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Abstract

Portfolios are selected in non-Gaussian contexts to maximize a Cherny
and Madan index of acceptability. Analytical gradients are developed for
the purpose of optimizing portfolio searches on the unit sphere. It is
shown that though an acceptability index is not a preference ordering,
many utilities will concur with acceptability maximization. A stylized
economy illustrates the advantages from the perspective of acceptability
of nonlinear securities and options. In sample results for the year 2008 in-
dicate that maximizing the acceptability index can lead to portfolios that
second order stochastically dominate their Gaussian counterparts. Back-
tests over the period 1997 to 2008 reflect gains to maximizing acceptability
over holding a maximal Sharpe ratio portfolio.

Portfolio rebalancing is now possible and is being executed at much higher
frequencies than has been possible in the past. Some algorithms trade every
five to fifteen minutes a fairly large number of stocks ranging from a thousand
stocks upward. It has been known for some time now that at such short hori-
zons returns are extremely non-Gaussian displaying significant levels of skewness
and excess kurtosis. Additionally modern economies directly provide access to
nonlinear cash flows via the markets for options and variance swaps. Optimal
portfolio selection in such non-Gaussian contexts is expected to diverge from the
multivariate Gaussian model that essentially focuses on maximizing the Sharpe
ratio. This is primarily due to the recognition that investors are not indifferent
to other aspects of a return distribution and ceteris paribus they prefer positive
skewness and peakedness and dislike tailweightedness. Kurtosis, as noted in
Eberlein and Madan (2009), is a preferentially confused statistic as it combines
both peakedness and tailweightedness.

The choice of criterion on which to base portfolio selection is then a critical
issue and many alternatives have been formulated in the literature. We refer to
Biglova, Ortobelli, Rachev and Stoyanov (2004) for a survey and application of a



number of these criteria that all take the form of ratios using the expected return
in the numerator and a suitably chosen risk measure in the denominator. Here
we propose to follow the generalization of Sharpe ratios to arbitrage consistent
performance measures developed in Cherny and Madan (2009). These measures
are not based on ratios and they do not separate risk from reward. Instead they
attempt to directly measure the quality of cash flow distributions accessed at
zero cost. First, by construction nonnegative cash flows accessed at zero cost
are considered to be infinitely good as they are arbitrages. For other cash flows
that are exposed to losses, one computes a stressed expectation and the quality
of the cash flow is proportional to the level of stress that it can withstand. The
measures are termed acceptability indices and the higher the index the smaller
is the set of cash flow distributions acceptable at this level. At all levels the set
of acceptable cash flows forms, as random variables, a convex set containing all
the non-negative cash flows.

We develop in this paper fast algorithms for maximizing the acceptability
index attained by a portfolio and show how to operationalize and implement the
optimization procedure. When working with a single underlier we explicitly in-
troduce nonlinear payoffs and options. For multiple assets the exercise requires
the specification of the non-Gaussian joint law of asset returns and we recognize
that there are numerous ways to do this. The algorithm we develop requires
that one be able to simulate the joint law for the assets of interest and many
researchers would like to work with their favorite specifications in this domain.
Since our focus is on explaining and operationalizing the maximization of an
index of acceptability we adopt a fairly simple yet adequate formulation of the
joint law for our purposes. We thereby leave refinements in this direction to
future investigations. In formulating the joint law we follow the suggestions of
Malevergne and Sornette (2005) and merely compute a covariance matrix after
transformation of marginals to a standard normal variate by passing through
the composition of the distribution function and inverse normal cumulative dis-
tribution function. Malevergne and Sornette (2005) estimate marginals in a
modified Weibull family but as we construct samples from the joint law with
some frequency on 50 stocks we just employ the empirical distribution function
of our samples. Refinements associated with estimating and simulating more
general and more complicated densities preferably associated with limit laws
or self-decomposable random variables can easily be entertained in extensions.
One may also reestimate a few parameters at each rebalance while reestimat-
ing the whole set at a lower frequency. These are considerations that must be
analysed in developing an industrial strategy but are not essential for the initial
exposition of procedures devoted to designing maximally acceptable trades.

