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1 Introduction

To compute expectations which arise as prices of derivative products is a key issue
in quantitative finance. The effort which is necessary to get these values depends to
a high degree on the sophistication of the model approach which is used. Simple
models such as the classical geometric Brownian motion lead to easy to evaluate
formulas for expectations but entail at the same time a high model risk. As has
been shown in numerous studies the empirical return distributions which one can
observe are far from normality. This is true for all categories of financial markets:
equity, fixed income, foreign exchange as well as credit markets (see e.g. Eberlein
and Keller (1995) [5] for the analysis of stock price data and Eberlein and Kluge
(2007) [7] for data from fixed income markets). A first step to reduce model risk
and to improve the performance of the model consists in introducing volatility as
a stochastic quantity. Some of the stochastic volatility models became quite popu-
lar. Nevertheless one must be aware that the distributions which diffusion processes
with non-deterministic coefficients generate on a given time horizon are not known.
They can only be determined approximately on the basis of simulations of process
paths. In order to get more realistic distributions an excellent choice is to replace
the driving Brownian motion in classical models by a suitably chosen Lévy process.
This can also be interpreted in the sense that instead of making volatility stochastic
one can go over to a stochastic clock. The reason is that many Lévy processes can
be obtained as time–changed Brownian motions. For example the Variance Gamma
process results when one replaces linear time by a Gamma process as subordina-
tor. Of course one can also consider both: a more powerful driver and stochastic
volatility.

Lévy processes are in a one to one correspondence to the rich class of infinitely
divisible distributions and at the same time analytically well tractable. Due to the
higher number of available parameters this class of distributions is flexible enough
to allow a much better fit to empirical return distributions. The systematic error
which results from the assumption of normality is avoided. The generating distri-
bution of a Lévy process shows up as the distribution of increments of length one.
Consequently any distribution which one gets by fitting a parametrized subclass to
empirical return data can be implemented not only approximately but exactly into
Lévy driven models. Suitably parametrized model classes which have been used
successfully so far are driven by generalized hyperbolic, normal inverse Gaussian
(NIG) or Variance Gamma (VG) processes just to mention a few.

As noted above advanced models with superior statistical properties require more
demanding numerical methods. Efficient and accurate algorithms are crucial in this
context in particular for calibration purposes. For pricing of derivatives the histori-
cal distribution, which can be derived from price data of the underlying and which
is used for risk management, is of less interest. Calibration usually means to esti-
mate the risk neutral distribution parameters. In other words one exploits price data
of derivatives. In most cases this is given in terms of volatilities. Whereas years
ago calibration was usually done overnight, many trading desks recalibrate nowa-
days on an intraday basis. During a calibration procedure in each iteration step a
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large number of model prices has to be computed and compared to market prices. A
method which almost always works to get the corresponding expectations is Monte
Carlo simulation. Its disadvantage is that it is computationally intensive and there-
fore too slow for many purposes. Another classical approach is to represent prices
as solutions of partial differential equations (PDEs) which in the case of Lévy pro-
cesses with jumps become partial integro–differential equations (PIDEs). This ap-
proach, which is based on the Feynman–Kac formula, applies to a wide range of
valuation problems, in particular it allows to compute prices of American options
as well. Nevertheless the numerical solution of PIDEs rests on sophisticated dis-
cretization methods and corresponding programs. In this paper we concentrate on
the third, namely the Fourier-based approach.

To manage portfolios of derivatives, traders have to understand how sensitive
prices of derivative products are with respect to changes in the underlying param-
eters. For this purpose they need to know the Greeks which are given by the par-
tial derivatives of the pricing functional with respect to those parameters. Usually
Greeks are estimated by means of a finite difference approximation. Two kinds of
errors are produced this way: the first one comes from the approximation of the
derivative by a finite difference and the second one results from the numerical com-
putation of the expectation. To eliminate one of the sources of error, Fournié et al.
(1999) [9] adopted a new approach which consists in shifting the differential opera-
tor from the pricing functional to the diffusion kernel. This procedure results in an
expectation operator applied to the payoff multiplied by a random weight function.

In the following we focus on a discrete tenor interest rate model which has been
introduced in Eberlein and Özkan (2005) [8]. This so-called Lévy forward process
model is driven by a time–inhomogeneous Lévy process and is developed on the
basis of a backward induction that is necessary to get the LIBOR rates in a con-
venient homogeneous form. A major advantage of the forward process approach is
that it is invariant under the measure change in the sense that the driving process
remains a time–inhomogeneous Lévy process. Moreover the measure changes do
not only have the invariance property but in addition they are analytically and con-
sequently also numerically much simpler compared to the corresponding measure
changes in the so-called LIBOR model. The reason is that in each induction step the
forward process itself represents up to a norming constant the density process on
which the measure change is based. As a consequence any approximation such as
the ’frozen drift’ approximation or more sophisticated versions of it are completely
avoided. This means that the approximation error with which one has to struggle in
the LIBOR approach does not show up in the forward process approach.

Another important aspect is that in the latter model the increments of the driving
process translate directly into increments of the LIBOR rates. This is not the case
for the LIBOR model where the increments of the LIBOR rates are proportional to
the corresponding increments of the driving process scaled with the current value of
the LIBOR rate. Expressed in terms of the terminology which will be developed in
sections 2 and 3 this means that in the Lévy LIBOR model

L(t +∆ t,Tk)−L(t,Tk) ∼ L(t,Tk)(L
Tk+1
t+∆ t −LTk+1

t ), (1)
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whereas in the Lévy forward process model

L(t +∆ t,Tk)−L(t,Tk) ∼ δ
−1
k (LTk+1

t+∆ t −LTk+1
t ). (2)

The fact that the increments of the LIBOR rate process do not depend on current LI-
BOR values, translates into increased flexibility and a superior model performance
of the forward process approach.

In addition to the differences in mathematical properties there is a fundamen-
tal economic difference. The forward process approach allows for negative interest
rates as well as for negative starting values. This is of crucial importance in particu-
lar in the current economic environment where negative rates are common. Models
where by construction interest rates stay strictly positive are not able to produce re-
alistic valuations for a large collection of interest rate derivatives in a deflationary
or near deflationary environment.

As far as the calculation of Greeks in this setting is concerned, we refer to
Glasserman and Zhao (1999) [12], Glasserman (2004) [11] and Fries (2007) [10]
where some treatment of this issue is given. The classical diffusion based LIBOR
market model offers a high degree of analytical tractability. However this model
cannot reproduce the phenomenon of changing volatility smiles along the matu-
rity axis. In order to gain more flexibility in a first step one can replace the driving
Brownian motion by a (time–homogeneous) Lévy process. However one observes
that the shape of the volatility surface produced by cap and floor prices is too so-
phisticated in order to be matched with sufficient accuracy by a model which is
driven by a time–homogeneous process. To achieve a more accurate calibration of
the model across different strikes and maturities one has to use the more flexible
class of time–inhomogeneous Lévy processes (see e.g. Eberlein and Özkan (2005)
[8] and Eberlein and Kluge (2006) [6]). Graphs in the latter paper show in particular
that interest rate models driven by time–inhomogeneous Lévy processes are able to
reproduce implied volatility curves (smiles) observed in the market across all matu-
rities with high accuracy. If one restricts the approach to (time–homogeneous) Lévy
processes as drivers the smiles flatten out too fast at longer maturities. Consequently
we have analytical - the invariance under measure changes - as well as statistical rea-
sons to choose time–inhomogeneous Lévy processes as drivers. In implementations
of the model already a rather mild form of time–inhomogeneity turns out to be suffi-
cient. Typically one has to glue together three pieces of (time–homogeneous) Lévy
processes in order to cover the full range of maturities with sufficient accuracy. In
terms of parameters this means that instead of three or four one uses nine or twelve
parameters.

