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1. Introduction

In the classical collective risk theory the Sparre Andersen model (called also
renewal risk model) is a generalisation of the Cramér–Lundberg model in which
it is assumed that the claims count is a renewal process rather than a Poisson pro-
cess, i.e. the times between consecutive claims are independent random variables
which are not necessarily exponentially distributed, see, e.g., Grandell’s book [4].
The word “classical” denotes the situation in which the reserves of the insurance
company are kept in a bank account which does not earn any interest. In the
modern literature more realistic models are considered, namely those in which
the capital is invested, either fully or partially, in a risky financial asset. Given
the long investment horizon which insurance companies have, an economically
reasonable investment strategy is represented by a market index like the MSCI,
the S&P500 or the DAX for example. This is actually standard practice in the
financial industry, primarily due to the long term growth opportunities that these
indices offer, see for example [12]. Although classical contributions model the
dynamics of an index via geometric Brownian motions, a more realistic descrip-
tion of the relevant empirical features is provided by exponential Lévy processes,
see for example [2], Ch. 8, and references therein. This motivates our choice in
the following.

It was shown in [3] that the financial risk leads to a dramatic change in the
behavior of the ruin probability Ψ(u) as a function of the initial capital u: instead
of its comfortable exponential decrease with the growth of the available capital,
in case of the investment of the reserves in the stock market, the ruin probability
Ψ(u) decreases as a power function. Moreover, the ruin is imminent, Ψ ≡ 1, if
the volatility of the stock market is too high. Because of the practical importance
of this phenomenon, actuarial models with investments attracted a lot of atten-
tion. Most of the papers deal with asymptotic studies in settings stemming from
the Cramér–Lundberg model and can be included in the beautiful mathematical
framework of the generalised Ornstein–Uhlenbeck process suggested and studied
by Paulsen, see [8] – [11]. Paulsen used the powerful method of distributional
equations. A detailed analysis of the available results is beyond the scope of the
present note and we refer the reader to the recent paper [6].

In contrast to the Cramér–Lundberg line of research there are very few results
on ruin probabilities for Sparre Andersen type models with investments. The pa-
per by Albrecher, Constantinescu, and Thomann [1] is one of the rare studies to
the latter, see also references therein. Their approach is based on the techniques of
continuous time Markov processes in a geometric Brownian motion setting. Fur-
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thermore, they work under the restrictive assumption that the Laplace transform
of the law of interarrival times is a rational function.

In the present note we consider a Sparre Andersen type non-life insurance
model with investment in a risky asset. The price of this asset evolves according
to an exponential Lévy process, while the business activity of the company is
described by a compound renewal process with positive drift and negative jumps.
In such a model, the reserves of the company are not a Markov process any more
and standard techniques cannot be applied. However, we obtain an asymptotic
result which is essentially of the same form as the main result in [6]. Only very
weak assumptions are required on the interarrival times, like the existence of an
exponential moment, which is obviously fulfilled in the case of the exponential
distribution or the Erlang distribution, and their mixtures. As in [6], the main
assumption is that the cumulant generating functionH : γ 7→ lnEe−γV1 of the log
price process V has a strictly positive root β which does not lie on the boundary of
the effective domain of H . Assuming that the claims are random variables, whose
power of order β is integrable, the ruin probability decays with the rate u−β (see
Theorem 2.3). As in [6], our proofs are based on recent progress in the theory of
distributional equations.

2. The model

Let (Ω,F ,F = (Ft)t≥0,P) be a stochastic basis on which there is given a
non-deterministic Lévy process R = (Rt)t≥0 with ∆R > −1 and an independent
compound renewal process P = (Pt)t≥0 with drift c > 0 and negative jumps. We
denote by Tn, n ≥ 1, the successive jump instants of the latter process with the
convention T0 = 0, and put F (t) := P(T1 ≤ t). We associate with R the stochas-
tic exponential E(R) which is, due to the assumption on the jumps, a strictly
positive process.

