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Abstract

Allowing for correlated squared returns across two consecutive periods, port-
folio theory for two periods is developed. This correlation makes it necessary
to work with non-Gaussian models. The two-period conic portfolio problem is
formulated and implemented. This development leads to a mean ask price fron-
tier, where the latter employs concave distortions. The modeling permits access
to skewness via randomized drifts. Optimal portfolios maximize a conservative
market value seen as a bid price for the portfolio. On the mean ask price fron-
tier we observe a tradeoff between the deterministic and random drifts and the
volatility costs of increasing the deterministic drift. From a historical perspec-
tive, we also implement a mean-variance analysis. The resulting mean-variance
frontier is three-dimensional expressing the minimal variance as a function of
the targeted levels for the deterministic and random drift.

1 Introduction

A persistent empirical observation about equity market returns is that even
though they tend to be uncorrelated across two successive time periods, they
are not independent, as the squared returns are highly correlated (see for ex-
ample Barndorff-Nielsen and Shepard (2002) and the references cited therein)
with correlation coefficients as high as seventy percent. A natural question,
arising as a consequence of such intertemporal correlations, are the portfolio
theoretic implications of such facts. In particular, we ask how allocations move
between time periods when correlations rise and do the results also dependent
on other underlying market conditions. To answer such questions we consider
a three date, two-period model for investment opportunities permitting corre-
lation in squared returns between the periods. More dynamic models including
continuous-time models could also be developed (see for example Basak and
Chabakauri (2010)), but the simpler two-period model serves as a useful build-
ing block. In this regard, we build upon the single-period fundamental portfolio
theory of Markowitz (1952, 1991).



For a two-period model it is natural to take the investment criterion as
applying to the aggregate two-period return. Since much has been written on the
portfolio theory for a single investment period from a mean-variance perspective,
we include an analysis of the two-period problem from a similar perspective. A
number of authors have considered a multi-period mean-variance formulation
(see for example, among others, Ait-Sahalia and Brandt (2001), Campbell and
Viceira (2002), Jagannathan and Ma (2003), Bansal, Dahlquist and Harvey
(2004), Acharya and Pedersen (2005), Hong, Scheinkman and Xiong (2006),
Brandt (2009)), but from the myopic perspective of optimizing the one-step
ahead objective function. However, we also recognize some of the shortcomings
of mean-variance theory with its use of rewards being measured in units that
do not tally with those used for risk. Furthermore, the criterion is not arbitrage
consistent as a positive cash flow accessed at zero cost is desirable whatever its
variance. We are thus led to primarily consider alternative criteria. To limit
the analysis we select a single alternative.

The possibilities include expected utility theory, other risk measures like
semivariance, value at risk, or the expected shortfall. Expected utility theory
does not focus attention on the allocation problem as it seeks to determine the
actual size of positions. It is also difficult to accommodate losses with a dimen-
sionless risk aversion coefficient. Some of the other risk measures may be related
to special cases of the recently proposed conic portfolio theory objectives pro-
posed in Madan (2014). The criterion of conic portfolio theory is to maximize a
conservative future market value viewed as the infimum of valuations taken with
respect to a number of candidate test probabilities. The result can be written
as the mean less the supremum over a set of probabilities of the expectation
for the negative of the centered return. The latter may be seen as a positive
market ask price and serves as the embedded risk measure. Being positive, it is
bounded below by zero and leads to a natural mean ask price efficiency frontier.
The conservative value maximizing portfolio is then located on this frontier at
a point where the slope of the frontier is unity. This is because the conservative
value is just the difference between the mean and the ask price so the rate of
exchange between the mean and the ask price is always unity. Greater risk
aversion is accommodated by expanding the set of probabilities with respect to
which one takes the infimum in defining the conservative value or, equivalently,
the supremum in defining the ask price. We present an analysis of the two-
period portfolio problem from the perspective of conic portfolio theory applied
to the aggregate two-period return.

Apart from the criterion, one must specify the decision variables and the
information set employed in the decision making. In keeping with portfolio
theory for a single period, the decision variables for the first period are the
dollar investments in the available vector of asset returns for the first period.
For the second period, we take the same, supposing that all returns are available
for two consecutive periods. We build as information for the investment decision
the joint law for the returns over two periods, where the law is known and has
been estimated at the start of the first period. In particular, there isn’t a
Markovian structure with the distribution of second-period returns responding



to actual realizations in the first period. The realizations are seen as quite
noisy with little or no impact on the prior estimated distribution for the second
period. We recognize that if there was a firmly asserted joint law, then one
could be Bayesian and attempt to infer the conditional second-period law to be
used for the second-period decision. Such a procedure places considerable faith
in the asserted two-period law and our criterion is going to take the infimum
over many test probabilities as none of them are believed to be relevant with
enough confidence to be used in a Bayesian construction. We therefore commit
to second-period investments at the start of the first period and then evaluate
the aggregate portfolio return at the end of two periods.

There is an extensive literature applying such precommitment investment
policies. We may cite as examples Bajeux-Besnainou and Portait (1998), Bi-
elecki, Jin, Pliska and Zhou (2005), Cvitanic, Lazrak and Wang (2008), Cvi-
tanic and Zapatero (2004), MacLean, Zhao and Ziemba (2011) and Cochrane
(2014). Such precommitment solutions are also obtained in Duffie and Richard-
son (1991) in a continuous-time incomplete markets setting while Leippold,
Trojani and Vanini (2004) work in a discrete-time complete markets setting,
whereas, Zhou and Li (2000), and Lim and Zhou (2002) approach the problem
in a continuous-time complete markets setting. Basak and Chakabauri (2010)
are critical of such precommitment policies arguing that they are not likely to
be time consistent and leave incentives open for investors to deviate from the
precommitment positions. They argue, in line with Strotz (1956), that ratio-
nal decision making should be time consistent involving plans that will in fact
be followed. However, this is time consistency within a model of information
evolution that rational decision makers recognize, will be called into question.
The incentive to deviate then remains for time consistent solutions as and when
the information evolution models are questioned, reformulated or re-estimated.
Such super-rationality is not possible for long and at best we may hope to pre-
commit for a short period. The reasons for deviation are many and we focus
attention here on just a two-period precommitment.

We recognize that, classically, portfolio problems are analysed in the context
of the presence and absence of a risk-free asset. We therefore develop both
approaches over two periods from both a conic and mean-variance perspective.
However, if the holding period is not locked in, then fixed income securities are
exposed to the risk of movements in interest rates and their return is no longer
risk free. Many fixed-income investments are spread over multiple maturities
with exposure to interest rate risk making them no longer risk-free and then
also correlated with equity returns. The more reasonable and economically
relevant perspective is then that for the absence of a risk-free asset. In fact, on
recognizing that a credit default swap trades on the debt of the US Treasury
leads one to conclude that the US Treasury cannot credibly promise a future
dollar. In which case no one can. A risk-free asset is then a fiction that perhaps
has outlived its usefulness.