The first goal of this paper is to give a closed Fourier-based valuation formula
for a caplet in the framework of the Lévy forward process model. The second aim
is to study sensitivities. We discuss two approaches for this purpose. The first is
based on the integration–by–parts formula, which lies at the core of the application
of the Malliavin calculus to finance as developed in Fournié et al. (1999) [9], León
et al. (2002) [14], Petrou (2008) [17], Yablonski (2008) [19]. This approach is ap-
propriate if the driving process has a diffusion component. The second approach
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which covers purely discontinuous drivers as well relies on Fourier-based methods
for pricing derivatives. For a survey of Fourier-based methods see Eberlein (2014)
[3]. We illustrate the result by applying the formula to the pricing of a caplet where
the jump–part of the underlying model is driven by a time–inhomogeneous Gamma
process and alternatively by a Variance Gamma process.

2 The Lévy forward process model

Let 0 = T0 < T1 < .. . < Tn−1 < Tn = T ∗ denote a discrete tenor structure and set
δk = Tk+1−Tk for all k∈{0, . . . ,n−1}. Because we proceed by backward induction,
let us use the notation T ∗i := Tn−i and δ ∗i = δn−i for i ∈ {1, . . . ,n}. For zero–coupon
bond prices B(t,T ∗i ) and B(t,T ∗i−1), the forward process is defined by

F(t,T ∗i ,T
∗

i−1) =
B(t,T ∗i )

B(t,T ∗i−1)
· (3)

Hence, modeling forward processes means specifying the dynamics of ratios of suc-
cessive bond prices. Let (Ω ;F=FT ∗ ;F;PT ∗) be a complete stochastic basis where
PT ∗ should be regarded as the forward martingale measure for the settlement date
T ∗ > 0 and the filtration F=(Ft)t∈[0,T ∗] satisfies the usual conditions. Consider a
time–inhomogeneous Lévy process LT ∗ defined on (Ω ;F=FT ∗ ;F;PT ∗) starting at
0 with local characteristics (bT ∗ ,c,FT ∗) such that the drift term bT ∗

s ∈R, the volatil-
ity coefficient cs and the Lévy measure FT ∗

s satisfy the following conditions

∃ σ > 0, ∀ s ∈ [0,T ∗] : cs > σ , FT ∗
s ({0}) = 0 (4)

and ∫ T ∗

0

(
|bT ∗

s |+ |cs|+
∫
R

(
|x|2∧1

)
FT ∗

s (dx)
)

ds < ∞. (5)

We impose as usual a further integrability condition. Note that the processes which
we will define later, are by construction martingales and therefore every single ran-
dom variable has to be integrable.

Assumption 2.1 (EM) There exists a constant M > 1 such that∫ T ∗

0

∫
{|x|>1}

exp(ux)FT ∗
s (dx)ds < ∞, ∀ u ∈ [−M,M]. (6)

Under (EM) the random variable LT ∗
t has a finite expectation and its law is given by

the characteristic function

E
[
eiuLT∗

t
]
= exp

(∫ t

0

(
iubT ∗

s −
1
2

u2cs +
∫
R

(
eiux−1− iux

)
FT ∗

s (dx)
)

ds
)
. (7)
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Furthermore the process LT ∗ is a special semimartingale, and thus its canonical rep-
resentation has the simple form

LT ∗
t =

∫ t

0
bT ∗

s ds+
∫ t

0

√
csdW T ∗

s +
∫ t

0

∫
R

xµ̃
LT∗

(ds,dx), (8)

where (W T ∗
t )t≥0 is a PT ∗–standard Brownian motion and µ̃LT∗

:= µLT∗− νT ∗ is the
PT ∗–compensated random measure of jumps of LT ∗. As usual, µLT∗

denotes the ran-
dom measure of jumps of LT ∗ and νT ∗(ds,dx) := FT ∗

s (dx)ds the PT ∗–compensator
of µLT∗

. We denote by θs the cumulant function associated with the process LT ∗ as
given in (8) with local characteristics (bT ∗ ,c,FT ∗), that is, for appropriate z ∈ C

θs(z) = zbT ∗
s +

z2

2
cs +

∫
R
(ezx−1− zx)FT ∗

s (dx), (9)

where c and FT ∗ are free parameters, whereas the drift characteristic bT ∗ will later
be chosen to guarantee that the forward process is a martingale. The following in-
gredients are needed.

Assumption 2.2 (LR.1) For any maturity T ∗i there is a bounded, deterministic
function λ (·,T ∗i ) : [0, T ∗] 7−→ R which represents the volatility of the forward pro-
cess F(·,T ∗i ,T ∗i−1). These functions satisfy

λ (s,T ∗i )> 0, ∀s ∈ [0,T ∗i ] and λ (s,T ∗i ) = 0 for s > T ∗i for any maturity T ∗i ,
∑

n−1
i=1 λ (s,T ∗i ) ≤ M, ∀ s ∈ [0, T ∗] where M is the constant from Assumption

(EM).

Assumption 2.3 (LR.2) The initial term structure of zero–coupon bond prices
B(0,T ∗i ) is strictly positive for all i ∈ {1, . . . ,n}.

We begin to construct the forward process with the most distant maturity and pos-
tulate

F(t,T ∗1 ,T
∗) = F(0,T ∗1 ,T

∗)exp
(∫ t

0
λ (s,T ∗1 )dLT ∗

s

)
. (10)

One forces this process to become a PT ∗–martingale by choosing bT ∗ such that∫ t

0
λ (s,T ∗1 )b

T ∗
s ds = −1

2

∫ t

0
csλ

2(s,T ∗1 )ds (11)

−
∫ t

0

∫
R

(
exλ (s,T ∗1 )−1− xλ (s,T ∗1 )

)
ν

T ∗(ds,dx).

Then the forward process F(·,T ∗1 ,T ∗) can be given as a stochastic exponential

F(t,T ∗1 ,T
∗) = F(0,T ∗1 ,T

∗)Et (Z(·,T ∗1 )) (12)

with
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Z(t,T ∗1 ) =
∫ t

0

√
csλ (s,T ∗1 )dW T ∗

s +
∫ t

0

∫
R
(exλ (s,T ∗1 )−1)µ̃LT∗

(ds,dx). (13)

Since the forward process F(·,T ∗1 ,T ∗) is a PT ∗–martingale, we can use it as a density
process and define the forward martingale measure PT ∗1

by setting

dPT ∗1
dPT ∗

=
F(T ∗1 ,T

∗
1 ,T

∗)

F(0,T ∗1 ,T ∗)
= ET ∗1

(Z(·,T ∗1 )) . (14)

By the semimartingale version of Girsanov’s theorem (see Jacod and Shiryaev
(1987) [13])

W T ∗1
t :=W T ∗

t −
∫ t

0

√
csλ (s,T ∗1 )ds (15)

is a PT ∗1
–standard Brownian motion and

ν
T ∗1 (dt,dx) := exλ (s,T ∗1 )νT ∗(dt,dx) = exλ (s,T ∗1 )FT ∗

s (dx)ds (16)

is the PT ∗1
–compensator of µLT∗

.
Continuing this way one gets the forward processes F(·,T ∗i ,T ∗i−1) such that for all
i ∈ {1, . . . ,n}

F(t,T ∗i ,T
∗

i−1) = F(0,T ∗i ,T
∗

i−1)exp
(∫ t

0
λ (s,T ∗i )dL

T ∗i−1
s

)
· (17)

The drift term bT ∗i−1 is chosen in such a way that the forward process F(·,T ∗i ,T ∗i−1)
becomes a martingale under the forward measure PT ∗i−1

, that is

∫ t

0
λ (s,T ∗i )b

T ∗i−1
s ds = −1

2

∫ t

0
csλ

2(s,T ∗i )ds (18)

−
∫ t

0

∫
R

(
exλ (s,T ∗i )−1− xλ (s,T ∗i )

)
ν

T ∗i−1(ds,dx).

We propose the following choice for the functions bT ∗i−1 for all i ∈ {1, . . . ,n}
b

T ∗i−1
s =−cs

2
λ (s,T ∗i )−

∫
R

(
exλ (s,T ∗i )−1

λ (s,T ∗i )
− x

)
F

T ∗i−1
s (dx), 0≤ s < T ∗i

b
T ∗i−1
s = 0 , s≥ T ∗i .

