satisfyingdS? = S?r, dt), which will also serve as the
numeraire. In contrast to the previous sections, the instantaneous intezestnatv a con-
tinuous stochastic process).cr, , Which is assumed to be a solution to the diffusion-type
SDE

dry = p(ry) dt + o(ry) dWy, (4.14)

wherey : R — Rando : R — R, are given continuous functiongl’” denotes a stan-
dard Wiener process ang € R is fixed. If we letu(r;) = (9 — ) ando(ry) == o
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for someg, ¥, € R, we obtain the/asildek modeln this case, the solution to the SDE
(4.14) is a shifted Ornstein-Uhlenbeck process. If, on the other hand, the coeffiarent
chosen ag(r,) :== a — pr, ando(r,) := 0/r, V0 for somea, 3 € Ry, 0 € R’ then
Equation (4.14) yields the so-call€bx-Ingersoll-Ross modellhe discounted numeraire
is, as usually, given by?® := S°/S° = 1. The stochastic proce$s;);cr, is, by Lemma
2.22, an extended Grigelionis process whose extended characteistiss b, ¢, 0,0)” are
given byb, = u(ry), c; = (o(ry))? for anyt € R,

Remark. In the Vas€ék- and the Cox-Ingersoll-Ross case the SDE (4.14) and equivalently
the corresponding martingale problem in the sense of Theorem 2.30 has a unique solution-
measure. In the Cox-Ingersoll-Ross model the solution always stays positiveashbis

is not the case in the Vasitk model.

4.9.1 Pricing of Zero Coupon Bonds

Since the numerair&? is the only security in the market, one easily sees that Conditions
1-4 in Theorem 3.36 are met and that the pricing measure equals the given probability
measureP. Assume from now on that the filtration of the underlying stochastic basis
(2, F, (F1)ser, . P) is the canonical filtration of° (or equivalentlyr) or its P-completion.

By Theorem 2.65 this implies that Condition 5 in Theorem 3.36 holds as well. Tets,
coupon bondsre securities yielding a payout 1 at some future tim&s their discounted
terminal value is given by th&,-measurable random variahlé?)~!, we can treat them as
derivatives in the sense of Section 3.4. Since the dynamic of the model is unchanged under
the pricing measure, we obtain the well-known zero-coupon bond price formulasvas sho

in the following

Lemma 4.23 Fix ty,...,t, € R and denote byX* := (S?)~' the discounted terminal
payout of a zero-coupon bond maturing at timér: = 1,...,n. Then we have

1. In the Vasildek model the proces&es..., Z" (resp.St,...,S™ in undiscounted
terms), defined by

Si = 802 = expl(—(t: — ) R(t — 1.1,) (415)

foranyi € {1,...,n},t € [0,t;], are neutral derivative price processes for the bonds
maturing at times,, ..., t,, where

o? 1 o? o?
I —BT —0B7\2
foranyr € R, r € R. Moreover,Z!,..., Z" are the only neutral price processes
such that the market := (Z°, ..., Z") meets regularity condition (RC 1).

2. In the Cox-Ingersoll-Ross model there are unique neutral bond price procgsses
..., Z" (resp.S',...,S™ in undiscounted terms) for the bonds maturing at times
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ti,...,t,. These are given by
i 07 . 2 2y exp(5(t; — 1) (v + 0))
si=stzi = oo (oe (L5 0 Fenti 2 )
- 2(exp(y(ti —¢)) = 1) )
Y= B+ (v+B)exp(y(ti —t)) )
wherey := /(2 + 202. Moreover, the extended markét:= (Z°,...,Z") meets
regularity condition (RC 1).

4.9.2 Improved Bond Pricing

Approximate derivative prices in the sense of Sections 3.5 and 3.6 are baseerpatai
pricing measures. Since these are equivalent to the original probabilityuregasGir-
sanov's theorem yields that, relative to these distributions, the extendedtehistics of-

are of the form &, 67«0,5, c,0,0)F for some drift procesg. The fact that this new driﬁt is

no more necessarily a deterministic function-afomplicates explicit numerical computa-
tions. Of course the same is true for consistent derivative prices in the sE8gctions 3.5
and 3.6, but here we face the additional and more serious obstacle that we do not yet know
how to obtain these prices at all in a continuous-time setting. Thereforsutpsising that,
under assumptions that are close(t0p!, ..., p")-consistency, we end up with a simple
dynamic of the short-term interest rate under the corresponding pricing measurdy nam
the Hull-White modelcf. Bjork (1997), Section 3). The general setting is as follows. Fix
ti,...,t, € Ry andX',..., X" asin Lemma 4.23. Moreover, let> 0, p',...,p" € R.
Instead of considering consistent or approximate price processes correspondindgdatcons
external supply', .. ., p", we focus on stochastic external supply Z1, . .., p"/Z" in the
sense of Remark 3 following Definition 3.47, whefé, . . ., Z™ are the still unknown bond
prices or the neutral processes from Lemma 4.23. This looks like a very diffaregt but

in fact is not. The discounted bonds are generally securities of very Iowhtgland drift.
ThereforeZt should usually be a quite good approximation of the initial bond pﬂ?{pd%o

(K, p /Ztl, ceyp /Zf) -consistent (resp. approximate) prices correspond to an external sup-
ply that is not exactly deterministic and constant, but nevertheless reolasasto the fixed
vector (k, p'/Zt, ..., p"/Z7) € R*. The reason for this approximation becomes apparent
in the following

Lemma 4.24 LetT := sup{ty,...,t,}.