We will study the process X = Xu, u > 0, which is defined as the solution of
the non-homogeneous linear stochastic equation

Xt = u+

∫ t

0

Xs−dRs + Pt. (1)

The process X can be written in the “dot” notation of stochastic calculus as
X = u + X− · R + P or, in its “differential” form, as dXt = Xt−dRt + dPt,
X0 = u. The compound renewal process P is usually represented in the form

Pt = ct+
Nt∑
i=1

ξi, (2)
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where N is a counting renewal process with interarrival times Ti − Ti−1, i ≥ 1,
which form an i.i.d. sequence, independent of the i.i.d. sequence ξi = ∆PTi ,
i ≥ 1. The case considered here (c > 0 and ξi < 0) corresponds to the non-life
insurance situation. For R = 0 we have the classical Sparre Andersen model
(which we already excluded by the assumptions made).

In the actuarial context X = Xu represents the dynamics of the reserves of
an insurance company that invests the total of these reserves in a stock with the
price process S = E(R) which has unit as its initial value. Having in mind that
dR = dS/S−, it is natural to call R relative price process, while V := ln E(R)
is usually referred to as the log price process. Thus the price process S which
we introduced here as a stochastic exponential can alternatively be expressed as
an ordinary exponential S = exp(V ). For the interplay between stochastic and
ordinary exponentials see Theorem 3.49 in [2]. Note that V is again a Lévy pro-
cess. In general this process will have jumps of arbitrary size in both directions.
Typical examples which are used in financial models are generalized hyperbolic
processes and various subclasses such as hyperbolic, normal inverse Gaussian or
variance gamma processes.

The processes R and P generate the filtration FR,P = (FR,Pt )t≥0. Define
τu := inf{t : Xu

t ≤ 0}, which denotes the time point of ruin. The main object
of our interest is the ruin probability Ψ(u) := P(τu < ∞) and its asymptotic
behavior as the initial reserve u tends to infinity.

Let (a, σ2,Π) be the Lévy triplet ofR corresponding to the standard truncation
function h(x) := xI{|x|≤1}. Putting h̄(x) := xI{|x|>1}, we can write the canonical
decomposition of R in the form

Rt = at+ σWt + h ∗ (µ− ν)t + h̄ ∗ µt. (3)

Here W is a standard Wiener process, µ(dt, dx) is the random measure of jumps
of R, i.e. the Poisson random measure with compensator ν(dt, dx) = dtΠ(dx).

For notations and basic facts we recommend the books [5], Ch. 2, and [2],
Chs. 2 and 4. As in [6] the symbols Π(f) or Π(f(x)) stand for the integral of f
with respect to the Lévy measure Π. Recall that Π(x2 ∧ 1) <∞.

Due to the independence ofR and P , these processes have no common jumps.
The solution of the generalised stochastic exponential (1) can be represented (see
[2], Proposition 3.48) as

Xu
t := Et(R)(u+ E−1

− (R) · Pt). (4)

Since we assume that ∆R > −1 and R is nondeterministic, the Lévy measure
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Π is concentrated on the interval ]− 1,∞[ and the Lévy characteristics σ2 and Π
do not vanish simultaneously.

Recall that the stochastic exponential Et(R) has explicit form

Et(R) = eRt−
1
2
σ2t+

∑
s≤t(ln(1+∆Rs)−∆Rs).

The log price V = ln E(R) can then be expressed as

Vt = at− 1

2
σ2t+ σWt + h ∗ (µ− ν)t + (ln(1 + x)− h) ∗ µt. (5)

Its Lévy triplet is (aV , σ
2,ΠV ), where

aV = a− σ2

2
+ Π(h(ln(1 + x))− h)

and ΠV = Πϕ−1, ϕ : x 7→ ln(1 + x).
The cumulant generating function H : q → lnE e−qV1 of the random variable

V1 admits an explicit expression

H(q) := −aV q +
σ2

2
q2 + Π

(
e−q ln(1+x) − 1 + qh(ln(1 + x))

)
. (6)

Its effective domain domH := {q : H(q) <∞} is the set {J(q) <∞}, where

J(q) := Π
(
I{| ln(1+x)|>1} e

−q ln(1+x)
)

= Π
(
I{| ln(1+x)|>1}(1 + x)−q

)
. (7)

Its interior is the open interval (q, q̄) with

q := inf{q ≤ 0: J(q) <∞}, q̄ := sup{q ≥ 0: J(q) <∞}.

