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Abstract. In this paper we consider modeling of credit risk within the
Libor market models. We extend the classical definition of the default-
free forward Libor rate to defaultable bonds with credit ratings and
develop the rating based Libor market model. As driving processes for
the dynamics of the default-free and the pre-default term structure of
Libor rates time-inhomogeneous Lévy processes are used. Credit migra-
tion is modeled by a conditional Markov chain, whose properties are
preserved under different forward Libor measures. Conditions for ab-
sence of arbitrage in the model are derived and valuation formulae for
some common credit derivatives in this setup are presented.

1. Introduction

Due to the recent credit crisis, interest rate markets have experienced
some dramatic changes and a number of anomalies have appeared. In par-
ticular, the Libor rates that have always been assumed to be essentially
default-free rates, in these days reflect also the credit risk of the interbank-
ing sector (see recent papers by Mercurio (2009), Morini (2009), Henrard
(2009), and many others).

However, in the present literature there exist many defaultable exten-
sions of the Heath–Jarrow–Morton (HJM) framework for modeling of the
term structure of instantaneous continuously compounded forward rates,
whereas credit risk within the Libor market models seems to be far less
studied. To mention just some of the papers proposing the defaultable HJM
models, we begin with Bielecki and Rutkowski (2000, 2004), who introduced
an extension of the Gaussian HJM model to defaultable bonds with credit
migration. Eberlein and Özkan (2003) developed the defaultable HJM model
with credit migration based on Lévy processes. More recently, Özkan and
Schmidt (2005) and Jakubowski and Nieweglowski (2009a) consider infinite
dimensional Lévy processes for credit risk modeling within the HJM frame-
work. On the other side, the first extension of the log-normal Libor model to
defaultable contracts is due to Lotz and Schlögl (2000), who use a determin-
istic hazard rate to model the time of default. Schönbucher (2000) extended
the log-normal Libor model by adding defaultable forward Libor rates to
the model for default-free Libor rates. Following his ideas, Eberlein, Kluge,
and Schönbucher (2006) constructed the Lévy Libor model with default risk,
driven by time-inhomogeneous Lévy processes. None of these models takes
into account that in markets subject to credit risk, there usually exists a mul-
titude of credit rating classes. A detailed account on different approaches to
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credit risk modeling can be found in Bielecki and Rutkowski (2002), Lando
(2004), Duffie and Singleton (2003) and McNeil, Frey, and Embrechts (2005,
Chapters 8 and 9).

In this paper we develop an arbitrage-free model for defaultable forward
Libor rates related to defaultable bonds with credit ratings. As driving pro-
cesses time-inhomogeneous Lévy processes are used. We call this model the
rating based Lévy Libor model.

The modeling objects in any Libor market model are the discretely com-
pounded forward Libor rates, whose dynamics are modeled under forward
martingale measures with maturities corresponding to the tenor structure.
To develop the rating based Libor model, we begin by constructing a family
of default-free forward Libor rates and forward measures, according to the
Lévy Libor model (Eberlein and Özkan (2005)). In addition, we model the
pre-default term structure, i.e. we specify the dynamics of the forward Libor
rates for every rating class. These rates are not modeled directly, instead the
modeling objects are the inter-rating spreads, which are assumed to evolve as
exponential semimartingales driven by time-inhomogeneous Lévy processes.
By specifying the inter-rating spreads as positive processes, we ensure auto-
matically that higher interest rates correspond to worse credit ratings, thus
reflecting the increased investment risk.

Credit migration of a defaultable bond is modeled by a conditional Markov
chain with a finite number of states representing different rating classes. This
process is constructed in a canonical way by enlarging the reference proba-
bility space which carries the default-free information. Due to this canonical
construction and the fact that any two forward measures are related via
the Radon–Nikodym density process that is adapted to the reference filtra-
tion, we are able to show that the conditional Markov property is preserved
under all forward measures. Moreover, we prove that the progressive en-
largement of the (default-free) reference filtration with the natural filtration
of the conditional Markov chain has the immersion property under all for-
ward measures, i.e. local martingales with respect to the reference filtration
remain local martingales with respect to the enlarged filtration.

The paper is structured as follows. In Section 2 we introduce the set-
ting and the main ingredients for rating based Libor modeling, in particular
we introduce the defaultable and the rating-dependent forward Libor rates
and associated spreads. Section 3 presents a detailed construction of the
pre-default term structure of the rating-dependent Libor rates under cor-
responding forward measures. The credit migration between rating classes
is introduced in Section 4, using the classical conditional Markov chain ap-
proach, which is in this paper adapted to the modeling directly under for-
ward measures. In Section 5 we put all these building blocks together and
derive necessary and sufficient conditions for the absence of arbitrage in the
model. Finally, Section 6 is devoted to the valuation of credit derivatives
in the rating based Libor model. We derive expressions for the price of a
defaultable bond and a credit default swap. Furthermore, we introduce the
defaultable forward measures which are useful tools for valuation of inter-
est rate derivatives such as forward rate agreements, swaps and caps/floors
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on the defaultable Libor rate. As an example we provide a formula for the
defaultable Libor rate caps.

2. Definitions and notation

Let us consider a fixed time horizon T ∗ and a discrete tenor structure
0 = T0 < . . . < Tn = T ∗, where δk = Tk+1 − Tk, for k = 0, . . . , n − 1.
Assume that default-free and defaultable zero coupon bonds with maturities
T1, . . . , Tn are traded in the market. We denote by B(t, Tk) and BC(t, Tk)
the time-t prices of a default-free and a defaultable zero coupon bond with
maturity Tk, respectively. Note that B(Tk, Tk) = 1 and BC(Tk, Tk) ≤ 1, as
the defaultable bond may default before maturity. Moreover, we assume that
the defaultable bond is rated, i.e. at each time point it has a certain credit
rating that reflects the credit quality of its issuer. The migration between
various classes of a credit rating system will be described by a stochastic
process C; the subscript C in the defaultable bond price emphasizes its
dependence on the credit migration process.

The credit ratings are identified with elements of a finite set denoted by
K = {1, 2, . . . ,K}, where 1 stands for the best possible rating and K corre-
sponds to the default event. The process C is assumed to be a continuous-
time conditional Markov chain with state space K. The default state K is
an absorbing state for C and the default time τ is modeled as the first time
when C reaches this state, i.e. τ = inf {t > 0 : Ct = K}. We assume C0 6= K
a.s.