1. Suppose we work with the Vasildek model for the short-raiefine the mapping
J: R, — Rby

D(t) —19+/£—Zp10t )(1 — e A=)

and processeS’ = Z¢S° fori =1...,n by

~. ti 2 _ 1
Sy =exp </t (1- 67’6(“75)) <252 (1—e" (t“s)) — 19(3)) ds — rtﬁ(l — eﬂ(tis))>
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for anyt € [0,#;] and Z} := Z;, for anyt € [t;, o0). Then we have

@) (Z%,...,Z") are(k, p'/Z}, ..., p"/ Z")-consistent bond price processes for the
zero-coupon bonds maturing &t, . .., t,. Moreover, the marketZ°, 7!, ...,
Z™) meets regularity condition (RC 1)

(b) By% = Lo With L := fo v) drf) we define a probability mea-
sureP* ~ P. With this chmc@1 Z" are P*-martingales.

(c) Relative taP*, (rt)teR . isan extended Grlgellonls process whose extended char-
acteristics(, ,,, b, ¢, 0,0)” are given byb, = 8(J(t) — r) for anyt € R, .

(d) (21, e Z") are also(k, p'/Z1, ..., p"/Z™)-approximate bond price processes
for the zero-coupon bonds maturingtat. . ., t,, whereZ!, ..., Z" here denote
the processes from Statement 1 in Lemma 4.23.

2. Suppose we work with the Cox-Ingersoll-Ross model for the short rédefine the
mappings : R, — R by

)= =5 oo 07— Ef}éif%;ii?{é =)
and processeS’ = ZiS%fori =1...,n by
S} = exp(A'(t) — B'(t)r)
for anyt € [0,#;] and Z; := Z.. for anyt € [t;, 00), where the functio®’ : [0, T] —
R is the unique solution to the initial value problem

BYT)=0, dB'(t) = (B(t)Bi(t) + %UQ(Bi(t))Q — 1) dt (4.16)

and the mapping!’ : [0, 7] — R is given by

T
Al(t) = —/ aB'(s) ds
t
foranyi € {1,...,n},t € [0,7]. Then we have

@) (Z',...,2") are (k,p'/Z}, ..., p"/Z")-approximate bond price processes for
the zero-coupon bonds maturingtat. . ., t,,, whereZ!, ..., Z" denote the pro-
cesses from Statement 2 in Lemma 4.23. Moreover, the rr(ﬂ‘kéfl, - 5”)
meets regularity condition (RC 1).

(b) By 45 := Lo with L := (% [(8 —ﬁ(t)) drf) we define a probability mea-
sureP* ~ P. With this choiceZ!, ..., Z" are P*-martingales.

(c) Relative taP*, (rt)teR . isan extended Grlgellonls process whose extended char-
acteristics(@, ,,, b, ¢, 0,0)Z are given byb, = o — 3(t)r, for anyt € R .
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The short-term interest rate dynamic under the pricing measurs basically the same as
relative toP, but with time-dependent drift parametets), 3(t) instead of the fixed values
9, B. Therefore, we obtain a special case of the Hull-White extension of thé&kagiesp.
the Cox-Ingersoll-Ross model (cf. Bjork (1997), Chapter 3). Since the term stuctur
Hull-White-type settings is affine, they are computationally well traetétl. Bjork (1997),
Subsection 3.4).

For the explicit construction of an improved bond price model one may now proceed
as indicated in Subsection 1.2.6 or Section 3.6 with the definitigp'of . . , p")-consistent
prices. One observes current bond priggs. . ., S on the real market and chooses supply
parameterg!, ..., p" in such a way that the theoretidal, p'/Z}, ..., p" /Z}*)-approximate
prices from Lemma 4.24 and the observed bond prices coincide. This procedure is known
asinverting the yield curvécf. Bjork (1997), Subsection 3.5).

The common approach to the inversion of the yield curve faces a theoreticagiprobl
The set of all Hull-White-type dynamics under the pricing measure that are antsigth
the given Vagiek- or Cox-Ingersoll-Ross model is obtained by substituting deterministic
time-dependent drift parametesst) (J(t) — r;) (resp.a(t) — 5(t)r;)) for the fixed values
B9 — r) (resp.c — (Bry)) and letting the diffusion coefficient remain unchanged. Since
we are given only a finite number of initial bond prices, there is a great degre«ibflitg
for the functionss etc., and their actual choice is often made ad-hoc. Our approach, on the
other hand, is based on concrete assumptions and the number of free parahmeterg”
is equal to that of observable bond prices.

Let us put it another way. Suppose you are looking for a term structure model that is con-
sistent with the observed zero-coupon bond prices. If you believe that the stmoititerest
rate is well described by the Vasik model (resp. the Cox-Ingersoll-Ross model), that spec-
ulators on the market invest in.-optimal portfolios and that the external supply/demand of
any bond is approximately constant through time, then relative to the pricingureethe
short-term interest rate dynamic is of the particular Hull-White form gimdremma 4.24.
Note that if you actually invert the yield curve in this manner, the resulingng mea-
sure, bond prices and drift parameters depend neither on the risk aversoomt all on the
choice of the utility function.. Indeed, the only property af entering the Radon-Nikodym
densityL., is the risk aversiom. But arguing as in Definition 3.46, one may assuine 1
w.l.0.g.

