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Abstract. In this paper we develop an arbitrage free multiple curve model
through the specification of forward swap rates. Two sets of assets are cho-
sen as fundamentals: OIS zero coupon bonds and forward rate agreements.
This is a very natural approach since on the one hand OIS bonds repre-
sent the class of risk free discount bonds, and on the other hand the mid
and long maturity part of the interest rate term structure is bootstrapped
from quotes of swap rates that can be represented by FRA rates and OIS
bond prices in the multiple curve setting. We construct the rates via a
backward induction along the tenor structure on the basis of the forward
swap measures. Time-inhomogeneous Lévy processes are used as drivers of
the dynamics. As an application we derive an approximative Fourier based
valuation formula for swaptions. The model is implemented and calibrated
by using generalized hyperbolic Lévy processes as drivers.

1. Introduction

In classical interest rate modeling forward rates can be expressed in terms of
risk free zero coupon bond prices. No arbitrage considerations then imply that
forward rates for different tenors are strongly related to each other. Underlying
these restrictions is the assumption that these rates are not subject to credit
or liquidity risk. Since the global financial crisis starting in summer 2007, this
assumption can no longer be justified. In the presence of these risks, the tenor
of a fixed income investment becomes relevant. The longer the tenor, the higher
is the risk for a deterioration of the credit quality or the market liquidity.

Since swaps represent a sequence of forward rate agreements (FRAs), as a
consequence of this tenor dependence, the classical formula for forward swap
rates

St(Ti) =
Bt(Ti)−Bt(Tn)∑n

j=i+1 δBt(Tj)

(see Section 3.1) does no longer hold in the multiple curve interest rate envi-
ronment. For swaps with variable rates linked to risky Interbank Offered Rates
(IBORs) such as LIBOR, EURIBOR - generically we will use just LIBOR in
the following - this formula has to be modified such that it accounts for the
various spreads that can be observed in the market. As swap rates can be repre-
sented on the basis of FRAs and OIS discount bond prices (see equation (3.3)),
FRAs are the additional ingredients which are needed. This is the reason why
we will consider a financial market consisting of FRAs and discount bonds as
basic building blocks.

The aim of this paper is to develop an arbitrage free model for the interest
rate market through the specification of forward swap rates. Let us emphasize
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that this is very natural since swaps are liquidly traded instruments for many
maturities and therefore represent a very reliable source of financial data. The
sheer size of the swap market – according to the BIS Global OTC Derivatives
statistic the notional amount outstanding in H1/2019 was approximately USD
389 trillions – is impressive.

The construction of the forward swap rates will be done via a backward
induction similar to the single curve swap market model developed in Eberlein
and Liinev (2007). While in the latter approach only a single swap rate has to
be modeled, our approach here requires to consider risk free as well as risky
swap rates. Basic tools in this construction are the forward swap measures as
well as the change of numeraire technique. As driving processes we will use
time-inhomogeneous Lévy processes.

Another important reason to consider swap rates as primary objects in this
model is their direct use in the pricing formula for swaptions. We develop a
numerically efficient swaption pricing formula which we use to fit the model to
market data. In the implementation of the model generalized hyperbolic pro-
cesses will be used as drivers. This guarantees enough flexibility in order to fit
the quoted volatility surfaces.

There is a substantial literature on multiple curve modeling since tenor de-
pendent spreads were observed in the market quotes. Basically three streams
of research can be identified: short rate models, HJM approaches and LIBOR
market models. The necessity to account for different risk levels in interbank
rates has first been acknowledged already in Henrard (2007). Thereafter, mul-
tiple curve short rate models have been introduced in Kijima, Tanaka, and
Wong (2009), Kenyon (2010), and Filipović and Trolle (2013) to mention a
few. Most of the multiple curve papers which have appeared so far are HJM
approaches. Among those are Pallavicini and Tarenghi (2010), Crépey, Grbac,
and Nguyen (2012), Moreni and Pallavicini (2014), Crépey, Grbac, Ngor, and
Skovmand (2015), Cuchiero, Fontana, and Gnoatto (2016), Eberlein and Ger-
hart (2018), and Fontana, Grbac, Gümbel, and Schmidt (2020). LIBOR market
models with multiple curves have been developed in Mercurio (2010a), Mer-
curio (2010b), Grbac, Papapantoleon, Schoenmakers, and Skovmand (2015),
and Grbac and Papapantoleon (2013). Closely related to LIBOR market mod-
els are approaches where the dynamics of the forward process is specified. We
mention here Bianchetti (2010) and Eberlein, Gerhart, and Grbac (2019). For
a gentle introduction into multiple curve markets and their modeling we refer
to Henrard (2014) and Grbac and Runggaldier (2015).

In Section 2 we sketch the key properties of the driving processes. The swap
market model is developed in Section 3. Valuation of swaptions is the topic of
Section 4. In Section 5 we implement the model by using generalized hyperbolic
processes as drivers and calibrate the model to market data. Finally, Section 6
concludes.

2. The driving process

Let T ∗ ∈ R+ := [0,∞) be a finite time horizon and B := (Ω,FT ∗ ,F =
(Ft)t∈[0,T ∗], P ) a stochastic basis that satisfies the usual conditions in the sense
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of Jacod and Shiryaev (2003, Definition I.1.2 and Definition I.1.3). As driving
processes we will use time-inhomogeneous Lévy processes L = (Lt)t∈[0,T ∗] on
B. This means L is an F-adapted process with independent increments and ab-
solutely continuous characteristics (see Jacod and Shiryaev (2003) or Eberlein
and Kallsen (2019)). This type of stochastic processes is also known as additive
processes (see Sato (1999)).

For convenience we sketch the key properties in the d-dimensional case L =
(L1, . . . , Ld). L is a semimartingale. Without loss of generality we can assume
that the path of each component Li is càdlàg and starts in zero. The law of Lt
is determined by its characteristic function

E[ei〈u,Lt〉] = exp

( t∫
0

[
i〈u, bs(h)〉 − 1

2
〈u, csu〉

+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, h(x)〉

)
Fs(dx)

]
ds

)
(u ∈ Rd).

(2.1)

Here, h is a truncation function, where usually one takes h(x) = x · 1{|x|≤1},

bs(h) = (b1s(h), . . . , bds(h)) : [0, T ∗] → Rd, cs = (cijs )i,j≤d : [0, T ∗] → Rd×d, a
symmetric nonnegative-definite d×d-matrix and Fs is a Lévy measure for every
s ∈ [0, T ∗], i.e. a nonnegative measure on (Rd,B(Rd)) that integrates (|x|2 ∧ 1)
and satisfies Fs({0}) = 0. We denote by 〈·, ·〉 the Euclidean scalar product on
Rd and |·| is the corresponding norm. The scalar product on Rd is extended

to complex numbers by setting 〈w, z〉 :=
∑d

j=1wjzj for every w, z ∈ Cd. Thus,

〈·, ·〉 is not the Hermitian scalar product here. We further assume that

T ∗∫
0

[
|bs(h)|+ ‖cs‖+

∫
Rd

(|x|2 ∧ 1)Fs(dx)
]
ds <∞,

where ‖·‖ denotes any norm on the set of d×d-matrices. The triplet (b, c, F ) =
(bs, cs, Fs)s∈[0,T ∗] represents the local characteristics of L. We also make the
following standing assumption on the existence of exponential moments.