Many solutions to optimal portfolio problems involve numerical methods
as opposed to exact closed forms (see for example Ait-Sahalia and Brandt
(2001), Brandt, Goyal, Santa-Clara and Stroud (2005), Brandt and Santa Clara



(2006) among others). The conic portfolio optimization problem is numerically
tractable. We also reduce the two-period mean-variance problem to a fixed
point problem that is numerically solved.

The outline of the rest of the paper is as follows. Section 2 takes up the
two-period conic portfolio theory and the associated mean ask price frontier.
Section 3 also presents the details for the construction of investment opportunity
frontiers for conic portfolio theory allowing access to both correlated squared
returns across time periods and access to random drifts that leverage the design
of skewness in portfolio construction. Section 4 takes up the implementation of
two-period conic portfolio theory. Section 5 presents an analysis of the problem
from the mean-variance perspective developing the two-period portfolio theory
along with the two-period mean-variance frontier and the procedures for its
computation. Section 6 concludes. All proofs are provided in the Appendix.

2 Two-Period Return Modeling

Consider the context of an initial wealth V| invested in n risky assets. Let the
first- and second- period risky asset returns be given by random n-dimensional
vectors of Ry, Ry, respectively. If the time zero and time one dollar investments
in the n assets are given by n-dimensional vectors ag, a1, respectively, then the
random wealth accumulated at the end of the second period is

Vo=Vo(1+aiR1) (1+a Rs).

With a view towards accomodating correlation in squared returns we model
returns on the basis of time changed Lévy processes where we correlate the
subordinators which are used for the time changes. We therefore write

Ry = Xi(Th) +my (1)
Ry = Xo(Ty) + po, (2)

where Xi(t), X2(t) are zero-mean multivariate Lévy processes which are as-
sumed to be independent of each other and independent of the time changes T3
and T. X1, Y9 denote the covariance matrices of X;(1), X2(1). In case these
variables are one-dimensional, we shall write 0%, 03 for their variances. To
accomodate correlation in squared returns we model T, T5 as

T1 = G(a1)+G1(17041) (3)
T, = Glaz)+Ga(l—az), (4)

for subordinators GG, Gy, Go and 0 < ay,as < 1. These three processes are
assumed to be independent and also independent of X;, X5. For reasons of
tractability of the model, we shall in the following choose G, G1, and G4 as
gamma processes with unit mean rate and variance rate v, v, v, respectively.
To be more precise, the characteristic function of G(1) is

E[exp(iuG(l))]:( ! )

1 —tuv
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In the special case of v1 = vy = v, it is easy to see that the random times 77,75
are themselves gamma distributed with unit mean and variance v.

When the processes X;(t) being time changed are Brownian motion with
drift 5, the resulting asset returns have a variance gamma distribution. Let us
look at this particular specification from an empirical point of view. For this
purpose, introduce two random variables Zy, Z5 as standard normal variables
where to begin with we admit a nonzero correlation p.

In the univariate case, centered returns are then modeled as

X1 = E(Tl—l)—‘y-U\/TlZl
X2 = 5(T2 — 1) + o/ TQZQ
E(Z:Zy) = p

with T7,T» as in equations (3) and (4) for v1 = vy = v and a1 = g = a.
One may estimate o, V,g from the data on the time series of daily returns. The
dependency parameters «, p may then be estimated using the EM algorithm by
integrating out the hidden variates G, G; and G3. We estimated these depen-
dency parameters on 96 stocks of the S& P 100 index and present in Figures 1
and 2 the estimated values for a and p, respectively.

We observe that the Gaussian correlation is low, but the time changes have
a significant common component reflecting the correlation expected in squared
returns. This leads us to work under the hypothesis that X;, Xs are indepen-
dent of each other, with covariance matrices 1,9 for periods one and two,
respectively.

3 Two-Period Portfolio Theory from a Conic
Perspective

Mean-variance theory is ideally suited to contexts where return distributions
are defined by these moments and such a context is provided by multivariate
normal return distributions. Under such a hypothesis across two periods the
absence of autocorrelation renders returns between periods to be independent.
The presence of autocorrelation in squared returns is then inconsistent with this
implied independence. Much of the evidence, along with the considerations of
correlation in squared returns, points towards non-Gaussian models for returns.
What objective functions are then best suited to the task of designing portfolios?
Much depends on the purpose of the portfolio design.

With a strict one- or two-period view of the situation, one can imagine the
case of an investor placing monies in the market at the start of the period in-
volved, liquidating the position at the end of the period and consuming the
resulting accumulated wealth. Axioms of rational behaviour under uncertainty
then suggest the use of the expected utility of final wealth as the appropriate
decision criterion. However, in many practical situations such a formulation
misconstrues the reality of the investment activity. The periods involved are
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Figure 1: Estimates of « the share of the common component of the time change.
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Figure 2: Estimates of correlation in the Gaussian component.

100



fairly short with durations of a few weeks or months at the end of which no
consumption of accumulated wealth is being contemplated. Instead, the port-
folio is to be liquidated and reinvested into a new portfolio designed in the light
of new circumstances and information. Hence, the focus is just on the market
value of the portfolio at the future date, marked by the end of the period, and
not on its utility, expected or otherwise. Potential market participants could
then be primarily interested in maximizing the market value of the portfolio.
Now, classically, the market value of a portfolio is the sum of the value of its
components and is, as a consequence, independent of how it is constructed.
This linearity or additivity follows from the law of one price and the absence of
arbitrage opportunities.

Conic portfolio theory is based on the pricing operators of two-price economies
where the law of one price is abandoned. Such economies separate bid and ask
prices. Markets are viewed as offering to buy random cash flows at prices that
render the resulting cash flows less its price to be market acceptable. Accept-
able cash flows include all nonnegative cash flows but more generally form a
convex cone of acceptable random variables. Every such cone may equivalently
be represented as those cash flows that have a positive expectation under a set
of test probability measures. As a consequence, the best bid price becomes the
smallest expectation delivered by the test probabilities. The bid price being
an infimum of expectations is then a concave function and the bid price for a
package may well exceed the sum of the bid prices for the components. In conic
portfolio theory portfolios are designed to maximize this bid price seen as a
conservative market valuation.

Markets are also viewed as willing to sell random cash flows if the resulting
price less the cash flow is market acceptable. Positivity of expectations under
test probabilities renders the best ask price to be the supremum of expectations
across test probabilities. The ask price is then a convex function on the space
of random cash flows and, by construction, the ask exceeds the bid. It is also
the case that the ask price is the negative of the bid for the negative cash flow.