(19)

The driving process LT ∗i−1 becomes therefore
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L
T ∗i−1
t = −

∫ t

0

(
cs

2
λ (s,T ∗i )+

∫
R

(
exλ (s,T ∗i )−1

λ (s,T ∗i )
− x

)
F

T ∗i−1
s (dx)

)
ds (20)

+
∫ t

0

√
csdW

T ∗i−1
s +

∫ t

0

∫
R

x(µT ∗ −ν
T ∗i−1)(ds,dx)

under the successive forward measures PT ∗i
which are given by the recursive relation

dPT ∗i
dPT ∗i−1

=
F(T ∗i ,T

∗
i ,T

∗
i−1)

F(0,T ∗i ,T
∗

i−1)
= ET ∗i

(Z(·,T ∗i )) , i ∈ {1, . . . ,n}

PT ∗0
= PT ∗

(21)

with

Z(t,T ∗i ) =
∫ t

0

√
csλ (s,T ∗i )dW

T ∗i−1
s +

∫ t

0

∫
R
(exλ (s,T ∗i )−1)µ̃LT∗i−1

(ds,dx), (22)

where (W
T ∗i−1

t )t≥0 is a PT ∗i−1
–standard Brownian motion such that

W T ∗i
t = W

T ∗i−1
t −

∫ t

0

√
csλ (s,T ∗i )ds, i ∈ {1, . . . ,n}

W
T ∗0

t = W T ∗
t .

(23)

µ̃LT∗

i−1 := µLT∗ − ν
T ∗i−1 is the PT ∗i−1

–compensated random measure of jumps of LT ∗

and ν
T ∗i−1(ds,dx) = F

T ∗i−1
s (dx)ds is the PT ∗i−1

–compensator of µLT∗
such that

FT ∗i
s (dx) = exλ (s,T ∗i )F

T ∗i−1
s (dx), i ∈ {1, . . . ,n}

F
T ∗0
s (dx) = FT ∗

s (dx).

(24)

Setting Λ i(s) := ∑
i
j=1 λ (s,T ∗j ), we conclude that for all i ∈ {1, . . . ,n}

W T ∗i
t =W T ∗

t −
∫ t

0

√
csΛ

i(s)ds (25)

and

FT ∗i
s (dx) = exp

(
xΛ

i(s)
)

FT ∗
s (dx). (26)

Note that the coefficients
√

csΛ
i(s) and exp(xΛ i(s)), which appear in this measure

change, are deterministic functions and therefore the measure change is structure
preserving, i.e.the driving process is still a time–inhomogeneous Lévy process after
the measure change.
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Since the forward process F(·,T ∗i ,T ∗i−1) is by construction a PT ∗i−1
–martingale, the

process
F(·,T ∗i ,T

∗
i−1)

F(0,T ∗i ,T
∗
i−1)

, which is the density process

dPT ∗i
dPT ∗i−1

∣∣∣∣∣
Ft

=
F(t,T ∗i ,T

∗
i−1)

F(0,T ∗i ,T
∗

i−1)
(27)

is a PT ∗i−1
–martingale as well. By iterating the relation (21) we get on FT ∗i−1

dPT ∗i−1

dPT ∗
=

B(0,T ∗)
B(0,T ∗i−1)

i−1

∏
j=1

F(T ∗i−1,T
∗
j ,T

∗
j−1) (28)

= exp

(
i−1

∑
j=1

∫ T ∗i−1

0
λ (s,T ∗j )dL

T ∗j−1
s

)
.

Applying Proposition III.3.8 of Jacod and Shiryaev (1987) [13], we see that its re-
striction to Ft for t ∈ [0,T ∗i ]

dPT ∗i
dPT ∗

∣∣∣∣
Ft

=
B(0,T ∗)
B(0,T ∗i )

i

∏
j=1

F(t,T ∗j ,T
∗
j−1) (29)

is a PT ∗–martingale.

3 Fourier-based methods for option pricing

We will derive an explicit valuation formula for standard interest rate derivatives
such as caps and floors in the Lévy forward process model. Since floor prices can
be derived from the corresponding put–call–parity relation we concentrate on caps.
Recall that a cap is a sequence of call options on subsequent LIBOR rates. Each
single option is called a caplet. The payoff of a caplet with strike rate K and maturity
T ∗i is

δ
∗
i (L(T

∗
i ,T

∗
i )−K)+ , (30)

where the payment is made at time point T ∗i−1. The forward LIBOR rates L(T ∗i ,T
∗

i )
are the discretely compounded, annualized interest rates which can be earned from
investment during a future interval starting at T ∗i and ending at T ∗i−1 considered at
the time point T ∗i . These rates can be expressed in terms of the forward prices as
follows

L(T ∗i ,T
∗

i ) =
1

δ ∗i

(
F(T ∗i ,T

∗
i ,T

∗
i−1)−1

)
· (31)

Its time–0–price, denoted by Cplt0(T
∗

i ,K), is given by
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Cplt0(T
∗

i ,K) = B(0,T ∗i−1)δ
∗
i EPT∗i−1

[
(L(T ∗i ,T

∗
i )−K)+

]
· (32)

Instead of basing the pricing on the Lévy LIBOR model one can use the Lévy for-
ward process approach (see Eberlein and Özkan (2005) [8]). It is then more natural
to write the pricing formula (32) in the form

Cplt0(T
∗

i ,K) = B(0,T ∗i−1)EPT∗i−1

[(
F(T ∗i ,T

∗
i ,T

∗
i−1)− K̃i

)+]
, (33)

where K̃i := 1+δ ∗i K. From (17), the forward process F(·,T ∗i ,T ∗i−1) is given by

F(T ∗i ,T
∗

i ,T
∗

i−1) = F(0,T ∗i ,T
∗

i−1)exp
(∫ T ∗i

0
b

T ∗i−1
s λ (s,T ∗i )ds

)
(34)

×exp
(∫ T ∗i

0

√
csλ (s,T ∗i )dW

T ∗i−1
s

)
×exp

(∫ T ∗i

0

∫
R

xλ (s,T ∗i )µ̃
LT∗

i−1 (ds,dx)
)
.

Using the relations (25) and (26) we obtain for t ∈ [0,T ∗i ]

F(t,T ∗i ,T
∗

i−1) = F(0,T ∗i ,T
∗

i−1)exp
(∫ t

0
λ (s,T ∗i )dLT ∗

s +d(t,T ∗i )
)
, (35)

where

d(t,T ∗i ) =
∫ t

0
λ (s,T ∗i )

[
b

T ∗i−1
s −bT ∗

s −Λ
i−1(s)cs

]
ds (36)

−
∫ t

0
λ (s,T ∗i )

∫
R

x
(

exΛ i−1(s)−1
)

FT ∗
s (dx)ds.

Remember that on FT ∗i−1

dPT ∗i−1

dPT ∗
= exp

(
i−1

∑
j=1

∫ T ∗i−1

0
λ (s,T ∗j )dLT ∗

s +
i−1

∑
j=1

d(T ∗i−1,T
∗
j )

)
. (37)

Keeping in mind Assumption 2.2 (LR.1), we find

exp

(
−

i−1

∑
j=1

d(T ∗i−1,T
∗
j )

)
= EPT∗

[
exp
(∫ T ∗i−1

0
Λ

i−1(s)dLT ∗
s

)]
. (38)

Using Proposition 8 in Eberlein and Kluge (2006) [6], we find

exp

(
−

i−1

∑
j=1

d(T ∗i−1,T
∗
j )

)
= exp

(∫ T ∗i−1

0
θs
(
Λ

i−1(s)
)

ds
)
. (39)
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Consequently,

dPT ∗i−1

dPT ∗
= exp

(∫ T ∗i−1

0
Λ

i−1(s)dLT ∗
s −

∫ T ∗i−1

0
θs
(
Λ

i−1(s)
)

ds
)
. (40)

Knowing that the process (
F(·,T ∗i ,T

∗
i−1)

F(0,T ∗i ,T
∗
i−1)

) is a PT ∗i−1
–martingale, we reach

exp(−d(T ∗i ,T
∗

i )) = EPT∗i−1

[
exp
(∫ T ∗i

0
λ (s,T ∗i )dLT ∗

s

)]
. (41)

Hence,

exp(−d(T ∗i ,T
∗

i ))

= exp
(
−
∫ T ∗i

0
θs
(
Λ

i−1(s)
)

ds
)
EPT∗

[
exp
(∫ T ∗i

0
Λ

i(s)dLT ∗
s

)]
(42)

= exp
(∫ T ∗i

0

[
θs
(
Λ

i(s)
)
−θs

(
Λ

i−1(s)
)]

ds
)
.