A defaultable bond pays to its holder 1 unit of cash at maturity only if
default does not occur before that date. In case of default, the holder of
the bond receives a reduced payment called the recovery payment. There
exist several different recovery schemes describing the amount and timing of
the recovery payment (for a detailed overview see Bielecki and Rutkowski
(2002, Sections 1.1.1. and 13.2.5) or McNeil, Frey, and Embrechts (2005,
Section 9.4.1)). In this work we adopt the fractional recovery of treasury
value scheme: in case of default prior to maturity, a fixed fraction of the
face value of the bond is paid to the bond holder at the maturity date. This
fraction depends on the rating class from which the bond has defaulted and
is represented by a vector q = (q1, q2, . . . , qK−1) of recovery rates, where qi ∈
[0, 1] for every i. Therefore, the payoff of the defaultable bond at maturity
is given by

BC(Tk, Tk) = 1{τ>Tk} + 1{τ≤Tk}qCτ−

=
K−1∑
i=1

1{CTk=i} + 1{CTk=K}qCτ− ,

where Cτ− denotes the pre-default rating. The defaultable bond price pro-
cess (BC(t, Tk))t≤Tk can be written as

BC(t, Tk) =
K−1∑
i=1

Bi(t, Tk)1{Ct=i} + qCτ−B(t, Tk)1{Ct=K}, (1)
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where Bi(t, Tk) denotes the pre-default price of the defaultable bond at time
t given that the bond is in the rating class i during the time interval [0, t],
where i ∈ {1, . . . ,K − 1}. We have Bi(Tk, Tk) = 1, for each i.

Our goal is to build up in this discrete tenor setting a model for the evolu-
tion of discretely compounded forward interest rates related to defaultable
bonds. Let us first recall that the default-free forward Libor rate at time
t ≤ Tk for the accrual period [Tk, Tk+1] is defined as

L(t, Tk) :=
1
δk

(
B(t, Tk)
B(t, Tk+1)

− 1
)
.

In addition, we introduce the concept of a discretely compounded forward
interest rate related to defaultable bond prices. The idea is to generalize the
above definition by using the defaultable bond prices instead of the default-
free bond prices. For a detailed discussion on this concept we refer to Bielecki
and Rutkowski (2002, Section 14.1.4, page 431), where a defaultable forward
rate agreement (FRA) which yields this rate is described. We call it the
defaultable forward Libor rate. The default risk in this context means the risk
of default of the underlying instrument. It does not mean the counterparty
credit risk. The defaultable forward Libor rate is a rate that one can contract
for at time t ≤ Tk, on a defaultable forward investment of one unit of cash
from Tk to Tk+1. The settlement scheme prescribes that default prior to the
reset date Tk of the FRA results only in the reduction of the principal value
and the contract then becomes default-free. The defaultable forward Libor
rate is defined at time t ≤ Tk for the accrual period [Tk, Tk+1] as

LC(t, Tk) :=
1
δk

(
BC(t, Tk)
BC(t, Tk+1)

− 1
)
. (2)

Note that it depends on the present state Ct of the migration process. Fur-
thermore, making use of the bond price process Bi(·, Tk), we define the
forward Libor rate for rating class i at time t ≤ Tk for the accrual period
[Tk, Tk+1] by

Li(t, Tk) :=
1
δk

(
Bi(t, Tk)
Bi(t, Tk+1)

− 1
)
, (3)

for each i = 1, . . . ,K − 1. The discrete-tenor forward inter-rating spreads
between two rating classes are given by

Hi(t, Tk) :=
Li(t, Tk)− Li−1(t, Tk)

1 + δkLi−1(t, Tk)
, i = 1, 2, . . . ,K − 1, (4)

where we set L0(·, Tk) := L(·, Tk).
Combining (3) and (4) we establish the following connection between the

inter-rating spreads and the bond prices

Hi(t, Tk) =
1
δk

(
Bi(t, Tk)
Bi−1(t, Tk)

Bi−1(t, Tk+1)
Bi(t, Tk+1)

− 1
)
. (5)

Remark 2.1. Observe that the quantities Hi(t, Tk) represent the discrete-
tenor analogs of the inter-rating spreads gi(t, T )− gi−1(t, T ) in the default-
able HJM framework, i.e. the differences between instantaneous continuously
compounded forward rates for rating classes i and i − 1 (see Bielecki and
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Rutkowski 2002, page 406). In the HJM framework, the bond price Bi(t, Tk)
is given by the following formula

Bi(t, Tk) = exp

− Tk∫
t

gi(t, s)ds

 ,

where gi(t, s) is the instantaneous forward rate for the rating class i =
1, . . . ,K − 1. Inserting this into (5) yields

Hi(t, Tk) =
1
δk

 exp
(∫ Tk+1

Tk
gi(t, s)ds

)
exp

(∫ Tk+1

Tk
gi−1(t, s)ds

) − 1


=

1
δk

exp

 Tk+1∫
Tk

(gi(t, s)− gi−1(t, s))ds

− 1


≈ 1
δk

Tk+1∫
Tk

(gi(t, s)− gi−1(t, s))ds.

Therefore, Hi(t, Tk) can be thought of as the average inter-rating spread over
the interval [Tk, Tk+1], which explains why we refer to it as the discrete-tenor
inter-rating spread.

3. Pre-default term structure of Libor rates

Our goal is to develop an arbitrage-free model for the evolution of de-
faultable forward Libor rates. In order to do so, we are going to specify the
pre-default term structure of rating-dependent Libor rates Li(·, Tk) for each
credit rating i, where i ∈ {1, . . . ,K − 1}. We require that 0 ≤ L(t, Tk) ≤
L1(t, Tk) ≤ · · · ≤ LK−1(t, Tk) to reflect the empirical fact that higher in-
terest rates correspond to worse credit ratings, as a compensation for the
increased investment risk. Making use of relation

1 + δkLi(t, Tk) = (1 + δkL(t, Tk))
i∏

j=1

(1 + δkHj(t, Tk)), (6)

which follows from (4), we choose not to model the Libor rates Li(·, Tk) di-
rectly. Instead, we model the forward inter-rating spreads Hj(·, Tk) as posi-
tive processes and therefore, by (6), ensure automatically the monotonicity
of Libor rates with respect to credit ratings.