Since constants come out of the infima of expectations, Madan (2014) shows
that one may write the bid price as the expected value under a base probability
less the ask price for the negative of the centered or demeaned cash flow. One
may then also view the bid price as measuring reward by the expectation under
the base probability less a risk measure given by the ask price for the negative of
the centered cash flow. Since the centered negative cash flow has a zero mean by
construction, and as the base probability is one of the test probabilities, the ask
price is always positive and can be minimized subject to attaining a particular
expectation. This naturally leads us to a mean ask price frontier and examples
of such constructions may be found in Madan (2014). Here we consider the
mean ask price frontier for the two-period portfolio problem.

Two additional assumptions termed comonotone additivity and law invari-
ance simplify the evaluation of the bid price of a random cash flow. We sup-
pose the random variables being considered are defined on a probability space
(Q, F, P) for a base probability P. In order to explain comonotone additivity,
we first note that two random variables X,Y are said to be comonotone if, for



example, one is a monotone increasing function of the other. More generally
they move together in the same direction across the set of events, or have no
negative comovements or a Kendall’s tau of unity. In general, the bid price
of X +Y is larger than the sum of the bid prices for each, reflecting some
possible advantages of diversification. Comonotone additivity asserts that for
comonotone risks we have strict additivity with the bid for the sum equalling
the sum of the bids in this case. Put another way, there are no diversification
benefits for comonotone risks.

The second assumption of law invariance asserts that the bid price be com-
putable from information on just the probability law of the random cash flow.
How the random variable correlates with other random variables is not relevant.
This is a strong assumption from the perspective of the concerns of particular
agents who may well be interested in whether the cash flow being valued pro-
vides hedging benefits for other risks they are already carrying. However, the
valuation attained in an abstract market, like that induced by the Walrasian
auctioneer who is merely concerned with trying to clear as much risk as possible,
may make correlation issues less relevant.

Under these two assumptions Kusuoka (2001) showed that the bid price
b(X) of a random variable X with distribution function Fx(x) is given by the
expectation under concave distortion. More specifically, there exists a concave
distribution function ¥(u) defined on the unit interval such that

b(X) = / xd¥(Fx (z)).
The set of test probabilities under which X — b(X) is market acceptable or has
a nonnegative expectation are shown in Madan, Pistorius and Stadje (2015) to
be given by all probabilities @) such that for all A € F

Q(A) < ¥(P(4)).

Cherny and Madan (2009) observed that expectation under concave distortion
is also an expectation under the quantile based change of measure ¥'(Fx (z)).
Further requiring that ¥/ (u) tends to infinity and zero as u tends to zero or unity,
respectively, to reflect both risk aversion and an absence of gain enticement,
they introduced the distortion termed minmazvar and defined, for a stress
level parameter vy, by

T (u) =1 — (1 —ut) 1,

We shall use this distortion to illustrate bid price evaluations in this paper.
It is shown below that we may also write

bx) = E[X] - a(X)

X = EX]-X

and the functional a(X) is the ask price functional defined as

a(X) = /00 zd¥U (1 — Fx(z)).

— 00



We may now construct the mean ask price frontier and maximize the bid
price on this frontier as the maximum for the mean less the ask price on the
frontier.

For our two-period return in the absence of a risk-free asset we note that

R{ 5 = (14 agRy)(1+ d}Ry),

where Ry, Rs are as in equations (1) and (2). Furthermore, we have the con-
straints

al = 1
all = 1.

We may write B
R{, = E[R{ ] + Rp 5

where I%g,Q is the centered two-period return.
For the bid price we then have

b (Rgz) = E[Rf,]+b (Egz)

BB, — (b (~ (~B5,)))

E[Rg,z} —a (_EgQ) .

We may write

Ri, = (I+ag(Ry—py +py))(1+ @) (Re — po + 1))
= (1+app + apR)(1+ ajpy + a) Ry)

= 1+ appy + iy + app @ p + (1+ app )as Ry + (1 + alp)ag Ry + afRaal Ro.

We see that
Rb, = (1+ajpy)ai Ry + (1 + afpy)ap Ry + ajRia) Ry

and the mean ask price frontier requires the minimization of

a (—}Niaz)

subject to
al = 1
all = 1
agiy + aypy +agmaiy, = m,

where m is the target two-period mean return. The bid price maximizing port-

folio is the one on this frontier that maximizes the value of m —a (,ﬁgQ)_
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The bid price could be maximized directly for the optimal portfolio. Al-
ternatively one may also construct the mean ask price frontier analogous to a
mean-variance frontier with the advantage that the optimal portfolio is located
on the frontier where its slope is unity, as risk and reward are both measured
in dollars and the bid price is precisely the reward less the risk of the ask price
and there is no trade-off coefficient between the two. The situation with mean-
variance is both artificial and arbitrary as reward is measured in dollars and
risk in squared dollars and the use of a linear trade-off between them quite
inappropriate and unsatisfactory.

The solution of this maximization problem requires the specification of the
joint law across many assets, say n, for the vector of returns simultaneously
across two consecutive periods with the resulting distributional problem being
one in dimension 2n, the dimension of the joint vector (ag, a1). This is quite a tall
order and, with a view to gaining some tractability on this problem, we build our
way up to this problem by first reporting on the simpler one-period subproblem.
The two-period mean ask price frontier is taken up in the next section. Here
we compare the one-period problem in our context with the classical mean-
variance frontier that must be revised to accomodate time change conditional
drifts differentiated from unconditional drifts.

This subproblem in our context is richer than the classical mean-variance
problem by providing access to skewness via the drift of the time changed Brown-
ian motion along with kurtosis via the volatility of the time change. The mean
ask price frontier that we eventually employ takes account of all these dimensions
of the problem. Even if we fix the kurtosis and consider just the minimization
of variance, there are now two drifts to be addressed in the portfolio design for
even a single period. They are unconditional mean and the mean conditional on
the time change that we call a random drift. As a consequence, we observe that
the classical mean-variance frontier for a single-period is now three-dimensional.

For n assets over a single period let the drifts of the Brownian motions to
be time changed be given by a vector 8. The centered returns are then modeled
by B

Ry =0(T —1)+VTZ,

where Z is multivariate Gaussian with mean zero and covariance matrix 3. The
time change represents a measure of economic time and is uniform across assets.
Given the law of the time change, to be specified later, we may access the return
distribution of any portfolio with centered return

R, = a Ry
= dT—-1)+VTvz
d = d
v = dXa

and z is a standard normal variate. In addition, if the assets have mean returns,
1, the portfolio return may be accessed with the knowledge of three numbers
m = a'p, the random drift d and the variance v along with the law of 7. We
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recognize that these values are related via the equations for m,d, v in terms of
the portfolio weights a.