Being a convex function, H is continuous and admits finite right and left deriva-
tives on (q, q̄). If q̄ > 0, then the right derivative satisfies

D+H(0) = −aV − Π(h̄(ln(1 + x))) <∞,

though it may be equal to −∞. We do not exclude this case.
In the formulation of the asymptotic results we shall always assume that q̄ > 0

and that the equation H(q) = 0 has a root β ∈]0, q̄[. Since H is not con-
stant, such a root is unique. Clearly, it exists if and only if D+H(0) < 0 and
lim supq↑q̄H(q)/q > 0. In the case where q < 0 the condition D−H(0) > 0 is
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necessary to ensure that H(q) < 0 for values q < 0 which are sufficiently small
in absolute value.

If J(q) <∞, then the process m = (mt(q))t≥0 with

mt(q) := e−qVt−tH(q) (8)

is a martingale and
E e−qVt = etH(q). (9)

Lemma 2.1. Suppose that EeεT1 < ∞ for some ε > 0. Let β ∈]0, q̄[ be the root
of the equation H(q) = 0. If q ∈ [β, q̄[ is such that H(q) ≤ ε/2, then

E sup
s≤T1

e−qVs <∞. (10)

Proof. Let us take r ∈]1, q̄/q[ sufficiently close to 1 to ensure the inequality
H(qr)− rH(q)) < (1/2)ε. Then

Emr
t (q) = et(H(qr)−rH(q)) ≤ e(1/2)εt.

Using Doob’s inequality we get that

E sup
s≤t

ms(q) ≤ E sup
s≤t

mr
s(q) ≤ Cre

t(H(qr)−rH(q)) ≤ Cre
(1/2)εt.

Note that

e−qVs = ms(q)e
sH(q) ≤ etH(q) sup

s≤t
ms(q) ≤ e(1/2)εt sup

s≤t
ms(q).

Therefore,

E sup
s≤T1

e−qVs =

∫ ∞
0

e(1/2)εtE sup
s≤t

ms(q)F (dt) ≤ CrE e
εT1 <∞.

The lemma is proven. 2

Corollary 2.2. Let Q := e−V · PT1 . If the conditions of the above lemma are
fulfilled and E |ξ1|β <∞, then E |Q|β <∞.

Proof. Take q ∈]β, q̄[ such that H(q) < ε/2. Using an obvious estimate and
applying the Hölder inequality with r := q/β > 1 and p := r/(r− 1), we get that

E

(∫
[0,T1]

e−Vtdt

)β
≤ ET β1 sup

s≤T1
e−βVs ≤ (ET pβ1 )1/p

(
E sup

s≤T1
e−qVs

)1/r

<∞.

6



If β ≤ 1, the elementary inequality ||a|+ |b||β ≤ |a|β + |b|β implies that

E |Q|β ≤ cβE

(∫
[0,T1]

e−Vtdt

)β
+ E e−βVT1E |ξ1|β <∞.

If β > 1, we use the inequality ||a| + |b||β ≤ 2β−1(|a|β + |b|β) and arrive to the
same conclusion. 2

Our main result is the following theorem.

Theorem 2.3. Suppose that there is β ∈]0, q̄[ such that H(β) = 0, E|ξ1|β < ∞.
and E eεT1 < ∞ for some ε > 0. If σ 6= 0 or the law of |ξ1| has unbounded
support, then

0 < lim inf
u→∞

uβΨ(u) ≤ lim sup
u→∞

uβΨ(u) <∞. (11)

If σ = 0 and the law of |ξ1| has bounded support, (11) also holds except for the
case where 0 < Π(|h|) <∞ and Π(]−1, 0[)Π(]0,∞[) = 0. In the latter case one
needs the additional assumption that P(T1 ≤ t) > 0 for any t > 0.

Remark. In [7] it is shown that in the model where S is a geometric Brownian
motion, β := 2a/σ− 1 ≤ 0, and E eεT1 <∞ for some ε > 0, the ruin probability
Ψ ≡ 1.

3. Ruin problem: reduction to a discrete time case

Since we consider the non-life insurance model, ruin may happen only at
jump-times of P . This allows us to monitor the process Xu only along the se-
quence Tn, i.e. to reduce the problem to a discrete time setting. For this purpose
we introduce the discrete time processes VTn and Yn := −e−V− ·PTn , n = 1, 2, ....
Then

Xu
Tn = eVTn (u− Yn).