In Figures 4.41 — 4.43 we examine the \&@- and the Cox-Ingersoll-Ross model nu-
merically. The solid curves in Figure 4.41 correspond to the@¥ksmodel with parameters
¥ = 0.0616, 8 = 0.3636, 0 = 0.00229, whereas the dashed lines are based on a Cox-
Ingersoll-Ross model withk = 0.0254, 8 = 0.4105, 0 = 0.0898. In both cases time is
measured in years. The parameter sets have been estimated by AnnetteEiie same
30-year set of interest rate data. The left-hand diagram in Figure 4.41 showal foeuntd
prices as a function of time to maturity in years. The upper, middle, resgrlowve cor-
responds to an initial annual interest rageof 3%, 6%, 9%, respectively. Now we consider
a bond market with two bonds maturingtat= 1 and¢, = 3 whose external supplies equal
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pt/ZY = —1 andp?/Z* = 0.3 (relative tox = 1). Intuitively speaking, this means that
for a period of one year there is a strong net investment in bonds, whereas for the subse
guent two years many traders seem to finance themselves by shorting bonds.ulthegres
(1,p'/Z", p? | Z*)-approximate bond prices and, in addition, the neutral bond price of any
further bond introduced in this enlarged market, Z', Z2) are shown in the right-hand di-
agram of Figure 4.41. Again, the upper, middle, lower curve correspond to an initisdsht
raterq of 3%, 6%, 9%, respectively.

The differences become much more apparent if we tufart@ard rates Strictly speak-
ing, forward rates are only defined in a market with a continuum of bonds for anynrm
date, and thus not in our setting with its finite amount of securities. Howevére mar-
kets considered above there exists a functfon R, — R such that the initial price of
any bond that is already in the market or is newly introduced to its neutra wigiven
by exp(— fotf(s) ds), wheret € R, denotes its maturity. This is in line with the usual
definition of forward rates at time (cf. Bjork (1997), Section 2). Figure 4.42 shows the
forward rates corresponding to the left-hand diagram in Figure 4.41, i.e. to &wénkre
any bond is traded at its neutral price. Here as well as in Figure 4.43, tHealedt diagram
belongs to the Vaéek model, whereas the right-hand graph shows Cox-Ingersoll-Ross for-
ward rates. Obviously, the upper curve now relates to the high initial sttemée and vice
versa. A comparison of the diagrams shows that the forward rates aramdgr,dout con-
verge slightly more quickly to an average value in the Cox-Ingersoll-Ross modélure
4.43 the forward rates for the, p' /2!, p?/ Z%)-approximate marketZ®, Z', Z?) are given.
They correspond to the right-hand diagram in Figure 4.41 or, in other words, to a bond mar-
ket with non-zero supply exactly for the two bonds maturing at 1 andt, = 3. As one
may expect, the forward rate is comparatively small for the period witlsuggply and high
for the subsequent time of excess demand of bonds.

Promoted by the Heath-Jarrow-Morton approach to fixed-income markatseityi pop-
ular to model these with a continuum of bonds for any conceivable maturity. From a theo-
retical point of view this contradicts our approach, which is based on just the finitberum
of assets that are really traded in the market. However, it miipstan interesting question
to what extent the notions and results from Chapter 3 can be extended to a settig wi
infinite number of securities.

Proofs

PROOF OF THEREMARK. For the Vasiék case this follows immediately from Corollary
2.41. The statements for the Cox-Ingersoll-Ross model follow from Ikeda & Watanabe
(1989), Example IV.8.2. O

PROOF OFLEMMA 4.23. 1. First step:By Lamberton & Lapeyre (1996), Subsection 6.2.1
the random variable¥', ..., X" are integrable with expectatidi(X*) = E(exp(— [, 7,
ds)) = exp(—t;R(t;, o)) fori = 1,...,n. Moreover, we havé?(X*|F;) = (S?)~' E(exp(
ftti reds)|Fy) = (SP)'exp(—(t; — t)R(t; — t,ry)) foranyi € {1,...,n}, t € [0,]. In
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particular, the processés, . . ., Z" defined by Equation (3.11) are continuous semimartin-
gales of the form in Equation (4.15). In particular, the existence conditions in iiRena
following Theorem 3.36 are met, which implies that these processes arel mEuivative
price processes.

Second stepiVe will now show that the extended market= (Z°, ..., Z") meets inte-
grability condition (RC 1). Fix, j € {1,...,n}. We define a mapping : [0,#; At;) xR x
R — R? of classC? by f(t,z,7) := (L exp(—(t; — t)R(t; — t,7)), L exp(—(t; — t)R(t; —
t,r))). Fort < t; A t;, we thus havéZi, Z}) = f(t,59,r,). If (9,201,21,.,2), 0, 0,0)F
denotes the extended characteristicg pthen we haveé = 0 sinceZ is a P-local martin-
gale, and?/ = 0 fort > t; At; because’ is constant off;, cc). In order to compute]’ for
t < t; Nt;, we apply It6's formula (cf. Theorem 2.25) to the extended Grigelionis process
(t, S?,7¢)er, and the mapping above. This yields

2

&l = Dy fH(t, S0, r)o? Daf?(t, S0, m) = 271 % - e M) (1 —e )
for anyt < t; A t;. Sincef is not really defined and” on R?, and hence Theorem
2.25 is not literally applicable, we refer the reader to the proof of Corollary dr.7an
exact argumentation by localization. Sin@®)? < g-j(z;‘)?(zg’)?, Schwarz's inequality
yields thatB([c/*) < Zzsup{E((Z5)") : k € {1,...,n},s € [0,T]} for anyi,j €
{1,...,n},t € R,. SinceZ; = E(X'|F,), Jensen's inequality implies that(Z;)*) <
E(XY)Y) = E(exp(— fo 4ryds)). Since(4r,)cr, solves the same SDE &8,),cr, but
with 45, 40 instead off, o, it follows from Lamberton & Lapeyre (1996), Subsection 6.2.1
that £ (exp(— fo dr,ds)) = exp(—t;R(t;, 4ro)), whereR is defined ask in Lemma 4.23,
but with 449, 40 instead of, 0. As a uniform upper bound, we thus have

1602 1602 1602
o o 0>>::MER+

i 1
E((Z})*) < exp (T(4z9+ 2 ) +B<419+ 2 + 4|ro| + P

foranyi € {1,...,n} and anyt € R,. The integrability condition (RC 1) now follows
easily.