To model the default-free Libor rates L(·, Tk) we shall adopt the Lévy
Libor model of Eberlein and Özkan (2005). Our construction is presented
below in detail.

3.1. The driving process. Let (Ω,F = FT ∗ ,F = (Ft)0≤t≤T ∗ ,PT ∗) be a
complete stochastic basis and let (Xt)0≤t≤T ∗ be an Rd-valued time-inhomo-
geneous Lévy process, also known as PIIAC (process with independent in-
crements and absolutely continuous characteristics). For a precise definition
and main properties of these processes we refer the reader to Eberlein and
Kluge (2006) and Eberlein, Jacod, and Raible (2005). We assume that the
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filtration F is the completed, natural filtration of X. The probability mea-
sure PT ∗ plays the role of the forward measure associated with the terminal
tenor date T ∗. The triplet of local semimartingale characteristics of X is
denoted by (bt, ct, F T

∗
t )0≤t≤T ∗ and we make the following

Assumption (SUP). The triplets (bt, ct, F T
∗

t ) satisfy

sup
0≤t≤T ∗

|bt|+ ‖ct‖+
∫
Rd

(|x|2 ∧ 1)F T
∗

t (dx)

 <∞

and there exist constants M, ε > 0 such that

sup
0≤t≤T ∗

 ∫
|x|>1

exp〈u, x〉F T ∗t (dx)

 <∞

for every u ∈ [−(1 + ε)M, (1 + ε)M ]d.

The definition of the local characteristics of a semimartingale, as well as
other results from general semimartingale theory that we use throughout the
paper are taken from Jacod and Shiryaev (2003), whose notation we adopt.
Other books such as Protter (2004) or Métivier (1982) can also be used as
references for semimartingale theory.

Note that Assumption (SUP) implies the existence of exponential mo-
ments of X (cf. Lemma 6 in Eberlein and Kluge (2006)). It also makes X a
special semimartingale with the following canonical representation

Xt =

t∫
0

√
csdW T ∗

s +

t∫
0

∫
Rd

x(µ− νT ∗)(ds, dx),

where W T ∗ denotes a standard Brownian motion with respect to PT ∗ , µ is
the random measure of jumps of X and νT

∗
(ds, dx) = F T

∗
s (dx)ds is the

compensator of µ. Note that we assumed that X is driftless, i.e. b = 0, as
the drift term will be included separately in the model.

3.2. The default-free Lévy Libor model. Here we outline briefly the
construction of the default-free Lévy Libor model. For details we refer to
Eberlein and Özkan (2005). The model is driven by a time-inhomogeneous
Lévy process and is built up using backward induction – a standard proce-
dure for Libor market models; see the seminal papers by Miltersen, Sand-
mann, and Sondermann (1997), Brace, Ga̧tarek, and Musiela (1997) and
Musiela and Rutkowski (1997). The following assumptions are made:

(L.1) For every Tk there is a deterministic, Borel measurable function
σ(·, Tk) : [0, T ∗] → Rd

+, which represents the volatility of the for-
ward Libor rate L(·, Tk). We assume that

n−1∑
k=1

σj(s, Tk) ≤M,

for all s ∈ [0, T ∗] and every coordinate j ∈ {1, . . . , d}, where M > 0
is the constant from Assumption (SUP). If s > Tk, then σ(s, Tk) = 0.
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(L.2) The initial term structure B(0, Tk) is strictly positive and strictly
decreasing in k.

The backward induction is started by specifying the dynamics of the most
distant Libor rate L(·, Tn−1) under PT ∗ . In each step of the construction a
new forward measure PTk+1

is constructed and the next Libor rate is then
specified under this measure as

L(t, Tk) = L(0, Tk) exp

 t∫
0

bL(s, Tk)ds+

t∫
0

σ(s, Tk)dX
Tk+1
s

 (7)

with initial condition

L(0, Tk) =
1
δk

(
B(0, Tk)
B(0, Tk+1)

− 1
)
.

The drift term bL(s, Tk) is chosen to make L(·, Tk) a PTk+1
- martingale, i.e.

bL(s, Tk) = −1
2
〈σ(s, Tk), csσ(s, Tk)〉 (8)

−
∫
Rd

(
e〈σ(s,Tk),x〉 − 1− 〈σ(s, Tk), x〉

)
F
Tk+1
s (dx).

The process XTk+1 is obtained from the driving process X in such a way
that it is driftless under the forward measure PTk+1

associated with the tenor
date Tk+1. More precisely, the measure PTk+1

is given by

dPTk+1

dPT ∗

∣∣∣∣∣
Ft

=
B(0, T ∗)
B(0, Tk+1)

n−1∏
j=k+1

(1 + δjL(t, Tj)) =
B(0, T ∗)
B(0, Tk+1)

B(t, Tk+1)
B(t, T ∗)

, (9)

and XTk+1 is a special semimartingale with canonical decomposition

X
Tk+1

t =

t∫
0

√
csdW

Tk+1
s +

t∫
0

∫
Rd

x(µ− νTk+1)(ds, dx), (10)

where

W
Tk+1

t := W T ∗
t −

t∫
0

√
cs

 n−1∑
j=k+1

`(s−, Tj)σ(s, Tj)

 ds (11)

is a standard d-dimensional Brownian motion with respect to PTk+1
and

νTk+1(ds, dx) :=
n−1∏
j=k+1

β(s, x, Tj)νT
∗
(ds, dx) (12)

=: F Tk+1
s (dx)ds

is the PTk+1
-compensator of µ. Here we used for short

β(s, x, Tj) := 1 + `(s−, Tj)
(
e〈σ(s,Tj),x〉 − 1

)
(13)

with

`(s, Tj) :=
δjL(s, Tj)

1 + δjL(s, Tj)
. (14)
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This construction guarantees that the discounted processes B(·,Tj)
B(·,Tk) are mar-

tingales with respect to the forward measure PTk for all j, k. The default-free
Libor model is thus free of arbitrage and the time-t price πYt of a contingent
claim with payoff Y at maturity Tk is given by

πYt = B(t, Tk)EPTk [Y |Ft].