Thus,

d(T ∗i ,T
∗

i ) =
∫ T ∗i

0

[
−θs

(
Λ

i(s)
)
+θs

(
Λ

i−1(s)
)]

ds. (43)

Define the random variable XT ∗i
as the logarithm of F(T ∗i ,T

∗
i ,T

∗
i−1). Therefore,

XT ∗i
= ln

(
F(0,T ∗i ,T

∗
i−1)

)
+
∫ T ∗i

0
λ (s,T ∗i )dLT ∗

s +d(T ∗i ,T
∗

i ). (44)

Proposition 3.1 Suppose there is a real number R∈ (1,1+ε) such that the moment
generating function of XT ∗i

with respect to PT ∗i−1
is finite at R, i.e. MXT∗i

(R)< ∞, then

Cplt0(T
∗

i ,K) =
K̃iB(0,T ∗i−1)

2π

∫
R

{(
F(0,T ∗i ,T

∗
i−1)

K̃i

)R+iu

(45)

×exp
(∫ T ∗i

0

∫
R

exΛ i−1(s)
[(

e(R+iu)xλ (s,T ∗i )−1
)
− (R+ iu)

(
exλ (s,T ∗i )−1

)]
FT ∗

s (dx)ds
)

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)}
du

(R+ iu)(R+ iu−1)
.

Proof. The time–0–price of the caplet with strike rate K and maturity T ∗i has the
form



12 E. Eberlein, M. Eddahbi and S.M. Lalaoui Ben Cherif

Cplt0(T
∗

i ,K) = B(0,T ∗i−1)EPT∗i−1

[(
e

XT∗i − K̃i

)+]
(46)

= B(0,T ∗i−1)EPT∗i−1

[
f
(

XT ∗i

)]
,

where the function f : R→ R+ is defined by f (x) = (ex− K̃i)
+.

Applying Theorem 2.2 in Eberlein et al. (2010) [4] (by the definition of XT ∗i
we have

s = 0 here), we get

Cplt0(T
∗

i ,K) =
B(0,T ∗i−1)

2π

∫
R

MXT∗i
(R+ iu) f̂ (−u+ iR)du, (47)

where the Fourier transform f̂ is given by

f̂ (−u+ iR) =
K̃1−R−iu

i
(R+ iu)(R+ iu−1)

(48)

and the moment generating function MXT∗i
is given by

MXT∗i
(R+ iu) = EPT∗i−1

[
exp
(
(R+ iu)XT ∗i

)]
(49)

=
(
F(0,T ∗i ,T

∗
i−1)

)R+iu exp((R+ iu)d(T ∗i ,T
∗

i ))

×EPT∗i−1

[
exp
(∫ T ∗i

0
(R+ iu)λ (s,T ∗i )dLT ∗

s

)]
.

Making a change of measure, we find

MXT∗i
(R+ iu) =

(
F(0,T ∗i ,T

∗
i−1)

)R+iu exp((R+ iu)d(T ∗i ,T
∗

i )) (50)

×
EPT∗

[
exp
(∫ T ∗i

0

(
(R+ iu)λ (s,T ∗i )+Λ i−1(s)

)
dLT ∗

s

)]
EPT∗

[
exp
(∫ T ∗i

0 Λ i−1(s)dLT ∗
s

)] .

Using Proposition 8 in Eberlein and Kluge (2006) [6], we can prove easily that

MXT∗i
(R+ iu) =

(
F(0,T ∗i ,T

∗
i−1)

)R+iu (51)

×exp
(
(R+ iu)

∫ T ∗i

0

[
−θs

(
Λ

i(s)
)
+θs

(
Λ

i−1(s)
)]

ds
)

×
exp
(∫ T ∗i

0 θs
(
(R+ iu)λ (s,T ∗i )+Λ i−1(s)

)
ds
)

exp
(∫ T ∗i

0 θs (Λ i−1(s))ds
)
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=
(
F(0,T ∗i ,T

∗
i−1)

)R+iu exp
(∫ T ∗i

0
θs
(
(R+ iu)λ (s,T ∗i )+Λ

i−1(s)
)

ds
)

×exp
(∫ T ∗i

0

[
(−R− iu)θs

(
Λ

i(s)
)
− (1−R− iu)θs

(
Λ

i−1(s)
)]

ds
)
·

Taking into account the choice of the drift coefficient in (19), the cumulant function
θs (see (9)) and the moment generating function MXT∗i

, respectively, become

θs(R+ iu) = (R+ iu)
∫
R

(
ex(R+iu)−1

R+ iu
− (exλ (s,T ∗1 )−1)

λ (s,T ∗1 )

)
FT ∗

s (dx) (52)

+
cs

2
(R+ iu)(R+ iu−λ (s,T ∗1 ))

and

MXT∗i
(R+ iu) =

(
F(0,T ∗i ,T

∗
i−1)

)R+iu exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0

∫
R

exΛ i−1(s)
(

e(R+iu)xλ (s,T ∗i )−1
)

FT ∗
s (dx)ds

)
(53)

×exp
(
−(R+ iu)

∫ T ∗i

0

∫
R

exΛ i−1(s)
(

exλ (s,T ∗i )−1
)

FT ∗
s (dx)ds

)
·

Finally, from (48) and (53) we conclude that

Cplt0(T
∗

i ,K) =
K̃iB(0,T ∗i−1)

2π

∫
R

{(
F(0,T ∗i ,T

∗
i−1)

K̃i

)R+iu

(54)

×exp
(∫ T ∗i

0

∫
R

exΛ i−1(s)
[(

e(R+iu)xλ (s,T ∗i )−1
)
− (R+ iu)

(
exλ (s,T ∗i )−1

)]
FT ∗

s (dx)ds
)

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)}
du

(R+ iu)(R+ iu−1)
·

4 Sensitivity analysis

4.1 Greeks computed by the Malliavin approach

In this section we present an application of the Malliavin calculus to the computation
of Greeks within the Lévy forward process model. We refer to the literature, for
example Di Nunno et al. (2008) [2] as well as Nualart (2006) [15] for details on the
theoretical aspects of Malliavin calculus. Another important reference is Yablonski
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(2008) [19]. See also the Appendix for a short presentation of definitions and results
used in the sequel. The forward process F(t,T ∗i ,T

∗
i−1) under the forward measures

PT ∗i−1
can be written as stochastic exponential

F(t,T ∗i ,T
∗

i−1) = F(0,T ∗i ,T
∗

i−1)Et (Z(·,T ∗i )) (55)

with

Z(t,T ∗i ) =
∫ t

0

√
csλ (s,T ∗i )dW

T ∗i−1
s +

∫ t

0

∫
R
(exλ (s,T ∗i )−1)µ̃LT∗i−1

(ds,dx)· (56)

Expressed in a differential form we get the PT ∗i−1
–dynamics

dF(t,T ∗i ,T
∗

i−1)

F(t−,T ∗i ,T ∗i−1)
=
√

ctλ (t,T ∗i )dW
T ∗i−1

t +
∫
R
(exλ (t,T ∗i )−1)µ̃LT∗i−1

(dt,dx), (57)

where F(t−,T ∗i ,T ∗i−1) is the pathwise left limit of F(·,T ∗i ,T ∗i−1) at the point t.
As in the classical Malliavin calculus we are able to associate the solution of
(57) with the process Y (t,T ∗i ,T

∗
i−1) :=

∂F(t,T ∗i ,T
∗
i−1)

∂F(0,T ∗i ,T
∗
i−1)

; called the first variation pro-

cess of F(t,T ∗i ,T
∗

i−1). The following proposition provides a simpler expression for
the Malliavin derivative operator Dr,0 when applied to the forward process rates
F(t,T ∗i ,T

∗
i−1) (see Di Nunno et al. (2008) [2], Theorem 17.4 and Yablonski (2008)

[19], Definition 17. for details). We will denote the domain of the operator Dr,0
in L2(Ω) by D1,2, meaning that D1,2 is the closure of the class of smooth random
variables S (see (100) in the Appendix).