Assumption (EM). There exist constants M, ε > 0 such that

T ∗∫
0

∫
|x|>1

exp〈u, x〉Ft(dx) dt <∞,

for every u ∈ [−(1 + ε)M, (1 + ε)M ]d. In particular, we assume without loss of
generality that

∫
|x|>1 exp〈u, x〉Ft(dx) <∞, for all t ∈ [0, T ∗].

Assumption (EM) is equivalent to E[exp〈u, Lt〉] < ∞ for all t ∈ [0, T ∗] and
u ∈ [−(1 + ε)M, (1 + ε)M ]d. We will consider models with underlying processes
that are exponentials of stochastic integrals with respect to L. These underlying
processes have to be martingales under the risk neutral measure. Therefore, a
priori they have to have finite expectations which is exactly guaranteed by
assumption (EM). An immediate consequence of (EM) is that the random
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variable Lt has finite expectation. Therefore, the representation (2.1) simplifies
and can be written as

E[ei〈u,Lt〉] = exp

( t∫
0

[
i〈u, bs〉 −

1

2
〈u, csu〉

+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
Fs(dx)

]
ds

)
. (2.2)

We emphasise that the characteristic b is now different from the one in (2.1).
We will always work with the local characteristics (b, c, F ) that appear in (2.2).
Another implication of assumption (EM) is that the process L is a special
semimartingale. Thus, its canonical representation is given by the simple form

Lt =

t∫
0

bsds+

t∫
0

√
csdWs +

t∫
0

∫
Rd

x(µL − ν)(ds, dx) (2.3)

(see Jacod and Shiryaev (2003, Corollary II.2.38)), where W = (Wt)t∈[0,T ∗] is
a standard d-dimensional Brownian motion,

√
cs is a measurable version of the

square root of cs, and µL is the random measure of jumps of L with compensator
ν(ds, dx) = Fs(dx)ds. Obviously, the integrals in (2.3) should be understood
componentwise. We stress that assumption (EM) is valid for a very general
class of processes and holds, in particular, for all processes that are generated
by generalised hyperbolic distributions. The (extended) cumulant process as-
sociated with the process L under the probability measure P is denoted by θs
and given by

θs(z) = 〈z, bs〉+
1

2
〈z, csz〉+

∫
Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
Fs(dx)

for every z ∈ Cd where this function is defined. The latter requires that

Re(z) ∈ [−(1 + ε)M, (1 + ε)M ]d. A detailed analysis of the cumulant process
for semimartingales is given by Kallsen and Shiryaev (2002). Note that if L is
a (homogeneous) Lévy process, i.e. if the increments of L are stationary, the
triplet (bs, cs, Fs) and thus also θs do not depend on s.

3. The Swap Market Model

In this section, we follow the framework of Eberlein and Liinev (2007) and
Fontana et al. (2020) to set up a multiple curve swap market model.

3.1. Financial Market. We consider a financial market in which LIBOR rates
are quoted for a finite set of tenors D = {δ1, . . . , δm} with 0 < δ1 . . . < δm.
Typically, these range from one week to one year. Denote by L(T, T, T + δ) the
LIBOR rate for tenor δ ∈ D which is fixed at time T and applies to the time
interval [T, T + δ].

We assume that forward rate agreements with LIBOR rates of different tenor
lengths as reference rates are traded in the market. They are formally defined
as follows.
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Definition 3.1. A forward rate agreement (FRA) with tenor δ, settlement date
T and strike K, is a contract stating that the fixed interest rate K will apply
to a certain nominal amount N for the future period [T, T + δ]. At maturity
T + δ the payoff is given by

δ(L(T, T, T + δ)−K)N.

In the following we will always normalize the notional amount N to one. Denote
the price of such a FRA contract at date t ≤ T by Ft(T,K). The interest rate
K, which ensures that the FRA for period [T, T + δ] has value zero at time t,
is denoted by L(t, T, T + δ).

Furthermore we assume that swaps are traded in the market. Let a tenor
structure T δ = {T0, . . . , Tn} with constant tenor length δ = Ti−Ti−1 be given.

Definition 3.2. An interest rate (payer) swap (IRS) is a contract where an
investor agrees to pay to the other party a predetermined fixed rate S on a
notional amount N at dates T1, . . . , Tn. In return, the investor receives interest
rate payments at a floating rate on the same notional principal. We assume
that the payment dates for the floating and the fixed leg are the same. Again
we normalize the notional N to be one. The fixed rate S such that the swap
contract for the future time period [Ti, Tn] has zero value at time t is called the
time t forward swap rate and will be denoted by St(Ti, δ).

Overnight indexed swaps (OIS) constitute a special case of an interest rate
swap where the floating rate is given by simply compounding the consecutive
overnight rates between the dates Ti and Ti + δ. We denote the time t swap
rate corresponding to an overnight indexed swap for the time period [Ti, Tn] by
Sd
t (Ti). It is given by

Sd
t (Ti) =

Bd
t (Ti)−Bd

t (Tn)∑n
j=i+1 δB

d
t (Tj)

(3.1)

where Bd
t (T ) denotes the time t price of a risk free (discount) bond with ma-

turity T . Those prices are derived by bootstrapping from quoted OIS-rates (cf.
Gerhart and Lütkebohmert (2020)).

When the floating rate in an IRS is given by the LIBOR rate for tenor δ,
the cash flow to the investor at each time Ti for i = 1, . . . , n equals

δ(L(Ti−1, Ti−1, Ti)− S)N.

The time t forward swap rate corresponding to the period [Ti, Tn] with t ≤ Ti
and i ∈ {0, . . . , n− 1} is then given by

St(Ti, δ) =

∑n
j=i+1 δB

d
t (Tj)L(t, Tj−1, Tj)∑n

j=i+1 δB
d
t (Tj)

(3.2)

(cf. Grbac and Runggaldier (2015) or Gerhart and Lütkebohmert (2020)). Note
that L(t, Tj−1, Tj) can be defined using the Tj-forward measure PTj as

L(t, Tj−1, Tj) = EPTj [L(Tj−1, Tj−1, Tj)|Ft]

(see Eberlein et al. (2019) for details). The following pricing formula for a
forward rate agreement with tenor δ is well known

Ft(T,K) = δBd
t (T + δ)(L(t, T, T + δ)−K)
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(see Grbac and Runggaldier (2015, section 1.4.1)). By using it we can reformu-
late the swap rate formula (3.2) as

St(Ti, δ) =

∑n
j=i+1 δB

d
t (Tj)[L(t, Tj−1, Tj)−K ′] +

∑n
j=i+1 δB

d
t (Tj)K

′∑n
j=i+1 δB

d
t (Tj)

which means that we can write

St(Ti, δ) =

∑n
j=i+1 Ft(Tj−1,K

′)∑n
j=i+1 δB

d
t (Tj)

+K ′, (3.3)

where K ′ ∈ R is some fixed rate. Thus, it suffices to assume that only forward
rate agreements and risk free zero-coupon bonds are traded. Consequently the
following definition of a multiple curve financial market turns out to be useful.

Definition 3.3 (Compare Fontana et al. (2020), Def. 2.2). A multiple curve
financial market as considered in this paper is a financial market containing
two sets of assets: OIS zero-coupon bonds for all maturities T ≥ 0 as well as
FRAs for all tenors δ ∈ D, all settlement dates T ≥ 0 and all strikes K ∈ R.

