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Abstract. An advanced Heath-Jarrow-Morton (HJM) forward rate model
driven by time-inhomogeneous Lévy processes is presented which is able
to handle the recent development to multiple curves and negative interest
rates. It is also able to exploit bid and ask price data. In this approach in
order to model spreads between curves for different tenors, credit as well as
liquidity risk is taken into account. Deterministic conditions are derived to
ensure the positivity of spreads and thus the monotonicity of the curves for
the various tenors. Valuation formulas for standard interest rate derivatives
such as caps, floors, swaptions and digital options are established. These
formulas can numerically be evaluated very fast by using Fourier based
valuation methods. In order to exploit bid and ask prices we develop this
approach in the context of a two-price economy. Explicit formulas for bid
as well as ask prices of the derivatives are stated. A specific model frame-
work based on Normal Inverse Gaussian and Gamma processes is proposed
which allows for calibration to market data. Calibration results are pre-
sented based on multiple-curve bootstrapping and cap market quotes. We
use data from September 2013 as well as September 2016. The latter is of
particular interest since rates were deep in negative territory at that time.

Keywords. Multiple–curve bootstrapping, multiple–curve model, HJM,
time-inhomogeneous Lévy processes, monotonicity of curves, two-price the-
ory, negative interest rates, interest rate derivatives, calibration

1. Introduction

The global financial crisis which started in early August 2007 had a lasting ef-
fect on financial markets. This concerns in particular the fixed income markets.
As a consequence of a new perception of risk a number of interest rates, which
until then had been roughly equivalent, drifted apart. In particular the basic
rates, which are relevant for the interbank market, became tenor-dependent
after market participants became aware of credit, liquidity and funding risks.
These risks had been assumed to be negligible in this market segment before. In
the new reality classical modelling approaches which are based on arbitrage con-
siderations assuming tenor-independence cannot reflect the market behaviour
any more. More sophisticated approaches, so-called multiple curve models, are
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needed to take the increased diversity of risks into account. In this paper we
focus on the tenor-dependence of the Euribor rates. Before the crisis Euribor
as well as Libor rates typically differed by a few basis points only. Starting
in early August 2007 the spreads widened and reached levels up to 200 basis
points (see Figure 1). More specifically, the graph shows the historical evolution
of the differences between the spot quotes of the Euribor rates for maturities of
one, three, six, nine and twelve months and the overnight indexed swap (OIS)
rates based on EONIA with the corresponding maturities. We mention that the
monotonicity of the spreads according to tenor length which is shown in this
graph is generally not true for Euribor vs Euribor basis swaps (see the graph
on the right side of figure 3).
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Figure 1. Evolution of the spreads between EURIBOR and
EONIA OIS rates for different tenors.

Figure 2 presents the historical evolution of the basic discount curve and
(fictitious) bond prices related to tenors of one, three, six and twelve months up
to ten year maturities. These curves were bootstrapped from Bloomberg quotes
of deposit rates (for short term), forward rate agreements (for mid term) and
swap rates (for mid and long term). The multiple-curve bootstrapping procedure
follows the guidelines of Ametrano and Bianchetti (2013) where we used the
price data for exactly the same market instruments as mentioned before for
every date considered.

The first graph on the left side of Figure 2 shows that the curves were still
more or less identical in 2006. The divergence is observable in the next picture
on the left side which presents the curves for September 2008. In the following
graphs for 2011, 2013, 2015 and 2016 the divergence increases further. The
last picture on the right side shows in particular how the interest rates entered
deeply into negative territory with the consequence that the bond prices increase
at the beginning.
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Figure 2. Evolution of term structure curves up to ten year
maturities. Red represents the basic discount curve, green the
one month, purple the three months, blue the six months and
brown the twelve months curve.

There are essentially three types of interest rate model approaches, namely
short rate models, forward rate or HJM-type models and market models. Here-
after we will discuss the multiple curve approach in a framework where (in-
stantaneous) forward rates and forward spreads are taken as basic modeling
quantities. The possibility that interest rates become negative in a classical
(and consequently also in a Lévy driven) single curve HJM-model has often
been considered to be an undesirable property. However in recent years rates
for several of the major currencies, as for example for Euro and Yen, became
negative. By mid-June 2016 the whole AAA Euro yield curve up to ten years was
below zero. Therefore, the potential that rates become negative or even start
from negative values, is an important characteristic which a realistic model has
to take into account.
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Figure 3. Evolution of Euribor vs Euribor basis swap spreads.
The blue line represents the 3m–6m basis swap spreads. The red
line shows the other mentioned spreads.

Given its importance for the financial industry, there is in the meanwhile
an impressive literature on multiple curve approaches and related topics. We
mention here only a few of them. Ametrano and Bianchetti (2009, 2013) explain
which market instruments can be selected to obtain the current rates and how
the bootstrapping works. A short rate approach is developed in Kijima, Tanaka,
and Wong (2009). In an article which appeared just before the start of the
crisis Henrard (2007) pointed to the fact that a single discount curve for all
market participants is not appropriate. Henrard (2010) proposes a multiple
curve approach. In a Gaussian framework, deterministic spreads between the
curves are assumed. A diffusion driven double-curve model with regard to a
foreign exchange analogy is introduced in Bianchetti (2010). The classical Libor
market model is extended to a diffusion driven double-curve model by Mercurio
(2010). Moreni and Pallavicini (2014) develop a parsimonious approach in a
HJM-framework where spreads are assumed to be deterministic functions. In
a very recent paper, Cuchiero, Fontana, and Gnoatto (2016) study a general
multiple-curve approach based on multiplicative spreads with semimartingales
as driving processes.

Our approach is related in spirit to the HJM-type approach in Crépey, Grbac,
and Nguyen (2012), where a single risky rate is considered in addition to the
basic rate. Another conceptual difference is that we apply multiple curves in the
context of a two price market. Conic finance (see Cherny and Madan (2010)), as
the latter is also called, is able to exploit explicitly bid and ask price data. This is
highly appropriate in this context, since multiple interest rate curves emerged
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from taking tenor-dependent credit and liquidity risks into account and the
bid-ask spread is an important indicator for the liquidity of the corresponding
market.

Our point of view in this paper is from a macro perspective. In a different
strand of research a number of authors develop valuation approaches from a
single deal perspective and thus take specific value adjustments into account.
These adjustments are related to credit (CVA), collateral (LVA) and funding
costs (FVA). For readers who are interested in this micro perspective we refer
to Brigo, Francischello, and Pallavicini (2015) as well as Bielecki, Cialenco, and
Rutkowski (2017) and the references therein. It is interesting to mention that
these non-linear modelling approaches lead to deal-dependent pricing measures.
Moreover, in the valuation formulas there is no longer a risk-free interest rate
for discounting used. Instead a deal-dependent discount curve based on the
cost of funding appears. Since the funding rate is usually asymmetric for the
two parties involved, already this aspect leads to differential prices. Let us also
mention in this context that in particular after the 2007–2009 financial crisis
none of the interest rates which can be observed in the market could be classified
to be risk-free in the proper sense of the word.

In section 2 we present first the class of processes which we use as drivers,
namely time-inhomogeneous Lévy process. They are also called processes with
independent increments and absolutely continuous characteristics (PIIAC) by
Jacod and Shiryaev (2003). This class of processes has proved – also from the
statistical point of view – to be particularly appropriate for fixed income models
(see e.g. Eberlein and Kluge (2006)). In addition it has been shown in Beinhofer,
Eberlein, Janssen, and Polley (2011) that the level of correlation between bond
prices or interest rates for various maturities which is observed in the data
can hardly be achieved in a Gaussian framework. The Lévy framework instead
is flexible enough to fit the observed correlations. In section 3 the multiple-
curve forward rate model is introduced in a single currency setting. We are
aware that the market quotes also cross-currency basis swaps which requires
to consider several economies at the same time. This more general setting is
left for future research. We start with the discount curve which is the basic
curve. OIS-zero coupon bond prices are typically used for the initial discount
term structure. We proceed by introducing individual curves for various tenors.
They are constructed by considering non-traded, fictitious bonds, which can
be interpreted as risky bonds issued by a typical Euribor panel bank. The
drift function in the dynamics of the underlying instantaneous forward rates is
chosen such that credit and liquidity risk are explicitly represented. Figure 1
as well well as figure 2 suggest that the spreads are usually monotone in the
tenor length. A sufficient condition to achieve this goal is discussed in section
4, where we also propose a tractable model framework which guarantees the
monotonicity of the curves. Variations of the processes which are used in this
particular framework are possible depending on which properties one wants to
secure.

In order to be able to calibrate this model, explicit valuation formulas for
derivatives are needed. We consider caps, floors, swaptions as well as digital
options. Fourier-based methods can be used to obtain numerically efficient ver-
sions of the pricing formulas. Since the price data consists of bid and ask prices
with non-negligible spreads, the analysis is based on valuation formulas in a
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two-price economy. Using distortions we derive numerically efficient formulas
for bid and ask prices. For this purpose the cumulative distribution function of
the stochastic component in the modeling of the underlying quantity is needed.
In the last section calibration results based on specific driving processes are pre-
sented. We consider data from September 2013 as well as 2016. For the latter
date we have to deal with negative rates.

2. The driving process

Let T ∗ > 0 be a finite time horizon and B := (Ω,G ,F = (Ft)t∈[0,T ∗], P )
a stochastic basis that satisfies the usual conditions in the sense of Jacod and
Shiryaev (2003, Definition I.1.2 and Definition I.1.3). We will consider as driving
process a d-dimensional time-inhomogeneous Lévy process L = (L1, . . . , Ld)T

on B with Li = (Lit)t∈[0,T ∗] for every i ∈ {1, . . . , d}. This means that L is
a F-adapted process with independent increments and absolutely continuous
characteristics (abbreviated by PIIAC) defined on B (see Eberlein, Jacod, and
Raible (2005) and Jacod and Shiryaev (2003)). We emphasise that L is a d-
dimensional semimartingale (see Jacod and Shiryaev (2003, §5.)).

We can assume that the paths of each component of L are càdlàg. This means
that these paths are right-continuous and admit left-hand limits (almost surely).
We also postulate that each component Li starts at zero. The semimartingale
characteristics of L are given by the triplet (B,C, ν) with

B =

·∫
0

bsds C =

·∫
0

csds ν(ds, dx) = Fs(dx)ds,

where bs = (b1s, . . . , b
d
s)

T : [0, T ∗] → Rd, cs = (cijs )i,j≤d : [0, T ∗] → Rd×d whose
values are in the set of symmetric nonnegative-definite d×d-matrices and Fs is
a Lévy measure for every s ∈ [0, T ∗], i.e. a nonnegative measure on (Rd,B(Rd))
that integrates (|x|2∧1) and satisfies Fs({0}) = 0. The Euclidean scalar product
on Rd is denoted by 〈·, ·〉 and |·| is the corresponding norm. The scalar product
on Rd is extended to complex numbers by setting 〈w, z〉 :=

∑d
j=1wjzj for every

w, z ∈ Cd. Thus, 〈·, ·〉 is not the Hermitian scalar product here. We further
assume that

T ∗∫
0

[
|bs|+ ‖cs‖+

∫
Rd

(|x|2 ∧ 1)Fs(dx)
]
ds <∞,

where ‖·‖ denotes any norm on the set of d× d-matrices.
Since we shall consider exponentials of stochastic integrals with respect to the

process L, we will need a priori an appropriate exponential moment condition

Assumption 2.1. (EM) There are constants M, ε > 0, such that, for every

u ∈ [−(1 + ε)M, (1 + ε)M ]d,

we have
T ∗∫
0

∫
{|x|>1}

exp〈u, x〉Fs(dx)ds <∞.
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Assumption (EM) is equivalent to E[exp〈u, Lt〉] < ∞ for all t ∈ [0, T ∗] and
u ∈ [−(1 + ε)M, (1 + ε)M ]d. A direct consequence of (EM) is that in particular
the expectation of Lt is finite. In this situation one does not need a truncation
function in the Lévy–Khintchine representation of its characteristic function.
Consequently, the law of Lt is determined by the characteristic function in the
form

E[ei〈u,Lt〉] = exp

( t∫
0

[
i〈u, bs〉 −

1

2
〈u, csu〉

+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
Fs(dx)

]
ds

)
(u ∈ Rd).