To further describe the classical minimum variance investment opportunity
set for the first period, we consider the problem

v* = min ¢'Za
a
st.dy = m (5)
ad = d
adl = 1.

The solution to this problem (5) may be described in terms of three distin-
guished portfolios

n 1/2—1‘u
r-19

° = Twg ©)
»-11

¢ = 1211’

their mean returns p, , ps, p¢; their random drifts yy, ys, y¢; and their variances
and covariances o3, 03, 07, 0ys, onc and os¢.

The solution here may be contrasted with classical mean-variance theory as
presented, for example, in Skiadas (2009) Chapter 2 where only the first and
the third portfolios are involved in describing the one-dimensional frontier. In
the current context, three portfolios are distinguished and the frontier is two-
dimensional.

Proposition 1 The solution to problem (5) is given by
* 32 2 ~2 2 ~2 2 N~ Y~ ~~
v =\ o, tKos+7mo;+ 2XKO s + 2ATo e + 2RTOs¢,
where

Moy = pe) +E(ps —pc) +pc = m
Myy —ye) +5(ys —ye) +ye = d
1-A—& = 7.

We suppose the asset space is rich enough to permit the availability of vari-
ances above the minimum variance given m,d with all levels of m, d being at-
tainable. The investment opportunity set for the first period then consists of
triples m, d, v with

v >v*(m,d).

This is a three-dimensional mean-variance frontier as the optimal variance now
depends on the choice of both a deterministic drift m and a random drift d.

12



Volatility Costs of Random and Deterministic Drifts

Volatility Costs
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Figure 3: Volatility costs as a function of the level of random and deterministic
drifts.

By way of an example we take the inputs

P 0.06
Ps 0.09
Pe 0.03
Yn —-0.1
Ys —0.12
yC —0.05
o, 0.15
o5 0.20
o¢ 0.05
oys  0.0210
op¢e  0.0015
os¢c 0.0001.

Figure 3 presents a graph of such a three-dimensional volatility efficiency
frontier while Figure 4 presents an associated contour plot.
This opportunity set is fully defined by specifying the mean returns, random
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drifts, variances, and covariances of the three distinguished portfolios. The
investment opportunity sets may be allowed to be different in the two periods
by taking different settings for the mean returns, random drifts, variances, and
covariances of the distinguished portfolios in the two periods.

In the presence of risk-free assets for both periods with interest rates of rq, s,
respectively, the volatility cost frontier is defined in terms of two distinguished
portfolios

YN (p—r1)
¢ = 1YY u—rl)

Y

- UEe’

For the frontier one needs the excess returns z¢ = &' (u—r1), 25 = §'(u—r1);
the random drift coefficients ye = ¢, ys = §'0; the variances ag, o%; and the
covariance o¢;.

Proposition 2 In the presence of a risk-free asset, the minimum variance v*
for a deterministic drift of m and a random drift of d is given by

~92 ~
v = XNop + R’02 + 2\Rogs

e W)L
ve ws| |k| 4]’

The ask price minimization problem may be implemented by specifying the
joint law for the two time changes in the two periods. In this regard, we first
observe that stochastic volatility models as formulated by GARCH models are
not able to deliver the level of correlation in squared volatilities observed in

data. These correlations can be higher than 0.75.
In a typical GARCH(1,1) specification, the squared returns are given by

where

Y, = o377
Yo = 0373
02 = w4 Bol+aY;.

We may compute the correlation between Y7, Y5 for Z;, Zs being independent
standard normal variates.

Proposition 3 The correlation between Y1, Ys is bounded above by

1

Vi +4+428/a
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For typical values of 8 near unity and « near zero or (1 — ) this correlation
is expected to be small.

We recognise from Proposition 3 that for a given first-period volatility the
only source of correlation is the randomness in first-period squared returns that
typically receives a small weight in estimated models. To give the first-period
volatility some volatility of its own we simulate the first-period volatility from
a log-normal distribution with its own volatility and then compute squared
return correlations. Figure 5 presents a graph of squared return correlations as
a function of the volatility of the first-period return volatility.

We observe that typical levels of empirically observed squared return corre-
lations are associated with very high levels of first-period log-normal volatility.
With deterministic first-period volatility there is no chance for correlations in
squared returns to reach empirically observed levels.

These considerations have motivated our use of correlated time changes as
the source for correlation in squared returns. Volatility in such a construction
is then a random variable going forward and not a number. This introduces the
possibility of substantially correlating squared returns.

Figure 6 presents results on simulated squared return correlations for differ-
ent levels of v, . The returns are generated as

X, = —02(Ty —1)+0.25T1 2
Xy = —03(T1,—1)+0.32/T2 2,
T, = Gla)+Gi(l-a)
T = G(a)+ Ga(l-a).

G(t),G1(t), Go(t) are independent gamma processes with mean rates unity and
variance rates v,1,1. Z; and Zs are standard normal variates independent of
each other and G, G1, G2. Though we deal with processes we are only interested
in the associated random variables.

With such a formulation for the correlated time changes in the two periods
one may solve for the mean ask price frontier by minimizing the ask price for
a given level of the two-period mean return. In the process we determine the
deterministic drifts mq, mo; the random drifts d;, do; and the portfolio variances
v1, V2. The conservative value maximizing or bid price maximizing portfolios may
then be located on this frontier. The next section implements this program.

4 Conservative value maximizing portfolios across
two-periods with correlated squared returns

As before we take the time changes to be drawn from gamma processes. We set
the proportion of the common time change to 0.25 with a variance rate of the
common time change at 3 while the independent components have a variance
rate of unity. This choice was motivated by Figure 6 where such a setting
pushes the correlation in squared returns near to 0.5 even though the share of
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GARCH(1,1) vol. autocorrelation vs. first-period vol.

correlation in squared returns
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0 1 2 3 4 5

first period log-normal volatility

Figure 5: Correlation in squared returns as a function of the log-normal volatility
of first-period volatility.
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the common component is below what was estimated in data. The two frontiers
with no risk-free asset were defined by the setting used for Figure 3 for the first
period. The setting for the second-period was given by the following parameter
choices

py,  0.07
ps  0.10
pe  0.02
yp  —0.15
Ys —0.10
Y¢ —0.07
o, 0.18
o5 0.30
oc 0.07
ons  0.0324
op¢e  0.0039
os¢c 0.0042.

For a stress level of v = 0.275 we construct the two-period mean ask price
frontier. The frontier along with the value maximizing portfolio and its details
are presented in Figure 7. The six variables for mq, mso, d;, d2, vy, v2 were found
by a nonlinear constrained optimization with the variances constrained to lie
above the minimum values corresponding to the choices for m, d in each period
as is consistent with the frontier for the period. The Figures report the standard
deviations or the square roots of the variances.