The assumption that OIS zero-coupon bonds are traded for all maturities
T ≥ 0 implicitly requires that OIS swaps are available for all maturities. Due
to the formula

Ft(Tj−1,K) = Ft(Tj−1,K
′)− δ(K −K ′)Bd

t (Tj)

(cf. Fontana et al. (2020, Remark 2.3)) the price of a forward rate agreement
with an arbitrary K can be represented as a combination of the price of a for-
ward rate agreement with a specific strike K ′ and a correction term depending
on the discount bond. Therefore, it is sufficient to assume that only FRAs with
some fixed strike K ′ for all tenors and settlement dates are traded.

3.2. Backward Construction. Recall that we consider a complete stochastic
basis (Ω,FT ∗ , (Ft)0≤t≤T ∗ , P ) where we identify P with the T ∗-forward measure
PT ∗ . We consider again the tenor structure T δ = {T0, . . . , Tn} with Tn = T ∗.
Following Musiela and Rutkowski (2006) we define the forward swap measure
as follows.

Definition 3.4. The forward swap measure P̃Ti associated with date Ti ∈ T δ

is a probability measure equivalent to the underlying probability measure P
under which the relative asset prices

Bd
t (Tj)

δBd
t (Ti) + · · ·+ δBd

t (Tn)

and

Ft(Tl,K)

δBd
t (Ti) + · · ·+ δBd

t (Tn)

are local martingales for all K ∈ R, j ∈ {0, . . . , n} and l ∈ {0, . . . , n− 1}.
Assumption (VOL). Tor each tenor time point Ti there are continuous deter-
ministic volatility structures γd(s, Ti) ≥ 0 and γ(s, Ti) ≥ 0 such that γd(s, Ti) =
γ(s, Ti) = 0 for s > Ti and

n−1∑
i=0

γd(s, Ti) ≤M,

n−1∑
i=0

γ(s, Ti) ≤M
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with M the constant from assumption (EM).

We assume that the forward swap measure P̃Tn related to the terminal date

Tn to be the forward measure PT ∗ . Under P̃Tn , the forward swap rate for date
Tn−1,

St(Tn−1, δ) =
Ft(Tn−1,K

′)

δBd
t (Tn)

+K ′,

is a local martingale according to Definition 3.4.
We postulate that the forward swap rate S(Tn−1, δ) is given by

St(Tn−1, δ) = S0(Tn−1, δ) exp

 t∫
0

α(s, Tn−1, Tn)ds+

t∫
0

γ(s, Tn−1)dL̃Tns


with initial values

S0(Tn−1, δ) = L(0, Tn−1, Tn)

where

L̃Tnt =

t∫
0

√
csdW̃

Tn
s +

t∫
0

∫
R

x(µL − ν̃Tn)(ds, dx)

is a time-inhomogeneous Lévy process under P̃Tn . For simplicity we will use
hereafter a one dimensional driving process. The extension to multivariate time-
inhomogeneous Lévy processes would be straightforward.

Now we specify the drift function α in such a way that this forward swap
rate becomes a martingale under P̃Tn , namely

t∫
0

α(s, Tn−1, Tn)ds =− 1

2

t∫
0

γ(s, Tn−1)csγ(s, Tn−1)ds

−
t∫

0

∫
R

(
eγ(s,Tn−1)x − 1− γ(s, Tn−1)x

)
ν̃Tn(ds, dx).

Similarly, the forward swap rate

Sd
t (Tn−1) =

Bd
t (Tn−1)−Bd

t (Tn)

δBd
t (Tn)

(3.4)

of the OIS contract is a local martingale under P̃Tn . We model the forward OIS
swap rate as

Sd
t (Tn−1) = Sd

0(Tn−1) exp

 t∫
0

αd(s, Tn−1, Tn)ds+

t∫
0

γd(s, Tn−1)dL̃Tns


with initial values

Sd
0(Tn−1) =

Bd
0(Tn−1)−Bd

0(Tn)

δBd
0(Tn)

,
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and drift condition

t∫
0

αd(s, Tn−1, Tn)ds =− 1

2

t∫
0

γd(s, Tn−1)csγ
d(s, Tn−1)ds

−
t∫

0

∫
R

(
eγ

d(s,Tn−1)x − 1− γd(s, Tn−1)x
)
ν̃Tn(ds, dx)

in order to ensure the martingale property. We can express Sd(Tn−1) as a
stochastic exponential

Sd
t (Tn−1) = Sd

0(Tn−1)Et(V
d(Tn−1)),

where

V d
t (Tn−1) =

t∫
0

γd(s, Tn−1)
√
csdW̃

Tn
s

+

t∫
0

∫
R

(
eγ

d(s,Tn−1)x − 1
)

(µL − ν̃Tn)(ds, dx).

Hence, the dynamics of the forward swap rate under P̃Tn is given by

dSd
t (Tn−1) = Sd

t−(Tn−1)
(
γd(t, Tn−1)

√
ctdW̃

Tn
t

+
∫
R

(
eγ

d(t,Tn−1)x − 1
)

(µL − ν̃Tn)(dt, dx)
)
.

(3.5)

As second step of the backward induction we specify now the processes
S(Tn−2, δ) and Sd(Tn−2) as well as the forward swap measure for the date
Tn−1. Again by definition 3.4 the forward swap rates

St(Tn−2, δ) =
Ft(Tn−2,K

′) + Ft(Tn−1,K
′)

δBd
t (Tn−1) + δBd

t (Tn)
+K ′ (3.6)

and

Sd
t (Tn−2) =

Bd
t (Tn−2)−Bd

t (Tn)

δBd
t (Tn−1) + δBd

t (Tn)
(3.7)

are local martingales under P̃Tn−1 . We write (3.6) as

St(Tn−2, δ) =

Ft(Tn−1,K′)
δBd

t (Tn)

δ
Bd
t (Tn−1)

δBd
t (Tn)

+ 1
+

Ft(Tn−2,K′)
δBd

t (Tn)

δ
Bd
t (Tn−1)

δBd
t (Tn)

+ 1
+K ′. (3.8)

The processes
Bd
t (Tn−1)

δBd
t (Tn)

and Ft(Tl,K
′)

δBd
t (Tn)

that appear in this expression are P̃Tn-

local martingales for all l ∈ {0, . . . , n − 1}. Therefore, for every date Tj ∈
{T0, . . . , Tn−1}, the dynamics of Z1(·, Tj) defined by

Z1(t, Tj) =
Ft(Tj ,K

′)

δBd
t (Tn)
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can be expressed under P̃Tn in a general form

dZ1(t, Tj) = Z1(t−, Tj)

ϕ1(t, Tj)dW̃
Tn
t +

∫
R

ψ1(t, x, Tj)(µ
L − ν̃Tn)(dt, dx)


for some functions ϕ1, ψ1. In the same sense, for every date Tj ∈ {T0, . . . , Tn},
the dynamics of Zd

1 (·, Tj) defined by

Zd
1 (t, Tj) =

Bd
t (Tj)

δBd
t (Tn)

can be written under P̃Tn in the form

dZd
1 (t, Tj) = Zd

1 (t−, Tj)

ϕd
1(t, Tj)dW̃

Tn
t +

∫
R

ψd
1(t, x, Tj)(µ

L − ν̃Tn)(dt, dx)


(3.9)

for some functions ϕd
1, ψ

d
1 .

We define now the forward swap measure P̃Tn−1 associated with date Tn−1

by setting its Radon-Nikodym density as

dP̃Tn−1

dP̃Tn
= ETn−1(Md

1 )

where

Md
1 (t) =

t∫
0

δZd
1 (s−, Tn−1)ϕd

1(s, Tn−1)

1 + δZd
1 (s−, Tn−1)

dW̃ Tn
s

+

t∫
0

∫
R

δZd
1 (s−, Tn−1)ψd

1(s, x, Tn−1)

1 + δZd
1 (s−, Tn−1)

(µL − ν̃Tn)(ds, dx).