3.3. The pre-default term structure of rating-dependent Libor rates.
In this subsection we proceed by modeling the pre-default term structure of
the rating-dependent Libor rates, or equivalently of the forward inter-rating
spreads. We make the following additional assumptions:
(RL.1) For every rating class i ∈ {1, . . . ,K − 1} and every maturity Tk there

is a deterministic, Borel measurable function γi(·, Tk) : [0, T ∗]→ Rd
+,

which represents the volatility of the inter-rating spread Hi(·, Tk).
We assume that γi(s, Tk) = 0 for s > Tk and that

n−1∑
k=1

(σj(s, Tk) + γj1(s, Tk) + · · ·+ γjK−1(s, Tk)) ≤M,

for all s ∈ [0, T ∗] and every coordinate j ∈ {1, . . . , d}.
(RL.2) The initial term structure Li(0, Tk), i = 1, . . . ,K − 1, of forward

Libor rates satisfies

0 < L(0, Tk) ≤ L1(0, Tk) ≤ · · · ≤ LK−1(0, Tk),

for all k = 0, 1, . . . , n− 1, i.e.

0 <
B(0, Tk)
B(0, Tk+1)

≤ B1(0, Tk)
B1(0, Tk+1)

≤ · · · ≤ BK−1(0, Tk)
BK−1(0, Tk+1)

.

We postulate that the forward inter-rating spread Hi(·, Tk) for the rating
class i, i = 1, . . . ,K − 1, and the tenor date Tk, k = 1, . . . , n− 1, is an expo-
nential semimartingale whose dynamics under the forward measure PTk+1

is
given by

Hi(t, Tk) = Hi(0, Tk) exp

 t∫
0

bHi(s, Tk)ds+

t∫
0

γi(s, Tk)dX
Tk+1
s

 (15)

with initial condition

Hi(0, Tk) =
1
δk

(
Bi(0, Tk)Bi−1(0, Tk+1)
Bi−1(0, Tk)Bi(0, Tk+1)

− 1
)
.

The drift term bHi(·, Tk) will be specified in the forthcoming section. We
assume that bHi(s, Tk) = 0 for s ≥ Tk, i.e. Hi(t, Tk) = Hi(Tk, Tk) for t ≥ Tk.

In the following theorem we deduce the dynamics of the rating-dependent
forward Libor rates Li(·, Tk) under the corresponding forward measures,
which is implied by specification (15) .

Theorem 3.1. Assume that (L.1), (L.2), (RL.1) and (RL.2) are in force.
For each k = 1, . . . , n − 1, let L(·, Tk) and Hi(·, Tk), i ∈ {1, . . . ,K − 1}, be
given by (7) and (15), respectively. Then:
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(a) The rating-dependent forward Libor rates Li(·, Tk) satisfy for every
Tk and any t ≤ Tk

L(t, Tk) ≤ L1(t, Tk) ≤ · · · ≤ LK−1(t, Tk),

i.e. Libor rates are monotone with respect to credit ratings.
(b) The dynamics of the Libor rate Li(·, Tk) under PTk+1

is given by

Li(t, Tk) = Li(0, Tk) exp

 t∫
0

bLi(s, Tk)ds+

t∫
0

√
csσi(s, Tk)dW

Tk+1
s

+

t∫
0

∫
Rd

Si(s, x, Tk)(µ− νTk+1)(ds, dx)

 , (16)

where

σi(s, Tk) := `i(s−, Tk)−1
(
`i−1(s−, Tk)σi−1(s, Tk) + hi(s−, Tk)γi(s, Tk)

)
= `i(s−, Tk)−1

[
`(s−, Tk)σ(s, Tk) +

i∑
j=1

hj(s−, Tk)γj(s, Tk)
]

(17)

represents the volatility of the Brownian part and

Si(s, x, Tk) := ln
(

1 + `i(s−, Tk)−1(βi(s, x, Tk)− 1)
)

controls the jump size. Here we have used

hi(s, Tk) :=
δkHi(s, Tk)

1 + δkHi(s, Tk)
, (18)

`i(s, Tk) :=
δkLi(s, Tk)

1 + δkLi(s, Tk)
, (19)

and

βi(s, x, Tk) := βi−1(s, x, Tk)
(

1 + hi(s−, Tk)(e〈γi(s,Tk),x〉 − 1)
)

=
(

1 + `(s−, Tk)(e〈σ(s,Tk),x〉 − 1)
)

×
i∏

j=1

(
1 + hj(s−, Tk)(e〈γj(s,Tk),x〉 − 1)

)
. (20)
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The drift term in (16) is given by

bLi(s, Tk) = `−1
i (s−, Tk)

i∑
j=1

hj(s−, Tk)bHj (s, Tk)

−1
2
`−1
i (s−, Tk)`(s−, Tk)‖

√
csσ(s, Tk)‖2

+
1
2
`−1
i (s−, Tk)

i∑
j=1

(
(hj(s−, Tk)− hj(s−, Tk)2)‖

√
csγj(s, Tk)‖2

)
+

1
2

(`i(s−, Tk)− 1)‖
√
csσj(s, Tk)‖2

+
∫
Rd

(
Si(s, x, Tk)− `−1

i (s−, Tk)
(
β(s, x, Tk)− 1

+
i∑

j=1

hj(s−, Tk)〈γj(s, Tk), x〉
))
F
Tk+1
s (dx). (21)

Proof: The proof is deferred to the appendix. �

Remark 3.2. Let us compare the expressions for the dynamics of the rating-
dependent Libor rate Li(·, Tk) and the dynamics of the default-free Libor
rate L(·, Tk) under PTk+1

. Note that (7) can be written as

L(t, Tk) = L(0, Tk) exp

 t∫
0

bL(s, Tk)ds+

t∫
0

√
csσ(s, Tk)dW

Tk+1
s (22)

+

t∫
0

∫
Rd

S(s, x, Tk)(µ− νTk+1)(dt,dx)

 ,

where

S(s, x, Tk) := ln
(

1 + `(s−, Tk)−1(β(s, x, Tk)− 1)
)

= 〈σ(s, Tk), x〉,

with β(s, x, Tk) defined in (13) and `(s, Tk) in (14). Therefore, we observe
that the equation (16) describing the dynamics of the Libor rate for the
rating i is of the same form as the default-free Libor rate dynamics (22),
naturally with the appropriate specifications of σi(·, Tk) and Si(·, ·, Tk).

In Figure 1 we represent graphically the connections between different
rating-dependent Libor rates.