Note that Yn is a Markov chain and

Yn = −
n∑
k=1

e−VTk−1

∫
]Tk−1,Tk]

e−(Vs−−VTk−1
)dPs (12)

Define the stopping time θu := inf{n ∈ N : Yn ≥ u} with respect to the
discrete time filtration G = (Gn)n≥1, where Gn := FR,PTn

. In the considered model
ruin happens only at the jump-times of P . Hence, {τu < ∞} = {θu < ∞} and
Ψ(u) = P(θu <∞).
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Lemma 3.1. If Yn → Y∞ almost surely as n → ∞, where Y∞ is a finite random
variable unbounded from above, then for all u > 0

Ḡ(u) ≤ Ψ(u) ≤ Ḡ(u)/Ḡ(0), (13)

where Ḡ(u) := P(Y∞ > u).

Proof. Let θ be an arbitrary stopping time with respect to the discrete-time
filtration G. As we assume that the finite limit Y∞ exists, the random variable

Yθ,∞ :=

{
− limN→∞

∫
]Tθ,Tθ+N ]

e−(Vt−−VTθ )dPt, θ <∞,
0, θ =∞,

is well defined. On the set {θ <∞}

Yθ,∞ = eVTθ (Y∞ − Yθ) = Xu
Tθ

+ eVTθ (Y∞ − u). (14)

Let ζ be a Gθ-measurable random variable. Since the Lévy process V starts afresh
at θ, the conditional distribution of Yθ,∞ given (θ, ζ) = (t, x) ∈ Z+ × R is the
same as the distribution of Y∞. It follows that

P(Yθ,∞ > ζ, θ <∞) = E Ḡ(ζ)1{θ<∞}.

Thus, if P(θ <∞) > 0, then

P(Yθ,∞ > ζ, θ <∞) = E (Ḡ(ζ) | θ <∞)P(θ <∞).

Noting that Ψ(u) := P(θu < ∞) ≥ P(Y∞ > u) > 0, we deduce from this using
(14) that

Ḡ(u) = P(Y∞ > u, τu <∞) = P(Yθu,∞ > Xu
τu , τ

u <∞)

= E (Ḡ(Xu
τu) | τu <∞)P(τu <∞) ≥ Ḡ(0)P(τu <∞)

because Xu
τu ≤ 0 on {τu < ∞}. So, we get the upper bound in (13). The lower

bound is obvious. 2
In view of the above lemma to prove Theorem 2.3 we need to show that a finite

limit Y∞ exists and is unbounded from above.
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4. The almost sure convergence of Yn

Lemma 4.1. Suppose that E eεT1 <∞ and E |ξ1|β∧ε∧1 <∞ for some ε > 0 and
there is β > 0 such that H(β) = 0. Then the sequence Yn tends almost surely to
a finite random variable Y∞.

Proof. Take p ∈]0, β ∧ ε ∧ 1[. According to (12)

Yn − Yn−1 = −e−VTn−1

∫
]Tn−1,Tn]

e−(Vs−−VTn−1
)dPs = M1...Mn−1Qn

where

Mj := e−(VTj−VTj−1
), Qn = −

∫
]Tn−1,Tn]

e−(Vs−−VTn−1
)dPs.

Clearly, M1...Mn−1Qn is the product of independent random variables, where Mj

are identically distributed and so are the random variables Qn. Note that

EMp
1 = E e−pVT1 =

∫ ∞
0

E e−pVtF (dt) =

∫ ∞
0

etH(p)F (dt) < 1.

Also E |Q1|p < ∞ (formally we can not use Corollary 2.2 because we require
here a weaker integrability condition on ξ1 but its simple proof needs only a minor
change).

Since EMp
1 ...M

p
j−1|Qj|p = ρj−1E |Q1|p, we have that

E
∑
j≥1

|Yj − Yj−1|p <∞

and, therefore,
∑

j≥1 |Yj−Yj−1|p <∞ a.s.. Consequently,
∑

j≥1 |Yj−Yj−1| <∞
a.s. and, hence, the sequence Yn converges a.s. to the finite random variable
Y∞ :=

∑
j≥1(Yj − Yj−1). 2

So, Y∞ is the sum of an absolutely convergent series. Putting A0 := 1 and
An := M1...Mn we get that

Y∞ =
∞∑
n=0

AnQn+1 = Q1 +M1

∞∑
n=1

An
A1

Qn+1 =: Q1 +M1Y1,∞.