(3.10)

The specific form of Md
1 (t) can be derived as follows. Recall that δBd(t, Tn)

is the numeraire of P̃Tn and δBd(t, Tn−1) + δBd(t, Tn) is the one of P̃Tn−1 .

Consequently, the density process of
dP̃Tn−1

dP̃Tn
is

dP̃Tn−1

dP̃Tn

∣∣∣
Ft

=
δBd(t, Tn−1) + δBd(t, Tn)

δBd(t, Tn)
· C(n) (3.11)

where

C(n) =
δBd(0, Tn)

δBd(0, Tn−1) + δBd(0, Tn)

is chosen such that this process has initial value 1. From the definition of
Zd

1 (t, Tn−1) we see that

Ut(n) =
dP̃Tn−1

dP̃Tn

∣∣∣
Ft

=
(
δZd

1 (t, Tn−1) + 1
)
· C(n).
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As this process is strictly positive it can be represented as a stochastic exponen-
tial Et(Y ) where Y is explicitly given by the stochastic logarithm (see Kallsen
and Shiryaev (2002, Lemma 2.2) or Eberlein and Kallsen (2019, Section 3.6))

Yt =

t∫
0

dUs(n)

Us−(n)
.

This means that

Yt =

t∫
0

δdZd
1 (s, Tn−1)

δZd
1 (s−, Tn−1) + 1

which coincides with (3.10).

The density process is a true P̃Tn-martingale and thus because of the fi-
nite time horizon actually a uniformly integrable martingale. To see this we
recall from (3.11) that up to the normalization factor the density process is

(B
d(t,Tn−1)
Bd(t,Tn)

+ 1). On the other side the forward swap rate Sd
t (Tn−1) is accord-

ing to (3.4) up to a constant and a factor δ−1 the same quotient of successive
bond prices. Therefore the martingality follows if Sd

t (Tn−1) is a martingale.
However the latter holds by construction. Indeed, by assumption (EM) the

stochastic integral
∫ t

0 γ
d(s, Tn−1)dL̃Tns is exponentially special (use 1. and 3.

in Kallsen and Shiryaev (2002, Lemma 2.13)). Therefore Theorem 2.19 in the
same reference guarantees that the appropriately compensated exponential of
this integral is a local martingale. As L̃Tn is a time-inhomogeneous Lévy pro-
cess and the volatility function γd(s, Tn−1) is deterministic, Proposition 4.4 in
Eberlein, Jacod, and Raible (2005) applies to show that the local martingale
is indeed a true martingale. (In this first step of the induction there is an even
more direct argument to prove martingality: The exponential in the definition
of Sd

t (Tn−1) is the exponential of a process with independent increments divided
by its expectation. Such a quotient is always a martingale.)

As a consequence of Girsanov’s Theorem for semimartingales (Eberlein and
Kallsen (2019, Propositions 3.70 and 3.73)) the Brownian motion for the date
Tn−1 is

W̃
Tn−1

t = W̃ Tn
t −

t∫
0

δZd
1 (s−, Tn−1)ϕd

1(s, Tn−1)

1 + δZd
1 (s−, Tn−1)

ds

and the P̃Tn−1-compensator of µL is

ν̃Tn−1(dt, dx) =

(
1 +

δZd
1 (t−, Tn−1)ψd

1(t, x, Tn−1)

1 + δZd
1 (t−, Tn−1)

)
ν̃Tn(dt, dx). (3.12)

Next we will design the dynamics of St(Tn−2, δ) and Sd
t (Tn−2) under the

swap measure P̃Tn−1 as local martingales. We postulate

St(Tn−2, δ) = S0(Tn−2, δ) exp

 t∫
0

α(s, Tn−2, Tn−1)ds+

t∫
0

γ(s, Tn−2)dL̃Tn−1
s


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and

Sd
t (Tn−2) = Sd

0(Tn−2) exp

 t∫
0

αd(s, Tn−2, Tn−1)ds+

t∫
0

γd(s, Tn−2)dL̃Tn−1
s


(3.13)

where

L̃
Tn−1

t =

t∫
0

√
csdW̃

Tn−1
s +

t∫
0

∫
R

x(µL − ν̃Tn−1)(ds, dx)

and the initial values are given by

S0(Tn−2, δ) =
δBd

0(Tn)L(0, Tn−1, Tn) + δBd
0(Tn−1)L(0, Tn−2, Tn−1)

δBd
0(Tn) + δBd

0(Tn−1)

and

Sd
0(Tn−2) =

Bd
0(Tn−2)−Bd

0(Tn)

δBd
0(Tn−1) + δBd

0(Tn)
.

We choose the drift terms as

t∫
0

α(s, Tn−2, Tn−1)ds =− 1

2

t∫
0

γ(s, Tn−2)csγ(s, Tn−2)ds

−
t∫

0

∫
R

(
eγ(s,Tn−2)x − 1− γ(s, Tn−2)x

)
ν̃Tn−1(ds, dx)

and

t∫
0

αd(s, Tn−2, Tn−1)ds =− 1

2

t∫
0

γd(s, Tn−2)csγ
d(s, Tn−2)ds

−
t∫

0

∫
R

(
eγ

d(s,Tn−2)x − 1− γd(s, Tn−2)x
)
ν̃Tn−1(ds, dx)

and can express Sd(Tn−2) as a stochastic exponential

Sd
t (Tn−2) = Sd

0(Tn−2)Et(V
d(Tn−2))

where

V d
t (Tn−2) =

t∫
0

γd(s, Tn−2)
√
csdW̃

Tn−1
s

+

t∫
0

∫
R

(
eγ

d(s,Tn−2)x − 1
)

(µL − ν̃Tn−1)(ds, dx).
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The dynamics under P̃Tn−1 is then given by

dSd
t (Tn−2) = Sd

t−(Tn−2)
(
γd(t, Tn−2)

√
ctdW̃

Tn−1

t

+
∫
R

(
eγ

d(t,Tn−2)x − 1
)

(µL − ν̃Tn−1)(dt, dx)
)
.

(3.14)

In order to specify the coefficients of the process Zd
1 (·, Tn−1) in (3.9) we note

that

Zd
1 (t, Tn−1) = Sd

t (Tn−1) + Zd
1 (t, Tn) = Sd

t (Tn−1) +
1

δ
. (3.15)

Then by using (3.5) and (3.9), we obtain

Zd
1 (t−, Tn−1)

ϕd
1(t, Tn−1)dW̃ Tn

t +

∫
R

ψd
1(t, x, Tn−1)(µL − ν̃Tn)(dt, dx)


= Sd

t−(Tn−1)
(
γd(t, Tn−1)

√
ctdW̃

Tn
t +

∫
R

(
eγ

d(t,Tn−1)x − 1
)

(µL − ν̃Tn)(dt, dx)
)
.