We observe in this case that the second period deterministic drifts are higher
as are the volatilities. The random drifts targeted are negative with a greater
skewness in the second-period. Figure 8 presents the solution for the same
frontiers but for an increased share of common component of 0.3.

We observe that the targeted mean rate for the two periods is unchanged,
but the first period has a higher mean return and the second a lower one. The
negative skewness and volatilities also rise in the first period and fall in the
second.

Additionally, we present in Figures 9 and 10 the mean returns targeted in
each period against the random drift and the volatility, respectively, for both
periods. We observe a tradeoff between the deterministic and random drift and
the volatility cost incurred for higher mean returns.

In the absence of access to skewness or when 6 equals zero for each period,
the mean ask price frontier in the absence of a risk-less asset is more curved.
Figure 11 presents an example of such a frontier.

5 Two-Period Mean-Variance Analysis

For a mean-variance analysis of two-period returns we develop the equations for
the two-period mean return and its variance.
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Value Maximization on Two-Period Mean Ask Price Frontier

0.22 T T T T T T T T
0.2 F ml =0.0261 4

018 I m2 = 0.0330 |
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0.16 *
d2 =-0.0339

0.14 - *
sl =0.0942

0.12 *
s2 =0.1213

0.1r

0.08 -

Targeted Two-Period Mean Return

0.06 I T(o.o790,o.os)

0.04 - 4

0.02 | | | | | | | | |
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Minimal Ask Price

Figure 7: Value maximizing frontier and value maximizing portfolio with no
risk-free asset.
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Value Maximization on Two-Period Mean Ask Price Frontier
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Figure 8: Mean ask price frontier and value maximizing

common component.

Minimal Ask Price
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Deterministic and Random Drifts
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Figure 9: The random drift as a function of the deterministic drift targeted in
each period.
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Mean Returns and Volatility
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Figure 10: The volatility targeted as a function of the mean return targeted in
each period.
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Base Case with no risk-free asset and correlated squared returns
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Figure 11: Mean ask price two-period frontier for correlated squared returns
and no random drifts or skewness access.
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Proposition 4 The two-period mean return is given by

E [m =1+ appy + aipiy + agpyayps. (7)
The variance of the two-period return is given by
Variance [Vj = qapX1a0 + a)X2a;
+a(X1a0aiX2a1 (1 + v(ag A as)) (8)

+2a(31apphar + 2a) Xaaq p)ao.

We may observe from equation (8) that variances over two periods rise with
an increase in the share or variance rate of the component in the time change.
From a mean-variance perspective one would expect portfolio adjustments to
take place within periods in response to such movements in the joint distribution
between periods. Let x = (1 + v(a1 A az)) be the parameter representing
henceforth the dependency in the time change. The two-period mean-variance
optimization problem in the presence of correlated time changes may then be
written, for a risk aversion coefficient of A, as maximizing over choices of ag, a1,
the objective utility U,

apX1ao (1 + 2p5a1) + ay5za1 (14 204 ag) )
2

A

o / / roo A
U = agpy+a; pra+agpiy proar ( S xahEraod, Saay
9)

subject to the constraints

ahl = 1 (10)
a1l = 1. (11)

The impact of x on portfolio choices in the two periods may be expressed
in terms of positions on the two mean-variance efficiency frontiers for the two
single periods. For this purpose, we introduce the two frontiers defined by their
distinguished spanning portfolios (Skiadas (2009)), the minimum variance port-
folios (4, (5 for each period and two distinguished efficient portfolios 7,7, that
we shall refer to as the market portfolios for the two periods. These portfolios
are given by

& = DI
! sl
& = DI |
2 1351
n = 51
' Dy
Ny = S5
’ 1S5 g
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In addition, we introduce the variances 07, 03 and mean returns wy, we on
the minimum variance portfolios as

9 1
T —
s
1
15511
1yt
w, = 171/141
13771
syt
w, = 271/~52.
13571
The mean returns p;, py on the market portfolios are given by
o, = Nﬁzflﬁh
' 1/2;1N1
_ ﬂ/222_1/¢2
P2 = T o1
1'%, iy

Let m1,v; and mo, vs be the mean and variance of two mean variance efficient
portfolios for the two periods. We recall and also review in the appendix the
relations between m, v for mean-variance efficient portfolios given by

(mq —wy)? wy
s T = = — 12
vy — 0_% 0_% (pl ’LU1) ( )

(Mg — wo)? Wo
_—_— = _— —_ . 13
vy — 0’% 0_3 (p2 w2) ( )

Proposition 5 The solution to the two-period mean-variance optimization prob-
lem of maximizing U as given by equation (9) subject to the constraints (10) and
(11) is given by two mean-variance efficient portfolios in the two periods satis-
fying equations (12) and (13), where the two variances are given by solutions
to

o, wi(p; —w1)

vy = 07+ U% X
2
1+w2+\/%(Pz_IUQ)(UZ_Ug)_AU?
- (14)
Al +2 (wg + \/%(pZ — ws)(ve — a%)) + xv2)
w —w
vy = 0_§+ 2(p22 2)><
02
2
1+w1+\/Z—%(pl—wl)(vl—af)—Am
(15)

A1 +2 (w1 + /% (o —wi) (0 - g§)> +xv1)
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Two-Period Volatility vs risk aversion for two levels of chi

0. \ \ \ \ \ \ \

Two-Period Volatility

Risk Aversion

Figure 12: Frontier volatility as a function of risk aversion for two levels of
covariance between random variances for the two periods.

The equations (14) and (15) may be solved simultaneously for the volatilities
of the two periods with portfolio selections then on the appropriate frontiers.
Consider, as an example, a stable frontier across the two periods with w; =
Wy = .02, g1 =092 = 05, pP1 = P2 = .07.

For fixed levels of dependency x, we let risk aversion range from 1 to 5. We
graph in Figure 12 the frontier volatility as a function of risk aversion for two
levels of dependence in variance as given by ¥.

Additionally, we report the common single-period volatility as a solution to
a one-period problem held in each period and the common two-period volatil-
ity (given a stable frontier) held in each period for different values of x and
comparable risk aversions.

A single period x =125 x=1.75

1 0.6344 0.5073 0.4818
3 0.2167 0.2057 0.2027
5 0.1360 0.1330 0.1321
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Common Single-Period and Two-Period Volatility fortwo chilevels

0 \ \ \ \ \ \ \ \ \

—common single-period volatility for chi = 1.2

~—two-period volatility for chi= 1.2

0.6

two-period volatility for chi = 1.8

Volatility

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Risk Aversion

Figure 13: Single-period and two-period volatilities held by different risk aver-
sions for two levels of x.