Likewise the canonical representation of the process L can be written in the
simple form

Lt =

t∫
0

bsds+

t∫
0

√
csdWs +

t∫
0

∫
Rd

x(µL − ν)(ds, dx),

i.e. without considering an additional term for the big jumps. Here W =
(Wt)t∈[0,T ∗] is a standard d-dimensional Brownian motion (Wiener process),
√
cs is a measurable version of the square root of cs, and µL is the random

measure of jumps of L with compensator ν(ds, dx) = Fs(dx)ds (cf. Jacod and
Shiryaev (2003, Corollary II.2.38)). The (extended) cumulant process associated
with the process L is denoted by θs and given by

θs(z) = 〈z, bs〉+
1

2
〈z, csz〉+

∫
Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
Fs(dx)

for every z ∈ Cd where this function is defined. Kallsen and Shiryaev (2002)
provide a detailed analysis of the cumulant process for semimartingales. Note
that if L is a (homogeneous) Lévy process, i.e. if the increments of L are sta-
tionary, the triplet (bs, cs, Fs) and thus θs do not depend on s. In this case, we
write θ for short. It then equals the cumulant (also called log moment generat-
ing function) of L1. Observe that the cumulant process is related to a specific
measure. Which measure is meant in the following can unambiguously be seen
from the notation.

3. The Multiple-Curve Lévy Forward Rate Model

Let us consider a complete stochastic basis B̂ := (Ω̂, F̂ , F̂ = (F̂t)t∈[0,T ∗], P̂
d)

and a d-dimensional time-inhomogeneous Lévy process L = (L1, . . . , Ld)T de-
fined on B̂. In the multiple-curve setting we will consider a discount curve
which we will denote with the index d (later sometimes written as 0) and m
different term structures of interest rates for m ∈ N = {1, 2, 3, . . . }. Note that
this framework contains the single-curve approach by setting m = 0.

3.1. The Basic Curve. Let us begin with the specification of the discount
curve. To this end, we consider an arbitrary discrete tenor structure T d :=
{T0, . . . , Tn}, where T0 < · · · < Tn and Tn = T ∗. In order to avoid too heavy
notation δ := δ(Tk−1, Tk), the year fraction between the dates Tk−1 and Tk, is



8 E. EBERLEIN AND C. GERHART

assumed to be independent of k and is called the tenor of T d. The time-t price
of a (zero-coupon) discount bond maturing at date T ∈ [0, T ∗] is denoted by
Bd
t (T ).
We denote by P the predictable σ-field, which is the σ-field on Ω̂ × [0, T ∗]

generated by all adapted processes with left-continuous paths (cf. Jacod and
Shiryaev (2003, Definition I.2.1)). The optional σ-field O is defined as the σ-
field on Ω̂ × [0, T ∗] which is generated by all adapted processes with càdlàg
paths (cf. Jacod and Shiryaev (2003, Definition I.1.20)).

The following two ingredients are needed to develop the model for the dis-
count curve.
(D.1) The initial discount curve Bd

0 defined by

Bd
0 :

{
[0, T ∗]→ (0,∞)

T 7→ Bd
0(T )

is given.
The initial discount curve can be derived from market data by using an appro-
priate bootstrapping technique. A general explanation of such a technique is
given in Hull (2012) and Ametrano and Bianchetti (2013). One typically takes
the OIS-zero-coupon bond price as an approximation of Bd

0 .

(D.2) We consider a drift function αd and a volatility structure σd defined by

αd :

{
Ω̂× [0, T ∗]× [0, T ∗]→ R
(ω̂, s, T ) 7→ αd(ω̂, s, T )

and

σd :

{
Ω̂× [0, T ∗]× [0, T ∗]→ Rd

(ω̂, s, T ) 7→ σd(ω̂, s, T ) = (σd1(ω̂, s, T ), . . . , σdd(ω̂, s, T ))

which satisfy the usual measurability and boundedness conditions (cf.
Eberlein, Jacod, and Raible (2005))
(a) αd and σd = (σd1 , . . . , σ

d
d) are measurable with respect to P ⊗

B([0, T ∗]).
(b) The random functions are bounded for each ω̂ ∈ Ω̂ in the sense of

sup0≤s,T≤T ∗
(
|αd(ω̂, s, T )|+ |σd(ω̂, s, T )|

)
<∞.

(c) For every (ω̂, s, T ) ∈ Ω̂ × [0, T ∗] × [0, T ∗] with T < s, we have
αd(ω̂, s, T ) = 0 and σd(ω̂, s, T ) = (0, . . . , 0).

Now let us postulate that, for every fixed maturity T ∈ [0, T ∗], the dynamics
of the discount instantaneous forward rate fd(T ) = (fdt (T ))t∈[0,T ] is given by

fdt (T ) = fd0 (T ) +

t∫
0

αd(s, T )ds−
t∫

0

σd(s, T )dLs. (3.1)

The initial values fd0 (T ) are assumed to be deterministic and bounded. We also
require that they form a measurable mapping

[0, T ∗] 3 T 7→ fd0 (T ) ∈ R.
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It is shown by Eberlein, Jacod, and Raible (2005) that under these assump-
tions we can find a joint-version of all fdt (T ) such that the map (ω̂, t, T ) 7→
fdt (ω̂, T )1{t≤T} is O ⊗ B([0, T ∗])-measurable.

By applying Fubini’s Theorem (cf. Protter (2004, Theorem 64)) it follows
from the forward rate dynamics (3.1) that the bond price Bd

t (T ) at time t given
by

Bd
t (T ) = exp

− T∫
t

fdt (u)du


can be expressed as

Bd
t (T ) = Bd

0(T ) exp

 t∫
0

(rds −Ad(s, T ))ds+

t∫
0

Σd(s, T )dLs

 , (3.2)

where the short rate rdt is specified by rdt = fdt (t) and where we have set

Ad(s, T ) :=

T∫
s∧T

αd(s, u)du and Σd(s, T ) :=

T∫
s∧T

σd(s, u)du (3.3)

(cf. Eberlein and Kluge (2006)). Note that the integral
∫ T
s∧T σ

d(s, u)du is un-
derstood componentwise and the initial values fd0 (T ) can be obtained from the
relation

fd0 (T ) = −∂ lnBd
0(T )

∂T

if this derivative exists.
The discount factor process βd = (βdt )t∈[0,T ∗] given by

βdt = exp

− t∫
0

rdsds


is an adapted process with continuous paths. It can obviously be written as

βdt = Bd
0(t) exp

− t∫
0

Ad(s, t)ds+

t∫
0

Σd(s, t)dLs

 . (3.4)

From (3.2) together with (3.4) we can easily get another representation which
turns out to be useful

Bd
t (T ) =

Bd
0(T )

Bd
0(t)

exp

 t∫
0

(
Ad(s, t)−Ad(s, T )

)
ds+

t∫
0

Σd(s, t, T )dLs

 .

(3.5)

Here we have set Σd(s, t, T ) := Σd(s, T ) − Σd(s, t). To get a tractable model
and guarantee the existence of all related functions, we require in the following
the model to be based on a deterministic, bounded and continuous volatility
structure.
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Assumption 3.1. (DET) The volatility structure σd is a deterministic and
bounded function such that, for every s and T with 0 ≤ s, T ≤ T ∗

0 ≤ Σd
j (s, T ) ≤ M̂ < M, for every j ∈ {1, . . . , d},

where Σd
j arises from definition (3.3) (jth component of Σd) and the constant

M is from assumption (EM). Moreover, the mapping

[0, T ∗] 3 s 7→ σd(s, T ) ∈ Rd

is continuous for each given T ∈ [0, T ∗].

The market will be free of arbitrage if the drift function Ad is defined in
such a way that the discounted bond price processes Zd(T ) = (Zd

t (T ))0≤t≤T
given by Zd

t (T ) := βdtB
d
t (T ) are martingales. We will repeatedly use the fact

(see Eberlein and Raible (1999, Lemma 3.1)) that expectations of exponentials
of stochastic integrals can be explicitly computed, namely

EP̂ d

exp
( t∫

0

Σd(s, T )dLs

) = exp

 t∫
0

θs(Σ
d(s, T ))ds

 . (3.6)

Note that the integral process in the exponent on the left side has independent
increments. Using this fact, it is easy to show that the process M = (Mt)t∈[0,T ]

with

Mt =
exp

(∫ t
0 Σd(s, T )dLs

)
EP̂ d

[
exp

(∫ t
0 Σd(s, T )dLs

) ]
is a martingale. Combining this observation with (3.6), one sees that the drift
assumption

Ad(s, T ) = θs(Σ
d(s, T ))

guarantees that the discounted bond price processes Zd(T ) are martingales for
all T ∈ [0, T ∗]. Notice that this approach for the discount curve (following the
Lévy forward rate model of Eberlein and Kluge (2006)) works directly under
the risk-neutral measure. This choice of the drift term is closely related to the
notion of the exponential compensator (see Kallsen and Shiryaev (2002) and
Jacod and Shiryaev (2003, Section II.8)). We repeat that the drift function
Ad and therefore also αd as well as the volatility structure Σd (and σd) are
deterministic in this setting.

It follows that the bond price process (3.2) is given in the more specific form

Bd
t (T ) =

Bd
0(T )

βdt
exp

− t∫
0

θs(Σ
d(s, T ))ds+

t∫
0

Σd(s, T )dLs


from which we conclude that

Zd
t (T )

Zd
0 (T )

= exp

− t∫
0

θs(Σ
d(s, T ))ds+

t∫
0

Σd(s, T )dLs

 . (3.7)
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To end this subsection, we introduce some useful definitions. We observe that
the representation (3.5) results in

Bd
t (T ) =

Bd
0(T )

Bd
0(t)

exp
( t∫

0

[
θs(Σ

d(s, t))− θs(Σd(s, T ))
]
ds

+

t∫
0

Σd(s, t, T )dLs

)
. (3.8)

For fixed t, T ∈ [0, T ∗] with t ≤ T , the last expression is decomposed into its
deterministic part

Dd(t, T ) :=
Bd

0(T )

Bd
0(t)

exp

 t∫
0

[
θs(Σ

d(s, t))− θs(Σd(s, T ))
]
ds


and its stochastic part given as the exponential of the F̂t-measurable random
variable

Xd(t, T ) :=

t∫
0

Σd(s, t, T )dLs.

Hence, we obtain the compact form

Bd
t (T ) = Dd(t, T ) exp(Xd(t, T )). (3.9)

3.2. Risky Tenor–Dependent Curves. Now we address the curves which
take credit and liquidity risk explicitly into account. By abuse of language we
call them risky curves. m different curves will be considered. Since each term
structure corresponds to a discrete tenor structure, we introduce the equidistant
tenor structure T k := {T k0 , . . . , T knk} for every k ∈ {1, . . . ,m} and nk ∈ N. We
assume that T k0 = T0 and T knk = Tn = T ∗ for all k ∈ {1, . . . ,m}. The year
fraction between the dates T kj−1 and T kj is denoted by δk := δk(T kj−1, T

k
j ) for j ∈

{1, . . . , nk}. δk is called the the tenor of T k. Moreover, for all k, l ∈ {1, . . . ,m}
with k ≤ l, we postulate

T l ⊂ T k ⊂ T d ⊂ [0, T ∗]. (3.10)

These nested structures will allow to take liquidity and credit risk in decreasing
order of magnitude (δk < δl) into account. For every k ∈ {1, . . . ,m} we interpret
Bk
t (T ) as time-t price of a fictitious risky zero-coupon bond with maturity T

that corresponds to curve k.
We need two ingredients to model the multiple curves.

(MC.1) The initial multiple term structure curves B1
0 , . . . , B

m
0

Bk
0 :

{
[0, T ∗]→ (0,∞)

T 7→ Bk
0 (T )

are given for every k ∈ {1, . . . ,m}.
Ametrano and Bianchetti (2009, 2013) developed a bootstrapping method in
the multiple-curve setting. The initial values typically satisfy

Bl
0(T ) ≤ Bk

0 (T ) ≤ Bd
0(T )
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for every k, l ∈ {1, . . . ,m} with k ≤ l and T ∈ [0, T ∗] (cf. Figure 2).
(MC.2) For every k ∈ {1, . . . ,m}, we consider the drift function αk and the

volatility structure σk defined by

αk :

{
Ω̂× [0, T ∗]× [0, T ∗]→ R
(ω̂, s, T ) 7→ αk(ω̂, s, T )

and

σk :

{
Ω̂× [0, T ∗]× [0, T ∗]→ Rd

(ω̂, s, T ) 7→ σk(ω̂, s, T ) = (σk1 (ω̂, s, T ), . . . , σkd(ω̂, s, T ))

which satisfy the same (measurability and boundedness) conditions as
αd and σd in (D.2).