By Jacod and Shiryaev (2003, Theorem II.2.34 and Ch. I.4b) we have

Zd
1 (t−, Tn−1)ϕd

1(t, Tn−1) = Sd
t−(Tn−1)γd(t, Tn−1)

√
ct (3.16)

Zd
1 (t−, Tn−1)ψd

1(t, x, Tn−1) = Sd
t−(Tn−1)

(
eγ

d(t,Tn−1)x − 1
)
. (3.17)

For the next step of the backward induction we consider the forward swap
rates S(Tn−3, δ) and Sd(Tn−3, δ) which are given in the form

St(Tn−3, δ) =
Ft(Tn−3,K

′) + Ft(Tn−2,K
′) + Ft(Tn−1,K

′)

δBd
t (Tn−2) + δBd

t (Tn−1) + δBd
t (Tn)

+K ′ (3.18)

and

Sd
t (Tn−3) =

Bd
t (Tn−3)−Bd

t (Tn)

δBd
t (Tn−2) + δBd

t (Tn−1) + δBd
t (Tn)

.

Both are local martingales under the swap measure P̃Tn−2 . We formulate the
expression (3.18) as

St(Tn−3, δ) =

Ft(Tn−1,K′)
δBd

t (Tn−1)+δBd
t (Tn)

δ
Bd
t (Tn−2)

δBd
t (Tn−1)+δBd

t (Tn)
+ 1

+

Ft(Tn−2,K′)
δBd

t (Tn−1)+δBd
t (Tn)

δ
Bd
t (Tn−2)

δBd
t (Tn−1)+δBd

t (Tn)
+ 1

+

Ft(Tn−3,K′)
δBd

t (Tn−1)+δBd
t (Tn)

δ
Bd
t (Tn−2)

δBd
t (Tn−1)+δBd

t (Tn)
+ 1

+K ′. (3.19)

The dynamics of the local P̃Tn−1-martingales

Z2(t, Tj) =
Ft(Tj ,K

′)

δBd
t (Tn−1) + δBd

t (Tn)

and

Zd
2 (t, Tj) =

Bd
t (Tj)

δBd
t (Tn−1) + δBd

t (Tn)
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which appear in (3.19) can be written in the general form

dZ2(t, Tj) = Z2(t−, Tj)

ϕ2(t, Tj)dW̃
Tn−1

t +

∫
R

ψ2(t, x, Tj)(µ
L − ν̃Tn−1)(dt, dx)


(3.20)

and

dZd
2 (t, Tj) = Zd

2 (t−, Tj)

ϕd
2(t, Tj)dW̃

Tn−1

t +

∫
R

ψd
2(t, x, Tj)(µ

L − ν̃Tn−1)(dt, dx)


(3.21)

for some functions ϕd
2, ψ

d
2 , ϕ2, ψ2. Analogous to (3.10) we define the forward

swap measure associated with date Tn−2 by setting its Radon-Nikodym density
as

dP̃Tn−2

dP̃Tn−1

= ETn−2(Md
2 )

where

Md
2 (t) =

t∫
0

δZd
2 (s−, Tn−2)ϕd

2(s, Tn−2)

1 + δZd
2 (s−, Tn−2)

dW̃ Tn−1
s

+

t∫
0

∫
R

δZd
2 (s−, Tn−2)ψd

2(s, x, Tn−2)

1 + δZd
2 (s−, Tn−2)

(µL − ν̃Tn−1)(ds, dx).

The corresponding density process is a uniformly integrable P̃Tn−1-martingale,
which can be seen as follows. First recall that the density can be represented as
the quotient of the numeraire processes for P̃Tn−2 and P̃Tn−1 . Up to the normal-

ization factor this quotient is
Bd
t (Tn−2)

Bd
t (Tn−1)+Bd

t (Tn)
+ 1. On the other side according

to (3.1) we have

Bd
t (Tn−2)

Bd
t (Tn−1) +Bd

t (Tn)
= δSd

t (Tn−2) +
Bd
t (Tn)

Bd
t (Tn−1) +Bd

t (Tn)
.

Therefore one has to show that the two processes on the right side are P̃Tn−1-
martingales. For the second one this follows from Jacod and Shiryaev (2003,

Proposition III.3.8) as
Bd
t (Tn)

Bd
t (Tn−1)+Bd

t (Tn)
multiplied with the density process of

dP̃Tn−1

dP̃Tn
, represented as quotient of its numeraire processes, is a constant and

thus a P̃Tn-martingale. It remains to show that Sd
t (Tn−2) is a P̃Tn−1-martingale.

Given its shape in (3.13) we shall use Criens, Glau, and Grbac (2017, Proposi-
tion 3.5). According to criterion (C1) there, one has to verify that the following
sum is bounded

Tn−2∫
0

γd(s, Tn−2)2csds +

Tn−2∫
0

∫
R

(
1−

√
eγd(s,Tn−2)x

)2
ν̃Tn−1(ds, dx).
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As the volatility function γd(s, Tn−2) is bounded by assumption, the integral
corresponding to the Gaussian part is finite. For the second integral which
corresponds to the purely discontinuous part of the driving process only the
big jumps on the positive side of the integral are of interest since the integrand
is bounded for x < 0. Let us first write (3.12) in the form ν̃Tn−1(dt, dx) =
f(t, x)ν̃Tn(dt, dx) then using (3.17) and (3.15) one gets

f(t, x) = 1 +
δSd

t−(Tn−1)(eγ
d(t,Tn−1)x − 1)

1 + δSd
t−(Tn−1) + 1

< eγ
d(t,Tn−1)x.

With the inequality (1−
√
ez)2 < ez for z > 0 we finally get

Tn−2∫
0

∫
x>1

(
1−

√
eγd(s,Tn−2)x

)2
ν̃Tn−1(ds, dx)

<

Tn−2∫
0

∫
x>1

e(γ
d(s,Tn−2)+γd(s,Tn−1))x ν̃Tn(ds, dx).

which is finite according to assumptions (EM) and (VOL).
The Brownian motion for the date Tn−2 is

W̃
Tn−2

t = W̃
Tn−1

t −
t∫

0

δZd
2 (s−, Tn−2)ϕd

2(s, Tn−2)

1 + δZd
2 (s−, Tn−2)

ds

and the P̃Tn−2-compensator of µL is

ν̃Tn−2(dt, dx) =

(
1 +

δZd
2 (t−, Tn−2)ψd

2(t, x, Tn−2)

1 + δZd
2 (t−, Tn−2)

)
ν̃Tn−1(dt, dx).

The swap rates St(Tn−3, δ) and Sd
t (Tn−3) are modelled in an analogous way as

before.
In order to obtain the coefficients in (3.21) we consider the relation

Zd
2 (t, Tn−2) = Sd

t (Tn−2) + Zd
2 (t, Tn)

= Sd
t (Tn−2) +

Zd
1(t,Tn)

δZd
1(t,Tn−1)+1

= Sd
t (Tn−2) +

Zd
1(t,Tn)

δSd
t (Tn−1)+δZd

1(t,Tn)+1
.

(3.22)

First we apply Eberlein and Liinev (2007, Lemma A.1.) to the second process on
the right hand side of equation (3.22). In that Lemma we set G = Zd

1 (·, Tn) = 1
δ

and H = δZd
1 (·, Tn−1). Note that the processes Zd

1 (·, Tn) and Zd
1 (·, Tn−1) are

completely characterised because all coefficients are specified in the previous
step (in particular see the relations (3.16) and (3.17)). We observe that the
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related probability measure as well as the corresponding process and the com-
pensator derived in the lemma are P̃Tn−1 , W̃ Tn−1 and ν̃Tn−1 . Then we obtain

d

(
Zd

1 (t, Tn)

δZd
1 (t, Tn−1) + 1

)
=−

Sd
t−(Tn−1)γd(t, Tn−1)

√
ct

(1 + δZd
1 (t−, Tn−1))2

dW̃
Tn−1

t

+

∫
R

[ 1
δ

δ(Zd
1 (t−, Tn−1) + Sd

t−(Tn−1)(eγd(t,Tn−1)x − 1)) + 1

−
1
δ

δZd
1 (t−, Tn−1) + 1

]
(µL − ν̃Tn−1)(dt, dx).