The outline of the rest of the paper is as follows. Section 1 provides basic
details on indices of acceptability. The algorithm for constructing maximally
acceptable portfolios is developed in Section 2. Section 3 presents a stylized
economy in which we study the advantages offered by nonlinear cash flows and
options from the perspective of enhancing acceptability. Section 4 applies this
algorithm to recent data covering the volatile period of the year ending in De-
cember 5, 2008. Section 5 presents a backtest rebalancing maximally acceptable



portfolios every 5 days compared with a maximal Sharpe ratio investment. Sec-
tion 6 concludes.

1 Acceptability Indices

We present here the essential details leading to the operational indices of accept-
ability defined in Cherny and Madan (2008). For this purpose, we model the
financial outcomes of trading as zero-cost terminal cash flows seen as random
variables on a probability space (2, F, P). A short review of the development
of acceptability indices and its links to more classical ideas may be helpful.
For an expected utility maximizing investor, with utility function u, with a
given random initial position W the set of zero cost random variables accept-
able to this investor is given by the set of all random variables X such that
Elu(W + X)] > E[u(W)], or the classical better than set. This is typically a
convex set containing the nonnegative cash flows. If one is interested in cash
flows acceptable to many investors then one must intersect all such convex sets,
but the result will remain a convex set containing the nonnegative cash flows.
If we now shift attention to cash flows that move marginally in the direction X,
leaving issues of size to other considerations like market depth or impact, then
one may model the acceptable cash flows by the smallest convex cone containing
all the classical better than convex sets.

Such a formulation for acceptable cash flows was axiomatized and adopted
in Artzner, Delbaen, Eber, and Heath (1999) and studied further for its asset
pricing implications in Carr, Geman, and Madan (2001). Such cones of accept-
able cash flows are supported by a set of probability measures and cash flows
are acceptable just if they have a positive expectation under all the supporting
probability measures. It follows that the larger is the set of supporting mea-
sures the smaller is the cone of acceptability. Cherny and Madan (2008) went
on to index a decreasing sequence of cones by a real valued level of acceptability
with the property that the higher the level of acceptability, the larger the set
of supporting measures. Cash flows with a positive expectation are acceptable
at level zero while arbitrages are infinitely acceptable. They then constructed
a performance measure for cash flows as the highest level of acceptability at-
tained by a potential cash flow. Such performance measures based on indices of
acceptability are a generalization of the Sharpe ratio and the Gain-Loss ratio of
Bernardo and Ledoit (2000) and like them are scale invariant, but improve on
the associated economic properties.

The construction of operational cones of acceptability led Cherny and Madan
(2008) to consider law invariant cones of acceptability. Here the decision on the
acceptability of a cash flow depends only on the distribution function. This
property, though not ideal, is shared with expected utility, and all the various
ratios used in risk analysis and mentioned earlier by reference to Biglova, Or-
tobelli, Rachev and Stoyanov (2004). Such law invariant operational cones of
acceptability are related to a sequence of concave distortions ¥7(y) also studied
in Eberlein and Madan (2009). Each function U7 (y) is a concave distribution



function defined on the unit interval with values in the unit interval that is
pointwise increasing in the level of the distortion v. A random variable X with
distribution function F(z) is acceptable at level v just if its expectation under
such a distortion is nonnegative or that

/OO 2dU7 (F(z)) > 0.

— 00

The acceptability index of X, v*(X) is then given by

+(X) = sup {7 [ savir) = o} |

It may be tempting to think of the level of acceptability as a degree of risk
aversion but this is not correct. A few remarks address the important differences.
First, risk aversions may be increased to arbitrarily high levels depending on
the preferences being represented. Levels of acceptability can not be increased
in the same way as there is a market determined limit to the highest level
possibly attainable. Second, we observe that increases in v amount to a further
distortion of probability and do not introduce greater concavity in utility. In
fact there is no distortion of wealth, comparable to its utility, occurring in the
definition of an acceptability index. We refer the reader to Jin and Zhou (2008)
for a deeper discussion of all these distortions. However, we note by way of
comparison to utility considerations that expectations under concave distortions
are also expectations under a change of measure as, supposing the existence of
the density f(z) of the distribution function F'(x), we have that

/ AV (F(z) = / U (F(2) f(x)da

— B9
where the change of measure is
dq
— =0V (F(X)). 1
L= (F(X) 1)

Note that the measure change depends explicitly on the cash flow X as indi-
cated in expression (1). We note that increased risk aversion introduces greater
concavity and nonlinearity in the measure change and the same applies to in-
creasing v but as already noted, there are market determined limits to how far
v may be increased but no such limits apply to risk aversion.