For every k ∈ {1, . . . ,m} and T ∈ [0, T ∗], the dynamics of the instantaneous
forward rates fk(T ) = (fkt (T ))t∈[0,T ] are postulated to be

fkt (T ) = fk0 (T ) +

t∫
0

αk(s, T )ds−
t∫

0

σk(s, T )dLs,

where the initial values fk0 (T ) are assumed to be deterministic, bounded and
measurable in T . Those values can be determined by the formula

fk0 (T ) = −∂ lnBk
0 (T )

∂T
(3.11)

if the derivative exists. In the same way as one gets representation (3.2), we
obtain the form

Bk
t (T ) = Bk

0 (T ) exp

 t∫
0

(rks −Ak(s, T ))ds+

t∫
0

Σk(s, T )dLs

 (3.12)

from the relation

Bk
t (T ) = exp

− T∫
t

fkt (u)du


for each k ∈ {1, . . . ,m}. The rate rkt at t is given by rkt = fkt (t) and we similarly
define

Ak(s, T ) :=

T∫
s∧T

αk(s, u)du and Σk(s, T ) :=

T∫
s∧T

σk(s, u)du.

To ensure the existence of the cumulant process, we need the following

Assumption 3.2. (MC.DET) For any k ∈ {1, . . . ,m} and all s, T ∈ [0, T ∗] the
volatility structure σk is deterministic and bounded in the sense of

0 ≤ Σk
j (s, T ) ≤ M̂ < M, for every j ∈ {1, . . . , d}.

The mapping [0, T ∗] 3 s 7→ σk(s, T ) ∈ Rd is continuous. As usual, M is the
constant from assumption (EM).
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The constant M̂ in this assumption does not have to coincide with the con-
stant M̂ from assumption (DET). The discounted bond price process Zk(T ) =
(Zkt (T ))0≤t≤T corresponding to curve k is defined by Zkt (T ) := βdtB

k
t (T ) for

each date T ∈ [0, T ∗]. One easily verifies that

Zkt (T )

Zk0 (T )
= exp

 t∫
0

[rks − rds −Ak(s, T )]ds+

t∫
0

Σk(s, T )dLs

 . (3.13)

We can represent this as a stochastic exponential (see Jacod and Shiryaev
(2003, Theorem II.8.10))

Zkt (T )

Zk0 (T )
= Et(Ȳ

k),

where the process Ȳ k is the stochastic logarithm Ȳ k = L (exp(Y k)) with

Y k
t =

t∫
0

(rks − rds −Ak(s, T ))ds+

t∫
0

Σk(s, T )dLs.

This means that the discounted bond price process Zk(T ) is the solution of

dZk(T ) = Zk−(T )dȲ k,

where the process Ȳ k = (Ȳ k
t )0≤t≤T is explicitly given by

Ȳ k
t =

t∫
0

[
rks − rds −Ak(s, T ) + θs(Σ

k(s, T ))
]
ds+

t∫
0

Σk(s, T )
√
csdWs

+

t∫
0

∫
Rd

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx).

The last expression shows that Zk(T ) is not a P̂ d-(local) martingale in gen-
eral. Similarly as in (3.5), we rewrite the expression (3.12) in the form

Bk
t (T ) =

Bk
0 (T )

Bk
0 (t)

exp

 t∫
0

[
Ak(s, t)−Ak(s, T )

]
ds+

t∫
0

Σk(s, t, T )dLs

 ,

(3.14)

where we have set

Σk(s, t, T ) := Σk(s, T )− Σk(s, t).

To simplify the notation, for fixed t, T ∈ [0, T ∗] with t ≤ T , we define the factor

Dk(t, T ) :=
Bk

0 (T )

Bk
0 (t)

exp

 t∫
0

[
Ak(s, t)−Ak(s, T )

]
ds


and the F̂t-measurable random variable

Xk(t, T ) :=

t∫
0

Σk(s, t, T )dLs.
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Then, we obtain

Bk
t (T ) = Dk(t, T ) exp(Xk(t, T )),

where at this stage Dk(t, T ) could be random.
Now, we will specify the drift function Ak in such a manner that credit

and liquidity risk are taken into account. We follow the line of thought of
Crépey, Grbac, and Nguyen (2012, Section 2.3.2). Their idea is based on no-
arbitrage requirements in defaultable HJM-models with an additional liquidity
component which lead to the required drift condition.

Let us temporarily assume that defaultable bonds with respect to each curve
can be traded in the market. The time-t price of such a bond maturing at T is
denoted by B̄k

t (T ). Keep in mind that such bonds are actually not traded in the
market but can be considered as bonds that are issued by an average Libor or
Euribor panel member. In fact, they are rather mathematical concepts which
represent the credit risk of the panel bank members but are not defaultable in
the classical sense.

Hereinafter, we specify the intensity-based credit risk model and construct
default times τ1, . . . , τm. To this end, we need to enlarge the initial stochastic
basis B̂ = (Ω̂, F̂ , F̂ = (F̂t)t∈[0,T ∗], P̂

d) as follows. Let Γ1, . . . ,Γm be real-valued,
F̂-adapted, continuous and increasing stochastic processes defined on B̂. It is
assumed that Γk0 = 0 and Γk∞ := limt↑∞ Γkt = ∞ for every k ∈ {1, . . . ,m}. We
additionally consider an auxiliary probability space (Ω̃, F̃ , P̃ ) endowed with
a family of independent random variables ξ1, . . . , ξm that are uniformly dis-
tributed on the interval [0, 1]. We state the product space

(Ω,G , P d) := (Ω̂× Ω̃, F̂ ⊗ F̃ , P̂ d ⊗ P̃ )

and denote by F = (Ft)t∈[0,T ∗] the trivial extension of F̂ to the enlarged prob-
ability space (Ω,G , P d). This means that each A ∈ Ft is of the form Â × Ω̃

for some Â ∈ F̂t. Observe that F is right-continuous and denotes the reference
filtration here. All the random variables (functions) and stochastic processes de-
fined on B̂ or (Ω̃, F̃ , P̃ ) are extended to the enlarged filtered probability space
(Ω,G ,F = (Ft)t∈R+ , P

d) in the usual canonical way. We retain their names
when we consider them on this complete stochastic basis to avoid unnecessary
and confusing notation (cf. Eberlein and Özkan (2003) and Kluge (2005, sec-
tion 4.2)). Observe that each (F̂, P̂ d)-(local) martingale is also a (F, P d)-(local)
martingale.

For every k ∈ {1, . . . ,m}, let us define a random time τk : Ω → R+ on
(Ω,G , P d) by setting

τk := inf{t ∈ R+ | e−Γkt ≤ ξk} = inf{t ∈ R+ | Γkt ≥ ηk},

where the random variable ηk := − ln ξk is exponentially distributed with mean
one under P d. Obviously, η1, . . . , ηm is a family of independent random vari-
ables. For every k ∈ {1, . . . ,m}, we denote by Hk = (H k

t )t∈R+ the right-
continuous filtration generated by the default process Hk = (Hk

t )t∈R+ that is
defined by Hk

t = 1{τk≤t}. More precisely we have H k
t = σ(Hk

u : 0 ≤ u ≤
t) = σ({τk ≤ u} : 0 ≤ u ≤ t). We postulate that each random time τk pos-
sesses a F-intensity γk, i.e. Γkt =

∫ t
0 γ

k
s ds for any t ≥ 0 and some non-negative,
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F-progressively measurable stochastic process γk with integrable sample paths
(see Bielecki and Rutkowski (2002, chapter 5 and 8)).

Further, we assume that the defaultable bonds pay a certain recovery upon
default. This recovery payment is specified by the terminal recovery process
Rk = (Rkt )t∈[0,T ∗] for every curve k ∈ {1, . . . ,m}. The process Rk is F̂-adapted
and (locally) bounded on (Ω̂, F̂ , F̂, P̂ d) (cf. Bielecki and Rutkowski (2002, Sec-
tion 13.1.9.)). In financial interpretation, the amount Rk

τk
is the recovery pay-

ment made at maturity T if the default of the bond issuer occurs at time τk ≤ T .
More specifically, the value of the defaultable bond price B̄k

T (T ) at time T is
given by

B̄k
T (T ) = 1{τk>T}B

k
T (T ) +Bd

T (T )Rkτk1{τk≤T}

= 1{τk>T} +Rkτk1{τk≤T}.

Then, the time-t price results in

B̄k
t (T ) = 1{τk>t}B

k
t (T ) +Bd

t (T )Rkτk1{τk≤t}

and we obtain its discounted value Z̄kt (T ) := βdt B̄
k
t (T ) as

Z̄kt (T ) = 1{τk>t}Z
k
t (T ) +Rkτk1{τk≤t}Z

d
t (T ).

Consequently, the time-t bond price Bk
t (T ) is interpreted as the pre-default

price of the associated defaultable zero-coupon bond.
As mentioned above, we require that the process Z̄k(T ) = (Z̄kt (T ))t∈[0,T ]

to be a local martingale. Note that, in general, the default times τ1, . . . , τm

are not stopping times with respect to the reference filtration F. Therefore,
we need to enlarge F. Unfortunately, the filtration G̃ = (G̃t)t∈[0,T ∗] induced
by G̃t := Ft ∨H 1

t ∨ · · · ∨H m
t := σ(Ft,H 1

t , . . . ,H
m
t ) does not have to be

right-continuous (cf. Song (2013)). Therefore, we endow the probability space
(Ω,G , P d) with the filtration G = (Gt)t∈[0,T ∗] given by

Gt :=
⋂
s>t

G̃s, for any t ∈ [0, T ∗].

This filtration trivially satisfies the right-continuity. Since the stochastic ba-
sis (Ω,G ,F, P d) is complete (see also Jacod and Shiryaev (2003, §1a. 1.4)) it
easily follows that the enlarged stochastic basis (Ω,G ,G = (Gt)t∈[0,T ∗], P

d) is
also complete. We conclude that G is specified as the smallest enlargement
of F containing G̃. It can be shown that the martingale invariance property
(see Brémaud and Yor (1978), Dellacherie and Meyer (1978) and Bielecki and
Rutkowski (2002)) is satisfied in this framework.

The following theorem states the conditions which ensure the absence of ar-
bitrage. To be precise, we derive conditions such that for every k ∈ {1, . . . ,m},
the discounted defaultable bond price processes Z̄k(T ) are (G, P d)-local mar-
tingales for each T ∈ [0, T ∗].

Theorem 3.3. Assume that, for each k ∈ {1, . . . ,m} and T ∈ [0, T ∗], the
condition

Zkt−(T )
[
λk,dt −Ak(t, T ) + θt(Σ

k(t, T ))
]

= (Zkt−(T )−RktZd
t (T ))γkt

(3.15)
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is satisfied for all t ∈ [0, T ], where we set λk,dt := rkt − rdt . Then, for each
k ∈ {1, . . . ,m} and T ∈ [0, T ∗], the process Z̄k(T ) is a (G, P d)-local martingale.

Proof. For every k ∈ {1, . . . ,m} and T ∈ [0, T ∗], we obviously have that Hk =
1{τk≤·} as well as 1−Hk = 1{τk>·} are finite variation processes and Zk(T ) is
a semimartingale. Let us define by Ĥk

t := Rk
τk
Hk
t a G-adapted finite variation

process Ĥk = (Ĥk
t )t∈[0,T ∗]. Then, by Jacod and Shiryaev (2003, Proposition

I.4.49), we obtain that

Z̄kt (T ) =

t∫
0

(1−Hk
s−)dZks (T ) +

t∫
0

Zks (T )d(1−Hk
s ) + Z̄k0 (T )

+

t∫
0

Ĥk
s−dZ

d
s (T ) +

t∫
0

Zd
s (T )dĤk

s

=

t∫
0

(1−Hk
s−)dZks (T )−

t∫
0

Zks (T )dHk
s + Z̄k0 (T )

+

t∫
0

Ĥk
s−dZ

d
s (T ) +

t∫
0

RksZ
d
s (T )dHk

s .