Having established the pre-default term structure, the next step is to
study migration between different rating classes in order to obtain an arbi-
trage-free model for the evolution of defaultable Libor rates. The credit
migration process is assumed to be a canonically constructed conditional
Markov process C, which we study in the next section.
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L(t, Tn−1)

��

// Li−1(t, Tn−1)

��

Hi(t,Tn−1) // Li(t, Tn−1)

��
L(t, Tk)

��

// Li−1(t, Tk)

��

Hi(t,Tk) // Li(t, Tk)

��
L(t, Tk−1)

��

// Li−1(t, Tk−1)

��

Hi(t,Tk−1)
// Li(t, Tk−1)

��
L(t, T1) // Li−1(t, T1)

Hi(t,T1) // Li(t, T1)

Default-free Rating i− 1 Rating i

Figure 1. Connection between subsequent Libor rates

4. Credit migration under forward measures

4.1. Conditional Markov chains and their main properties. Let us
describe the appropriate probabilistic setting required for a model that al-
lows credit migration. As pointed out in the introduction, rating classes are
typically identified with elements of a finite set, denoted by K. We assume
that K = {1, 2, . . . ,K}, where 1 denotes the best possible rating and K
corresponds to the default event. In credit risk theory credit migration is
usually modeled by a conditional Markov chain C with continuous time pa-
rameter and the state space K. We adopt the same idea here. Recall that in
this setting the default state K is an absorbing state of C and the default
time τ is modeled as the first hitting time of this state, i.e.

τ = inf {t > 0 : Ct = K} .

To construct such a process, we are going to use the canonical construc-
tion based on a given reference filtration F and a stochastic infinitesimal
generator Λ. This construction can be found in Bielecki and Rutkowski
(2002) or Eberlein and Özkan (2003). Our underlying probability space is
(Ω,F ,PT ∗) with a given filtration F = (Ft)0≤t≤T ∗ , which is generated by the
time-inhomogeneous Lévy process X driving the default-free and the pre-
default term structure of Libor rates. Furthermore, let Λ = (Λ(t))0≤t≤T ∗ be
a matrix-valued stochastic process
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Λ(t) =


λ11(t) λ12(t) . . . λ1K(t)
λ21(t) λ22(t) . . . λ2K(t)

...
...

. . .
...

0 0 . . . 0

 (23)

where λij : Ω × [0, T ∗] → R+ are bounded, F-progressively measurable sto-
chastic processes. For every i, j ∈ K, i 6= j, the processes λij are non-negative
and λii(t) = −

∑
j∈K\{i} λij(t), for t ∈ [0, T ∗]. The last row of Λ contains

only zeros since the state K is an absorbing state of C.
Let µ = (µ1, . . . , µK) be a probability distribution on K, which is the

initial distribution of the process C, i.e. the distribution of C0. In credit risk
applications µ is a one-point mass on the rating class observed at time t = 0.

The process C is constructed from the initial distribution and the F-
adapted infinitesimal generator Λ by enlarging the underlying probability
space (Ω,F ,PT ∗) to a probability space denoted in the sequel by (Ω̃,G,QT ∗).
The new probability space is obtained as a product space of the underlying
one with a probability space supporting the initial distribution µ of C and
a probability space supporting a sequence of uniformly distributed random
variables, which control, together with the entries of the infinitesimal gen-
erator Λ, the laws of jump times (τn)n∈N of C and jump heights. Note that
by using a product space we obtain a certain independence which will be
crucial for many properties of C.

We denote by F its trivial extension from the original probability space
(Ω,F ,PT ∗) to (Ω̃,G,QT ∗). Moreover, all stochastic processes are extended to
the new probability space by retaining their names and setting for example
X(ω̃) := X(ω), and similarly for other processes.

Remark 4.1. We recall that this canonical construction is a generalization
of the classical Cox construction, which is used in credit risk theory to model
the default time with a given F-intensity λ (see Jeanblanc and Rutkowski
(2000) or Bielecki and Rutkowski (2002)). Indeed, when K = 2, the condi-
tional Markov chain has only two states which have the interpretation of a
non-default state 1 and the default state 2 and the above construction be-
comes the Cox construction of a default time with intensity λ(t) = −λ11(t).

The process C obtained by the canonical construction is an F-conditional
Markov chain, i.e. if we denote by FC the natural filtration of the process
C, the conditional Markov property

EQT∗ [h(Cs)|Ft ∨ FCt ] = EQT∗ [h(Cs)|Ft ∨ σ(Ct)] (24)

is satisfied for every 0 ≤ t ≤ s ≤ T ∗ and any function h : K → R.
It is important to mention that the process C possesses also the following

property:

EQT∗ [h(Cs)|Fu ∨ FCt ] = EQT∗ [h(Cs)|Fu ∨ σ(Ct)], (25)

for every 0 ≤ t ≤ s ≤ u ≤ T ∗ and any function h : K → R.
We will refer to (25) too as the conditional Markov property, even though

it is a stronger property which implies property (24). Note that in general,
not all conditional Markov chains possess property (25), but the canonically
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constructed process C satisfies both (24) and (25) (compare Bielecki and
Rutkowski (2002), formula (11.47) and comments thereafter).

For every fixed t ≥ 0, the σ-algebra σ(Ct) is finitely generated, as Ct
takes its values in a finite set K. This enables us to establish the following
decomposition of conditional expectations (it is a counterpart in the condi-
tional Markov setting of Corollary 5.1.1 in Bielecki and Rutkowski (2002)
or Lemma 1 in Elliot, Jeanblanc, and Yor (2000)):

Lemma 4.2. If Y is a G-measurable random variable, then

EQT∗ [Y |Fs ∨ σ(Ct)] =
K∑
i=1

1{Ct=i}
EQT∗ [Y 1{Ct=i}|Fs]
EQT∗ [1{Ct=i}|Fs]

, (26)

for every 0 ≤ t ≤ s and i ∈ K.