The random variable Y1,∞ (we abbreviate here the sum of the series starting from
n = 1) is independent of (Q1,M1) and has the same law as Y∞. Using the lan-
guage of the implicit renewal theory this means that Y∞ is the solution of the
distributional (or random) equation

Y∞
d
= Q+M Y∞, Y∞ independent of (M,Q), (15)
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where (M,Q) := (M1, Q1).
Note that

Y∞ = Q1 +A1Q2 + ....+An−1Qn +
∞∑
k=n

AkQk+1 = Q1 +A1Q2 + ....+AnYn,∞,

where

Y∞
d
= Yn,∞ :=

∞∑
k=n

Ak
An

Qk+1.

The following theorem adapted to our needs combines several results of the
implicit renewal theory, see Th. A.6 in [6].

Theorem 4.2. Suppose that for some β > 0,

EMβ = 1, EMβ (lnM)+ <∞, E |Q|β <∞. (16)

Then lim supuβḠ(u) <∞. If the random variable Y∞ is unbounded from above,
then lim inf uβḠ(u) > 0 and in the case where the law of lnM is non-arithmetic,
Ḡ(u) ∼ C+u

−β where C+ > 0.

Proof of Theorem 2.3. We already know that the sequence of random variables
Yn converges a.s. to a finite random variable Y∞ (see Lemma 4.1 whose condi-
tions are weaker than those of Theorem 2.3). Moreover, we just proved that Y∞
is the solution of distributional equation (15) and E |Q|β < ∞ (Corollary 2.2).
If Y∞ is unbounded from above we can use Lemma 3.1 relating the asymptotic
of the ruin probability with the tail behavior of the distribution function of Y∞
and get the claimed result from the theorem cited above. In the next section we
show, assuming that the almost sure limit Y∞ exists, that Y∞, indeed, is always
unbounded, except the case where σ = 0, the random variable ξi is bounded,
0 < Π(|h|) <∞ and Π(]− 1, 0[)Π(]0,∞[) = 0 for which we need the additional
assumption P(T1 ≤ t) > 0 for any t > 0. 2

5. When is Y∞ unbounded from above ?

We start from the following elementary consideration assuming that the limit
Y∞ exists and is finite.

Lemma 5.1. If the random variables Q1 and Yn/An for some n ≥ 1 are un-
bounded from above, then Y∞ is unbounded from above.
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Proof. Take N such that P(Y∞ > −N) > 0. Since Yn/An is unbounded from
above and independent of the random variable Yn,∞ which has the same law as
Y∞, we get that

P(Y∞ > 0) = P(Yn + AnYn,∞ > 0) = P(Yn/An + Yn,∞ > 0)

≥ P(Yn/An ≥ N, Yn,∞ > −N)

= P(Yn/An ≥ N)P(Yn,∞ > −N) > 0.

Thus, P(Yn,∞ > 0) = P(Y∞ > 0) > 0. Furthermore, if the random variable Q1

is unbounded from above and P(Y∞ > 0) > 0, then Y∞ is also unbounded from
above. Indeed, take arbitrary u > 0, then

P(Y∞ > u) ≥ P(Q1 + A1Y1,∞ > u, Y1,∞ > 0) ≥ P(Q1 > u, Y1,∞ > 0)

= P(Q1 > u)P(Y1,∞ > 0) = P(Q1 > u)P(Y∞ > 0) > 0.

The lemma is proven. 2
We shall use the above lemma with n = 1 when Y1/A1 = Q1/A1 = Q1/M1

or with n = 2 when Y2/A2 = Q1/A2 +Q2/M2.
The arguments below use the following observation. Let ζ be a real-valued

random variable and let η be a random variable with values in a Polish space. Let
Pζ and Pη be their distributions and let Pζ|x be a regular conditional distribution
of ζ given η = x. If for any realN the set {x : Pζ|x([N,∞)) > 0} is not a Pη-null
set, then ζ is unbounded from above.