One gets

Z̄kt (T ) =

t∫
0

(1−Hk
s−)Zks−(T )

[
λkds −Ak(s, T ) + θs(Σ

k(s, T ))
]
ds+ Z̄k0 (T )

+

t∫
0

(1−Hk
s−)Zks−(T )Σk(s, T )

√
csdWs

+

t∫
0

∫
Rd

(1−Hk
s−)Zks−(T )

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx)

+

t∫
0

Ĥk
s−dZ

d
s (T ) +

t∫
0

(RksZ
d
s (T )− Zks (T ))dHk

s .

Since condition (3.15) is assumed to be satisfied, we have
t∫

0

(1−Hk
s )Zks−(T )

[
λkds −Ak(s, T ) + θs(Σ

k(s, T ))
]
ds

=

t∫
0

(1−Hk
s )(Zks−(T )−RksZd

s (T ))γks ds

=

t∫
0

(1−Hk
s )(Zks (T )−RksZd

s (T ))γks ds
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and it follows that

Z̄kt (T ) = Z̄k0 (T ) +

t∫
0

(1−Hk
s−)Zks−(T )Σk(s, T )

√
csdWs

+

t∫
0

∫
Rd

(1−Hk
s−)Zks−(T )

(
e〈Σ

k(s,T ),x〉 − 1
)

(µL − ν)(ds, dx)

+

t∫
0

Ĥk
s−dZ

d
s (T ) +

t∫
0

(RksZ
d
s (T )− Zks (T ))dMk

s , (3.16)

where the (G, P d)-martingale Mk = (Mk
t )t∈[0,T ∗] is defined by

Mk
t = Hk

t −
t∫

0

(1−Hk
s )γks ds.

By taking into account the valid martingale invariance property, we observe
that all the considered stochastic integrals in equation (3.16) have (G, P d)-local
martingales as integrators. Hence, we conclude that Z̄k(T ) is a (G, P d)-local
martingale. �

Let us assume that the terminal recovery process is of the form

Rkt = RkBk
t−(T )Bd

t (T )−1,

where Rk ∈ [0, 1). Note that this choice corresponds to the fractional recovery
of market value (see Bielecki and Rutkowski (2002, section 1.1.1)). By easy
computations, we obtain the following convenient form of condition (3.15). For
each k ∈ {1, . . . ,m} and T ∈ [0, T ∗]

λk,dt −Ak(t, T ) + θt(Σ
k(t, T )) = (1−Rk)γkt (3.17)

for every t ∈ [0, T ]. One verifies that condition (3.17) can equivalently be for-
mulated as

λk,dt = (1−Rk)γkt
Ak(t, T ) = θt(Σ

k(t, T )). (3.18)

Hence, the credit risk component of the model is given by equation (3.18).
Since the crisis was caused by a mixture of credit and liquidity risk (cf.

Filipović and Trolle (2013) and Eberlein (2015)), we add an additional liquidity
component to the pure credit risk factor θt(Σk(t, T )) in (3.18). For this reason,
we need another ingredient in the model.

(MC.3) For every k ∈ {1, . . . ,m}, we consider the liquidity component lk defined
by

lk :

{
[0, T ∗]× [0, T ∗]→ R
(t, T ) 7→ lk(t, T )

which is assumed to be a bounded function.
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Finally, we consider the drift function

Ak(t, T ) = θt(Σ
k(t, T )) + lk(t, T ) (3.19)

for every k ∈ {1, . . . ,m}. We stress that the drift function Ak (and αk) and
the volatility function Σk (and σk) are deterministic functions. Therefore, the
factor Dk(t, T ) is deterministic.

4. Monotonicity of the Curves

We want to secure monotonicity of the curves according to the ordering given
in (3.10). In other words bonds that are related to a riskier curve should have
a lower price than bonds that correspond to a curve associated with less credit
and liquidity risk. This approach is motivated by Figure 2.

4.1. The Monotonicity Condition. Recall that we usually have for every
k, l ∈ {1, . . . ,m} with k ≤ l and all T ∈ [0, T ∗] monotonicity of the initial
curves

Bl
0(T ) ≤ Bk

0 (T ) ≤ Bd
0(T ).

We want to design the model such that monotonicity holds at any time. This
means that we want to achieve

Bl
t(T ) ≤ Bk

t (T ) ≤ Bd
t (T ) (4.1)

for every t, T ∈ [0, T ∗] satisfying t ≤ T . This reflects the fact that the higher
the risk is, the lower the price of the bond should be. The monotonicity will be
guaranteed by additional restrictions on the model parameters. The inequalities
(4.1) can obviously be achieved if

fdt (T ) ≤ fkt (T ) ≤ f lt(T ). (4.2)

For every k, j ∈ {d, 1 . . . ,m} and T ∈ [0, T ∗], we define the additive (forward)
spread between the curves k and j by

sk,jt (T ) := fkt (T )− f jt (T ). (4.3)

One sees that the dynamics sk,j(T ) = (sk,jt (T ))t∈[0,T ] are given by

sk,jt (T ) = sk,j0 (T ) +

t∫
0

αk,j(s, T )ds−
t∫

0

σk,j(s, T )dLs, (4.4)

where we set αk,j(s, T ) := αk(s, T ) − αj(s, T ) and σk,j(s, T ) := σk(s, T ) −
σj(s, T ). Note that sk,kt (T ) = 0 for every k ∈ {d, 1, . . . ,m} and we deduce from
(4.2) that

0 ≤ sk,d0 (T ) ≤ sl,d0 (T ) and 0 ≤ sl,k0 (T )

for all k, l ∈ {1, . . . ,m} with k ≤ l and T ∈ [0, T ∗]. For every k, j ∈ {d, 1 . . . ,m},
the short term spread between k and j is defined by λk,jt := rkt − r

j
t and we set

Ak,j(s, T ) :=

T∫
s∧T

αk,j(s, u)du and Σk,j(s, T ) :=

T∫
s∧T

σk,j(s, u)du.
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Then, we clearly have the relations

Ak,j(s, T ) = Ak(s, T )−Aj(s, T ) and Σk,j(s, T ) = Σk(s, T )− Σj(s, T ).

For any k ∈ {1, . . . ,m}, we obviously have

sk,dt (T ) =
k∑
j=1

sj,j−1
t (T ), (4.5)

where we define s1,0
t (T ) := s1,d

t (T ). Therefore, we obtain

fkt (T ) = fdt (T ) +
k∑
j=1

sj,j−1
t (T ).

Note that, for every k ∈ {1, . . . ,m}, the short term spread λk,d is given by

λk,dt =
k∑
j=1

λj,j−1
t =

k∑
j=1

sj,j−1
t (t), (4.6)

where for notational convenience we will write sometimes 0 instead of d, i.e.
λ1,0
t := λ1,d

t . Moreover, one easily sees that the drift function and the volatility
structure related to curve k can be represented by

αk(s, T ) = αd(s, T ) +
k∑
j=1

αj,j−1(s, T )

and

σk(s, T ) = σd(s, T ) +
k∑
j=1

σj,j−1(s, T ),

where we denote as mentioned above α1,0(s, T ) := α1,d(s, T ) and σ1,0(s, T ) :=
σ1,d(s, T ). It follows that we have

Ak(s, T ) = Ad(s, T ) +
k∑
j=1

Aj,j−1(s, T )

and

Σk(s, T ) = Σd(s, T ) +
k∑
j=1

Σj,j−1(s, T ), (4.7)

where we define A1,0(s, T ) := A1,d(s, T ) and Σ1,0(s, T ) := Σ1,d(s, T ). Conse-
quently, due to relation (4.3), we can specify the dynamics of the quantity
fk(T ) by modelling the forward spreads sk,j(T ) and the forward rates f j(T ).

It is evident that the relation (4.2) is equivalent to the condition

0 ≤ sk,dt (T ) ≤ sl,dt (T ) (4.8)

for every k, l ∈ {1, . . . ,m} with k ≤ l and t, T ∈ [0, T ∗] satisfying t ≤ T . Then,
we conclude from representation (4.5) that condition (4.8) is valid if, for all
j ∈ {1, . . . ,m} and t, T ∈ [0, T ∗] with t ≤ T , we have

0 ≤ sj,j−1
t (T ). (4.9)
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To sum up, this approach results in the non-negative specification of the for-
ward spreads between two subsequent curves (4.9). Then, condition (4.8) is
automatically satisfied. This fact implicitly guarantees the relations (4.2) and
we therefore ensure the required monotonicity (4.1).

4.2. A Tractable Model Framework. Below, we present a tractable model
which ensures the non-negativity of the consecutive forward spreads. Through
the analysis made in the previous subsection, it follows that the monotonicity
of the curves (4.1) is then guaranteed. This framework is motivated by Crépey,
Grbac, and Nguyen (2012). We emphasise that we specify the model quantities
corresponding to each curve k ∈ {1, . . . ,m} by modelling the relevant spreads
and the discount curve.

Let d,m, l ∈ N∗ = {1, 2, 3, . . . } with l + m ≤ d and a d-dimensional driving
process L = (L1, . . . , Ld)T be given on the enlarged stochastic basis (Ω,G ,G, P d).
Its components are divided into l real-valued Lévy processes and d − l Lévy
processes with negative values. More precisely, we specify the d-dimensional
(time-homogeneous) Lévy process L as follows

(1) Y 1 := (L1, . . . , Ll)T is an Rl-valued Lévy process.
(2) Y 2 := (Ll+1, . . . , Ld)T = (−Z l+1, . . . ,−Zd)T, where Z := (Z l+1, . . . , Zd)T =

−Y 2 is an Rd−l+ -valued Lévy process whose components are subordina-
tors (see Sato (1999, Definition 21.4.)). The cumulant process of Z is of
the form

θZ(z) = 〈z, b〉+

∫
Rd−l+

(e〈z,x〉 − 1)F (dx),

where z ∈ Cd−l such that Re(z) ∈ [−(1 + ε)M, (1 + ε)M ]d−l. The drift
term b satisfies bj ≥ 0 for any j ∈ {1, . . . , d− l} and the Lévy measure
F has its support on Rd−l+ .

We make the following

Assumption 4.1. (VL) For every k ∈ {1, . . . ,m}, the non-negative volatility
functions Σd and Σk,k−1 as well as the liquidity function lk are deterministic,
differentiable and stationary in the following sense: For every k ∈ {1, . . . ,m},
j ∈ {1, . . . , d} and s, T with 0 ≤ s ≤ T ≤ T ∗, the functions are of the form

Σd
j (s, T ) = Gj(T − s)

Σk,k−1
j (s, T ) = Gkj (T − s)

lk(s, T ) = Gkl (T − s),

where Gj : [0, T ∗] → R+ and Gkj : [0, T ∗] → R+ are differentiable functions
satisfying Gj(0) = Gkj (0) = 0 that are bounded in the sense of

Gj(s) +
m∑
k=1

Gkj (s) ≤ M̂ < M

for all s ∈ [0, T ∗]. The function Gkl : [0, T ∗] → R is differentiable and bounded
satisfying Gkl (0) = 0.

It follows that the conditions (DET) and (MC.DET) are fulfilled under as-
sumption (VL).
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Proposition 4.2. The forward spread s1,d
t (T ) can be written as

s1,d
t (T ) = s1,d0 (T )− θ(Σd(t, T ) + Σ1,d(t, T )) + θ(Σd(0, T ) + Σ1,d(0, T ))

− l1(t, T ) + l1(0, T ) + θ(Σd(t, T ))− θ(Σd(0, T )) (4.10)

−
t∫

0

σ1,d(s, T )dLs

and, in the case where m ≥ 2, the forward spread sj,j−1
t (T ) is given by

sj,j−1
t (T ) = sj,j−1

0 (T )− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T )) + θ(Σd(0, T ) +

j∑
i=1

Σi,i−1(0, T ))

− lj,j−1(t, T ) + lj,j−1(0, T ) + θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T ))

(4.11)

− θ(Σd(0, T ) +

j−1∑
i=1

Σi,i−1(0, T ))−
t∫

0

σj,j−1(s, T )dLs

for any j ∈ {2, . . . ,m} where we have set lj,j−1(t, T ) = lj(t, T )− lj−1(t, T ). The
corresponding short term spreads result in

λ1,d
t = s1,d0 (t) + θ(Σd(0, t) + Σ1,d(0, t)) + l1(0, t)− θ(Σd(0, t))−

t∫
0

σ1,d(s, t)dLs

and

λj,j−1
t = sj,j−1

0 (t) + θ(Σd(0, t) +

j∑
i=1

Σi,i−1(0, t)) + lj,j−1(0, t)

− θ(Σd(0, t) +

j−1∑
i=1

Σi,i−1(0, t))−
t∫

0

σj,j−1(s, t)dLs.