Critical to the various levels of acceptability are the measures supporting
acceptability at this level. Fortunately there is a clear understanding of these
measures provided in Cherny (2006). One has to first construct the conjugate
dual ®” to the distortion defined by

o7 (x) = 031;31 (V7 (y) — xy)



and the supporting set of measures has densities Z with respect to P satisfying
E [(Z - c)+} < ®(c), c¢>0.

Cherny and Madan (2008) provide four examples of useful concave distor-
tions. The first termed MINV AR is given by

U(y) =1—(1—y)".

An expectation under this distortion for integral 7 is easily seen to be the
expectation of the minimum of (1+ ) independent draws from the distribution
function. Hence more generally we say that X is MINV AR acceptable at level
~ if the minimum of 1 4+ v independent draws has a positive expectation. A
simple computation shows that the measure change (1) does not reweight large
losses, when F'(x) is near zero, to arbitrarily high levels and hence the economic
dissatisfication with this distortion. A similar critique accompanies the Gain-
Loss ratio.
The second distortion termed M AXV AR is given by

U(y) =y

Here large losses are reweighted up to infinity but the gains are not discounted
to zero. Expectation under this distortion is from the distribution function
of a random variable that is so bad that one has to make 1 + v independent
draws and take the maximum outcome to get to the original distribution being
evaluated. The other two combine these in two ways. We shall here work with
MINMAXV AR for which

Vi(y) =1— (1 —ym)+

and we note that in this case both, large losses and large gains, are respec-
tively reweighted up to infinity and down to zero. This property also holds for
MAXMINV AR for which

V() = (1- 1=y

Given that an index of acceptability is a performance measure, like the
Sharpe ratio, and not a preference ordering for an investor, the question arises
as to why one should consider maximizing this index of acceptability. We recog-
nize that though Sharpe ratios have been maximized in practice, we have been
forewarned in numerous studies and we cite Goetzmann, Ingersoll, Spiegel and
Welch (2002) and Agarwal and Naik (2004) about how such strategies may be
preferentially inferior. It is well recognized that outside a Gaussian framework,
one may for example increase the Sharpe ratio by accessing negative skewness
on selling downside puts but actually take positions that decrease expected util-
ities.

When managing money for a single investor, expected utility is a well estab-
lished and sound criterion, notwithstanding its more modern critique from the



considerations of behavioral finance. One of the motivations behind acceptabil-
ity is the recognition that money is often managed on behalf of large groups of
individuals and here one would like to maximize the consent of a sizable set of
economically sensible supporting kernels. Certainly an arbitrage would have the
full consent of all rational kernels. We also recognize that if a random variable
X second order stochastically dominates Y then it has a higher acceptability
level. This is not true for many performance measures but it does hold for an
index of acceptability. However, the implication does not go in the reverse di-
rection though we shall encounter occasions where we are able to associate with
a higher acceptability level a situation of second order stochastic dominance, in
which case we have carried all preference orderings along.

Unlike the situation with Sharpe ratios, one has a much clearer understand-
ing of all the preference orderings that will concur with a particular trade in a
direction enhancing an index of acceptability. If the random variable X with
distribution function F' is acceptable at level v for a distortion ¥ then we have
that -

/ xdWU7 (F(x)) > 0. (2)
— o0

We also know that such a trade is marginally acceptable to a utility function

u at a random initial wealth W provided

E /' (W)X] > 0. (3)

Now define by

and write

We now note that on the provision
(A(z) = ¥"(F(x)))x >0

we have that (2) implies (3). Hence for investors whose expected marginal utility
does not rise on losses beyond ¥V (F(z)) and does not fall on gains beyond
UY(F(z)) a positive acceptability receives their consent. The importance of
having U7 go to infinity and zero at the two extremes of zero and unity is now
even clearer as we do expect marginal utilities to behave this way for a wide
class of utility functions. We recognize that we will not necessarily carry all
utilities but there is a large class that comes along. As mentioned earlier we
shall have occasion to associate with a particular enhancement in acceptability
a second order stochastic dominance and then we do carry all utility functions.