Proof: The proof is straightforward combining the definition of conditional
expectation and the aforementioned fact that σ(Ct) is generated by atoms
{Ct = j}, j = 1, . . . ,K. Note that the right-hand side in (26) is well-defined
since

{
EQT∗ [1{Ct=i}|Fs] = 0

}
⊆ {Ct = i}c QT ∗-a.s. (cf. Last and Brandt

(1995, Lemma A3.17)).
The conditional expectation on the left-hand side in (26) is equal to the

right-hand side if and only if

EQT∗ [1F1{Ct=j}Y ] = EQT∗

[
1F1{Ct=j}

K∑
i=1

1{Ct=i}
EQT∗ [1{Ct=i}Y |Fs]
EQT∗ [1{Ct=i}|Fs]

]

= EQT∗

[
1F1{Ct=j}

EQT∗ [1{Ct=j}Y |Fs]
EQT∗ [1{Ct=j}|Fs]

]
,

for every F ∈ Fs and every {Ct = j}, j ∈ K, since the σ-algebra Fs ∨ σ(Ct)
is generated by finite intersections F ∩ {Ct = j}. We have

EQT∗

[
1F1{Ct=j}

EQT∗ [1{Ct=j}Y |Fs]
EQT∗ [1{Ct=j}|Fs]

]
= EQT∗

[
EQT∗

[
1F1{Ct=j}

EQT∗ [1{Ct=j}Y |Fs]
EQT∗ [1{Ct=j}|Fs]

∣∣∣Fs]]
= EQT∗

[EQT∗ [1F1{Ct=j}Y |Fs]
EQT∗ [1{Ct=j}|Fs]

EQT∗ [1{Ct=j}|Fs]
]

= EQT∗ [EQT∗ [1F1{Ct=j}Y |Fs]]
= EQT∗ [1F1{Ct=j}Y ],

which is what we had to show. �

In view of this result, the conditional Markov property takes the following
form:

EQT∗ [h(Cs)|Ft ∨ FCt ] =
K∑
i=1

1{Ct=i}
EQT∗ [h(Cs)1{Ct=i}|Ft]

EQT∗ [1{Ct=i}|Ft]
, (27)

for every t ≤ s and any function h : K → R.
Let us now examine the most important properties of the process C. Due

to the canonical construction, each random state Cs is actually influenced
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by information from the filtration F only up to time s. A precise formulation
of this property is contained in the following proposition.

Proposition 4.3. Let C be a conditional Markov chain obtained by the
canonical construction. Then:

(a) For every 0 ≤ t ≤ s ≤ u ≤ T ∗ and j ∈ K

EQT∗ [1{Cs=j}|Fu ∨ F
C
t ] = EQT∗ [1{Cs=j}|Fs ∨ F

C
t ].

(b) More generally, for any 0 ≤ t ≤ s1 ≤ s2 ≤ u ≤ T ∗ and j1, j2 ∈ K

EQT∗ [1{Cs1=j1}1{Cs2=j2}|Fu ∨ F
C
t ] = EQT∗ [1{Cs1=j1}1{Cs2=j2}|Fs2 ∨ F

C
t ].

Proof: The proof relies on the canonical construction of C and its jump
times and the independence we mentioned earlier. We refer to Grbac (2010,
Proposition 2.18) for details. �

The σ-algebra FCt can be omitted in the above results, as the following
corollary shows.

Corollary 4.4. Let C be a canonically constructed conditional Markov
chain. Then:

(a) For every 0 ≤ s ≤ u ≤ T ∗ and j ∈ K

EQT∗ [1{Cs=j}|Fu] = EQT∗ [1{Cs=j}|Fs].

(b) For any 0 ≤ s1 ≤ s2 ≤ u ≤ T ∗ and j1, j2 ∈ K

EQT∗ [1{Cs1=j1}1{Cs2=j2}|Fu] = EQT∗ [1{Cs1=j1}1{Cs2=j2}|Fs2 ].

Proof: This follows by inserting t = 0 into the previous proposition and
applying Lemma 4.2. The independence between the initial distribution µ
of C and F implies

EQT∗ [1{C0=i}|Fu] = EQT∗ [1{C0=i}|Fs] = EQT∗ [1{C0=i}] = µi,

which yields both claims. �

In the remainder of the subsection we study the transition probabilities
of a canonically constructed conditional Markov chain C. It turns out that
the usual properties of transition probabilities of an ordinary Markov chain,
such as the Chapman–Kolmogorov equation, will remain valid, but will be
expressed in terms of F-conditional expectations.

To fix the notation, let us denote

EQT∗ [Y |Fs;Ct = i] :=
EQT∗ [Y 1{Ct=i}|Fs]
EQT∗ [1{Ct=i}|Fs]

,

where Y is a G-measurable random variable and 0 ≤ t ≤ s ≤ T ∗. Hence, by
Lemma 4.2, EQT∗ [Y |Fs;Ct = i] is an Fs-measurable random variable that
agrees with EQT∗ [Y |Fs∨σ(Ct)] on the set {Ct = i}. Bielecki and Rutkowski
(2002) use a slightly different notation EQT∗ [Y |Fs ∨ {Ct = i}] instead, but
we prefer the above notation to make a clear distinction from conditioning
with respect to the smallest σ-algebra generated by Fs and the set {Ct = i}.
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For Y = 1{Cs=j}, the expression

EQT∗ [1{Cs=j}|Fs;Ct = i] = QT ∗(Cs = j|Fs;Ct = i)

denotes the conditional probability with respect to F of the process C being
in state j at time s if it was in state i at time t.

Definition 4.5. The F-conditional transition probability matrix of C is de-
fined as

P (t, s) = [pij(t, s)]i,j=1,...,K , 0 ≤ t ≤ s ≤ T ∗,
where

pij(t, s) = QT ∗(Cs = j|Fs;Ct = i) = QT ∗(Cs = j|FT ∗ ;Ct = i). (28)

Note that the second equality in (28) follows from Corollary 4.4.

Remark 4.6. The process C together with the family of stochastic matrices
P (t, s)0≤t≤s≤T ∗ is an F-doubly stochastic Markov chain in the sense of Defi-
nition 2.1 introduced in Jakubowski and Nieweglowski (2009b); see Remark
2.16 and Theorem 2.14 in their paper. F-doubly stochastic Markov chains
form a subclass of the class of F-conditional Markov chains and are particu-
larly suitable for applications in credit risk. Processes that are typically used
for this purpose such as an ordinary Markov chain, a compound Poisson pro-
cess, a Cox process and a canonically constructed conditional Markov chain
belong to this class. The main properties of F-doubly stochastic Markov
chains are studied in Jakubowski and Nieweglowski (2009b).

We conclude this section by formulating the appropriate F-conditional
versions of the Chapman–Kolmogorov equation and the forward Kolmogorov
equation for C.