Proof. We observe that

∂

∂T
Gj(T − s) = − ∂

∂s
Gj(T − s)

∂

∂T
Gkj (T − s) = − ∂

∂s
Gkj (T − s)

∂

∂T
Gkl (T − s) = − ∂

∂s
Gkl (T − s).

This implies

∂

∂T
θ(Σd(s, T ) + Σ1,d(s, T )) +

∂

∂T
l1(s, T )− ∂

∂T
θ(Σd(s, T ))

= − ∂

∂s
θ(Σd(s, T ) + Σ1,d(s, T ))− ∂

∂s
l1(s, T ) +

∂

∂s
θ(Σd(s, T ))
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from which we get
t∫

0

[ ∂
∂T

θ(Σd(s, T ) + Σ1,d(s, T )) +
∂

∂T
l1(s, T )− ∂

∂T
θ(Σd(s, T ))

]
ds

= −
t∫

0

[ ∂
∂s
θ(Σd(s, T ) + Σ1d(s, T )) +

∂

∂s
l1(s, T )− ∂

∂s
θ(Σd(s, T ))

]
ds

= −θ(Σd(t, T ) + Σ1,d(t, T )) + θ(Σd(0, T ) + Σ1,d(0, T ))− l1(t, T ) + l1(0, T )

+ θ(Σd(t, T ))− θ(Σd(0, T )).

Equation (4.10) follows now if we combine the representation of s1,d
t (T ) in (4.4)

with the choice of the drift coefficient according to (3.19). Analogously, one
shows that

∂

∂T
θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T )) +
∂

∂T
lj,j−1(s, T )

− ∂

∂T
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T ))

=− ∂

∂s
θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T ))− ∂

∂s
lj,j−1(s, T )

+
∂

∂s
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T )).

From this we obtain
t∫

0

[ ∂
∂T

θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T )) +
∂

∂T
lj,j−1(s, T )

− ∂

∂T
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T ))
]
ds

=−
t∫

0

[ ∂
∂s
θ(Σd(s, T ) +

j∑
i=1

Σi,i−1(s, T )) +
∂

∂s
lj,j−1(s, T )

− ∂

∂s
θ(Σd(s, T ) +

j−1∑
i=1

Σi,i−1(s, T ))
]
ds

=− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T )) + θ(Σd(0, T ) +

j∑
i=1

Σi,i−1(0, T ))− lj,j−1(t, T )

+ lj,j−1(0, T ) + θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T ))− θ(Σd(0, T ) +

j−1∑
i=1

Σi,i−1(0, T )).

The last expressions immediately lead to the form (4.11). The representations
of the short term spreads follow from (4.6) �
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Next, we derive necessary and sufficient deterministic conditions for the non-
negativity of the (consecutive) forward spreads. Let m ≥ 2. We shall exploit
the representations obtained in the previous Proposition by considering the
following deterministic terms

µ1,d(t, T ) := s1,d
t (T ) +

t∫
0

σ1,d(s, T )dLs

= s1,d0 (T )− θ(Σd(t, T ) + Σ1,d(t, T )) + θ(Σd(0, T ) + Σ1,d(0, T ))

− l1(t, T ) + l1(0, T ) + θ(Σd(t, T ))− θ(Σd(0, T ))

µ1,d(t) := λ1,d
t +

t∫
0

σ1,d(s, t)dLs

= s1,d0 (t) + θ(Σd(0, t) + Σ1,d(0, t)) + l1(0, t)− θ(Σd(0, t))

and

µj,j−1(t, T ) := sj,j−1
t (T ) +

t∫
0

σj,j−1(s, T )dLs

= sj,j−1
0 (T )− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T ))

+ θ(Σd(0, T ) +

j∑
i=1

Σi,i−1(0, T ))− lj,j−1(t, T ) + lj,j−1(0, T )

+ θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T ))− θ(Σd(0, T ) +

j−1∑
i=1

Σi,i−1(0, T ))

µj,j−1(t) := λj,j−1
t +

t∫
0

σj,j−1(s, t)dLs

= sj,j−1
0 (t) + θ(Σd(0, t) +

j∑
i=1

Σi,i−1(0, t)) + lj,j−1(0, t)

− θ(Σd(0, t) +

j−1∑
i=1

Σi,i−1(0, t)).

Proposition 4.3. Let T ∈ [0, T ∗]. We assume that the following is satisfied
(1) For any t ∈ [0, T ] and each k ∈ {1, . . . , l}, we have

σ1,d
k (t, T ) = 0

and, if m ≥ 2, we have for every j ∈ {2, . . . ,m}

σj,j−1
k (t, T ) = 0

(2) For all t ∈ [0, T ], we have

0 ≤ µ1,d(t, T ) = µ1,d(T )− θ(Σd(t, T ) + Σ1,d(t, T ))− l1(t, T ) + θ(Σd(t, T ))
(4.12)
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and, if m ≥ 2, we have for every j ∈ {2, . . . ,m}

0 ≤ µj,j−1(t, T ) = µj,j−1(T )− θ(Σd(t, T ) +

j∑
i=1

Σi,i−1(t, T ))− lj,j−1(t, T )

(4.13)

+ θ(Σd(t, T ) +

j−1∑
i=1

Σi,i−1(t, T )).

Then the forward spreads satisfy

0 ≤ s1,d
t (T ) and 0 ≤ sj,j−1

t (T )

for every t, T ∈ [0, T ∗] with t ≤ T and each j ∈ {2, . . . ,m}.

Proof. It follows from the definition of µ1,d(t, T ) that the non-negativity of
the term −

∫ t
0 σ

1,d(s, T )dLs, for any t ∈ [0, T ], together with assumption (4.12)
imply s1,d

t (T ) ≥ 0 for all t ∈ [0, T ]. Similar arguments lead to the non-negativity
of the spread sj,j−1

t (T ) for any t ∈ [0, T ] with t ≤ T and every j ∈ {2, . . . ,m}
if m ≥ 2. �

Note that the conditions (4.12) and (4.13) result in additional restrictions
on the considered distribution parameters of the driving process as well as the
parameters of the volatility and liquidity functions. We mention that with some
additional effort we can also derive a model framework where Lévy processes
are replaced by time-inhomogeneous Lévy processes.

5. Valuation Formulas in a Two-Price Economy

5.1. Preface. We begin with some preliminary remarks related to the valuation
approach. Letm ∈ N be the number of the risky curves and T k = {T k0 , . . . , T knk}
be the discrete tenor structure with tenor δk. To simplify the notation, we omit
the superscripts in the symbols for the dates and tenors related to the discount
curve.

We conclude from the equations (3.8) and (3.14) that the time-T kj−1 price of
the bond maturing at date T kj can be represented in the case k = 0 = d as

Bd
Tj−1

(Tj) =
Bd

0(Tj)

Bd
0(Tj−1)

exp

( Tj−1∫
0

Σd(s, Tj−1, Tj)dLs

+

Tj−1∫
0

[
θs(Σ

d(s, Tj−1))− θs(Σd(s, Tj))
]
ds

)
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for every j ∈ {1, . . . , n} and

Bk
Tkj−1

(T kj ) =
Bk

0 (T kj )

Bk
0 (T kj−1)

exp

( Tkj−1∫
0

Σk(s, T kj−1, T
k
j )dLs

+

Tkj−1∫
0

[
θs(Σ

k(s, T kj−1)) + lk(s, T kj−1)

− θs(Σk(s, T kj ))− lk(s, T kj )
]
ds

)

for every j ∈ {1, . . . , nk} with k ∈ {1, . . . ,m}. These expressions can be written
in a compact form as

Bk
Tkj−1

(T kj ) = Dk
j exp(Xk

j ), (5.1)

where we set the deterministic part as

Dk
j := Dk(T kj−1, T

k
j ) =

Bk
0 (T kj )

Bk
0 (T kj−1)

exp

( Tkj−1∫
0

[
θs(Σ

k(s, T kj−1)) + lk(s, T kj−1)

− θs(Σk(s, T kj ))− lk(s, T kj )
]
ds

)
and the stochastic term as

Xk
j := Xk(T kj−1, T

k
j ) =

Tkj−1∫
0

Σk(s, T kj−1, T
k
j )dLs

for every k ∈ {d, 1, . . . ,m}. Furthermore, the discount factor process βd at date
T ∈ [0, T ∗] is calculated as

βdT = Bd
0(T ) exp

− T∫
0

θs(Σ
d(s, T ))ds+

T∫
0

Σd(s, T )dLs

 . (5.2)

The forward martingale measure for the date T ∈ [0, T ∗], denoted by P d
T , is

defined by the Radon-Nikodym derivative

dP d
T

∣∣
GT

dP d
∣∣
GT

=
βdT

Bd
0(T )

. (5.3)

For any t ≤ T , the restriction to the σ-field Gt is the martingale

dP d
T

∣∣
Gt

dP d
∣∣
Gt

= EP d

[
βdT

Bd
0(T )

∣∣∣Gt] =
βdtB

d
t (T )

Bd
0(T )

.
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By using Eberlein and Kluge (2006), we observe that the characteristic function
of Xk

j under P d
T can be determined as

ϕT
Xk
j
(u) = exp


Tkj−1∫
0

θTs

(
iuΣk(s, T kj−1, T

k
j )
)
ds

 ,

where θTs denotes the cumulant with respect to P d
T and T ∈ T d.

By changing to the spot martingale measure P d with the use of (5.3) together
with equation (5.2), we get the useful representation

ϕ
Tkj
Xk
j

(u) = exp

( Tkj−1∫
0

[
θs

(
Σd(s, T kj ) + iuΣk(s, T kj−1, T

k
j )
)
− θs(Σd(s, T kj ))

]
ds

)
.

(5.4)

Note that this expression can be extended to complex numbers by using as-
sumption (EM) (cf. Sato (1999, Theorem 25.17)).

The payoffs of the derivatives that we will consider are functions of the spot
reference rates Lk

Tkj−1
(T kj−1, T

k
j ) which are related to the risky bond prices by

1 + δkLk
Tkj−1

(T kj−1, T
k
j ) =

1

Bk
Tkj−1

(T kj )
. (5.5)

The corresponding forward rates are derived from this by setting

Lkt (T
k
j−1, T

k
j ) = EP d

Tk
j

[
Lk
Tkj−1

(T kj−1, T
k
j )|Ft

]
. (5.6)

Note that in the last formula we used the smaller filtration F which is justified
since due to the martingale invariance property between F and G we can replace
Gt by Ft in all risk-neutral pricing formulas.

Hereafter, we consider k ∈ {d, 1, . . . ,m}. The related valuation formulas for
the single-curve setting are well-known. To simplify the notation, we choose the
notional amount always to be equal to one.

5.2. Caps and Floors. For t ≤ T0 the time-t value of a cap with strike rate
K and maturity T ∗ results in

Capt(T
k, δk,K) =

nk∑
j=1

(βdt )−1EP d

[
βd
Tkj
δk
(
Lk
Tkj−1

(T kj−1, T
k
j )−K

)+|Ft

]
=

nk∑
j=1

EP d

Tk
j

[
Bd
t (T kj )

(
ηkj exp(−Xk

j )− K̃k
)+|Ft

]
,

where we have defined K̃k := 1 + δkK and ηkj := 1
Dkj

. Hence, the time-0 price
of a caplet with strike rate K is given by

Cpl0(T kj−1, T
k
j ,K) = EP d

[
βd
Tkj

(
ηkj exp(−Xk

j )− K̃k
)+] (5.7)

= EP d

Tk
j

[
Bd

0(T kj )
(
ηkj exp(−Xk

j )− K̃k
)+]

. (5.8)
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To simplify the notation, we set Y k
j := −Xk

j . The extended characteristic func-
tion of Y k

j relative to the pricing measure P d
Tkj

can be calculated as

ϕ
Tkj
Y kj

(z) = exp
( Tkj−1∫

0

[
θs(Σ

d(s, T kj )− izΣk(s, T kj−1, T
k
j ))

− θs(Σd(s, T kj ))
]
ds
)

(5.9)

for every z ∈ C where this function exists.
To evaluate the price of the caplet, we use the Fourier based valuation method

(see Eberlein, Glau, and Papapantoleon (2010)).