Lemma 5.2. Let K > 0, σ 6= 0 and t > s > 0. Then the random variables

ζ := KeσWt −
∫ t

0

eσWrdr, ζ̃ := Keσ(Wt−Ws) − eσWt

∫ t

0

eσWrdr, (17)

are unbounded from above.

Proof. Recall that the Wiener measure charges any open ball in the space
C0([0, T ]) of continuous functions x. = (xt)t∈[0,T ] with x0 = 0 (in other words, it
is of full support on this space). Let g be a continuous function on C0([0, T ]) such
that g(x0

. ) = N and let ε > 0. Then there is a δ > 0 such that |g(x.)− g(x0
. )| < ε

on the open ball {x. : |x. − x0
. | < δ}. In particular, g(x.) > N − ε on this ball.

With this, the claims of the lemma are obvious. 2
Note that in the above lemma the sign of σ does not matter since −W is again

a Wiener process.
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Let V̄ := V − σW . Then

Q1 = e−VT1 |ξ1| − c
∫ T1

0

e−Vrdr ≥ |ξ1|e−V̄T1e−σWT1 − c sup
r≤T1

e−V̄r
∫ T1

0

e−σWrdr.

Taking into account the independence of ξ1, T1, V̄ and W , we obtain using condi-
tioning and Lemma 5.2, that Q1 is unbounded from above.

The random variable Q1/M1 is unbounded from above if and only if |ξ1| has
this property. To cover the general case we consider the random variable

Y2/A2 = eVT2−VT1 |ξ1|+ |ξ2| − ceVT2
∫ T2

0

e−Vrdr

≥ eVT2−VT1 |ξ1| − ceVT2
∫ T2

0

e−Vrdr. (18)

The same arguments as above allow us to conclude that the random variable on
the right-hand side is unbounded from above.

Thus, if σ 6= 0, the random variable Y∞ is unbounded without further assump-
tions.

It remains to consider the case σ = 0. The further arguments are based on de-
compositions of Lévy processes without Gaussian component into sums of inde-
pendent Lévy processes and the fact that a Poisson process has on a finite interval
any number of jumps with strictly positive probability. The reasoning depends on
the behavior of the Lévy measure.

1. Suppose that Π(]−1, 0[) > 0 and, hence, Π(]−1,−ε[) > 0 for some ε > 0.
We decompose V into a sum of two independent processes V = V (1)+V (2), where
V (2) = V − V (1) and

V (1)
s := I]−1,−ε[ ln(1 + x) ∗ µs + I]ε,∞[ ln(1 + x) ∗ µs.

Note that V (1) is the sum of two independent compound Poisson processes with
negative and positive jumps respectively. Using conditioning with respect to the
random variables V (2), T1, ξ1, which are independent of V (1), we easily obtain
that Q1 is unbounded from above because for any K > 0 the random variable

ζ := Ke−V
(1)
t −

∫ t

0

e−V
(1)
r dr, K > 0, (19)

is unbounded from above. The latter property is clear: we may consider trajec-
tories where V (1) has only negative jumps and these jumps are concentrated near
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t leading to large values for the first term and a small impact on the value of the
integral.

If |ξ1| is unbounded, then Q1/M1 is unbounded from above and, hence, so is
Y∞.

If |ξ1| is bounded and Π(]0,∞[) > 0 (hence for some sufficiently small ε > 0
both components of V (1) are nontrivial compound Poisson processes), we can
check that Y2/A2 is unbounded from above. Indeed, from (18),

Y2/A2 ≥ eVT2−VT1
(
|ξ1| − ceVT1

∫ T1

0

e−Vrdr − c
∫ T2

T1

e−(Vr−VT1 )dr
)
.

Using conditioning, we reduce the problem to checking that for any t > s > 0
and K > 0 the random variable

eV
(1)
t −V

(1)
s

(
K − eV

(1)
s

∫ s

0

e−V
(1)
r dr −

∫ t

s

e−(V
(1)
r −V

(1)
s )dr

)
(20)

is unbounded from above. The compound Poisson process (V
(1)
r )r∈[0,s] has posi-

tive and negative jumps with intensities bounded away from zero and, therefore,
for any ε′ > 0 there is a non-null set Γ1 on which

eV
(1)
s ≤ 1,

∫ s

0

e−V
(1)
r dr ≤ ε′.