By using relations (3.14), (3.21) and (3.22) as well as Jacod and Shiryaev (2003,
Theorem II.2.34 and Chapter I.4b), we obtain

Zd
2 (t−, Tn−2)ϕd

2(t, Tn−2) = Sd
t−(Tn−2)γd(t, Tn−2)

√
ct −

Sd
t−(Tn−1)γd(t, Tn−1)

√
ct

(1 + δZd
1 (t−, Tn−1))2

Zd
2 (t−, Tn−2)ψd

2(t, x, Tn−2) = Sd
t−(Tn−2)

(
eγ

d(t,Tn−2)x − 1
)

(3.23)

+
1
δ

δ(Zd
1 (t−, Tn−1) + Sd

t−(Tn−1)(eγd(t,Tn−1)x − 1)) + 1
−

1
δ

δZd
1 (t−, Tn−1) + 1

.

As (3.23) in particular implies for x > 0 that

Zd
2 (t−, Tn−2)ψd

2(t, x, Tn−2) ≤ Sd
t−(Tn−2)

(
eγ

d(t,Tn−2)x − 1
)

one verifies by following the same pattern as for
dP̃Tn−2

dP̃Tn−1

that the density process

corresponding to
dP̃Tn−3

dP̃Tn−2

is a uniformly integrable P̃Tn−2-martingale.

Now we consider the general step of the backward procedure. For m ∈
{2, . . . , n−1} the forward swap rates St(Tn−1, δ), . . . , St(Tn−m, δ) and Sd

t (Tn−1), . . . , Sd
t (Tn−m)

as well as the forward swap measure P̃Tn−(m−1)
are given. In particular the dy-

namics of Sd
t (Tn−m) is

dSd
t (Tn−m) = Sd

t−(Tn−m)
(
γd(t, Tn−m)

√
ctdW̃

Tn−(m−1)

t

+
∫
R

(
eγ

d(t,Tn−m)x − 1
)

(µL − ν̃Tn−(m−1))(dt, dx)
)
.

We will consider

Sd
t (Tn−(m+1)) =

Bd
t (Tn−(m+1))−Bd

t (Tn)∑m
j=0 δB

d
t (Tn−j)

and

St(Tn−(m+1), δ) =

m+1∑
l=1

Ft(Tn−l,K
′)∑m−1

j=0 δBd
t (Tn−j)

δ
Bd
t (Tn−m)∑m−1

j=0 δBd
t (Tn−j)

+ 1
+K ′. (3.24)

and the local P̃Tn−(m−1)
-martingales

Zm(t, Tj) =
Ft(Tj ,K

′)∑m−1
j=0 δBd

t (Tn−j)
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and

Zd
m(t, Tj) =

Bd
t (Tj)∑m−1

j=0 δBd
t (Tn−j)

.

The dynamics are given by

dZm(t, Tj) =Zm(t−, Tj)
(
ϕm(t, Tj)dW̃

Tn−(m−1)

t

+

∫
R

ψm(t, x, Tj)(µ
L − ν̃Tn−(m−1))(dt, dx)

)
and

dZd
m(t, Tj) =Zd

m(t−, Tj)
(
ϕd
m(t, Tj)dW̃

Tn−(m−1)

t

+

∫
R

ψd
m(t, x, Tj)(µ

L − ν̃Tn−(m−1))(dt, dx)
)

for some functions ϕd
m, ψ

d
m, ϕm, ψm.

The forward swap measure associated with date Tn−m is given by its Radon-
Nikodym density

dP̃Tn−m

dP̃Tn−(m−1)

= ETn−m(Md
m)

where

Md
m(t) =

t∫
0

δZd
m(s−, Tn−m)ϕd

m(s, Tn−m)

1 + δZd
m(s−, Tn−m)

dW̃
Tn−(m−1)
s

+

t∫
0

∫
R

δZd
m(s−, Tn−m)ψd

m(s, x, Tn−m)

1 + δZd
m(s−, Tn−m)

(µL − ν̃Tn−(m−1))(ds, dx).

The P̃Tn−m-Brownian motion is

W̃
Tn−m
t = W̃

Tn−(m−1)

t −
t∫

0

δZd
m(s−, Tn−m)ϕd

m(s, Tn−m)

1 + δZd
m(s−, Tn−m)

ds (3.25)

and the corresponding compensator is

ν̃Tn−m(dt, dx) =

(
1 +

δZd
m(t−, Tn−m)ψd

m(t, x, Tn−m)

1 + δZd
m(t−, Tn−m)

)
ν̃Tn−(m−1)(dt, dx).

(3.26)

The forward swap rates St(Tn−(m+1), δ) and Sd
t (Tn−(m+1)) are modelled as

St(Tn−(m+1), δ) =S0(Tn−(m+1), δ) exp
( t∫

0

α(s, Tn−(m+1), Tn−m)ds

+

t∫
0

γ(s, Tn−(m+1))dL̃
Tn−m
s

)
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and

Sd
t (Tn−(m+1)) =Sd

0(Tn−(m+1)) exp
( t∫

0

αd(s, Tn−(m+1), Tn−m)ds

+

t∫
0

γd(s, Tn−(m+1))dL̃
Tn−m
s

)
where

L̃
Tn−m
t =

t∫
0

√
csdW̃

Tn−m
s +

t∫
0

∫
R

x(µL − ν̃Tn−m)(ds, dx).

We choose the drift terms as
t∫

0

α(s, Tn−(m+1), Tn−m)ds = −1

2

t∫
0

γ(s, Tn−(m+1))csγ(s, Tn−(m+1))ds

−
t∫

0

∫
R

(
eγ(s,Tn−(m+1))x − 1− γ(s, Tn−(m+1))x

)
ν̃Tn−m(ds, dx) (3.27)

and
t∫

0

αd(s, Tn−(m+1), Tn−m)ds = −1

2

t∫
0

γd(s, Tn−(m+1))csγ
d(s, Tn−(m+1))ds

−
t∫

0

∫
R

(
eγ

d(s,Tn−(m+1))x − 1− γd(s, Tn−(m+1))x
)
ν̃Tn−m(ds, dx).

Then we derive the coefficients of the process Zd
m(·, Tn−m) by considering

the relation

Zd
m(t, Tj) =

Zd
m−1(t, Tj)

δZd
m−1(t, Tn−(m−1)) + 1

and observing that

Zd
m(t, Tn−m) = Sd

t (Tn−m) + Zd
m(t, Tn)

= Sd
t (Tn−m) +

Zd
m−1(t, Tn)

δZd
m−1(t, Tn−(m−1)) + 1

,

where the processes Sd(Tn−m), Zd
m−1(·, Tn−(m−1)) and Zd

m−1(·, Tn) and there-
fore their coefficients are completely specified in the previous step. By applying
Eberlein and Liinev (2007, Lemma A.1.) we obtain the relation

Zd
m(t−, Tn−m)ϕd

m(t, Tn−m) =Sd
t−(Tn−m)γd(t, Tn−m)

√
ct +

Zd
m−1(t−, Tn)ϕd

m−1(t, Tn)

δZd
m−1(t−, Tn−(m−1)) + 1

−
δZd

m−1(t−, Tn−(m−1))ϕ
d
m−1(t, Tn−(m−1))Z

d
m−1(t−, Tn)

(δZd
m−1(t−, Tn−(m−1)) + 1)2
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and

Zd
m(t−, Tn−m)ψd

m(t, x, Tn−m) =Sd
t−(Tn−m)

(
eγ

d(t,Tn−m)x − 1
)

+
Zd
m−1(t−, Tn)(1 + ψd

m−1(t, x, Tn))

δZd
m−1(t−, Tn−(m−1))(1 + ψd

m−1(t, x, Tn−(m−1))) + 1

−
Zd
m−1(t−, Tn)

δZd
m−1(t−, Tn−(m−1)) + 1

. (3.28)

Hence the coefficient functions can be deduced successively. As in the previ-
ous induction step one can conclude from (3.28) by a somewhat tedious com-
putation that for x > 0

Zd
m(t−, Tn−m)ψd

m(t, x, Tn−m) ≤ Sd
t−(Tn−m)

(
eγ

d(t,Tn−m)x − 1
)
.