Proposition 5.1. The risk-neutral price of the caplet at time 0 can be written
as

Cpl0(T kj−1, T
k
j ,K) = Bd

0(T kj )
e−Rξ

k
j

π

∞∫
0

Re

(
e−iuξ

k
j ϕ

Tkj
Y kj

(u− iR)(K̃k)1−R−iu

(−R− iu)(1−R− iu)

)
du

(5.10)

for any R ∈
(

1, M−M̂
M̂

]
, where we set ξkj := − ln ηkj and M̂ is assumed to be

chosen such that M̂ < M
2 .

Proof. Clearly, we have

ϕ
Tkj
Y kj

(u− iR) = exp
( Tkj−1∫

0

[
θs(Σ

d(s, T kj )− (iu+R)Σk(s, T kj−1, T
k
j ))

− θs(Σd(s, T kj ))
]
ds
)

and

|Re
(
Σd
l (s, T

k
j )− (iu+R)Σk

l (s, T
k
j−1, T

k
j )
)
| = |Σd

l (s, T
k
j )−RΣk

l (s, T
k
j−1, T

k
j )|

≤ M̂ + |R|M̂ ≤ M̂ +
M − M̂
M̂

M̂

= M

for every l ∈ {1, . . . , d}. Then the result follows from Eberlein, Glau, and Pa-
papantoleon (2010, Theorem 2.2.) and an obvious symmetry property of the
integrand. �

Note that the price of a floorlet can be obtained in an analogous way. From
the pricing formula for caplets (floorlets) we immediately deduce the valuation
formula of the cap (floor).

5.3. Swaptions. We consider a swap where a fixed rate R is exchanged for a
floating rate (Euribor) with tenor δk. Let T k = {T k0 , . . . , T knk} be the corre-
sponding tenor structure. We assume that the swap is initiated at T0 = T k0 and
the rates are exchanged at time points T k1 < · · · < T knk = Tn. For t ≤ T0 the
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time-t value of a payer swap - where we set again the notional amount N = 1
- is then

Sw(t, T0, Tn, R) =

nk∑
j=1

Bd
t (T kj )δk EP d

Tk
j

[
Lk
Tkj−1

(T kj−1, T
k
j )−R|Ft

]
=

nk∑
j=1

Bd
t (T kj )δk

(
Lkt (T

k
j−1, T

k
j )−R

)
. (5.11)

Consequently the swap rate, i.e. the rate which makes this value equal to zero,
is given by

R(t, T0, Tn) =

∑nk
j=1B

d
t (T kj )δkLkt (T

k
j−1, T

k
j )∑nk

j=1B
d
t (T kj )δk

.

Now consider a swaption, i.e. an option to enter this swap at time point T0.
Its value at t ≤ T0 is given by

Swpt(t, T0, Tn, R) =Bd
t (T0) EP d

T0

[
(Sw(T0, T0, Tn, R))+|Ft

]
(5.12)

=Bd
t (T0) EP d

T0

[ nk∑
j=1

Bd
T0(T kj )δk

(
R(T0, T0, Tn)−R

)+|Ft

]
.

This valuation formula can be written in a more elegant way with the help of
the swap measure (see e.g. section 1.4.7 in Grbac and Runggaldier (2015)). If
we define the process At =

∑nk
j=1B

d
t (T kj )δk (0 ≤ t ≤ T k1 ) then

(
At

Bd
t (T0)

)
0≤t≤T0

is a P d
T0
-martingale and thus allows to define a density process

dP d
Swap

∣∣
Ft

dP d
T0

∣∣
Ft

=
At

Bd
t (T0)

Bd
0(T0)

A0
(0 ≤ t ≤ T0).

Using the Bayes formula for conditional expectations we get

Swpt(t, T0, Tn, R) = At EP d
Swap

[(
R(T0, T0, Tn)−R

)+|Ft

]
.

In order to make the valuation formula for swaptions numerically easier ac-
cessible we assume as usual that the volatilities factorise in the following way

Σd(s, T ) = Σ1(s) Σd
2(T )

and

Σk(s, T ) = Σ1(s) Σk
2(T )

where Σ1 is Rd-valued, whereas Σd
2 and Σk

2 are R-valued. At the price of consid-
ering two-dimensional distributions instead of a one-dimensional one, the factor
Σ1 could be chosen to differ for Σd and Σk.

Using (3.9) we get

Bd
T0(T kj ) = Dd(T0, T

k
j ) exp

Σd
2(T0, T

k
j )

T0∫
0

Σ1(s)dLs

 (5.13)
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where we wrote for short Σd
2(T0, T

k
j ) := Σd

2(T kj ) − Σd
2(T0). In the same way we

use (5.6), (5.5) and (5.1) to express

LkT0(T kj−1, T
k
j ) = EP d

Tk
j

[ 1

δk

( 1

Bk
Tkj−1

(T kj )
− 1
)
|FT0

]
=

1

δk

(
EP d

Tk
j

[
(Dk

j )−1 exp(−Xk
j )|FT0

]
− 1
)

=
1

δk

(
ηkj exp

( Tkj−1∫
T0

θ
Tkj
s (Σk(s, T kj , T

k
j−1))ds+ Σk

2(T kj , T
k
j−1)

T0∫
0

Σ1(s)dLs
)
− 1
)

(5.14)

where we have set Σk
2(T kj , T

k
j−1) := Σk

2(T kj−1)−Σk
2(T kj ). WritingXT0 :=

∫ T0
0 Σ1(s)dLs

for the random term in (5.13) and (5.14) and introducing these formulas in
(5.12) with the help of (5.11) we see that the value of the swaption at time
t = 0 can be represented as

Swpt(0, T0, Tn, R) = Bd
0(T0)EP d

T0

[( nk∑
j=1

Dd(T0, T
k
j ) exp

(
Σd

2(T0, T
k
j )XT0

)

(
ηkj exp

( Tkj−1∫
T0

θ
Tkj
s (Σk(s, T kj , T

k
j−1))ds+ Σk

2(T kj , T
k
j−1)XT0

)
− (1 + δkR)

))+]
.

If we define the function fk : R→ R by

fk(x) =
( nk∑
j=1

Dd(T0, T
k
j ) exp

(
Σd

2(T0, T
k
j )x
)

(
ηkj exp

( Tkj−1∫
T0

θ
Tkj
s (Σk(s, T kj , T

k
j−1))ds+ Σk

2(T kj , T
k
j−1)x

)
− (1 + δkR)

))+

the value of the swaption can be written as

Swpt(0, T0, Tn, R) = Bd
0(T0)EP d

T0

[
fk(XT0)

]
which is numerically accessible with the Fourier based approach.

5.4. Interest Rate Digital Options. A standard interest rate digital call
(put) with strike rate B is an option that pays an amount of one currency
unit to its owner if and only if the reference rate for the period [T kj−1, T

k
j ] lies

above (below) B at maturity T kj−1 of the option. An interest rate digital option
is called delayed if the payment date T differs from the maturity date T kj−1,
where T > T kj−1. Thus the payoff at time T can be given in the form

DDkT (T kj−1, T
k
j , T, B,w) = 1{wLk

Tk
j−1

(Tkj−1,T
k
j )>wB},
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where we assume that B > − 1
δk

and

w =

{
1, for a delayed digital call
−1, for a delayed digital put.

Then, the time-t price for t ≤ T kj−1 can be represented by

DDkt (T
k
j−1, T

k
j , T, B,w) = (βdt )−1EP d

[
βdT1{wLk

Tk
j−1

(Tkj−1,T
k
j )>wB}|Ft

]
= Bd

t (T )EP d
T

[
1{w(1+δkB)−1>wBk

Tk
j−1

(Tkj )}|Ft

]
.

This formula can further be written as

DDkt (T
k
j−1, T

k
j , T, B,w) = Bd

t (T )EP d
T

[
1{w(1+δkB)−1>wBkt (Tkj )Bkt (Tkj−1)−1Hk(t,Tkj−1)}|Ft

]
with

Hk(t, T kj−1) := exp

−
Tkj−1∫
t

Ak(s, T kj−1, T
k
j )ds+Xk

t,j

 ,

where we set

Ak(s, T kj−1, T
k
j ) := Ak(s, T kj )−Ak(s, T kj−1)

and

Xk
t,j :=

Tkj−1∫
t

Σk(s, T kj−1, T
k
j )dLs.

By the independence of Xk
t,j and Ft (independent increments of the process

L) and the Ft-measurability of
Bkt (Tkj )

Bkt (Tkj−1)
, we obtain from Kallenberg (2002,

Theorem 6.4) that

DDkt (T
k
j−1, T

k
j , T, B,w) =Bd

t (T ) · gkw

(
Bk
t (T kj )

Bk
t (T kj−1)

)
=Bd

t (T ) · gkw
(
F k(t, T kj−1, T

k
j )−1

)
,

where F k(t, T kj−1, T
k
j ) =

Bkt (Tkj−1)

Bkt (Tkj )
and the function gkw : R→ [0, 1] is defined by

gkw(y) := EP d
T

[
1{w(1+δkB)−1>wyHk(t,Tkj−1)}

]
.
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For every y > 0, we have

gkw(y) = P d
T

w exp
(
Xk
t,j

)
< w

exp

(∫ Tkj−1

t Ak(s, T kj−1, T
k
j )ds

)
(1 + δkB)y



=



P
d,Xk

t,j

T

x < log

 exp

(∫ Tkj−1
t Ak(s,Tkj−1,T

k
j )ds

)
(1+δkB)y


 for w = 1

1− P
d,Xk

t,j

T

x ≤ log

 exp

(∫ Tkj−1
t Ak(s,Tkj−1,T

k
j )ds

)
(1+δkB)y


 for w = −1,

(5.15)

where we denote by P
d,Xk

t,j

T the distribution of Xk
t,j . The extended characteristic

function of Xk
t,j under P

d
T can be determined by

ϕT
Xk
t,j

(z) = exp


Tkj−1∫
t

[
θs(Σ

d(s, T ) + izΣk(s, T kj−1, T
k
j ))− θs(Σd(s, T ))

]
ds


for every z ∈ C where this function is defined.

Now, we calculate the present value (t = 0) of a delayed digital option by
applying the Fourier-based valuation method. Let us write

DDk0(T kj−1, T
k
j , T, B,w)

= Bd
0(T )EP d

T

[
1{w exp(Xk

j −ξkj )<w(1+δkB)−1}
]

=

B
d
0(T )P d

T

(
Xk
j < log((1 + δkB)−1) + ξkj

)
for w = 1

Bd
0(T )P d

T

(
Xk
j > log((1 + δkB)−1) + ξkj

)
for w = −1

=: V j,k
w (ξkj ),

where we used ξkj = − log(Dk
j ) ∈ R.

Let us consider the map ξkj 7→ V j,k
w (ξkj ) ∈ R+. Clearly, V j,k

w has locally
bounded variation. We assume that the distribution ofXk

j under P d
T is atomless.

Then, by using the symbol F TX for the cumulative distribution function of a
random variable X under P d

T , we get

V j,k
w (ξkj ) =

B
d
0(T )F T

Xk
j
(log((1 + δkB)−1) + ξkj ) for w = 1

Bd
0(T )(1− F T

Xk
j
(log((1 + δkB)−1) + ξkj ) for w = −1.

It follows that V j,k
w is a continuous function. The payoff function of a digital

call option with barrier B ∈ R+ is given by

fw(x) = 1{wex<wB̃−1
k }

,
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where we set B̃k = 1 + δkB. Easy calculations lead to the following form of the
Fourier transform of fw for every z ∈ C where it is defined by

f̂w(z) =


B̃−iz
k
iz , for w = 1 and Im(z) ∈ (−∞, 0)

− B̃−iz
k
iz , for w = −1 and Im(z) ∈ (0,∞).

Let us consider the dampened payoff function of the digital option given by
dw(x) = e−Rxfw(x). We easily verify that dw ∈ L1(R) for every{

R ∈ (−∞, 0), for w = 1,

R ∈ (0,∞), for w = −1.