Proposition 4.1 Let F(t,T ∗i ,T
∗

i−1)t∈[0,T ∗] be the solution of (57). Then F(t,T ∗i ,T
∗

i−1)∈
D1,2 and the Malliavin derivative is given by

Dr,0F(t,T ∗i ,T
∗

i−1)

= Y (t,T ∗i ,T
∗

i−1)Y (r−,T ∗i ,T ∗i−1)
−1F(r−,T ∗i ,T ∗i−1)λ (r,T

∗
i )
√

cr1{r≤t}. (58)

4.1.1 Variation in the initial forward price

In this section, we provide an expression for the Delta, the partial derivative of the
expectation Cplt0(T

∗
i ,K) with respect to the initial condition F(0,T ∗i ,T

∗
i−1) which

is given by

∆(F(0,T ∗i ,T
∗

i−1)) =
∂Cplt0(T

∗
i ,K)

∂F(0,T ∗i ,T
∗

i−1)
· (59)

The derivative with respect to the initial LIBOR rate is then an easy consequence.
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∆(L(0,T ∗i )) =
∂Cplt0(T

∗
i ,K)

∂L(0,T ∗i )
(60)

= ∆(F(0,T ∗i ,T
∗

i−1))
∂F(0,T ∗i ,T

∗
i−1)

∂L(0,T ∗i )
= δ

∗
i ∆(F(0,T ∗i ,T

∗
i−1)),

since

L(0,T ∗i ) =
1

δ ∗i

(
F(0,T ∗i ,T

∗
i−1)−1

)
· (61)

Let us define the set

T̃i =

{
hi ∈ L2([0,T ∗i ]) :

∫ T ∗i

0
hi(u)du = 1

}
· (62)

Proposition 4.2 For all functions hi ∈ T̃i, we have

∆(F(0,T ∗i ,T
∗

i−1)) =
B(0,T ∗i−1)

F(0,T ∗i ,T
∗

i−1)
EPT∗

[(
F(T ∗i ,T

∗
i ,T

∗
i−1)− K̃i

)+
(63)

×exp
(∫ T ∗i

0
Λ

i−1(s)dLT ∗
s −

∫ T ∗i

0
θs
(
Λ

i−1(s)
)

ds
)

×

(∫ T ∗i

0

hi(u)dW T ∗
u

λ (u,T ∗i )
√

cu
−
∫ T ∗i

0

hi(u)Λ i−1(u)du
λ (u,T ∗i )

)]
·

Proof. We consider a more general payoff of the form H(F(T ∗i ,T
∗

i ,T
∗

i−1)) such that
H : R−→ R is a locally integrable function satisfying

EPT∗i−1

[
H(F(T ∗i ,T

∗
i ,T

∗
i−1))

2]< ∞· (64)

First, assume that H is a continuously differentiable function with compact support.
Then we can differentiate inside the expectation and get

∆H(F(0,T ∗i ,T
∗

i−1)) :=
∂EPT∗i−1

[
H(F(T ∗i ,T

∗
i ,T

∗
i−1))

]
∂F(0,T ∗i ,T

∗
i−1)

(65)

= EPT∗i−1

[
H ′(F(T ∗i ,T

∗
i ,T

∗
i−1))

∂F(T ∗i ,T
∗

i ,T
∗

i−1)

∂F(0,T ∗i ,T
∗

i−1)

]
= EPT∗i−1

[
H ′(F(T ∗i ,T

∗
i ,T

∗
i−1))Y (T

∗
i ,T

∗
i ,T

∗
i−1)

]
·

Using Proposition 4.1 we find for any hi ∈ T̃i

Y (T ∗i ,T
∗

i ,T
∗

i−1) =
∫ T ∗i

0
Du,0F(T ∗i ,T

∗
i ,T

∗
i−1)

hi(u)Y (u−,T ∗i ,T ∗i−1)du
F(u−,T ∗i ,T ∗i−1)λ (u,T

∗
i )
√

cu
· (66)
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From the chain rule (see Yablonski (2008) [19], Proposition 4.8) we find

∆H(F(0,T ∗i ,T
∗

i−1)) =EPT∗i−1

[∫ T ∗i

0
H ′(F(T ∗i ,T

∗
i ,T

∗
i−1))Du,0F(T ∗i ,T

∗
i ,T

∗
i−1) (67)

×
hi(u)Y (u−,T ∗i ,T ∗i−1)du

F(u−,T ∗i ,T ∗i−1)λ (u,T
∗

i )
√

cu

]
=EPT∗i−1

[∫ T ∗i

0
Du,0H(F(T ∗i ,T

∗
i ,T

∗
i−1))

×
hi(u)Y (u−,T ∗i ,T ∗i−1)du

F(u−,T ∗i ,T ∗i−1)λ (u,T
∗

i )
√

cu

]
=EPT∗i−1

[∫ T ∗i

0

∫
R

Du,xH(F(T ∗i ,T
∗

i ,T
∗

i−1))

×
hi(u)Y (u−,T ∗i ,T ∗i−1)duδ0(dx)
F(u−,T ∗i ,T ∗i−1)λ (u,T

∗
i )
√

cu

]
,

where δ0(dx) is the Dirac measure at 0.
By the definition of the Skorohod integral δ (·) (see Yablonski (2008) [19], Section
5), we reach

∆H(F(0,T ∗i ,T
∗

i−1))

= EPT∗i−1

[
H(F(T ∗i ,T

∗
i ,T

∗
i−1))δ

(
hi(·)Y (·−,T ∗i ,T ∗i−1)δ0(·)

F(·−,T ∗i ,T ∗i−1)λ (·,T ∗i )
√

c·

)]
· (68)

However the stochastic process(
hi(u)Y (u−,T ∗i ,T ∗i−1)

F(u−,T ∗i ,T ∗i−1)λ (u,T
∗

i )
√

cu

)
0≤u≤T ∗i

(69)

is a predictable process, thus the Skorohod integral coincides with the Itô stochastic
integral and we get

∆H(F(0,T ∗i ,T
∗

i−1))

= EPT∗i−1

H(F(T ∗i ,T
∗

i ,T
∗

i−1))
∫ T ∗i

0

hi(u)Y (u−,T ∗i ,T ∗i−1)dW
T ∗i−1
u

F(u−,T ∗i ,T ∗i−1)λ (u,T
∗

i )
√

cu

 · (70)

By Lemma 12.28. p. 208 in Di Nunno et al. (2008) [2] the result (70) holds for any
locally integrable function H such that

EPT∗i−1

[
H(F(T ∗i ,T

∗
i ,T

∗
i−1))

2]< ∞. (71)

In particular, if one takes
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H(F(T ∗i ,T
∗

i ,T
∗

i−1)) = B(0,T ∗i−1)
(

F(T ∗i ,T
∗

i ,T
∗

i−1)− K̃i

)+
, (72)

we can express the derivatives of the expectation Cplt0(T
∗

i ,K,δ ∗i ) with respect to
the initial condition F(0,T ∗i ,T

∗
i−1) in the form of a weighted expectation as follows

∆(F(0,T ∗i ,T
∗

i−1)) = B(0,T ∗i−1)EPT∗i−1

[(
F(T ∗i ,T

∗
i ,T

∗
i−1)− K̃i

)+
(73)