Proposition 4.7. Let C be a canonically constructed F-conditional Markov
chain and (P (t, s))0≤t≤s≤T ∗ its family of conditional transition probability
matrices. Then:

(a) P (·, ·) satisfies the F-conditional Chapman–Kolmogorov equation

P (t, s) = P (t, u)P (u, s), t ≤ u ≤ s. (29)

(b) P (·, ·) satisfies the F-conditional forward Kolmogorov equation

dP (t, s)
ds

= P (t, s)Λ(s), P (t, t) = Id.

Proof: Part (a) follows from Theorem 2.7 and part (b) from Definition 2.8
in Jakubowski and Nieweglowski (2009b).

Clearly, both claims can also be established directly, without the notion
of an F-doubly stochastic Markov chain; see Grbac (2010, Proposition 2.24).

�

4.2. The immersion property in the conditional Markov chain sett-
ing. Starting from the reference filtration F and constructing a conditional
Markov chain C, we obtain an enlargement of F that we denote by G, where
G = (Gt)0≤t≤T ∗ with Gt = Ft∨FCt (and completed). A natural question, that
we examine in this subsection, is if the immersion property (or a so-called
(H)-hypothesis) is satisfied for this enlargement, i.e. if F-(local) martingales
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remain G-(local) martingales. In case when a conditional Markov chain is
constructed canonically, the answer to this question is affirmative, as we
show in the sequel.

Proposition 4.8. Let C be a canonically constructed conditional Markov
chain. Then for every B ∈ FCs and 0 ≤ s ≤ u ≤ T ∗

EQT∗ [1B|Fu] = EQT∗ [1B|Fs].

Proof: We must verify the claim for any B ∈ FCs = σ(
⋃

0≤t≤s σ(Ct)). Since
FCs is generated by finite intersections of sets of the form {Ct = j}, j ∈ K,
t ∈ [0, s], it is enough to prove the claim for an arbitrary set of the form
{Cs1 = i}∩{Cs2 = j}, for some s1 ≤ s2 ≤ s and i, j ∈ K. But this is exactly
Corollary 4.4 and now by standard arguments (monotone class theorem) the
claim follows for any B ∈ FCs . �

Theorem 4.9 (Hypotheses (H1), (H2) and (H3)). Let C be a canonically
constructed conditional Markov chain. Furthermore, let X be a bounded FT ∗-
measurable random variable and Y a bounded FCs -measurable random vari-
able, s ∈ [0, T ∗]. Then the following three equivalent statements hold:

(H1) EQT∗ [XY |Fs] = EQT∗ [X|Fs] EQT∗ [Y |Fs],
i.e. the σ-fields FT ∗ and FCs are conditionally independent given Fs.

(H2) EQT∗ [Y |FT ∗ ] = EQT∗ [Y |Fs].
(H3) EQT∗ [X|Fs ∨ FCs ] = EQT∗ [X|Fs].

Proof: Making use of Proposition 4.8 we see that (H2) holds for Y = 1B,
where B ∈ FCs . This implies that it is also true for any bounded FCs -
measurable Y since every FCs -measurable random variable can be written as
a limit of a sequence of elementary FCs -measurable random variables. Ap-
plying the dominated convergence theorem for conditional expectation we
establish (H2).

The equivalences between (H1), (H2) and (H3) follow from Theorem II.45
in Dellacherie and Meyer (1978). �

Consequently, we obtain the following result.

Theorem 4.10 ((H)- hypothesis). Let (Ω̃,G,QT ∗) be a probability space
with a given filtration F and let C be a canonically constructed F-conditional
Markov chain. Then the immersion property holds for the filtrations F and
G = F ∨ FC .

Proof: Follows directly from the statements in Theorem 4.9 and the well-
known fact that they are equivalent to the immersion property of the enlarge-
ment (see for example Brémaud and Yor (1978) or Jeanblanc and Rutkowski
(2000)). �

Remark 4.11. Since σ(Cs) ⊆ FCs , it immediately follows that all state-
ments from Theorem 4.9 remain valid when we replace FCs with σ(Cs).
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The immersion property of the enlargement obviously implies that every
F-semimartingale X remains a G-semimartingale. Moreover, if X is a time-
inhomogeneous Lévy process with respect to F, then it remains a time-
inhomogeneous Lévy process with respect to G.

Proposition 4.12. Suppose that the assumptions of Theorem 4.10 are in
force and let X be a time-inhomogeneous Lévy process with respect to the
filtration F with the triplet of predictable characteristics (B,C, ν). Then X
remains a time-inhomogeneous Lévy process with respect to G with the same
predictable characteristics.

Proof: Clearly, X is a G-semimartingale such that X0 = 0. According to The-
orem II.2.42 and Corollary II.2.48 in Jacod and Shiryaev (2003), (B,C, ν)
is its triplet of predictable characteristics if and only if the process

ei〈u,X〉

G(iu)
∈Mloc(G),

with G defined in Theorem II.2.27 in Jacod and Shiryaev (2003). By as-
sumption, (B,C, ν) is the triplet of predictable characteristics of X with
respect to F; hence, this process is in Mloc(F). Due to the immersion prop-
erty it is also inMloc(G), and therefore (B,C, ν) is the triplet of predictable
characteristics with respect to G.

Moreover, X has independent increments with respect to G if (B,C, ν)
is deterministic – which is the case because its increments are independent
with respect to F (cf. Jacod and Shiryaev (2003, Theorem II.4.15)). Finally,
equation (4.16) from the same theorem shows that the characteristic function
of Xt takes the form given in the definition of a time-inhomogeneous Lévy
process in Eberlein and Kluge (2006, Section 2.1) and the proof is completed.

�

We conclude this section by introducing a certain generalization of the
(H)-hypothesis in the conditional Markov setting.

Definition 4.13. Let C be an F-conditional Markov chain with the natural
filtration FC and G = F ∨ FC . Furthermore, for a fixed r ≥ 0, denote for
every s ≥ r

F̃s := Fs ∨ FCr and F̃r := (F̃s)s≥r.
We say that the enlargement G of F̃r satisfies the (Hr)-hypothesis if

(Hr) Every (F̃s)s≥r-local martingale is a (Gs)s≥r-local martingale.

Remark 4.14. Note that G is indeed an enlargement of F̃r since for every
s ≥ r we have

F̃s = Fs ∨ FCr ⊂ Fs ∨ FCs = Gs.

Proposition 4.15. Let C be a canonically constructed F-conditional Markov
chain. Then the (Hr)-hypothesis holds between the filtrations F̃r and G.