Observe that we can find an R that satisfies the prerequisites of Eberlein, Glau,
and Papapantoleon (2010, Theorem 2.7.). Then, we conclude from this Theorem
that the value of a delayed digital option at point ξkj can be expressed as

DDk0(T kj−1, T
k
j , T, B,w)

=


Bd

0(T ) · lim
A→∞

e
−Rξkj
π

∫ A
0 Re

( e−iuξkj ϕT
Xk
j

(u−iR)B̃R+iu
k

−R−iu

)
du, for w = 1 and R < 0

Bd
0(T ) · lim

A→∞
e
−Rξkj
π

∫ A
0 Re

( e−iuξkj ϕT
Xk
j

(u−iR)B̃R+iu
k

R+iu

)
du, for w = −1 and R > 0.

Note that the price of a delayed range digital option with barriersB,B satisfying
0 < B < B can determined by the formula

DRDit(T, T1, T2, B,B) := DDit(T1, T2, T, B, 1) + DDit(T1, T2, T,B,−1)−Bd
t (T ).

5.5. Two-Price Theory. In this section we extend the multiple-curve model
according to the two-price approach. We provide bid and ask valuation formulas
for some interest rate derivatives. We consider again m risky curves and the
tenor structure T k = {T k0 , . . . , T knk} with tenor δk and k ∈ {0, 1, . . . ,m}.

5.5.1. The Two-Price Theory based on concave distortions. Let us briefly recall
the basic concept as developed in Cherny and Madan (2010). In order to get
bid and ask prices, instead of a single pricing measure a whole set M of pricing
measures is considered. We assume that M contains at least one risk-neutral
probability measure. The bid price of a discounted claim X is defined as

b(X) = inf
Q∈M

EQ
[
X
]

whereas the ask price is given by

a(X) = sup
Q∈M

EQ
[
X
]
.

Under slight additional assumptions, namely co-monotonicity and law-invariance,
these two values can be obtained by using an increasing concave function
Ψ : [0, 1]→ [0, 1] (concave distortion) in the form

b(X) = −
0∫

−∞

Ψ(FX(y))dy +

∞∫
0

1−Ψ(FX(y))dy
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and

a(X) =

∞∫
0

Ψ(1− FX(y))dy −
0∫

−∞

1−Ψ(1− FX(y))dy.

Observe that these bid and ask prices depend on an underlying probability
measure. In our situation, this will be a basic pricing measure which is distorted
by Ψ (it is assumed to be contained in the set M ).

Hereafter, we consider a parameterised family (Ψγ)γ≥0 of distortion func-
tions. For technical reasons we assume that the map γ 7→ Ψγ(y) is increasing
on [0,∞) and continuous on (0,∞) for every y ∈ (0, 1). Further, we only con-
sider values for γ ≥ 0 that satisfy

0∫
−∞

Ψγ(FX(y))dy <∞ and
∞∫

0

Ψγ(1− FX(y))dy <∞. (5.16)

The parameter γ represents the current level of (il)liquidity in the market. Note
that Ψγ distorts the cumulative distribution function of a maturity-dependent
payoff. Consequently γ becomes a maturity-dependent parameter in the interest
rate models where we will consider cash flows along a sequence of maturities.

The family of distortion functions which we will use (see Cherny and Madan
(2009, 2010)) is called MINMAXVAR and given by

Ψmmv
γ :

{
[0, 1]→ [0, 1]

y 7→ 1− (1− y
1

1+γ )1+γ .

Other standard families are the MINVAR family defined by

Ψmv
γ :

{
[0, 1]→ [0, 1]

y 7→ 1− (1− y)1+γ ,

the MAXVAR family defined by

Ψmav
γ :

{
[0, 1]→ [0, 1]

y 7→ y
1

1+γ ,

and the MAXMINVAR family given by

Ψmamv
γ :

{
[0, 1]→ [0, 1]

y 7→ (1− (1− y)1+γ)
1

1+γ .

5.5.2. Bid and Ask Price of Caplets and Floorlets. Our first aim is to derive
explicit valuation formulas of bid and ask prices of caplets and floorlets. In
order to determine these formulas we have to distort the cumulative distribution
function of the discounted payoff

βd
Tkj

(ηkj exp(−Xk
j )− K̃k)+ (5.17)

with respect to measure P d (cf. relation (5.7)). Although this can be done
analytically, this calculation is, in general, a challenging task. In most cases,
it has to be determined numerically and its numerical evaluation is extremely
time-consuming. The main reason for this lies in the joint appearance of the
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random variables βd
Tkj

and Xk
j in (5.17). To handle this issue, we switch to the

forward martingale measure and consider the more tractable discounted payoff

Cplkj,K := Bd
0(T kj )(ηkj exp(−Xk

j )− K̃k)+

(cf. pricing formula (5.8)). Analogously, we deal with the corresponding floorlets
quantity

Fltkj,K := Bd
0(T kj )(K̃k − ηkj exp(−Xk

j ))+.

Recall that F TY denotes the cumulative distribution function of a random vari-
able Y under P d

T with T ∈ [0, T ∗].

Lemma 5.2. (1) Let us assume that Xk
j has exponential moments of order

Mk
j > 1 under P d

Tkj
. Then, we get

(i) for any γ ≥ 0

a
Tkj
γ (Cplkj,K) =

0∫
−∞

Ψmv
γ (F

Tkj

−Cplkj,K
(x))dx

and

b
Tkj
γ (Cplkj,K) =

∞∫
0

(
1−Ψmv

γ (F
Tkj

Cplkj,K
(x))

)
dx.

(ii) for the the family Ψ = (Ψγ)γ≥0 ∈ {Ψmav,Ψmmv,Ψmamv} of distor-
tion functions and every γ ∈ [0, u1 − 1), where u1 has to satisfy
1 < u1 ≤Mk

j , we obtain

a
Tkj
γ (Cplkj,K) =

0∫
−∞

Ψγ(F
Tkj

−Cplkj,K
(x))dx

and

b
Tkj
γ (Cplkj,K) =

∞∫
0

(
1−Ψγ(F

Tkj

Cplkj,K
(x))

)
dx.

(2) For every Ψ = (Ψγ)γ≥0 ∈ {Ψmv,Ψmav,Ψmmv,Ψmamv} and γ ≥ 0, we
obtain

a
Tkj
γ (Fltkj,K) =

0∫
−∞

Ψγ(F
Tkj

−Fltkj,K
(x))dx

and

b
Tkj
γ (Fltkj,K) =

∞∫
0

(
1−Ψγ(F

Tkj

Fltkj,K
(x))

)
dx.

Proof. We need to verify for which γ ≥ 0 condition (5.16) is satisfied. We
frequently use the change-of-variable formula here. Since Cplkj,K ≥ 0, we only
have to consider the second integral in (5.16).
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(1) An application of Bernoulli’s inequality leads to Ψmv
γ (y) ≤ (1+γ)y. For

any γ ≥ 0, we obtain
∞∫

0

Ψmv
γ (1− F

Tkj

Cplkj,K
(y))dy ≤ (1 + γ)

∞∫
0

1− F
Tkj

Cplkj,K
(y)dy

= (1 + γ)Bd
0(T kj )

∞∫
0

1− F
Tkj

(ηkj exp(−Xk
j )−K̃k)+

(y)dy

= (1 + γ)Bd
0(T kj )

∞∫
K̃k

F
Tkj
Xk
j

(− log(yDk
j ))dy

≤ (1 + γ)Bd
0(T kj )C1

∞∫
K̃k

e−u1 log(yDkj )dy <∞,

where C1 > 0 and 1 < u1 ≤Mk
j .

(2) Since

Ψmamv
γ (y) = Ψmav

γ (Ψmv
γ (y)) ≤ Ψmav

γ ((1 + γ)y) = (1 + γ)
1

1+γ Ψmav
γ (y)

Ψmmv
γ (y) = Ψmv

γ (Ψmav
γ (y)) ≤ (1 + γ)Ψmav

γ (y),

we only need to check the condition for the distortion function Ψmav. In
a similar way as above, we get
∞∫

0

Ψmav
γ (1− F

Tkj

Cplkj,K
(y))dy ≤ Bd

0(T kj )C
1

1+γ

1 (ηkj )
u1
1+γ

∞∫
K̃k

y
− u1

1+γ dy <∞

for every γ satisfying 0 ≤ γ < u1 − 1.
(3) Clearly, we have

M
Tkj

Fltkj,K
(u) = EP d

Tk
j

[
exp

(
uFltkj,K

) ]
< exp

(
uBd

0(T kj )K̃k
)
<∞

for every u ∈ R.
�

The following Proposition states integral representations for bid and ask
prices of caplets and floorlets with reset date T kj−1, settlement date T kj =

T kj−1 + δk and strike rate K at a permitted level γ. Here we consider no longer
the distribution functions of payoffs of caplet and floorlets, but the distribution
function of the random term Xk

j in the exponent.

Proposition 5.3. Let (Ψγ)γ≥0 be a family of distortion functions and γ ≥ 0 be
chosen such that condition (5.16) is satisfied for the caplet and floorlet. Then,
the ask price of the caplet is given by

a
Tkj
γ (Cplkj,K) = Bd

0(T kj )

∞∫
K̃k

Ψγ(F
Tkj
Xk
j

(− log(xDk
j )))dx (5.18)
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and the bid price of the caplet has the form

b
Tkj
γ (Cplkj,K) = Bd

0(T kj )

∞∫
K̃k

[
1−Ψγ(1− F

Tkj
Xk
j

(− log(xDk
j )))

]
dx. (5.19)

The ask price of the floorlet is determined by

a
Tkj
γ (Fltkj,K) = Bd

0(T kj )

K̃k∫
0

Ψγ(1− F
Tkj
Xk
j

(− log(xDk
j )))dx

and the bid price of the floorlet is represented by

b
Tkj
γ (Fltkj,K) = Bd

0(T kj )

K̃k∫
0

[
1−Ψγ(F

Tkj
Xk
j

(− log(xDk
j )))

]
dx.

Proof. By applying the change-of-variable formula, we get the ask price as

a
Tkj
γ (Cplkj,K) =

0∫
−∞

Ψγ(F
Tkj

−Cplkj,K
(x))dx

=

0∫
−∞

Ψγ(1− F
Tkj

(ηkj exp(−Xk
j )−K̃k)

+(−xBd
0(T kj )−1))dx

= Bd
0(T kj )

∞∫
0

Ψγ(1− F
Tkj

(ηkj exp(−Xk
j )−K̃k)

+(x))dx

= Bd
0(T kj )

∞∫
K̃k

Ψγ(F
Tkj
Xk
j

(− log(xDk
j )))dx.

The other formulas follow by the same arguments. �

On the basis of the analysis we made above, in order to determine the bid
and ask prices, we have to identify the cumulative distribution function F T

Xk
j
.

We proceed as follows

(1) We determine the characteristic function of Xk
j under P d

T .
(2) As an approximation of the cumulative distribution function, we con-

sider

F T
Xk
j
(y) ≈ lim

M→∞

1

π
·
M∫

0

Re

(
e−iux − e−iuy

iu
ϕT
Xk
j
(u)

)
du (5.20)

for a suitable x ∈ R satisfying x < y and P
d,Xk

j

T ({x}) = P
d,Xk

j

T ({y}) = 0,

where P
d,Xk

j

T denotes the distribution of Xk
j with respect to P d

T .
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5.5.3. Bid and Ask Price of Digital Options. The discounted payoff of a delayed
digital option is

DDkT (w) := Bd
0(T ) · 1{w exp(Xk

j )<wB̃−1
k exp(ξkj )}.

We state its bid and ask price.

Proposition 5.4. The ask price of the delayed digital option at level γ ≥ 0 is
given by

aTγ (DDkT (w)) = Bd
0(T )Ψγ

(
P d
T (weX

k
j < wB̃−1

k exp(ξkj ))
)

and the bid price at level γ ≥ 0 can be expressed as

bTγ (DDkT (w)) = Bd
0(T )

[
1−Ψγ

(
P d
T (weX

k
j ≥ wB̃−1

k exp(ξkj ))
)]
.

Proof. One verifies that the cumulative distribution functions of the random
variables −DDkT (w) and DDkT (w) under P d

T are given by

F T−DDkT (w)
(y) =


1, y ≥ 0

P d
T (w exp(Xk

j ) < wB̃−1
k exp(ξkj )), y ∈ [−Bd

0(T ), 0)

0, y < −Bd
0(T )

and

F T
DDkT (w)

(y) =


1, y ≥ Bd

0(T )

P d
T (w exp(Xk

j ) ≥ wB̃−1
k exp(ξkj )), y ∈ [0, Bd

0(T ))

0, y < 0.