Acceptability is thus considerably differentiated from utility and in partic-
ular one does not have to specify a degree of risk aversion in working with
acceptability as an objective. The acceptability level v* will be endogeneously
determined through the optimization and unlike risk aversion, it is not an input
that needs to be specified. One may then wonder what happens to investor



preferences in this approach. They essentially go into the choice of distortions.
For example the distortion MINV AR is relatively lenient towards large losses
with a maximal reweighting of losses capped at 1+ . Such a distortion will not
carry many utility functions along with its decisions as the expected marginal
utility A(z) for losses will easily rise above this bound of 1+ . This is why the
use of MINMAXV AR is more conservative. However, once one has chosen
a distortion that has a derivative rising sufficiently fast for losses and falling
sufficiently fast for gains, its decisions will satisfy a sufficiently large number of
utilities and one can concentrate on improving the quality of cash flows for wide
collections of investors simultaneously, by maximizing acceptability and leaving
issues of risk aversion aside.

2 Constructing Maximally Acceptable Portfo-
lios

We develop in this section an efficient algorithm for constructing portfolios that
are maximally acceptable over a prespecified finite set of potential stock invest-
ments. We envisage the investment as being on day ¢ to be unwound either the
next day or a few days later. The use of such a short horizon is predicated on
the belief that we are unable to describe adequately multivariate return pos-
sibilities over long horizons using statistical data on recent daily returns. We
may not be able to describe the possibilities over the short horizon either but
we suspend our disbelief in this proposition and entertain a statistical approach
to such short term investment.

Our first task is to describe the joint law for daily returns on n selected
assets that we denote by R = (R, -, R,,). We suppose the marginal distribu-
tion function of the *" return is F;(r). In constructing the joint law we follow
Malevergne and Sornette (2005) and define standard Gaussian random variates

Zy = N™Y(Fi(Ry))
where N(x) is the distribution function of a standard normal variate. We pos-
tulate that the variables Z; are correlated with a correlation matrix C. They

have unit variance and zero means by construction. The non-Gaussian nature
of our returns is captured in the nonlinear transformation back with

R = F7{(N(Z)).

We wish to construct a portfolio with h; dollars invested long or short in
asset 7 with the portfolio return

Y =1'R.

We wish to find the portfolio weights h with a view to maximizing the level
of acceptability of the cash flow Y. The optimization will be conducted on a
simulated sample space where we generate M readings on the n joint returns



that are stored in the n by M matrix A. The portfolio returns on this sample
space are then given by the vector

c=HhA.
We sort the vector ¢ in increasing order to construct
Si = Ck(i)

where s; is the smallest element and sy is the largest element of the vector
c. The acceptability index for the vector ¢, y(c) is implicitly defined by the

equation
Yoo (v (57) v (5)) =0 @

Given that acceptability indices are scale invariant by construction, the search
for the optimal h may be restricted to the surface of the sphere in dimension n
defined by h'h = 1. The search algorithm is then fairly simple once we have the
gradient

Oy

Th = oh
We merely follow the gradient to the point i+, which we renormalize to unit
length and stop when the renormalized point equals the original point h. Hence

for implementation we need an explicit gradient computation of v,,.
Taking the total differential of (4) we get that

From which it follows that

dy _ V()= (F)

dsi YL sigh (W) - ¥ (F)]

For MINMAXV AR we have that

(,%\Iﬂ(y) = - (1 fyllw)l—wln (1 73,%)
_ (1 —yllw)wyﬁ inJ(ry’z/



For the other distortions we have for MINV AR

0
—0(y) = —(1 —y) ™ In(1 —
0 (y)=—-(1-y) "In(l-y)
For MAXV AR we have
0 + In(y)
— g7 = —yT+y —22

Finally for MAXMINV AR we have

O wriy) = 1y (1= (L —9)')
-G -y

To construct the partial of the acceptability index  with respect to h; we must
evaluate
Oy

dy
oh; Xl: s, Tk

We employ this gradient computation in a search restricted to the surface of the
sphere h'h = 1 to find the portfolio that maximizes the acceptability index.