Third step: We will show that there are no further neutral price processes such that the
extended market meets regularity condition (RC 1). Otherwisd,Z&t. .., Z") be such
processes. By Corollary 3.23 and thg-optimality of the empty portfolio, it follows that
Z — Zyis a local martingale. Since any local martingale has the representaﬂparpr
relative to the continuous procevs$cf Theorem 2.65), it follows that — Z, has no dis-
continuous local martlngale part, i8.= Z,+ ZC. The regularity condition (RC 1) implies
that(ZZ o° ZZ ¢ fo tdt is mtegrable and hencé'* is a square-integrable martlngale
fori=1,.. (cf JS, I 4.50). SlncéZ is F,-measurable and hence deterministitjs a
martingale as WeII. It follows thati andZ are martingales with the same terminal random
variableX?, and henceZ = Zifori=1,...,n

2. First step:In the Cox-Ingersoll-Ross model, the interest rate process is positive and
henced < X' < 1fori = 1,...,n. Therefore, it follows from Theorem 3.36 that there
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exist unique neutral derivative price procesges. .., Z™ which are given by

?t> .

The explicit formula for the expected value can be found in Lamberton & Lapeyre (1996),
Subsection 6.2.2.
Second stepwe will show that the extended markétmeets integrability condition (RC
1). Fixi,j € {1,...,n}. We define amapping : [0,%; A ;) x R} x R — R? of classC*
by

ft,z,r):=

1 20 2yexp(3(t; — t)(v + ) 2(exp(y(t; — ) — 1)
(5“‘” (5 (=57 0+ Hewtl - M)~ 75+ O+ et <)
1o (2 2yexp(3(t; —t)(y+8)) 2(exp(v(t; —t)) — 1) >
z P (02 o (7— B+ (v + B)exp(y(t; —t))) Y SBE (v + B en(r(F; —t))>
By the same arguments as in the second step in the first part of the proof, wefobtamm

extended characteristi¢ss, =, 51 ), 5,¢,0,0)" of Z thatb = 0,7 = 0fort > t; At
and

7l = E(X'|7,) = (Sf)’lE(exp ( - /tti Ts ds)

2(exp(y(t; —t)) — 1) 2(exp(v(t; —t)) — 1)
v =B+ v+ B)exp(y(ti —t)y — B+ (v + B) exp(y(t; — 1))

for anyt € [0,¢; A t;). Since|Z!] < 1 and

b ir7] 2
Ct — ZtZtJ /rt

sup {‘ 2(exp(y(ti — 1)) — 1)
v =B+ (v+ B)exp(y(ti — 1))
2(exp(vT) — 1)
v—05

we conclude thaté’ > < o*M*(r,)? for anyi,j € {1,...,n}, t € R,. If we set
L= %(1 — e~ 7", then it follows from Lamberton & Lapeyre (1996), p.131 thatL is

x2-distributed with4a,/o? degrees of freedom and noncentrality paramétet 02(“6’;0,?_ -
Therefore

B((2)) = varl)+ (B(7)) =2 + s+ (G +e)

16/« rof3 rof3 \2
B §(§+eﬂt—1+<o‘+eﬂt—1))

e {1 n)teon)}

=M eR,,

(cf. Johnson & Kotz (1970b), p.134, Equation (13)) and hence

E(r) = 02(%(1 —e P2 4 r—ﬂoeﬂt(l — e (1 +2a) + T(Q)efZﬂt>
Oé(]. + 20() To =
< 02(2762 + E(l+2a)+2r§> = M eR,
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for anyt € R,. It follows that E([c7|?) < o'M*M foranyi,j € {1,...,n}, t € Ry,
which yields (RC 1). O

PROOF OFLEMMA 4.24. 1. First step: For anyi € {1,...,n} define the functions
A0, T - R, B : [0,T] = Rby

2

Aift) = /tti (1= e ) (ST (1= e P) — (s)) dis

At 2 32
Bt = =010,
Observe thatl(t) = — [/ (39(s)Bi(s) — Lo2(Bi(s))?) ds and Bi(t) = [""(3Bi(s) +

1) ds for anyt [O,T]. Fix i, j e {1,...,n}. We define a mapping : R} x R° — R

of classC? by f(z,r, ui,vi, us, v9) = (%exp(ul - rvl),%exp(ug - rvg),r). For any
t < t; At; we have(Z}, Z],r) = f(SP,r, Al(t), Bi(t), A(t), Bi(t)). Fori = j appli-
cation of 1t6's formula (cf. Theorem 2.25) ylelds titis a continuous Grlgellonls process
on [0,#;] and hence ofR, becauseZ! = (Zi). Therefore,Z = (Z2°,Z%,...,Z",r) is
a continuous Grlgellonls process as WeII We WI|| now compute its extended aﬁtérsact

.....

process{StO,rt,A’( ) BZ( ) AJ( ), BY(t))sero.1 for anyz j€{1,...,n}. Thisyields
Bo= Zi( = ggStn = BOS0 =) + BIOB() - 5050

Fr(BBI() + 1) + S (B(0))
= Z'B(I(t) — 9)Bi(t) foranyt < t;
i = ZIZIB(t)Bi(t)o? fort < t; At (4.17)