By following the same line of reasoning as for
dP̃Tn−2

dP̃Tn−1

this inequality is the key

input into (3.26) to prove that the density process corresponding to
dP̃Tn−m

dP̃Tn−(m−1)

is a uniformly integrable P̃Tn−(m−1)
-martingale.

Let us summarize the result of the backward induction:

Given a time-inhomogeneous Lévy process L that satisfies the exponential
moment assumption (EM) and deterministic volatility functions γd and γ that
satisfy the boundedness assumption (VOL), one can model for tenor structures
T δ = {T0, . . . , Tn} OIS-based forward swap rates Sd(Ti) as well as LIBOR-
based forward swap rates S(Ti, δ) such that under the corresponding forward

swap measures P̃Ti+1 the rates are given in the same analytic form

Sd
t (Ti) = Sd

0(Ti) exp

 t∫
0

αd(s, Ti, Ti+1)ds+

t∫
0

γd(s, Ti)dL̃
Ti+1
s


and

St(Ti, δ) = S0(Ti, δ) exp

 t∫
0

α(s, Ti, Ti+1)ds+

t∫
0

γ(s, Ti)dL̃
Ti+1
s

 .

For each tenor time point Ti the drift coefficient αd is chosen such that its inte-

gral is the exponential compensator of the stochastic integral
∫ t

0 γ
d(s, Ti)dL̃

Ti+1
s .

The same holds for the coefficient α .

We add that for some purposes it could be of interest to represent the dy-
namics of the swap rates with respect to one single reference measure. For this
the most natural candidate is the initial forward swap measure P̃Tn . It is re-

lated to any of the forward swap measures P̃Ti+1 used in the representations of
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dynamics above by the following drift and compensator changes

W̃
Ti+1

t = W̃ Tn
t −

n−1∑
j=i+1

t∫
0

δZd
n−j(s−, Tj)ϕd

n−j(s, Tj)

1 + δZd
n−j(s−, Tj)

ds

and

ν̃Ti+1(dt, dx) =

n−1∏
j=i+1

(
1 +

δZd
n−j(t−, Tj)ψd

n−j(t, x, Tj)

1 + δZd
n−j(t−, Tj)

)
ν̃Tn(dt, dx).

In the current state of the interest rate markets one could have to deal with
negative swap rates. An appropriate adaptation of the approach presented here
would be to first lift the rates by a suitably chosen constant F > 0 such that
all current rates become positive and then proceed as above. More precisely,
one would start the backward induction by postulating

F + Sd
t (Tn−1) = (F + Sd

0(Tn−1)) exp

 t∫
0

αd(s, Tn−1, Tn)ds+

t∫
0

γd(s, Tn−1)dL̃Tns

 .

In the same manner one has to change the equation for St(Tn−1, δ) and for
any of the following swap rates Sd

t (Ti) and St(Ti, δ). The scaling factor in the
dynamics of dSd

t (Tn−1) (see (3.5)) will then become F + Sd
t−(Tn−1) instead of

Sd
t−(Tn−1). The remaining part of the equation is not affected.

4. Valuation of Swaptions

We denote by T δ
i for i ∈ {0, . . . , n − 1} the subset of tenor time points

T δ
i = {Ti, . . . , Tn} ⊂ T δ . The value of a swaption at date t ∈ [0, Ti) is given

by

Swpt(t,T δ
i , κ) = Di,n(t) · EP̃Ti+1

[
(STi(Ti, δ)− κ)+ |Ft

]
(4.1)

where Di,n(t) =
∑n

j=i+1B
d
t (Tj)δ and

St(Ti, δ) =S0(Ti, δ) exp
( t∫

0

α(s, Ti, Ti+1)ds+

t∫
0

γ(s, Ti)dL̃
Ti+1
s

)
(see Grbac and Runggaldier (2015, section 1.4.7)). The expectation in (4.1)
can be efficiently approximated by using a Fourier based approach. For this
approach two ingredients are necessary: the extended moment generating or
characteristic function of the properly transformed stochastic integral and the
Fourier transform of the payoff function. The latter is derived by elementary
integration whereas for the former a suitable formula (see e.g. Eberlein and
Kallsen (2019, Proposition 3.54)) is only available when the integrator of the
stochastic integral has independent increments. As the random terms in (3.25)

and (3.26) show, independence of increments of the initial driving process L̃Tn

is lost during the backward induction. It can be re-established by freezing
the random terms by their starting values. This method was first applied in
Brace, Gatarek, and Musiela (1997) in order to derive approximate solutions
for swaption prices in the Libor market model. Brace and Womersley (2000)
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and Schlögl (2002) justify freezing the drift term to its initial value by the fact
that its absolute variability is typically very small. Siopacha and Teichmann
(2011) analyse the size of the approximating error resulting from freezing the
drift term in continuous Libor market models by comparing it to strong and
weak first-order Taylor approximations. Papapantoleon and Siopacha (2011)
extend these results to general semimartingale models. As we will use purely
discontinuous Lévy processes L̃Tn in the implementation later, we consider here
only the part which is relevant in this case, namely the compensator. By freezing
the random coefficients in (3.26) in each induction step we obtain recursively
the approximation

ν̃Ti+1(dt, dx) ≈
n−1∏
j=i+1

(
1 +

δZd
n−j(0, Tj)ψ

d
n−j(0, x, Tj)

1 + δZd
n−j(0, Tj)

)
ν̃Tn(dt, dx)

=: ν̂Ti+1(dt, dx). (4.2)

The explicit form of any term Zd
n−j(0, Tj)ψ

d
n−j(0, x, Tj) can be deduced suc-

cessively by using the relationship (3.28). Define

Xi
t =

t∫
0

γ(s, Ti)dL̃
Ti+1
s .

The extended moment generating function of Xi
t (where it exists) can then be

approximated by

mXi
t
(z) = EP̃Ti+1

[
ezX

i
t

]
≈ exp

( t∫
0

∫
R

[
ezγ(s,Ti)x − 1− zγ(s, Ti)x

]
ν̂Ti+1(ds, dx)

)
=: m̂Xi

t
(z)

for z ∈ C.
For any payoff function f let g denote the dampened payoff function defined

by

g(x) = e−Rxf(x)

for some R ∈ R. We denote the extended Fourier transform of a function g by
ḡ. In order to derive the pricing formula for swaptions we consider the payoff
function f(x) = (ex − κ)+ with strike κ > 0. Let z ∈ C with Im(z) > 1, then
the Fourier transform of the payoff function is

f̄(z) =
κ1+iz

iz(1 + iz)
.