We also present in Figure 13 a graph of the common single-period volatility
and the two-period volatility for different risk aversions and two levels of x.

We observe a reduction in the single-period volatility exposures taken up in
the context of correlation in squared returns across periods.

Apart from the solution of the utility maximization problem for the two-
period mean-variance problem, one may take up the direct construction of the
two-period mean-variance frontier. Here we wish to minimize the two-period
variance V subject to attaining a given two-period mean return m. Hence, we
wish to minimize over choices ag, ay

V= aéZlao + a’lEgal + Xagzlaoa'lEgal + 2a621a0u'2a1 + 2a322a1u’1a0

subject to
al = 1
all = 1
Gty + iy + hpinhor = .
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Proposition 6 The solution of the two-period mean-variance frontier lies on
the two single-period efficiency frontiers.

Recognizing that the solution lies on the two single-period frontiers we may
rewrite the problem as one of finding single-period variances v; vo to minimize

V =v1 + v2 + xv1v2 4 2v1me + 2vam;.

subject to
m1 + meo +mimeo = m,
where
w1
mo= i+ ¢ (o1 — w1) (1 - 02)
01
w2
me = wa+ \/02 (py — w2) (v2 — 03).
2

Taking the Lagrange multiplier A of the two-period mean constraint as the
free variable in place of m, we may describe the solution in terms of A.

Proposition 7 The system of equations for single-period variances for a two-
period mean-variance frontier in terms of the two-period mean return Lagrange
multiplier is given by

AQ
V1 = J% 4+ — X
4%1 (Pl - wl)
2
(14 w2t /5 (oo w2) 2= 0B)) 2 (s = )
(16)
1+2 <w2—|— \/7:7% (pz —wz) (Uz —05)) + Xv2
2
v = o3+ __r X
4% (Pz - w2)
2
(14 01+ /T o= w0 o= D)) % (93 - o)
(17)

1+2<’LU1+\/7:%(P1U}1)(U10%)) + X1

To construct the frontier and the associated solutions we solve equations
(16) and (17) for various values of A and then construct mj, mo and m from the
equations for the single-period frontier and the constraint equation for m. We
may then graph against m the values for vi,vs. Figure 14 presents a graph of
the mean-variance frontiers for the two periods at two different settings for x.
The parameters used were w; = .02, wy = .01, 01 = .05, oo = .03, p; = .07,
Py = .06.
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Two-Period Mean Variance Frontiers
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Figure 14: Mean-variance frontiers for each of the two periods. We present a

graph of the two-period mean targeted and the related variances for the two
periods at two levels of dependency.
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In the presence of risk-free assets in the two periods with risk-free returns of
r1, T2, respectively, the two-period mean return is

[

v r1ay (pg — r21) 4 r2ag(py — 111) +ag(py —r11) +ay(pg —r21)
0

] 147 +ro+rire+
+af (py — 1) (g — r21) ag

The two-period variance is given by

V-
Var [Vz] = (1+m)%a)S1a0 + (1 +71)%a)Yea1 + xah¥1aa; Xoay
0

+2(1 + ro)agXraoa) (py — rol) + 2(1 4 71)a) Xoarag(puy —r11)
+ ajralagXiap(ajral — 2a) ps) + agrilal Xoaq (agril — 2ag ;).

The portfolios again lie on the single-period mean-variance frontiers which are
now linear and described by

1 = PpPi1s1
T2 = P28z,

where x; = m; — r; is the excess return on the portfolio and s; is the standard
deviation of the portfolio return. The slope coefficients p; are given by

pi \/1/21’_1(/1'1 —ril)¢;
¢ = &lp—ril)

¢~ Ditmora)
s ()

6 Conclusion

Portfolio theory for two periods is developed in a context allowing for substantial
levels of correlation in squared returns while returns are uncorrelated. The
returns must then, of necessity, be non-Gaussian making mean-variance analysis
less relevant. We develop the two-period conic portfolio problem that leads to a
mean ask price frontier. Ask prices are computed using concave distortions and
the theory is illustrated and implemented in the context of access to skewness via
randomized drifts. The resulting mean-variance frontier is three-dimensional,
expressing the minimal variance as a function of the targeted levels for the
deterministic and random drift. Optimal portfolios maximize a conservative
market value seen as a bid price for the portfolio. On the mean ask price
frontier, examples illustrate a trade-off between the deterministic and random
drifts and the volatility costs of increasing the deterministic drift.

For completeness, a separate section provides a mean-variance analysis of
the two-period portfolio. The result is that in each period one takes positions
on the single-period frontier with volatilities satisfying a system of nonlinear
equations. Computations illustrate the construction of the two-period frontier.
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APPENDIX

Proof of Proposition 1
The Lagrangian is

1
L =§a’2a —XNd'p—m) — k(a0 —d)—m(a'l—1).
The first order condition is

Ya=u+ k0 + 71

with
a=A2"tp4+ kS0 + 72

In terms of the distinguished portfolios (6), we may write
a = An+Fr6+7C.
The constraints yield

m = Mp, —pc) +E(ps — pe) + ¢
A

d = Myy—ye) +EYs —vye) +yc
T o= 1-A—Fk
In this case, we have that
CZ X2 R0l 4 Pl 4 DRy 4 W | 2R
vi=Ao,+Ko5+T 0<+2 Kops + 2AT0,¢ + 2KTOo5¢.

Proof of Proposition 2
With a risk-free asset we have the Lagrangian

L zéa'Za — X' (p—r1l) —m) — k(d' — d).
The first order condition is
Ya—Ap—1r1)— k0 =0.
Therefore we have that
a=A"Y(p—rl)+ K071

In terms of standardized portfolios we may write

a = N +RS

£ = S —rl)
S~ Yp—rl)
1o

* = Tv g

X o= S Hu—r1)A

E = 127k
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Hence m, d can be written in the form

m = Xmg + kxs
d = Xy§+'f-€y5,
where
ze = (p—rl); x5 =0 (p—rl)

ye = £0; ys=45'0.

Proof of Proposition 3
The variance of Y7 is

2
oy, = B[] -(EM])
= 30‘11—0‘11
207.

The variance of Y5 is similarly

0%, = E[Y7] - (E[Ya)’

- E [(w + Bo? + ao?z2)’ zg} — (w+ (a+B)o2)’.

We expand the first term to get
(o 501)" + 2008w + B0 2} + a%iz}) 24,

Taking expectations we get

3(w+ Ba%)2 + 6a0?(w + fo?) + 9a’o].
We have to subtract

(w + 60% + acf%)z
2

= (w4 B07)" +2(w+ Boi)act + a’of.