Since theZ' are constant aftef;, we have@g’ = 0fort > t;andé’ = 0fort > t; A t;.
For the diffusion coefficients related to the last componeint(Z°, Zl, ..., Z" r), which
Is indexed byn + 1, we obtain

antl = _ZIB(t)o? fort <t

andAZ "t = 0 for t > t;. Let us once more remark thatis, strictly speaking, not of class
C? onR® and one may lead an exact proof by localization as in Corollary 4.7.
Second stepA straightforward calculation yields thét— « S i | 71 = 0 for any
i € {1,...,n}, t € Ry. By the remark following Corollary 3.230,p' /2, ..., p" ) Z")
iS a,- optlmal strategy foRl in the marketZ = (Z°,Z',...,Z"). ThereforeZ',..., 2"
are (k,p'/Z", ..., p"/Z™)-consistent proce processes in the sense of Definition 3.40 and
Remark 3 in Section 3.6.
Third step: Note thaty and B are bounded deterministic functions. In view of the
shape 05, cin the first step, integrability condition (RC 1) follows if we can shows,, 1
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E((Z)*Y) < oo foranyi € {1,...,n}. Observe that
~. . ti ~
5= exp ( —/ (1~ e PE)((s) — ) ds)
t

for anyt € [0,¢;), whereS is defined as in Lemma 4.23. Therefo#i| < |Zi|K for some
K € Ry, namelyK := exp([;*(1 — e #ti- N|J(s) — 9| ds), whereZ! is the discounted
neutral price procesg’ = S*/S°. The claimsup,c, 1 E((Zi)*) < oo now follows from
the estimate in the second step in the proof of Lemma 4.23.

Fourth step: As noted in the remark before Subsection 4.9.1, the martingale problem
(D, €r0,0,¢,0,0)M in R with b(0); = B9 — &), c(&;) = o for any (0,t) € D! x R,
has a unique solution-measure, namely the distributibof . Suppose for the moment
that(Q2, F) equals the Skorohod spa@', D') andr is the canonical process @n'. Since
¥ — ¥ is a bounded function, it follows from Theorem 2.31 tt%t(fo 2 I(s) — 9)drs) is
the denS|ty process of a probability measure. This imglies’ ( fo Z(W0(s) =) dr) ) =

“(fy 5( 9)dré)r) = 1, whereT = sup{t,...,t,}. (Slnce this expectation

depends onIy on the distribution of it follows that the equality also holds if the underlying
space is notD', D'), as long as is a solution-process to the above martingale problem.)
This shows thaP* is a well-defined probability measure equivalenfto

Fifth step: An application of Girsanov's theorem (cf. Theorem 2.26 and Lemma 2.27)
yields that the extended characterlst(ese F1ro) 13, ¢,0,0)2 of (Z',...,Z",r) rela-

.....

tive to P* satisfy the following equationgi = 0 fori=1,...,n, b}t = B(I(t) — r,) for
anyt € R, . In particular,Zl, cee Z" are P*-local martingales and Statement 1c in Lemma
4.24 holds.

Sixth step:Note thatr¢ is a multiple of Brownian motion. Sincé is a deterministic
(and piecewise continuous) function, it follows thats a lognormally distributed random
variable (cf. Proposmon 4.21) and henEeLZ) < oo. In view of the third step, this implies
supieo.r B ((Z))?) = superory E(Z)2L) < supyer(E((Z)")E(L*)Y? < oo. By
Equation (4.17) and the boundednessif B/, we obtainE*((Z, Zi);) < oo for i =
1,...,n,and henceZ is a square-integrable*-martingale (cf. JS, 1.4.50c).

Seventh stepApplication of 1td's formula similarly as in the second step of the proof
of Lemma 4.23, but to the proce$&’,t) instead of(Z¢, Z7), yields thatd(Z"¢,r¢), =
—Z;"’Tf(l — e A=Yt = —Zio?B(t) dt fori = 1,...,n andt < t;. Since the local mar-
tingale Z"¢ has the representation property relative t@f. Theorem 2.65), it follows that
dZ® = Hi dr¢ for someH’ € L2 (r¢). Obviously, we havel(Z%¢, r¢), = H} d(r¢,r), =
Hio*dt and thereforeH; = —Z!B'(t) for A-almost allt € R,. This implies that, for
glven (k, p/Z1 .., p/Z™), the local martingaleﬁ in step 5 on page 123 is of the form
Ny = —k [y Yoy P/ ZidZ¢ =k [y S, pPB(s) drS = 5 [0 ¢. Therefore,
P in step 6 on page 123 equdls. Statement 1d now foIIows from Statement 1c.

2. Since the proof is similar to the Vasik case, we only sketch the single steps.

First step: Firstly note thatd is bounded. Therefore, there exists somel/ € R, with
B(t)r + Lo%2® —1 > 0 foranyz € [M,00), t € [0,T], andf(t)z + Lo%2? — 1 < 0 for



4.9. Interest Rate Models 203

anyz € [0,m), t € [0, T]. Since the coefficients of the integral equation (4.16) are locally
Lipschitz, it follows that the initial value problem fdB’ has a unique solution staying in
[0, M] for t € [0,T]. Sincer is also non-negative in the Cox-Ingersoll-Ross model, it
follows thato < S < 1 for any: € {1,...,n}. As in the first part of the proof, we
conclude thatZ = (2°, 7', ... ,AZ", r) is a continuous Grigelionis process with extended

ho= Z(- Sos%t (t)(a— Bri) + aBi(t)

(= BOB() — 502 (B(0) + 1+ 1B (1))

= Z/(B—B(t)B(t)r foranyt<t
= ZIZIB\(t)Bi(t)or, fort <t; Atj,

moreover@i =0fort >t andE?' = 0fort > t; At;. For the coefficients related to the
last component in (2°,Z',...,Z",r), we obtainc? A+ = —ZiBi(t)o?r, for t < t; and
et = ofort > ¢;.