×
∫ T ∗i

0

hi(u)Y (u−,T ∗i ,T ∗i−1)dW
T ∗i−1
u

λ (u,T ∗i )
√

cuF(u−,T ∗i ,T ∗i−1)

]
·

We show easily that

Y (u−,T ∗i ,T ∗i−1) =
F(u−,T ∗i ,T ∗i−1)

F(0,T ∗i ,T
∗

i−1)
, (74)

hence

∆(F(0,T ∗i ,T
∗

i−1))

=
B(0,T ∗i−1)

F(0,T ∗i ,T
∗

i−1)
EPT∗i−1

[(
F(T ∗i ,T

∗
i ,T

∗
i−1)− K̃i

)+ ∫ T ∗i

0

hi(u)dW
T ∗i−1
u

λ (u,T ∗i )
√

cu

]
· (75)

In accordance with (25) we can write

W
T ∗i−1

t =W T ∗
t −

∫ t

0
Λ

i−1(s)
√

csds. (76)

By making a measure change using the fact (see (40)) that

dPT ∗i−1

dPT ∗

∣∣∣∣∣
FT∗i

= exp
(∫ T ∗i

0
Λ

i−1(s)dLT ∗
s −

∫ T ∗i

0
θs
(
Λ

i−1(s)
)

ds
)
, (77)

we end up with

∆(F(0,T ∗i ,T
∗

i−1)) =
B(0,T ∗i−1)

F(0,T ∗i ,T
∗

i−1)
EPT∗

[(
F(T ∗i ,T

∗
i ,T

∗
i−1)− K̃i

)+
(78)

×exp
(∫ T ∗i

0
Λ

i−1(s)dLT ∗
s −

∫ T ∗i

0
θs
(
Λ

i−1(s)
)

ds
)

×

(∫ T ∗i

0

hi(u)dW T ∗
u

λ (u,T ∗i )
√

cu
−
∫ T ∗i

0

hi(u)Λ i−1(u)
λ (u,T ∗i )

du

)]
·
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4.2 Greeks computed by the Fourier-based valuation method

Thanks to the Fourier-based valuation formula obtained in (45) and the structure
of the forward process model as an exponential semimartingale, we can calculate
readily the Greeks. We focus on the variation to the initial condition, i.e. Delta.

Proposition 4.3 Suppose there is a real number R∈ (1,1+ε) such that the moment
generating function of XT ∗i

with respect to PT ∗i−1
is finite at R, i.e. MXT∗i

(R)< ∞, then

∆(F(0,T ∗i ,T
∗

i−1)) =
B(0,T ∗i−1)

2π

∫
R

{(
F(0,T ∗i ,T

∗
i−1)

K̃i

)R+iu−1

(79)

×exp
(∫ T ∗i

0

∫
R

exΛ i−1(s)
(

e(R+iu)xλ (s,T ∗i )−1
)

FT ∗
s (dx)ds

)
×exp

(
−
∫ T ∗i

0

∫
R

exΛ i−1(s)(R+ iu)
(

exλ (s,T ∗i )−1
)

FT ∗
s (dx)ds

)
×exp

(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)}
du

R+ iu−1
·

Proof. Based on the Section 4 in Eberlein et al. (2010) [4], this proposition can be
shown easily.

4.3 Examples

4.3.1 Variance Gamma process (VG)

We suppose that the jump component of the driving process LT ∗ (see (8)), is de-
scribed by a Variance Gamma process with the Lévy density ν given by

ν(dx) = FV G(x)dx (80)

such that

FV G(x) :=
1

η |x|
exp

 θ

σ2 x− 1
σ

√
2
η
+

θ 2

σ2 |x|

 , (81)

where (θ ,σ ,η) are the parameters such that θ ∈ R, σ > 0 and η > 0.

Let us put B = θ

σ2 and C = 1
σ

√
2
η
+ θ 2

σ2 and get

FV G(x) =
exp(Bx−C|x|)

η |x|
· (82)
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In this case, the moment generating function MXT∗i
is given by

MXT∗i
(z) =

(
F(0,T ∗i ,T

∗
i−1)
)z exp

(∫ T ∗i

0

(csz
2
(z−1)λ 2(s,T ∗i )+ IV G(s,z)

)
ds
)
, (83)

where the generalized integral IV G(s,z) is given by

IV G(s,z) :=
∫
R

(
ex(zλ (s,T ∗i )+Λ i−1(s))− exΛ i−1(s)

)
FV G(x)dx (84)

−
∫
R

z
(

exΛ i(s)− exΛ i−1(s)
)

FV G(x)dx·

Now substituting FV G(x) by its expression we get

IV G(s,z) =
∫
R

(
ex(zλ (s,T ∗i )+Λ i−1(s))− exΛ i−1(s)

)
exp(Bx−C|x|) dx

η |x|

−
∫
R

z
(

exΛ i(s)− exΛ i−1(s)
)

exp(Bx−C|x|) dx
η |x|

=
∫ +∞

0

(
ex(zλ (s,T ∗i )+Λ i−1(s))− exΛ i−1(s)

)
exp(Bx−Cx)

dx
ηx

−
∫ +∞

0
z
(

exΛ i(s)− exΛ i−1(s)
)

exp(Bx−Cx)
dx
ηx

−
∫ 0

−∞

(
ex(zλ (s,T ∗i )+Λ i−1(s))− exΛ i−1(s)

)
exp(Bx+Cx)

dx
ηx

+
∫ 0

−∞

z
(

exΛ i(s)− exΛ i−1(s)
)

exp(Bx+Cx)
dx
ηx

,

or

IV G(s,z) =
∫ +∞

0

[
e(zλ (s,T ∗i )+Λ i−1(s)+B−C)x− e(Λ i−1(s)+B−C)x

ηx

]
dx

−
∫ +∞

0

[
z

e(Λ i(s)+B−C)x− e(Λ i−1(s)+B−C)x

ηx

]
dx

−
∫ 0

−∞

[
e(zλ (s,T ∗i )+Λ i−1(s)+B+C)x− e(Λ i−1(s)+B+C)x

ηx

]
dx

+
∫ 0

−∞

[
z

e(Λ i(s)+B+C)x− e(Λ i−1(s)+B+C)x

ηx

]
dx
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=
∫ +∞

0

[
e(zλ (s,T ∗i )+Λ i−1(s)+B−C)x− e(Λ i−1(s)+B−C)x

ηx

]
dx

−
∫ +∞

0

[
z

e(Λ i(s)+B−C)x− e(Λ i−1(s)+B−C)x

ηx

]
dx

+
∫ +∞

0

[
e−(zλ (s,T ∗i )+Λ i−1(s)+B+C)x− e−(Λ i−1(s)+B+C)x

ηx

]
dx

−
∫ +∞

0

[
z

e−(Λ i(s)+B+C)x− e−(Λ i−1(s)+B+C)x

ηx

]
dx·

Using the notations

αi(s,z) = −
(
zλ (s,T ∗i )+Λ

i−1(s)+B−C
)
, (85)

βi(s) = −
(
Λ

i−1(s)+B−C
)
, (86)

γi(s) = −
(
Λ

i(s)+B−C
)
, (87)

we end up with

IV G(s,z) =
∫ +∞

0

[
e−αi(s,z)x− e−βi(s)x

x
− z

e−γi(s)x− e−βi(s)x

x

]
dx

+
∫ +∞

0

[
e−(2C−αi(s,z))x− e−(2C−βi(s))x

x
− z

e−(2C−γi(s))x− e−(2C−βi(s))x

x

]
dx·

Using Frullani’s integral (see for details Ostrowski (1949) [16] ), we can show that,
if α ∈ C and β ∈ C such that Re(α) > 0, Re(β ) > 0 and β

α
∈ C \R− where

R− =]−∞;0],

I(α,β ) :=
∫ +∞

0

e−αx− e−βx

x
dx = Log

(
β

α

)
, (88)

where Log is the principal value of the logarithm. Consequently

IV G(s,z) = Log
(

βi(s)
αi(s,z)