We easily obtain for R > 1 that g ∈ L1
bc(R) ∩ L2(R). The weak derivative of g

is given by

∂g(x) =

{
e−Rx(ex −Rex +Rκ), if x > lnκ

0, if x < lnκ.
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As ∂g ∈ L2(R) we have g ∈ H1(R) such that we can conclude that ḡ ∈ L1(R).
Consequently conditions (C1) and (C3) of Theorem 2.2 in Eberlein, Glau, and
Papapantoleon (2010) are satisfied.

Hence, according to this theorem the time-0 value of the swaption can be
approximated by

Swpt(0,T δ
i , κ) ≈ Di,n(0)

e−Rdi

π

∞∫
0

Re
(
e−iudim̂Xi

Ti

(R+ iu)f̄(iR− u)
)
du

(4.3)

where di = − lnS0(Ti, δ)−
∫ Ti

0 α̂(s, Ti, Ti+1)ds and α̂(s, Ti, Ti+1) is derived from
(3.27) by replacing the compensator in the same way as in (4.2).

5. Model Calibration

5.1. Initial Curves. In order to derive the initial discount curve Bd
0(·) we

follow the bootstrapping method given in Gerhart and Lütkebohmert (2020)
(see also Henrard (2014) for other bootstrapping approaches). More specifically,
we use the market quotes of overnight indexed swap rates that are provided for
increasing maturities. Then we successively derive the bond prices Bd

0(·) from
the representation (3.1). Of course, the quantities Zd

m(0, ·) are then implicitely
given by the bootstrapped discount curve. Other model inputs are the current
values of the tenor-dependent swap rates S0(Ti, δ). Unfortunately these are
not quoted for the required maturities and, therefore, have to be bootstrapped
(see also Gerhart and Lütkebohmert (2020)). We obtain the missing values
by successively using the relation (3.2). Note that the discount curve Bd

0(·)
constructed above is used in this step.

The bootstrapping approach is paired with cubic splines interpolation. This
guarantees enough smoothness of the curves. Furthermore, the bootstrapped
initial values for tradable assets are a priori arbitrage free as they are derived
from risk neutral pricing formulas. The monotonicity resulting from the interpo-
lation via cubic splines guarantees arbitrage free values between the considered
maturities.

5.2. Model Specification. We specify the driving process L̃Tn under P̃Tn as
a generalized hyperbolic Lévy process with parameters α, β, δ, λ and µ (for
a detailed treatment see for example Eberlein (2009) or Eberlein and Kallsen
(2019, section 2.4.9)) which have to satisfy 0 ≤ |β| < α, δ > 0, λ ∈ R and
µ ∈ R. The last parameter µ does not enter into the valuation formulas and is
chosen such that the expectation of L̃Tn1 is equal to zero. The extended moment
generating function mGH(u) is of the form

mGH(z) = eµz
(

α2 − β2

α2 − (β + z)2

)λ
2 Kλ(δ

√
α2 − (β + z)2)

Kλ(δ
√
α2 − β2)

where Re(z) ∈ (−α− β, α− β) and Ka denotes the modified Bessel function of
the third kind with index a. We emphasize that only parameters which lead to a
Lévy measure F̃ Tn that satisfies Assumption (EM) are admissible. Generalized
hyperbolic Lévy processes are purely discontinuous processes and the density
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of the Lévy measure F̃ Tn is of the form

gGH(x) =
eβx

|x|

 ∞∫
0

e−
√

2y+α2|x|

π2y(J2
|λ|(δ
√

2y) + Y 2
|λ|(δ
√

2y))
dy + 1{λ≥0}λe

−α|x|


where Ja and Ya are the modified Bessel functions of the first and second
kind with index a. Recall that ν̃Tn(dt, dx) = F̃ Tn(dx)dt. The explicit form
of ν̂Ti+1(dt, dx) can then be derived by using (4.2) together with the relation
(3.28). From this we obtain the function α̂(s, Ti, Ti+1).

The volatility structure is chosen to be γd(t, T ) = σde
−ad(T−t) and γ(t, T ) =

σke
−ak(T−t) for t ≤ T . The parameters are restricted to an admissible set that

guarantees that the volatility structures are bounded (cf. assumption (VOL)).

5.3. Calibration. A swaption contract is specified by its strike rate κ and
expiry date Ti with corresponding tenor structure T i = {Ti, . . . , Tn} based on
some tenor δ = Tj+1 − Tj and maturity Tn. For the calibration, we use market
quotes of swaptions for a number of strike rates and expiry dates on August
8, 2017. More specifically, we consider swaption contracts for the set of expiry
dates T = {4yrs, 5yrs, 6yrs, 7yrs} with corresponding strike rates (in percent-
age terms) equal to ATM (at-the-money), ATM+0.25, ATM+0.5, ATM+0.75,
ATM+1.0, ATM+1.25. The ATM strike rates are 1.3957, 1.5217, 1.6447, 1.7588
for expiry dates in 4, 5, 6, 7 years, respectively. The tenor length is six months
and we have a fixed time horizon T ∗ = Tn = 10yrs. The swaption market
quotes are provided by Bloomberg and are given in form of the implied volatil-
ities (in bps) calculated based on the Bachelier model using OIS discounting.
From these quotes we can derive the market prices of the swaptions by using
the Bachelier pricing formula.

In the calibration procedure we derive swaption model prices by using for-
mula (4.3). Let Θ be the set of admissible model parameters. We minimise the
sum of the squared relative errors between model and market swaption prices∑

T∈T ,K∈K

(
swaption model price(ϑ, T,K)− swaption market price(T,K)

swaption market price(T,K)

)2

with respect to ϑ ∈ Θ where K denotes the set of strike rates as given above.
This optimisation is done by using a randomised Powell algorithm (see Powell
(1978)).

5.4. Results. In Figure 1 we display the market prices as red triangles and
the corresponding calibrated model prices as blue points. The calibrated model
parameters are given in Table 1. Figure 2 shows the absolute errors. The root
mean square error (RMSE) of this calibration is 0.001253643.

Table 1. Calibrated model parameters on August 8, 2017.

α β δ λ
19.78 2.756 15.72 3.151
ad σd ak σk

36.149 0.17 3.984 0.885
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Figure 1. Calibration results of model prices (blue points) to
market prices (red triangles) on August 8, 2017. Expiry dates
are in 4, 5, 6, and 7 years.

6. Conclusion

In developing models for interest rate markets one has considerable freedom
to choose the basic quantities whose dynamics are specified. The approach in
this paper is based on modeling the forward swap rates. This choice is natural
in terms of the availability of reliable market data. Another important reason
for this choice is a convenient valuation formula for swaptions which can then
be used for calibration purposes.

We are convinced that the results obtained will remain relevant also after a
discontinuation of LIBOR after 2021. The replacement of LIBOR by alternative
reference rates such as secured overnight rates has been intensively discussed
in the past years. While these rates are less exposed to manipulations, they do
not represent the costs of unsecured borrowing over a fixed term. The pricing of
various interest rate derivative contracts, however, relies on such forward look-
ing rates. The corresponding term and spread adjustments to secured overnight
rates are currently being discussed (see e.g. International Swaps and Derivatives
Association (2019)). This will again give rise to multiple curve term structures.
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Figure 2. Absolute errors between market prices and model
prices on August 8, 2017. Expiry dates are in 4, 5, 6, and 7
years.
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