Hence

oy, = 2(w+ BU%)2 + 4(w + Bod)ao? + 8a’o]

= 2w? +4wpho? + 28%01 + dwao? + 4afot + 8a’o]
= w(2w+4(a+B)o) + 26%0% + daot (20 + B) .

The denominator for the correlation is then given by

V201 (@ (2w + d(a + B)o?) + 26%0% + dac? (2a + B)).
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Consider now the covariance computed as the expectation of the product
Y1Y5 less the product of expectations. The product of expectations is given by

o} (w+ (a4 p)o})
= woi+ (a+p)ai.

For the expectation of the product we have
Yo = o017} (w+ Bot + aU%Zf) VA
= woiZiZ3 + BotZi 75 + aoiZ1Z3.
Taking expectations we have

wo? + Bol + 3ao]
= wol+ (a+ B)o] + 2a07.

The covariance is then

2aa‘11,
and the correlation is
) = 200%
\/20‘11 (w (2w +4(a + B)a?) + 28°01 + dact (2a + B))
B o
e
et
<
VB +2a 20+ )
1

Vi +4+28/a

Proof of Proposition 4
For the two-period expectation we have
E[Va] = Vo(1+agu) + VoE [(1 + ajR1)a) Rs]
Vo(1 + agpy) + Voaypg + Vo E [ag Ria) Ro]
Vo(1 + agpy) + Voay iy + VoE [ap (X1(Th) + i) (X2(To) + pa)' aa]
= Vo (L+agpuy + aipe + appya’pis) -

For the variance of V,/V, we have four terms for

v
72 =1+ agRy + a} Rs + ay Ry Rha .
0

We thus have 3 terms of variances and 3 covariances.
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First, we evaluate

Var(agRy) = Var(asX1(T1))
= E[Tl]a{)Elao.

Second, we have
Var(ayR2) = E[T]a)X2a;.
The third variance is
Var (dyR\Rha;) = E [(agxl(n)f (XQ(TQ)'alﬂ
= aéZlaoa'lEgalE [TlTQ]
= agElaoa’lEgal (1 +v (0&1 A ag)) .

Note on taking for unit time, E[T}] = E[T3] = 1 that

ENT)] = E[G(o)+Gi(l—m)) (Glaz) + G2(1 — a2))]

E[G(a1)G(az) + a1(l —ag) + as(l —a1) + (1 — a1)(1 — as)]

= aazt+viog Aag) +or(l —az) +az(l—a)+ (1 —a)(l — az)
1+v(ar Aag).

The nonzero covariances are those of
/ / /
aoRl, a0R1R2a1,
and also the covariance of
/ / /
ale, aORleal.
For the first, we have to consider the product of
apX1(Ty), ayR1Ryay — agjiy ji5ay .
So we have the product of
agX1(Th), ag((py + X1(T1)) (ko + X2(T2)) a1 — agpy pyan
or
2 ’
(apX1(T1))” X2(T2) a1 + (agX1(Th))* phar + ap X1 (Th)agp Xo(Tz) ar.
The expectation of this term is using conditional independence of X7, X»

given 14,75
li /
anX1a0 4501 -

Similarly, we have
! !/
a7122a1 141 G0-

Hence, the variance of V5 /V} is given by (8).
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Proof of Proposition 5
The first order conditions are for Lagrange multipliers Ag, A\; for the two
constraints

py + (phar)py — AaiYearpy — A (1 + 2ubar) Lrag — AxaiSea1X1a0 — Aol = 0
fis + (p1a0) iy — AagSraopy — A (1 +2pfag) Yoar — AxagSiaoear — M1 = 0,
or
1+ (phar) — AaiSaar] uy — Aol = A(l+ 2uha; + xa)Yea1)X1a0

[1+ (#ya0) — AagSiao) py — M1

A1+ 2p5 a0 + xagX1a0)X2as.

In particular, premultiplying respectively by af, a}

[1+ (uha1) — AaySoar] agpy — Ao = A(L+ 2p5a1 + xai32a1)ag1ag
[1+ (p1a0) — AagXragl aips — A1 = A(l+2p1a0 + xagXia0)a) Xza1.
So

o = [L+ (pgar) — AaySsar] agpy — A(L + 2p5a1 + xayXza1 )agEiag
Moo= [L+ (pia0) — AagXiao ajpg — A(L + 2pia0 + xagEiao)ay Xaar.

We may rewrite in terms of first- and second-period means mj, ms and vari-
ances v1, vo defined as

mi = agfy; M2 = aypy
v = ayYiag; va = ay¥aay,
that
A = (1+mo— Ave)my — A(1+ 2ms + xv2) vy
Al = (1 +my — Avy)mg — A(l +2mq + XUl)’UQ.

Substituting back for Ag, A\; into the first order conditions we get

(14+mg — Ava)py + (A (14 2mao + xv2)v1 — (L +mo — Avg)my) 1 = A(1+ 2ma + xv2)X1a0
(T+mg —Av)py + (AL +2my + xv1)va — (L+mq — Avy)me) 1 = AL+ 2mq + xv1)X2aq,
or

14+ mo — Av _
o = : 2 211N1+<v1_

(1+mgy — sz)m1> .
sl
A(1 + 2mg + xv9)

A(1 4 2mgy + xv2)
(1+m1Av1)m2> .

25 1.
A(1 +2mq + xv1)

1+m17AU1 1

a = > + | vy —
! A1+ 2my + xv1) 2 = (2

It follows that the positions in each period lie on the mean-variance efficient
frontiers for each period.
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We may then express ag, a1 in terms of standard portfolios as

(1 + mo — A’Uz) w1 U1 ( + mo — A’Uz) m1
ap = — M o ¢ (18)
A(Ll + 2mg + xv2) 03 o A(l+2mg+ xv2) 0
(1+m1 —A’Ul) w2 (%) (1+m1 —A’Ul) mg
ar = — 2 2 Co-
A(1+2my + xv1) 03 o2 A(l+2my + xv1) 03

On premultiplication by 1 we see that the portfolio weights sum to unity.

(I+mo—Avg) w1 vi  (L4+mo—Avy) my 1
Al +2mg + xv2) 03 02 A(142mg + xv2) 0

(I+my — Avy) @_Fvig_ (1+mq — Avq) my _
A(1+2my +xv1) 03 03 A(l+2my + xv1) 03 '

Hence,

(1 + mo — A’Ug)
A(1 4 2mg + xv2)
2 (1+m1 714’01)

vy = 02+A(1+2m1+xvl) (mg — wa) .

— a%—l— (mq — wq)

Furthermore, deleting period subscripts, we have that the excess return on
any one-period mean-variance efficient portfolio satisfies

m—w = p(p—w),
where p is the mean return on 7, the market portfolio given by

wWE
- Y"1y

and the mean-variance efficient portfolio in question is

pn+(1—=p).