)
− zLog

(
βi(s)
γi(s)

)
+Log

(
2C−βi(s)

2C−αi(s,z)

)
− zLog

(
2C−βi(s)
2C− γi(s)

)
= Log

(
βi(s)

αi(s,z)

)
+Log

(
2C−βi(s)

2C−αi(s,z)

)
−z
(

Log
(

βi(s)
γi(s)

)
+Log

(
2C−βi(s)
2C− γi(s)

))
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= Log
(

βi(s)(2C−βi(s))
αi(s,z)(2C−αi(s,z))

)
− zLog

(
βi(s)(2C−βi(s))
γi(s)(2C− γi(s))

)
·

The moment generating function MXT∗i
becomes

MXT∗i
(z) =

(
F(0,T ∗i ,T

∗
i−1)

)z exp
(∫ T ∗i

0

csz
2
(z−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Log

(
βi(s)(2C−βi(s))

αi(s,z)(2C−αi(s,z))

)
ds
)

×exp
(
−
∫ T ∗i

0
zLog

(
βi(s)(2C−βi(s))
γi(s)(2C− γi(s))

)
ds
)

or

MXT∗i
(R+ iu) =

(
F(0,T ∗i ,T

∗
i−1)

)R+iu

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Log

(
βi(s)(2C−βi(s))

αi(s,R+ iu)(2C−αi(s,R+ iu))

)
ds
)

×exp
(
−
∫ T ∗i

0
(R+ iu)Log

(
βi(s)(2C−βi(s))
γi(s)(2C− γi(s))

)
ds
)
·

The valuation formula becomes

Cplt0(T
∗

i ,K) =
B(0,T ∗i−1)

2π

∫
R

K̃1−R−iu
i MXT∗i

(R+ iu)

(R+ iu)(R+ iu−1)
du (89)

=
K̃iB(0,T ∗i−1)

2π

∫
R

{(
F(0,T ∗i ,T

∗
i−1)

K̃i

)R+iu

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Log

(
βi(s)(2C−βi(s))

αi(s,R+ iu)(2C−αi(s,R+ iu))

)
ds
)

×exp
(
−
∫ T ∗i

0
(R+ iu)Log

(
βi(s)(2C−βi(s))
γi(s)(2C− γi(s))

)
ds
)}

du
(R+ iu)(R+ iu−1)

·

The Delta is given by
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∆(F(0,T ∗i ,T
∗

i−1)) =
B(0,T ∗i−1)

2π

∫
R

{(
F(0,T ∗i ,T

∗
i−1)

K̃i

)R+iu−1

(90)

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Log

(
βi(s)(2C−βi(s))

αi(s,R+ iu)(2C−αi(s,R+ iu))

)
ds
)

×exp
(
−
∫ T ∗i

0
(R+ iu)Log

(
βi(s)(2C−βi(s))
γi(s)(2C− γi(s))

)
ds
)}

du
R+ iu−1

·

4.3.2 Inhomogeneous Gamma process (IGP)

We suppose that the jump component of the driving process LT ∗ , is described by
an inhomogeneous Gamma process (IGP), which has been introduced by Berman
(1981) [1] as follows

Definition 4.4 Let A(t) be a nondecreasing function from R+ −→R+ and B > 0. A
Gamma process with shape function A and scale parameter B is a stochastic process
(Lt)t≥0 on R+ such that :

1. L0 = 0;
2. Independent increments: for every increasing sequence of time points t0, . . . , tn,

the random variables Lt0 ,Lt1 −Lt0 , . . . ,Ltn −Ltn−1 are independent;
3. for 0 ≤ s < t, the distribution of the random variable Lt − Ls is given by the

Gamma distribution Γ (A(t)−A(s);B).

We suppose that the shape function A is differentiable, hence we can write

A(t) = A(0)+
∫ t

0
Ȧ(s)ds (91)

for all t ∈ R+ where Ȧ denotes the derivative of A. In this case, the Lévy density of
the Gamma process L is given by

FG
s (x) = Ȧ(s)

e−Bx

x
1{x>0}· (92)

The moment generating function (53) has the form

MXT∗i
(z) =

(
F(0,T ∗i ,T

∗
i−1)

)z exp
(∫ T ∗i

0

csz
2
(z−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0

∫
R

exΛ i−1(s)
[(

ezxλ (s,T ∗i )−1
)
− z
(

exλ (s,T ∗i )−1
)]

FG
s (x)dxds

)
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=
(
F(0,T ∗i ,T

∗
i−1)

)z exp
(∫ T ∗i

0

csz
2
(z−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Ȧ(s)

∫
R

exΛ i−1(s)
(

ezxλ (s,T ∗i )−1
) e−Bx

x
1{x>0}dxds

)
×exp

(
−z
∫ T ∗i

0
Ȧ(s)

∫
R

exΛ i−1(s)
(

exλ (s,T ∗i )−1
) e−Bx

x
1{x>0}dxds

)
=
(
F(0,T ∗i ,T

∗
i−1)

)z exp
(∫ T ∗i

0

(csz
2
(z−1)λ 2(s,T ∗i )+ Ȧ(s)IG(s,z)

)
ds
)
,

where

IG(s,z) =
∫ +∞

0

e(zλ (s,T ∗i )+Λ i−1(s)−B)x− e(Λ i−1(s)−B)x

x
dx

−
∫ +∞

0
z

e(Λ i(s)−B)x− e(Λ i−1(s)−B)x

x
dx·

Setting

αi(s,z) = −
(
zλ (s,T ∗i )+Λ

i−1(s)−B
)
, (93)

βi(s) = −
(
Λ

i−1(s)−B
)
, (94)

γi(s) = −
(
Λ

i(s)−B
)

(95)

and using Frullani’s integral, we find that

IG(s,z) =
∫ +∞

0

[
e−αi(s,z)x− e−βi(s)x

x
− z

e−γi(s)x− e−βi(s)x

x

]
dx

= Log
(

βi(s)
αi(s,z)

)
− zLog

(
βi(s)
γi(s)

)
= Log

(
Λ i−1(s)−B

zλ (s,T ∗i )+Λ i−1(s)−B

)
− zLog

(
Λ i−1(s)−B
Λ i(s)−B

)
·

Therefore we get the form

MXT∗i
(z) =

(
F(0,T ∗i ,T

∗
i−1)

)z exp
(∫ T ∗i

0

csz
2
(z−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Ȧ(s)Log

(
Λ i−1(s)−B

zλ (s,T ∗i )+Λ i−1(s)−B

)
ds
)

×exp
(
−z
∫ T ∗i

0
Ȧ(s)Log

(
Λ i−1(s)−B
Λ i(s)−B

)
ds
)

or
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MXT∗i
(R+ iu) =

(
F(0,T ∗i ,T

∗
i−1)

)R+iu

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Ȧ(s)Log

(
Λ i−1(s)−B

(R+ iu)λ (s,T ∗i )+Λ i−1(s)−B

)
ds
)

×exp
(
−(R+ iu)

∫ T ∗i

0
Ȧ(s)Log

(
Λ i−1(s)−B
Λ i(s)−B

)
ds
)
·

The valuation formula becomes

Cplt0(T
∗

i ,K) =
B(0,T ∗i−1)

2π

∫
R

K̃1−R−iu
i MXT∗i

(R+ iu)

(R+ iu)(R+ iu−1)
du (96)

=
K̃iB(0,T ∗i−1)

2π

∫
R

du
(R+ iu)(R+ iu−1)

{(
F(0,T ∗i ,T

∗
i−1)

K̃i

)R+iu

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Ȧ(s)Log

(
Λ i−1(s)−B

(R+ iu)λ (s,T ∗i )+Λ i−1(s)−B

)
ds
)

×exp
(
−
∫ T ∗i

0
(R+ iu)Ȧ(s)Log

(
Λ i−1(s)−B
Λ i(s)−B

)
ds
)}
·

The Greek Delta is given by

∆(F(0,T ∗i ,T
∗

i−1)) =
B(0,T ∗i−1)

2π

∫
R

{(
F(0,T ∗i ,T

∗
i−1)

K̃i

)R+iu−1

(97)

×exp
(∫ T ∗i

0

cs

2
(R+ iu)(R+ iu−1)λ 2(s,T ∗i )ds

)
×exp

(∫ T ∗i

0
Ȧ(s)Log

(
Λ i−1(s)−B

(R+ iu)λ (s,T ∗i )+Λ i−1(s)−B

)
ds
)

×exp
(
−
∫ T ∗i

0
(R+ iu)Ȧ(s)Log

(
Λ i−1(s)−B
Λ i(s)−B

)
ds
)}

du
R+ iu−1

·
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5 Appendix

5.1 Isonormal Lévy process (ILP)

Let µ and ν be σ–finite measures without atoms on the measurable spaces (T,A )
and (T×X0,B) respectively. Define a new measure

π(dt,dz) := µ(dt)δΘ (dz)+ν(dt,dz) (98)

on a measurable space (T×X,G ), where X = X0∪{Θ}, G = σ(A ×{Θ},B) and
δΘ (dz) is the measure which gives mass one to the point Θ . We assume that the
Hilbert space H := L2(T×X,G ,π) is separable.