Second stepAs in the fourth step of the first part of the proof, one shows fhais a
well-defined probability measure equivalentito

Third step:As in the fifth step of the first part of the proof, one shows ﬂﬁ]at Z" are
P*-local martingales andf ™! = o — ﬁ( )ry is the P*-drift coefficient ofr for anyt € R, .
Since0 < §¢ < 1andS° > 1, it follows thatZ? = S/S° also assumes only values[in 1].
This implies thatZ', . .., Z" are bounded”*-martingales.

Fourth step: In view of the shape 05,8 in the first step, regularity condition (RC 1)
follows if we can showsup,.g, E(r7) < oo. This is shown in the second step of the proof
of Lemma 4.23 for the Cox-Ingersoll-Ross model.

Fifth step: As in the seventh step of the first _part of the proof, one shows Rhat
equals the measute in step 6 on page 123. Sincg, ..., Z" are P*- -martingales, they
are(k,p/Z', ..., p/Z")-approximate price processes. O



Appendix A

Notions from Stochastic Calculus

Conditional Expectation

As in JS, we define conditional expectations for any real-values random vaeableif it
is not integrable or non-negative, by

E(X*|G)— E(X|9) onthesetwher&(]X]|G) < oo
E(X|§) :=
+o0 elsewhere,
whereXt:= X V0, X :=—(X A0).

Locally bounded predictable processes

Locally bounded predictable processes are often taken as a natural classgadnds for
stochastic integrals (cf. JS, Section 1.4). According to Dellacherie (198032, Lenglart

has shown that for predictable processes pathwise boundedness on any compactt interva
suffices to ensure local boundedness. Since we could not find any reference, wihjzrove
result below.

Lemma A.1 Let H be a predictable process such thd} is bounded. The® is locally
bounded if and only up,(, 4 [Hs| < oo P-almost surely for any € R, .

PROOF By Jacod (1979), (1.1) we may assume w.l.0.g. that the stochastic basis is complete.
The “only if”-part is obvious.

Assume thatup,c, , |H;| < oo P-almost surely for any € R, . Define an increasing
sequenceT),),cn Of stopping times byl,, := inf{t € R, : |H;] > n}. Fixn € N
for the moment. Sincéf’™" is predictable, the random sdt, := {(w,t) € Q x R, :
|H/"(w)| € [n,00)} is predictable as well. For the stopping tirfig defined byS,, (w) :=
inf{t : (w,t) € A, }, we havelS,] C A,. By JS, 1.2.13 this implies th&f, is predictable.
Hence, there exists an announcing sequénge ).y for S,. For anyn € N, we define
R, =T, Asup{Sin,...,Sun}. Then(R,),cn is an increasing sequence of stopping times
with R, 1 co P-almost surely fom — oo andsup,cg, [H/™| < |Ho| + n. Hence,H is
locally bounded. O

204
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Random Measures and Stochastic Integrals

Definition A.2 1. Arandom measurenR, xR? is a familyy = (u(w; dt, dr) : w € Q)
of non-negative measures @R, x R?, B, ® B?) satisfyingu(w; {0} x R?Y) = 0 for
anyw € € (cf. JS, Definition 11.1.3).

2. For any(? @ B?)-measurable (i.gredictablg mappingiV : QO x R, x R? — R the
integral processV x . is defined pathwise by

Wy (w)
_ f[O,t]de W(w, s, ) p(w;ds,dx) if f[O,t]de W (w, s, z)| p(w; ds, dx) < oo
+00 else
(cf. JS, I1.1.5).

3. i is calledpredictableif W x 1 is predictable for any predictable mapping: € x
R, x R — R (cf. JS, I.1.6).

Definition A.3 1. For anyR?-valued cadlag, adapted process the random measure
of jumpsy” is defined by

p™ (w;dt, dz) = Z Lra\ {0y (AX s (W))e(s,ax, (w)) (dE, d)

(cf. JS, 11.1.16).

2. A predictable random measurgwhich turns out to be uniquely defined up taPa
null set) is callecompensatoof X if E(W v, ) = E(W *uX) for any predictable
mappinglV : Q x R, x R? — R (cf. JS, 11.1.8).

Remarks.

1. Evenif|[W|* ¥ = oo and|W| * v, = oo so that the differenc®” = u* — W * i,
does not make sense, it is still possible to define a stochastic intégsaly* — v)
for a large class of P @ B?)-measurable mappindg®’, namely foriV € Gy,.(u”).
For details, we refer to JS, Definition 11.1.27.

2. We use a different notation than JS for integrals:

(a) By f(f H,dX,, we refer to the Stieltjes or stochastic integral of the real-valued
processH with respect to the real-valued process The stochastic integral is
denoted H-X), is JS.

(b) H can also b&?-valued. Then, the integral is al&¥-valued with components
[y HI dX fori € {1,...,d}.
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(c) If H is aR¢-valued, predictable process anda R¢-valued semimartingale,
we use the notatiorf, H, - dX; to denote}__| [ HidX!. If X aR’-valued
continuous local martingale, thd[ﬁ H,-dX, can be defined for a larger class of
integrands, namely2 .(X) (cf. JS, 111.4.5, where the notatiqif/- X ), is used).

(d) We often denote stochastic integrals with respect to random measufﬁ%p,y
W (s, z) p(ds,dx) and f[()’t]xE W(s,z) (1 — v)(ds,dz). The notation in JS is
W x py andW * (u — v);, respectively. IfiV is R?-valued, then the integrals
should be read componentwise.