For ag, a; the value for p is given in equation (18), and hence

(1+me — Avg) wy
_ _ Pl 1
K A(1 4+ 2mg + xv2) 02 (py = wn) (19)

(1 +mq — A’Ul) w2
—wy = L2y — ws). 20
M2 = W2 A(14 2my + xv1) 03 (py = w2) (20)

We next observe that for any set of mean-variance efficient portfolios we
have that

(m1 — W1 2

(1)10%; = (T%(pl—wl)
feztel - 26w
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As an aside we recall, again now deleting time subscripts, that on any efficient
frontier portfolio with weights w, we have

w=pn+(1-p),

hence the mean m of w is

m = pp+ (1 - p)w,
or that
m—w=p(p—w),

SO we may write

Also the variance of w is

v = wlw
= (pm+1-p)Q) S(pn+ (1 -p)X)

a?p
= p27 +(1=p)*c” +2p(1 — p)o?,

SO

2U2P 2 2 2 2 2 2
v—o0° = p°'— —2po° +pc” 4+ 2p0° —2p°0c
w

p202 <pw>
w

(m —w)* o*(p — w)
(p—w)* w

[\

Hence ( )2
m —w w
e LA

We then rewrite equations (19) and (20) as

w
A(L42ms + xv2)(m1 —w1) = (1+me —sz)?;(01 —wi)  (21)
1
w
A(l+2my + xv1)(me —we) = (14+my — Avl)a—g(@ —wq).  (22)
2

We note that

(m =) = | 7301~ w01 o)

1

and on substitution for m; — wy equation (21) yields

w w
AL+ 2m, + xwvg;(pl —wn)(wn = 03) = (14 ms — Ava) 3 (py — wn),
1 1
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or that

Al +2ma+xv2) _ [wi(py —wi)
1+ mg — Avy o2 (vy —o?)

A(l+2my +xv1) wa (py — w2)
1+my — Auy 03 (v2—03)’

Substituting out for mq,mso in terms of vy, vy from the characterization of
the frontiers we get that

A(1+2 (wz + \/%(Pg — wa)(v2 — U%)) + Xv2) wy (py — w1)

1+w2+\/%(pz—wg)(vg—ag)—flvg ot (v1 —o})
2

wy (pg — wa)

A1 +2 <w1 + \/%(m —wy)(v1 — U%)) + xv1) ws

1+w1+\/Z—%(plfwl)(vlfaf)fAvl 03 (va—03)’

These are two equations in two unknowns vp,ve that must be solved and
then we determine mi,ms, v, v2 and the allocations in the two periods.
We may rewrite as

2

A(l+2 (wz + \/1’:—5(,02 — wa)(ve — a%)) + xv2)

(v1 —0f)  wi(py —wr) 1—|—w2—|—\/%(pQ—wg)(vg—ag)—sz

2
1 o1

or equivalently (14) and (15).
Proof of Proposition 6
The Lagrangian is

1
L = =(ayXia0+ ai32a1 + xaoXia0a) Xaar + 2aiX1aopsar + 2a) Noagpiag) — Ao (agl — 1)

2
A (@)1 — 1) — & (ahity + iy + aay phar — m)

The first order conditions are

(1 +2p5a1 + xa152a1)E1a0 — Aol — (k(1 + ajp,) — a1 52a1) 1
(1+2pya0 + xapS1a0)S2a1 — M1 — (k(1 + agpy) — ap1a0)p, =

Premultiply by af), a} to get

(14 2mg + xv2)vy — Ao — (K(1+ma) —va)my = 0
(14 2mq + xv1)va — A1 — (k(L+mq) —v1)me = 0.
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So we have

Ao = (14 2mo+ xva)vr — (k(1+m2) — ve)my
A= (14 2my + xv1)ve — (k(1+mq) —v1)ma.

substituting for these we get

(1 4+ 2mg + xv2)X1a0 + ((k(1 4+ ma) —va)my — (1 + 2mg + xv2)v1) 1 — (k(1 + ma) — va)py
(14 2mq + xv1)X2a1 + ((k(1 4+ mq) —v1)ma — (1 + 2mq + xv1)v2) 1 — (k(1 +mq) — v1) g

So
S (14 2ma + xv2)vr — (K(1 + m2) — v2)my E_11_1_(&(1 +ms) — v9)
’ (1 +2mgy + xv2) ! (1 +2mgy + xv2)
— (k(1 _ 1 _
o = dH2mudxv)vs — (514 ma) — vi)ms E2_11+(/€( +ma) 01)22_1%.
(1+2my + xv1) (1+2my + xv1)

In terms of standard portfolios we may write

K(1+mg) —vs wf

( )
(1 + 2mg + xv2) 0’%
(1 42my 4 xv1)va — (K(1 +mq) —v1)me (K(1+my) —vy) wa
ap = Ca+ )

(1+ 2mq + xv1)o3 (14 2mq + xv1 7%

I (14 2ms + xv2)v1 — (K(1 + mg) — Ug)m1<
’ (14 2my + xv2)o} !

Proof of Proposition 7
The Lagrangian is now

v1 + V2 + xv1V2 + 201me + 2vamy

1
R (w2t [F vl (- )
(et /B G = o) o D)) (w2 /% o~ wa) (= o3))
—m
The first order conditions are
% (pl - wl) w
142me+xv2 = A 1 - <1+w2+\/§(p2—w2)(v2—a§))
2\/% p1 —w1) (v1 — oF) 72
1
% (pg — w2) w
b 2m = A : (1+w1+\/;<p1—w1><v1—o%>)
2,/% (02— w2) (v2 = 03) %
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Substituting for mq,mo from the efficient frontier we get

w:
" (w2 + W (P2 — ws) (va — a%)) _—

2

& (pr—w1) W3
- 2\/& P1iw1)(vl—0%) <1+w2+\/0§(p2w2)(v203)>

3
91

w
v (w4 [ (o= w0 (0= o)) o
1

Q‘E
RS
[\V)
|
S
[\v)

N—

<
[\V)
|
Q
[V

N

Let us observe that

2
2

1+2(w2+\/;”§(pg—wQ)(vg—ag))+xv2 N

(RN A [er) P e B e O DI

On squaring we have

2

1+2<w2+\/%(pz—wg)(vg—ago—kxvg 32
T A% (5 —wy) (0g — 02)
(1+wt B ) =ad) By —wy | T D

Taking reciprocals we get

4% (p; —wy) (v1 — 02) (1 + w2 + \/% (py — w2) (v2 — U%)) %% (p1 —w1)

A? w
1+4+2 <w2+\/U§(P2_w2)<v2_U%>> + Xv2

On rearrangment we get the results (16) and (17).

43