3 Nonlinearity and Acceptability in Economies

We consider in this section a stylized economy and the role played by nonlin-
ear securities like variance swaps and options in enhancing the acceptability
of cash flows that may be accessed in markets. The distortion employed is
MINMAXVAR. Consider a two date one period economy with a single risky
asset and a zero interest rate. The risky asset is assumed to be lognormally
distributed with a mean rate of return of 4 = .15 and a volatility ¢ = .35. The
final asset value is

o2
S =exp <u+ch—2)

where Z is a standard normal variate. The initial price of this risky asset is
unity and the pricing kernel or measure change is given by the measure change
for the Black-Scholes economy with

@—e ozZ—Oé—2
ap ~ P 2
for a = —p/o.

The first zero cost cash flow available to investors is the risky return
R=S5-1.

The level of acceptability of this cash flow using MINMAXV AR is .2624.



Cash Flows Accessed with nonlinear and option securities
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Figure 1: Cash flows accessed using squared and cubic securities in blue. Cash
flows with options and nonlinear securities in red.

We now successively introduce nonlinear securities into this economy with
cash flows given by R?, R? and two out of the money options, a put on S struck
at the 5% level and a call, struck at the 95% level. The specific strikes are .6141
and 1.9715. We price these securities using the measure change and the zero
discount rate to get the prices .1724, .1258, .0056 and .0108 respectively.

Now on just introducing the squared return the level of acceptability rises to
.2946 and the trade direction on the unit circle is .9186 shares and —.3951 units
of the squared return. If we now introduce the claim paying R> the acceptability
rises to .2971 and the trade direction is (.9003, —.4346, .0226).

We next introduce the put option and then the call option. The levels of
acceptability rise to .3001 and .3021 respectively. The final trade direction
is (.8528, —.5160,.0728,.0314,.00013) reflecting investment in the risky asset,
shorting the squared return and buying skewness and some out of the money
puts and calls. We present in Figure (1) the cash flow accessed with squared
and cubic assets, and then the final cash flow including the options.
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4 In sample application to portfolios constructed
for the year 2008

It is well recognized that the year 2008 was very volatile with significant pos-
sibilities for departure from Gaussian returns. In the next section we shall
consider backtesting over a much longer period starting in 1997 and finishing in
December 2008. For this longer period we obtained data on 771 stocks that were
continuously quoted among the top 1500 names over the whole period. In this
section we consider three portfolios of 50 stocks made up of those with the top
50 realized means over the year, the second 50 and third 50 realized means. For
each of these three sets of 50 stocks we first construct the benchmark Gaussian
investment by normalizing to the unit sphere the vector

a = Vim
a

g = va'a

where V' is the covariance matrix of the 50 returns over the year and m is vector
of realized means over the year.

Next we transform to standard Gaussian variates using the empirical distri-
bution function constructed from daily returns over the past year, (252 obser-
vations), we then compute the correlation matrix of these transformed variates.
Finally we generate 10000 draws from a multivariate Gaussian model with this
correlation matrix and transform back via F; ' (N(z)) to get 10000 joint read-
ings on our 50 stocks. This gives us three sets of 50 by 10000, potential A
matrices for which we implement the search procedure to find the maximally
acceptable portfolio h for the distortion MINMAXV AR.

We then construct, for each of the three sets separately, the returns ¢’ A and
h’'A and present in figures (2 to 4) the empirical densities for the Gaussian and
maximally acceptable portfolios.

We observe that for the top 50 means there is a clear domination by the
maximally acceptable portfolio of the Gaussian portfolio. To investigate this
further we constructed the double integral of the empirical density or the inte-
gral of the distribution function to find that the Gaussian distribution function
integral lies above the maximally acceptable distribution function integral for
both, the top 50 and second 50, sets of portfolios. This suggests that the max-
imally acceptable portfolios second order stochastically dominate the Gaussian
portfolios in these two cases. In this case all utility functions would prefer the
maximally acceptable portfolio to the Gaussian one. We present in Figures (5
to 7) the integrals of these distribution functions.