Then, by considering the bid and ask price formulas above, we immediately get
the statement. �

The discounted payoff of a delayed range digital option with barriers B and
B is given by

DRDkT := Bd
0(T ) · 1{

exp(ξk
j
)

B̃k

<exp(Xk
j )<

exp(ξk
j
)

B̃k

}.
Proposition 5.5. The ask price of the delayed range digital option at level
γ ≥ 0 is given by

aTγ (DRDkT ) = Bd
0(T )Ψγ

(
P d
T

(
exp(ξkj )

B̃k

< exp(Xk
j )

)
+ P d

T

(
exp(Xk

j ) <
exp(ξkj )

B̃k

))
and the bid price at level γ ≥ 0 can be expressed as

bTγ (DRDkT ) =Bd
0(T )

×

[
1−Ψγ

(
P d
T

(
exp(Xk

j ) ≤
exp(ξkj )

B̃k

)
+ P d

T

(
exp(ξkj )

B̃k

≤ exp(Xk
j )

))]
.

Proof. Here, the cumulative distribution functions result in

F T−DRDkT
(y) =


1, y ≥ 0

P d
T

(
exp(ξkj )

B̃k
< exp(Xk

j )
)

+ P d
T

(
exp(Xk

j ) <
exp(ξkj )

B̃k

)
, y ∈ [−Bd

0(T ), 0)

0, y < −Bd
0(T )
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and

F T
DRDkT

(y) =


1, y ≥ Bd

0(T )

P d
T

(
exp(Xk

j ) ≤ exp(ξkj )

B̃k

)
+ P d

T

(
exp(ξkj )

B̃k
≤ exp(Xk

j )
)
, y ∈ [0, Bd

0(T ))

0, y < 0.

Then, the claim follows by the pricing formulas. �

6. Model Calibration

6.1. Data and Approach. We calibrate the model to European market data
observed in the post crisis period which is provided by Bloomberg. Market rates
of deposits, forward rate agreements and swaps based on different tenors as well
as cap quotes indexed on Euribor for a number of maturities and strikes will be
used. The cap quotes are given in form of the corresponding implied volatilities.
More specifically we will consider cap quotes indexed on three-month and six-
month Euribor on September 16, 2013 and September 15, 2016. Consequently,
three term structures will be taken into account, namely the basic, the three-
month and the six-month curve. For the data set from September 16, 2013 we
also consider bid and ask quotes to calibrate the model in a two-price economy.

Based on bootstrapping (see Ametrano and Bianchetti (2013)) we will con-
struct tenor-dependent bond price curves. The resulting basic, three-month and
six-month curves for the two dates are shown on the left side of figure 4. The
basic curve is constructed by taking the quoted OIS rates. For each of the tenors
we use the corresponding market quotes of deposit rates for the short-term ma-
turities, rates from forward rate agreements for the mid-term part and swap
rates for mid- and long-term maturities. Exact cubic spline interpolations are
used during the bootstrap procedure. This approach guarantees also enough
smoothness of the curves. Smoothness of the curves is necessary in order to de-
rive the instantaneous forward rates from the bond prices (see equation (3.11)).
The resulting instantaneous forward rates are shown on the right side of figure
4.

To derive the bid, mid and ask market prices of caps from the quoted volatil-
ities on September 16, 2013, the multiple-curve Gaussian market model is used
(cf. Mercurio (2009)). For the volatility data from September 15, 2016, the task
is more delicate since in 2016 various interest rates went deep into negative
territory up to some maturity (cf. figure 4). The standard log-normal market
model can no longer be used in this case. Following market practice we use
a multiple-curve form of the Bachelier model in this situation to derive mid
market prices of caps. Finally the market prices of the caplets are derived from
the cap prices.

We highlight that the bootstrapped bond prices are of fundamental impor-
tance since they are used in three ways. First of all they are used in the process
of converting the quoted volatilities into market prices. Secondly they are model
inputs according to assumptions (D.1) and (MC.1) and thus go directly into
the computation of model prices (see (5.10) together with (5.1)). Finally the
derived tenor-dependent instantaneous forward rates enter implicitly in form
of initial spreads in the assumptions that guarantee the monotonicity of the
curves (see conditions (4.12) and (4.13)).
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Figure 4. Bootstrapped term structure curves up to ten year
maturities where Bloomberg data of deposits, forward rate
agreements and interest rate swaps for the considered dates was
used. Red represents the basic curve, purple the three months
curve and blue the six months curve.

Hereafter we describe the calibration procedure. Let Θ be the set of admissi-
ble model parameters, T the maturities and K the strike rates of the considered
caps. We minimise the sum of the squared relative errors between model and
mid market cap prices∑

T∈T ,K∈K

(
cap model price(ϑ, T,K)− cap market price(T,K)

cap market price(T,K)

)2

with respect to ϑ ∈ Θ. This optimisation is done by using a randomised Powell
algorithm (see Powell (1978)). Then we use the calibrated model parameters ϑ̂
to determine the model implied volatilities. The differences between the implied
volatilities of the model prices and the implied volatilities of the mid market
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prices specify the accuracy of the calibration. For the data set from September
2013 we also investigate market liquidity by taking into account bid and ask
prices to calibrate the level of (il)liquidity γ (see Figure 5 for the differences
between bid and ask market quotes of cap volatilities in September 2013).
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Figure 5. Bid-ask spreads of cap volatilities from September
16, 2013.

In order to do that we minimise the squared relative errors between bid and
ask model and market caplet prices∑

K∈K

[(bid caplet model price(γT , ϑ̂, T,K)− bid caplet price(T,K)

bid caplet price(T,K)

)2

+

(
ask caplet model price(γT , ϑ̂, T,K)− ask caplet price(T,K)

ask caplet price(T,K)

)2 ]
for a fixed maturity T ∈ T with respect to γT ≥ 0. We emphasize that we used
the calibrated parameter ϑ̂ of the first step of the calibration procedure here.
This approach is justified by the following relationship

caplet model price(ϑ̂, T,K) = bid caplet model price(0, ϑ̂, T,K)

= ask caplet model price(0, ϑ̂, T,K).

This procedure reduces the complexity of the calibration to bid and ask prices
considerably.

6.2. Model Specification. We follow the design as exposed in section 4.2 and
consider the case where d = 3, l = 1 andm = 2. We use a Vasicek type volatility
structure of the form

Σd
1(t, T ) = sign(ad)(1− e−ad(T−t))

and

Σk,k−1
k+1 (t, T ) = sign(ak)(1− e−ak(T−t))

with ad, ak 6= 0 for k ∈ {1, 2}. The other components of the volatility structure
are set equal to zero. Note that to keep the number of parameters as small
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as possible we consider a one parameter Vasicek structure only. As liquidity
function we choose

lk(t, T ) = σk(T − t)e−bk(T−t)

where σk, bk > 0 for k ∈ {1, 2}. In accordance with assumption (MC.DET),
we require the parameters ad, a1 and a2 to be restricted to values such that
the volatility function Σ2 (see definition (4.7)) is bounded in each component
by a constant M̂ satisfying 0 < M̂ < M . This guarantees the existence of
the cumulant function θ at Σ2(t, T ) for all t, T ∈ [0, T ∗] with t ≤ T . Then,
by definition, this function exists also at Σd(t, T ) and Σ1(t, T ). Clearly, the
parameters of the liquidity function can be restricted to a set such that this
function is bounded. Observe that the considered functions satisfy assumption
(VL). By (3.19) the drift terms are

A1,d(t, T ) = θ(Σ1(t, T ))− θ(Σd(t, T )) + l1(t, T )

and

A2,1(t, T ) = θ(Σ2(t, T ))− θ(Σ1(t, T )) + l2,1(t, T ).

Let N be a normal inverse Gaussian Lévy motion with parameters α, β, δ, µ
satisfying 0 ≤ |β| < α, δ > 0 and µ ∈ R (see e.g. Eberlein (2009)) and Zj

be a Gamma process with parameters αj , βj > 0 for every j ∈ {1, 2, 3} (see
e.g. Sato (1999)). These processes are assumed to be stochastically indepen-
dent. The driving process L = (L1, L2, L3) is then specified by L1 = N + Z3,
L2 = −(Z1 + Z3) and L3 = −(Z2 + Z3). Clearly, the components of L are
stochastically dependent. Furthermore the processes N,Z1, Z2, Z3 do not pos-
sess a continuous martingale part, i.e. they are purely discontinuous. By using
the stochastic independence of the processes N,Z1, Z2, Z3 we can express the
cumulant function θ of L under the measure P d as

θ(z) = θN (z1) + θZ
1
(−z2) + θZ

2
(−z3) + θZ

3
(z1 − z2 − z3)

= µz1 + δ
√
α2 − β2 − δ

√
α2 − (β + z1)2 − β1 log

(
1 +

z2

α1

)
− β2 log

(
1 +

z3

α2

)
− β3 log

(
1− z1 − z2 − z3

α3

)
for every z = (z1, z2, z3) ∈ C3 such that all the terms are well-defined. The
existence of the cumulant process is guaranteed for any z = (z1, z2, z3) ∈ R3

satisfying
(1) |z1| < min{|−α− β|, α− β}.
(2) zk ∈ (−αk,∞) for each k ∈ {2, 3}.
(3) z1 − z2 − z3 < α3.

The restrictions on the model parameters that ensure the positivity of the
forward spreads can be derived from Proposition 4.3 (cf. conditions (4.12) and
(4.13)). As mentioned above for the calibration to the bid and ask prices we
use the family (Ψmmv

γ )γ≥0 of MINMAXVAR distortion functions.

6.3. Calibration Results. In the Figures 6 and 7 we show the calibration
results for the data from September 16, 2013 and September 15, 2016, respec-
tively. The surface given by the black grid represents in each case the market
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volatilities for the different strikes and maturities. The model volatilities ob-
tained from the calibration procedure are plotted as red points. The vertical
lines show the distances between the two volatilities and thus the accuracy of
the calibration. Note that in Figure 7 we have to consider negative strike values
in addition to the strike value zero.
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Figure 6. September 16, 2013.
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Figure 7. September 15, 2016.

The following Figure 8 shows the accuracy of the calibration to bid and ask
caplet prices for the maturity of three years (six-month tenor). The purple line
represents the mid prices, the red line the ask and the dark yellow line the bid
prices. The blue resp. green line shows the calibrated model bid and ask prices.

We list the calibrated parameter values in Table 1 and 2. As far as the
market liquidity parameter γ (distortion parameter) is concerned we chose the
maturity of 3 years. Thus γ3 is listed. The corresponding parameters for other
maturities could be derived in the same way. As one sees from the figures the
model developed here is able to reproduce market valuations with satisfactory
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Figure 8. Caplet prices with maturity of 3 years on September
16, 2013.

accuracy. We highlight again that this approach handles at the same time the
recent development to multiple curves, negative interest rates as well as bid
and ask market prices. The deviations in terms of volatilities which can still be
observed deep in or deep out of the money are explained by the numerically
extremely small prices (order of magnitude 10−6 to 10−19) on one side and the
lack of liquidity in these ranges on the other side.

Calibrated Parameter

NIG Volatility Structure
α 7616.2484 ad −1.276678 · 10−6

β -3356.2188 a1d −1.533437 · 10−5

δ 802.4759 a21 −1.138113 · 10−5

Gamma
α1 0.0083944687 β2 0.0167380990
β1 0.0012470450 α3 0.0003146037
α2 0.0010895854 β3 0.0175950274
Liquidity Function
b1 0.0284998383 b2 0.0362895556
σ1 0.0007718387 σ2 0.0022651920
Market Liquidity
γ3 0.011382

Table 1. September 16, 2013.
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Calibrated Parameter

NIG Volatility Structure
α 7616.2159 ad 1.887946 · 10−6

β -3356.2107 a1d −3.888884 · 10−5

δ 802.4697 a21 −2.383391 · 10−5

Gamma
α1 0.056857135 β2 0.018390765
β1 0.037967711 α3 0.001729938
α2 0.052680919 β3 0.021147026
Liquidity Function
b1 0.0297731719 b2 0.0269828887
σ1 0.0005305050 σ2 0.0007685246

Table 2. September 15, 2016.
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