Discrete-Time Models

Any discrete-time model can be naturally embedded in a continuous-timeviaia the
following manner. Let(Q, F, (F,,)nen, P) be a discrete stochastic basis did, ),y an
adapted process on that space. Defipe= Jj; and X; := X for anyt € R,. Then
(9,7, (F¢)ier, , P) is a continuous stochastic basis did ).cr, a cadlag, adapted process
on that space. Conversely, we make the following

Definition A.4 We call a filtration(J;),cr, discreteif J, := JF; for anyt € R, . Likewise,
we say that a cadlag proces¥;);cr, is discreteif X, := Xp; P-almost surely for any

teR,.

For details cf. JS, Subsection I.1.f.

Absolute Continuity of Measures

Definition A.5 1. Let(Q, F, (F1)wer, , P) be afiltered probability space a#d another
probability measure off2, F). We say that”’ is locally absolutely continuousith

respect taP, and we writeP’ 12<C P,if P'l5, < P|g, foranyt € Ry (cf. JS, 111.3.2).
The up to indistinguishability uniqué&-martingaleZ with Z, = dP’|5,/dP|s, is
called thedensity procesef P’ relative toP (cf. JS, 111.3.4).

oc . loc loc
2. We say thaf’, P’ arelocally equivalen{ P’ = P)if PP < PandP < P'.

Canonical Filtration

Definition A.6 If X is a cadlag process, we céll;).cr, , defined byS, = Nys0(Xy, 1 u €
[0, s]) for anyt € R, , thecanonical filtrationof X or the filtrationgeneratedy X .

Skorohod Space

Definition A.7 1. ByD?¢ := D(R?), we denote the space of all cadlag functifqs —
R? (calledSkorohod spagef. JS, VI.1.1).
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2. The mappingX : D(R?) x R, — R, (w,t) — @, is calledcanonical processn
D (R?).

3. The filtration generated by the canonical proc&sss denoted(D¢)icr, = (D(
R?);)ier, - Moreover, we seD? := D(R?) := Do (R?) (cf. JS, VI.1.1).

4. We denote the predictabiefield onD¢ x R, by P

The spaceS!

Definition A.8 Let (2, F, (F1)«cr, , P) be afiltered probability space adde N*. For any
R¢-valued, cadlag (here including a limit at infinity), adapted procéswe define

[X1[sr == E(IXI%)-
Moreover, we sef' := {X R?-valued, cadlag, adapted proce§&X||s: < oc}. By Del-

lacherie & Meyer (1982), VI1.645"! is a Banach space.

Martingale Representation Property

Definition A.9 A local martingalel/ has thaepresentation propertelative to aR?-valued
semimartingaleX if it is of the form

M:M0+/ Hs-dXSC+/ W (s, z) (u™ — v)(ds, dr)
0 [0,-]xRd

for someH € L% (X¢) andW € Goc(p), wherep™ denotes the measure of jumpsof

loc

andv its compensator.
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General Notation

N, N*

RaR-l-aR:-aR-l-aR—

Rd
Rdxd
QQ*

Uier A;
A—Db,bA
-y

AT

|z

| Al

1Al

T, Tz, Lo
lim sup

ess sup
min f
o(...),0(...)
f7HA)

fla

f/

0A

Df

D;f, Dgj f
Ia

AC

®

*

P(A)
B, B, B¢, B(A)

{0,1,2,3,...},{1,2,3,.. .}

(—OO, OO)? [Ov OO)? (07 OO)? [07 OO]? (_007 0]

the Euclideani-dimensional space

the set of reafl x d-matrices

the set of rational number@ N R,

the disjoint union of the setd;
{a—b:ae€ A}, {ba:ac A}

the space of linear, continuous mappirfgs—> F'
the scalar product of, y € R?

the transposed of the matrik

inf(z,y), sup(z, y)

theith component of: € R? or theith power ofz € R
the integer part of € R,

the Euclidean norm of € R¢

the number of elements of the (countable).4et
the operator norm of the matrix

(xn)nen iNCreases (resp. decreases) Bng, . 2, = =
limit superior of a sequence of numbers or sets
P-essential superior limit

the minimum of a functiorf

Landau order symbols

the inverse image oft

the restriction of the mappinfjto the set4

the derivative of a real functiofi

the boundary of a set (but compare p.106)

the derivative of a differentiable mappirfg
partial derivatives off

the indicator function of the set

the complement of the sett

product ofo-fields and measures

convolution of probability measures (but compare Definition A.2)

the power set ofi
Borel-o-fields onR, R, , R?, A
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General Notation

o(€),0(Xs:s€A)

Fie F oo
ng

I7

P

€z

)‘7 )‘|[0,1]7 )‘|R+
N(p,0?)
Sa(0, B, 1)
PX

pXIs

P« P

P~P
dP’
dP

E(X), Var(X)
Va,(X)t

X ]|

X[

SP

Xt(W)

X

AX,

[S,T],]S,T], etc.

(1]
XT
XT-

(M, N)

XC
Md

Z(X)

7~ grd grdxd
ot

loc

Q/loc
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the o-field generated by or by { X : s € A}

U(Use[o,t)?s)a U(USER+?8>

the P-completion of ther-field &

the o-field generated by, and theP-null sets ofF”

the predictabler-field

the Dirac measure sitting in the point

the Lebesgue measure Brand its restriction td0, 1] resp.R,
the normal distribution with meam and variance-?

the stable distribution with parameterso, 3, i

the distribution of the random variablé

the regular conditional distribution of given theo-field G

P is absolutly continuous with respect 9.