We see clearly that for the third 50 stocks this domination is lost and we
dominate only for utility functions that are strictly concave for large positive
returns but are linear for small positive and negative returns.
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Gaussian and MaxAl CF distribution top 50 means
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Figure 2: Gaussian empirical density in blue and maximally acceptable density
in red for the stocks with the top 50 realized annual mean returns.

Gaussian and MaxAl CF distribution second 50 means
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Figure 3: Gaussian empirical density in blue and maximally acceptable density
in red for the stocks with the second 50 realized annual mean returns.
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Gaussian and MaxAl CF distribution third 50 means
0.06 T T T T T

0.04 -

frequency
o
o
w
T

0.02 |- —
001 T
0l— 1 et 1 1 1 1 1 = L
-0.1 -0.08 -0.06 -0.04 -0.02 0 002 0.04 0.06 008 01

return

Figure 4: Gaussian empirical density in blue and maximally acceptable density
in red for the stocks with the third 50 realized annual mean returns.
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Figure 5: Distribution function integrals, Gaussian in blue and maximally ac-
ceptable in red, top 50
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Integral of Distribution Functions second 50
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Figure 6: Distribution function integrals, Gaussian in blue and maximally ac-
ceptable in red, second 50

Integral of Distribution Functions third 50
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Figure 7: Distribution function integrals, Gaussian in blue and maximally ac-
ceptable in red, third 50
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5 day rebalanced Gaussian and Max Al cumulated cash flows
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Figure 8: Cumulated cash flows maximally acceptable in green, magenta and
yellow and Gaussian in blue, red and black for the top 50, second 50 and third
50 respectively.

5 Backtesting portfolio rebalancing from 1997
to 2008

We report in this section the results of a backtest where we start on March 10
1997 and end on November 28 2008, rebalancing portfolios every five days on
the stocks with top 50, second 50 and third 50 realized mean returns over the
past year. For each of these three sets of stocks we construct two portfolios, the
straight Gaussian portfolio normalized to the unit sphere and the maximally
acceptable one optimized on the unit sphere as per the construction described
in section 2. Every five days we transform to standard Gaussians, draw from a
suitably correlated Gaussian model 10000 joint return possibilities and maximize
over the sphere for the portfolio h. Both the Gaussian and maximally acceptable
portfolios are held for five days when they are unwound and a new portfolio is
formed for the next five days.

There are in all six cash flows of length 591 for the 591 rebalancings that
occurred over this period. They are the maximally acceptable and Gaussian
results for the top, second and third 50 stocks for each rebalance day. We
present in Figure (8) the backtested cumulated cash flows from these strategies.

We observe a clear domination of the top 50 over the second 50 and the
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third 50 for both strategies and a domination of the Gaussian by the maximally
acceptable. The strategies took considerable losses towards the end of 2008, a
phenomenon experienced by many strategies.

6 Conclusion

Portfolio selection in non-Gaussian environments is studied with a view towards
maximizing an index of acceptability as defined in Cherny and Madan (2008). As
the indices are scale invariant, optimal long short portfolios may be constructed
by maximizing over the unit sphere. Analytical gradients are developed for the
purpose of enhancing this search. The indices of acceptability are heuristically
described as the maximum level of stress a potential cash flow can be subjected
to before its stress distorted expectation turns negative. It is shown that though
an acceptability index is not a preference ordering, it is related to preferences
and certain well understood classes of utilities concur with its decisions. In fact,
conditionally expected marginal utilities, conditional on the outcome, that rise
less for losses and fall more for gains, than the derivative of the distortion taken
at the cash flow quantile, agree with acceptability.

A stylized economy illustrates the acceptability enhancing features of non-
linear securities and options. In sample results for the year 2008 indicate that
some portfolios maximizing the acceptability index in fact second order stochas-
tically dominate their Gaussian counterparts. Backtests over the period 1997 to
2008 reflect gains to maximizing acceptability over holding a maximal Sharpe
ratio portfolio.
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