The process (V
(1)
r − V

(1)
s )r∈[s,t] is independent of (V

(1)
r )r∈[0,s] and has the same

jump properties. For an ε′ > 0 and N > 0 there is a non-null set Γ2 on which

eV
(1)
t −V

(1)
s ≥ N,

∫ t

s

e−(V
(1)
r −V

(1)
s )dr ≤ ε′.

Taking ε′ ≤ K/4 we get that on the non-null set Γ1 ∩ Γ2 the random variable
defined in (20) is larger than NK/2 and, therefore, is unbounded from above.

2. Suppose that Π(]0,∞[) = 0 and Π(|h|) = ∞. Then for any N > 0
there exists ε > 0 such that R̃ε := Π(I]−1,−ε[|h|) ≥ N . Let us consider the
decomposition V = V (1) + V (2) into a sum of two independent processes, this
time with

V (1)
s := I]−1,−ε]h ∗ (µ− ν)s + I]−1,−ε](ln(1 + x)− h) ∗ µs.

13



Again, even if |ξ1| is bounded, the random variable Y2/A2 is unbounded from
above. Indeed, on the non-null set where the process (V

(1)
r − V (1)

s )r∈[s,t] has no
jumps and

eV
(1)
s

∫ s

0

e−V
(1)
r dr ≤ K/2

the random variable given by (20) dominates the value

eR̃ε(t−s)
(
K/2−

∫ t

s

eR̃ε(s−r)dr
)
≥ eN(t−s)(K/2− 1/N).

This implies the desired property.
The remaining subcase in which Π(] − 1, 0[) > 0 but Π(]0,∞[) = 0 will be

considered later.
3. Suppose that Π(] − 1, 0[) = 0 and Π(h) = ∞. Then for any N > 0 there

exists ε > 0 such that Rε := Π(I]ε,1]h) ≥ N . We consider again a decomposition
V = V (1) + V (2) in a sum of two independent processes. The process V (1) is now
defined as

V (1)
s := I]ε,1]h ∗ (µ− ν)s + I]ε,1](ln(1 + x)− h) ∗ µs.

The set on which V (1) has no jumps on [0, t] has strictly positive probability. On
this set we derive the bound

Ke−V
(1)
t −

∫ t

0

e−V
(1)
r dr ≥ KeRεt − 1

Rε

eRεt ≥ eNt(K − 1/N) (21)

and we conclude as above that Q1 is unbounded from above.
If |ξ1| is unbounded, then Q1/M1 is unbounded from above as well as Y∞.
If |ξ1| is bounded we again can prove that Y2/A2 is unbounded from above.

Indeed, on the set on which the process V (1) has no jumps on [0, s] (hence, it is
growing linearly on this interval) we conclude that

eV
(1)
t

(
Ke−V

(1)
s −

∫ t

0

e−V
(1)
r dr

)
≥ eV

(1)
t −V

(1)
s

(
K − 1

Rε

−
∫ t

s

eV
(1)
s −V

(1)
r dr

)
. (22)

Let us define J = I]ε,1] ln(1 + x) ∗ µ, then V (1)
t − V (1)

s = −Rε(t − s) + Jt − Js
and V (1)

s −V (1)
r ≤ Rε(t− s)− (Jr−Js). Since the increment (Jr−Js) may have

arbitrary many jumps (all of a size larger than ln(1 + ε)) and this happens inde-
pendently of Jr∈[0,s], we get that the random variable given by (20) is unbounded
from above.

14



Lemma 5.3. Suppose that σ = 0, Π(] − 1, 0[) = 0 and 0 < Π(h) < ∞. If
P(T1 ≤ t) > 0 for any t > 0, then Y∞ is unbounded from above.

Proof. In this case Vt = −aht + Lt where the process Lt := ln(1 + x) ∗ µt is
increasing. The constant ah := Π(h) − a is strictly positive because the equality
lnEe−βV1 = 0 with β > 0 may hold only if P(V1 < 0) > 0. We have

Yn := −e−V− · PTn =
n∑
k=1

eahTk−LTk |ξk| − c
∫ Tn

0

eahs−Lsds. (23)

Let δ > 0. Put Lδt := I{x<δ} ln(1 + x) ∗ µt. Then for every t ≥ 0

ELδt = tΠ(I{x<δ} ln(1 + x)) ↓ 0, δ ↓ 0.