Definition 5.1 We say that a stochastic process L = {L(h),h ∈ H} defined on a
complete probability space (Ω ,F ,P) is an isonormal Lévy process (or Lévy process
on H) if the following conditions are satisfied:

1. The mapping h−→ L(h) is linear;
2. E[eixL(h)] = exp(Ψ(x,h)), where Ψ(x,h) is equal to∫

T×X

(
(eixh(t,z)−1− ixh(t,z))1X0(z)−

1
2

x2h2(t,z)1Θ (z)
)

π(dt,dz)· (99)

5.2 The derivative operator

Let S denote the class of smooth random variables, that is the class of random
variables ξ of the form

ξ = f (L(h1), · · · ,L(hn)), (100)

where f belongs to C∞
b (Rn),h1, . . . ,hn are in H, and n ≥ 1. The set S is dense in

Lp(Ω) for any p≥ 1.

Definition 5.2 The stochastic derivative of a smooth random variable of the form
(100) is the H–valued random variable Dξ = {Dt,xξ ,(t,x) ∈ T ×X} given by

Dt,xξ =
n

∑
k=1

∂ f
∂yk

(L(h1), · · · ,L(hn))hk(t,x)1Θ (x) (101)

+( f (L(h1)+h1(t,x), · · · ,L(hn)+hn(t,x))

− f (L(h1), · · · ,L(hn)))1X0(x).

We will consider Dξ as an element of L2(T ×X ×Ω) ∼= L2(Ω ;H); namely Dξ

is a random process indexed by the parameter space T ×X .
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1. If the measure ν is zero or hk(t,x)= 0, k= 1, . . . ,n when x 6=Θ then Dξ coincides
with the Malliavin derivative (see, e.g Nualart (2006) [15] Def. 1.2.1 p.38).

2. If the measure µ is zero or hk(t,x) = 0, k = 1, . . . ,n when x = Θ then Dξ coin-
cides with the difference operator (see, e.g Picard (1996) [18]).

5.3 Integration by parts formula

Theorem 5.3 Suppose that ξ and η are smooth random variables and h ∈H. Then

1.

E[ξ L(h)] = E[〈Dξ ;h〉H ]; (102)

2.

E[ξ ηL(h)] = E[η 〈Dξ ;h〉H ]+E[ξ 〈Dη ;h〉H ]+E[
〈
Dη ;h1X0 Dξ

〉
H ]· (103)

As a consequence of the above theorem we obtain the following result:

The expression of the derivative Dξ given in (101) does not depend on the par-
ticular representation of ξ in (100).
The operator D is closable as an operator from L2(Ω) to L2(Ω ;H).

We will denote the closure of D again by D and its domain in L2(Ω) by D1,2.

5.4 The chain rule

Proposition 5.4 (see Yablonski (2008), Proposition 4.8) Suppose F =(F1,F2, . . . ,Fn)
is a random vector whose components belong to the space D1,2. Let φ ∈ C 1(Rn)
be a function with bounded partial derivatives such that φ(F) ∈ L2(Ω). Then
φ(F) ∈ D1,2 and

Dt,xφ(F) =


n
∑

i=1

∂φ

∂xi
(F)Dt,Θ Fi ; x =Θ

φ(F1 +Dt,xF1, · · · ,Fn +Dt,xFn)−φ(F1, · · · ,Fn) ; x 6=Θ ·

(104)

5.5 Regularity of solutions of SDEs driven by
time–inhomogeneous Lévy processes

We focus on a class of models in which the price of the underlying asset is given
by the following stochastic differential equation (see Di Nunno et al. [2] and Petrou



Option pricing and sensitivity analysis in the Lévy forward process model 27

[17] for details)

dSt = b(t,St−)dt +σ(t,St−)dWt

+
∫
R0

ϕ(t,St−,z)Ñ(dt,dz), (105)

S0 = x,

where R0 :=Rd \{0Rd}, x∈Rd , {Wt ,0≤ t ≤ T} is a m–dimensional standard Brow-
nian motion, Ñ is a compensated Poisson random measure on [0,T ]×R0 with com-
pensator νt(dz)dt. The coefficients b : R+×Rd −→ Rd , σ : R+×Rd −→ Rd×Rm

and ϕ : R+ ×Rd ×R −→ Rd ×R, are continuously differentiable with bounded
derivatives and the family of positive measures (νt)t∈[0,T ] satisfies

∫ T
0 (
∫
R0
(‖z‖2 ∧

1)νt(dz))dt < ∞ and νt({0}) = 0. The coefficients are assumed to satisfy the fol-
lowing linear growth condition

‖b(t,x)‖2 +‖σ(t,x)‖2 +
∫
R0

‖ϕ(t,x,z)‖2
νt(dz)≤C(1+‖x‖2), (106)

for all t ∈ [0,T ], x ∈ Rd , where C is a positive constant. Furthermore we suppose
that there exists a function ρ : R−→ R with

sup
0≤t≤T

∫
R0

|ρ(z)|2νt(dz)< ∞, (107)

and a positive constant K such that

‖ϕ(t,x,z)−ϕ(t,y,z)‖ ≤ K|ρ(z)|‖x− y‖, (108)

for all t ∈ [0,T ], x,y ∈ Rd and z ∈ R0.
In the sequel we provide a theorem which proves that under specific conditions the
solution of a stochastic differential equation belongs to the domain D1,2.

Theorem 5.5 Let (St)t∈[0,T ] be the solution of (105). Then St ∈D1,2 for all t ∈ [0,T ]
and the derivative Dr,0St satisfies the following linear equation

Dr,0St =
∫ t

r

∂b
∂x

(u,Su−)Dr,0Su−du+σ(r,Sr−) (109)

+
∫ t

r

∂σ

∂x
(u,Su−)Dr,0Su−dWu

+
∫ t

r

∫
R0

∂ϕ

∂x
(u,Su−,y)Dr,0Su−Ñ(du,dy)

for 0≤ r ≤ t a.e. and Dr,0St = 0 a.e. otherwise.

As in the classical Malliavin calculus we are able to associate the solution of (105) to
the first variation process Yt :=∇xSt . Then, we will also provide a specific expression
for Dr,0St , the Wiener directional derivative of the St .
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Proposition 5.6 Let (St)t∈[0,T ] be the solution of (105). Then the derivative satisfies
the following equation

Dr,0St = YtY−1
r− σ(r,Sr−)1{r≤t} a.e. (110)

where (Yt)t∈[0,T ] is the first variation process of (St)t∈[0,T ].
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models with jumps. Finance and Stochastics 6, 197–225 (2002)
15. Nualart, D.: The Malliavin Calculus and Related Topics, Second Edition. Springer Verlag,

(2006)
16. Ostrowski, A.M.: On some generalizations of the Cauchy-Frullani integral. Proc. N.A.S. 35,

612–615 (1949)
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