The probability measureB, P’ are equivalent.

the Radon-Nikodym density d?’ relative toP

expected value and variance.®f

the total variation of the procesg on [0, ¢]

(B(X[)»

sup{|X;| : s <t}

{z € R**! : |z| = 1} (but compare Definition A.8)

X(w,t)

1ims~>t,s<t X

Xy — X;_

stochastic intervals

the graph of a stopping time, i.6", T

the process\ stopped at tim&’, i.e. X = X7,

the process( stopped strictly befor@, i.e. X/~ = 1.7 (t) X, +
Lom)e (t) Xp_

the predictable quadratic covariation of the local martingales
M,N

the continuous local martingale part of the semimartingale

M — Mc¢ for a local martingalé//

the stochastic exponential of the semimartingéle

cadlag, adapted processesRnR¢ R4, starting in 0, whose
components are of finite variation

cadlag, adapted processes, starting in 0, that are locally integrable
and increasing

cadlag, adapted processes, starting in 0, that are of locally inte-
grable variation
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(D?, DY, (Df)ser, ), 56, 206

Pd 57,207

| @[, 66

D¢, 67

A, 76

2,91

6,91

oM, 91

Ulp,t,t'), 94

Iy, 94

Vi, 94

Ulp, t,t'), 96

Vf, 106

daf, 106

X*, 133

At¥t, 133

F*, 133

r*, 133

|3, 133

>+, 133

>+, 133

t¥~—, 133
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5,133

E(X | §), 204

ux, 205

Gloc(p), 205

W (u—v), 205

W 1, 205

[1 H,dX,, 205

[} H, - dX,, 206

JSoux W (s,2) (= v)(ds, dr), 206
f[o x P W (s, z) u(ds,dx), 206
L? ( ), 206

loc
P < P, 206
P P, 206
S', 207
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absolutely continuous, 35 derivative, 11, 19, 43, 112
American options, 31, 127 deterministic, 37
approximate diffusion, 58, 70
-ly consistent, 29, 126 discounted, 14
price processes, 27, 30, 124 discounted price process, 90
price region, 28, 124 discrete, 206
approximating sequence, 97 ©-,47,91
arbitrage, 12, 18, 92 discretized market, 133
ARCH, 168 duplicating strategy, 156
ARMA, 58, 70 dynamic, 57
bandwidth, 18, 111 EMM, 22, 92
bivariate diffusion, 180 equilibrium, 15, 22
Black-Scholes, 154 equivalent martingale measure, 22, 92
Blackwell space, 61 Esscher transform, 175

existence and uniqueness, 65

expected utility, 96

exponential Lévy processes, 171

extended Grigelionis process, 45

external supply, 24, 122
stochastic, 30, 126

canonical filtration, 206
canonical process, 207
characteristic triplet, 37
characteristics, 13, 43
differential, 43
extended, 46

integral, 38 feasible, 91

local, 43 filtered probability space, 35
compensation, 37 fixed constraints, 92
compensator, 205 forward rates, 198
complete models, 22, 24 frictionless, 14
conditional expectation, 204
conditional expected utility, 96 gain process, 92
consistent, 24, 28, 29, 122, 126 gains, financial, 15
continuous paths, 151 generated, 206
convexly restricted, 91 Girsanov's theorem, 54
Cox-Ingersoll-Ross model, 192 Grigelionis process, 42

extended, 45
daily return, 164

density process, 206 hedger, 15, 91
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Hull-White model, 195 perfect hedge, 156

hyperbolic model, 174 PIIS, 36

) o portfolio, 15, 91

Image réciproque, 59 price region, 23, 25, 28, 122, 124

improved derivative models, 28, 126
integrable, 36

integral process, 205

interest rate models, 192

process with stationary, independent incre-
ments, 36
pure hedge, 151

inverting the yield curve, 29, 197 random measure, 205
It6 process, 44 random measure of jumps, 205
It6's formula, 51 (RC1'),95

(RC1),95
JS, 35 (RC 2), 98
Keller's model, 190 regular, 97

regularity condition, 95, 98
Lévy process, 36 representation property, 88, 207
Leévy-Khintchine formula, 36 representative risk aversion, 23
local utility, 94 representative speculator, 23
locally absolutely continuous, 206 risk aversion, 16, 93
Iocally equivalent, 206 representaﬂve' 23
locally infinitely divisble process, 42
log-return, 160 SDE, 72
lognormal returns, 160 Skorohod space, 206

Snell envelope, 32, 130
market, 90 solution-measure, 60, 73
Markov chain, 58, 70 solution-process, 72, 73
martingale problem, 57 speculator, 15, 91
martingale representation, 88, 207 stable returns, 163
mesh-size, 133 standard utility function, 16, 94
minimal martingale measure, 152 stochastic basis, 35
moments of a Lévy process, 41 stochastic differential equation, 72
multivariate point process, 70 stochastic integral, 205

strategy, 91
superhedge, 115
supply, 24, 30, 122, 126
supply bound, 25, 122

neutral price process, 112, 127
next reasonable exercise time, 128
Novikov-type condition, 114
numeraire, 14, 32, 90

time value, 162

trading corridor, 18, 111
trading strategy, 15, 91
transaction costs, 18
truncation function, 36
(P), 106 two-period model, 140

ODE, 35, 58, 70

optimal, 17, 96

ordinary convex program, 106

ordinary differential equation, 35, 58, 70
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underlying, 11, 19, 112
utility, 15
function, 16
standard, 16, 94
bandwidth, 18, 111
expected, 94, 96
function, 93
local, 94

Vasicek model, 192
weak solution, 60

zero-coupon bonds, 194