Thus, for a sufficiently small δ the set {Lδt ≤ 1} is non-null. Also non-null is the
set {Lt−Lδt = 0}. Their intersection, due to the independence of Lδt and Lt−Lδt ,
is non-null and the larger set {Lt ≤ 1} is also non-null.

Take K ′, κ > 0 such that P(1/K ′ ≤ T1 ≤ K ′) > 0 and P(|ξ1| > κ) > 0.
Then P(infk≤n |ξk| > κ) > 0 for each n due to the independence of the random
variables ξk.

The independence of the interarrival times and the assumption on their distri-
bution imply that for any n the set

{1/K ′ ≤ T1 ≤ K ′, Tk − Tk−1 ≤ 2−(k−1), 1 < k ≤ n}

is non-null as well as its intersection with the set {infk≤n |ξk| > κ,LK′+2 ≤ 1}.
On this intersection, which we denote by Γn, we minorate the sum in the right-
hand side of (23) by replacing LTk by unit and majorate the integral by replacing
Ls by zero. Taking into account that Tn ≤ T1 + 1 ≤ K ′ + 1, we get in this way
that

Yn ≥
κ

e

n∑
k=1

eahTk − c

ah
eah(T1+1) ≥

(κ
e
n− c

ah
eah
)
eahT1 ≥

(κ
e
n− c

ah
eah
)
eah/K

′
,

where the last inequality holds for n ≥ ceah+1/(κah). Thus, for any fixed N we
have on the set Γn the bound Yn ≥ N when n is sufficiently large.

Take y > 0 such that P(Y∞ > −y) > 0. Due to the independence the set

Γn ∩ {Tn+1 − Tn ≤ 1, Yn+1,∞ > −y}
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is non-null and on this set for sufficiently large n we have that

Y∞ = Yn+1 + An+1Yn+1,∞ = Yn + AnQn+1 + An+1Yn+1,∞

= Yn + eahTn+1−LTn+1 |ξn+1| − c
∫ Tn+1

Tn

eahs−Lsds

+eahTn+1−LTn+1Yn+1,∞

≥ Yn − (c/ah)e
ah(K′+2) − eah(K′+2)y ≥ N − (c/ah + y)eah(K′+2).

Since N is arbitrary, the random variable Y∞ is unbounded from above. 2

Lemma 5.4. Suppose that σ = 0, Π(]0,∞[) = 0, and 0 < Π(|h|) < ∞. If
P(T1 ≤ t) > 0 for any t > 0, then Y∞ is unbounded from above.

Proof. In this case Vt = bht− Lt where the process Lt := − ln(1 + x) ∗ µt is
increasing and the bh := a− Π(h) > 0. We have

Yn := −e−V− · PTn = −
n∑
k=1

e−bhTk+LTk ξk − c
∫ Tn

0

e−bhs+Lsds.

As in the proof of the previous lemma, we get that for any t ≥ 0 the set {Lt ≤ 1}
is a non-null set, there are constants κ and K ′ such that P(|ξk| > κ) > 0 for each
k and P(1/K ′ ≤ T1 ≤ K ′) > 0. For any n the set

{1/K ′ ≤ T1 ≤ K ′, Tk − Tk−1 ≤ 2−(k−1), 1 < k ≤ n}

is non-null and its intersection with the set {infk≤n |ξk| > κ,LK′+2 ≤ 1} is non-
null. On this intersection, denoted Γn,

Yn ≥ κe−bhT1
n∑
k=1

e−bh(Tk−T1) − ce

bh
≥ κe−bh(K′+1)n− ce

bh
≥ N

for any N when n is sufficiently large.
Take y > 0 such that P(Y∞ > −y) > 0. Then the set

Γn ∩ {Tn+1 − Tn ≤ 1, Yn+1,∞ > −y}

is non-null and on this set for sufficiently large n we have that

Y∞ = Yn + e−bhTn+1+LTn+1 |ξn+1| − c
∫ Tn+1

Tn

e−bhs+Lsds

+e−bhTn+1+LTn+1Yn+1,∞

> Yn − ce− ey ≥ N − e(c+ y).

Since N is arbitrary, the random variable Y∞ is unbounded from above. 2
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