Moreover, hypothesis (Hr) implies hypothesis (H) for this enlargement. If,
in addition, we assume that the reference filtration F is a natural filtration
of a time-inhomogeneous Lévy process, then the converse statement is also
true, i.e. (H) implies (Hr), for every r ≥ 0.
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Proof: Let us fix an arbitrary r ≥ 0 and show that (Hr) holds for F̃r and G.
Note that for every s ≥ r

Gs = Fs ∨ FCs = F̃s ∨ FCs ,
and therefore, (Hr) is equivalent to showing that

E[Y |F̃T ∗ ] = E[Y |F̃s],
for every bounded FCs -measurable random variable. By definition of F̃r, this
is actually

E[Y |FT ∗ ∨ FCr ] = E[Y |Fs ∨ FCr ].
Now we are done since this follows from Proposition 4.3 exactly in the same
way as (H2) follows from Corollary 4.4.

Moreover, the implication (Hr) ⇒ (H) is obvious, since it can be easily
proved that every F-local martingale is an F ∨ FCr -local martingale, which
is then, by hypothesis (Hr), a G-local martingale. We simply have to note
that, due to the canonical construction of C, we have

FCr ⊂ Fr ∨ Er, (30)

where Er is a σ-algebra independent from F. This means that Fs ∨ FCr =
Fs ∨ Er, for s ≥ r. Thus, the enlargement of F to F̃r, given as F ∨ FCr =
F ∨ Er, clearly possesses the immersion property (this is simply the initial
enlargement of F with an independent σ-algebra Er).

Conversely, let us assume that the filtration F is the natural filtration of
a time-inhomogeneous Lévy process X and let us prove that (H) implies
(Hr), for every r ≥ 0.

The proof relies on the representation theorem for local martingales and
the fact that X remains a time-inhomogeneous Lévy process with the same
characteristics also with respect to the enlarged filtration G.

Let us fix some r ≥ 0 and establish (Hr). As we pointed out above, the
filtration F̃r may be thought of as the initial enlargement of F with an in-
dependent σ-algebra Er. This allows us to make use of the representation
theorem for local martingales in filtrations generated by processes with in-
dependent increments (Jacod and Shiryaev 2003, Theorem III.4.34). More
precisely, if M r is a local martingale with respect to F̃r, it can be written as

M r = M r
r +Hr ·Xc +W r ∗ (µX − νX),

for some processes Hr ∈ L2
loc(X

c) and W r ∈ Gloc(µ), where Xc is the
continuous martingale part of X and µX the random measure of jumps of X
with compensator νX (for the definitions of L2

loc(X
c) and Gloc(µ) see pages

48 and 72 of Jacod and Shiryaev (2003)). Hence, thanks to the Proposition
4.12, which ensures that both the continuous martingale part and the purely
discontinuous martingale part of X remain the same with respect to G, M r

is a G-local martingale and (Hr) is verified. �

4.3. Conditional Markov property under forward Libor measures.
This subsection is devoted to the study of the conditional Markov property
under different forward Libor measures. To develop a rating based Lévy
Libor model with a migration process which is a canonically constructed
conditional Markov process, we have to know how changes of the forward
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measure affect this process and the immersion property of the associated
enlargement.

Recall that the conditional Markov chain C is constructed starting with
(Ω,F ,PT ∗) and using the canonical construction. The enlarged probability
space on which C is defined is denoted by (Ω̃,G,QT ∗). Moreover, we denote
by QTk the forward measure defined on (Ω̃,GTk) which is obtained from
QT ∗ in the same way as PTk is constructed from PT ∗ . The Radon–Nikodym
derivative of QTk with respect to QT ∗ is therefore

dQTk

dQT ∗
=: ψk, (31)

where ψk is a positive, FTk -measurable random variable with expectation 1
(more precisely it is given in equation (9)).

By construction, C satisfies the F-conditional Markov property under the
terminal forward measure QT ∗ . In the theorem below we show that the
conditional Markov property of C is preserved under all forward measures
QTk , k = 1, . . . , n− 1.

Theorem 4.16. Let C be a canonically constructed conditional Markov
chain with respect to QT ∗ and let QTk , k = 1, . . . , n − 1, be the forward
measures given by (31). Then C is a conditional Markov chain with respect
to every QTk , k = 1, . . . , n− 1, i.e.

EQTk [h(Cs)|Fu ∨ FCt ] = EQTk [h(Cs)|Fu ∨ σ(Ct)], (32)

for all 0 ≤ t ≤ s ≤ u ≤ Tk and any function h : K → R.
Furthermore, the matrices of conditional transition probabilities under

QT ∗ and QTk are the same, i.e.

p
QTk
ij (t, s) = p

QT∗
ij (t, s), (33)

for all i, j ∈ K and 0 ≤ t ≤ s ≤ Tk, where p
QTk
ij (t, s) and p

QT∗
ij (t, s) are

defined by (28).

Proof: Let us fix a k ∈ {1, 2, . . . , n− 1} and establish the conditional Markov
property (32). By assumption C is a conditional Markov chain under QT ∗ .
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Therefore, we obtain the following sequence of equalities:

EQTk [h(Cs)|Fu ∨ FCt ] =
EQT∗ [ψkh(Cs)|Fu ∨ FCt ]

EQT∗ [ψk|Fu ∨ FCt ]

=
EQT∗ [EQT∗ [ψkh(Cs)|Fu ∨ FCs ]|Fu ∨ FCt ]

EQT∗ [ψk|Fu]

=
EQT∗ [h(Cs)EQT∗ [ψk|Fu ∨ FCs ]|Fu ∨ FCt ]

EQT∗ [ψk|Fu]

=
EQT∗ [h(Cs)EQT∗ [ψk|Fu]|Fu ∨ FCt ]

EQT∗ [ψk|Fu]

=
EQT∗ [ψk|Fu]EQT∗ [h(Cs)|Fu ∨ FCt ]

EQT∗ [ψk|Fu]

= EQT∗ [h(Cs)|Fu ∨ FCt ]
= EQT∗ [h(Cs)|Fu ∨ σ(Ct)]
= . . . same reasoning backwards . . .
= EQTk [h(Cs)|Fu ∨ σ(Ct)],

where we have applied the abstract Bayes’ rule for the first equality and the
second one follows from (H3) in Theorem 4.9 (plus the dominated conver-
gence theorem). The third equality is obvious since h(Cs) is FCs -measurable,
the fourth one is again a consequence of (H3), and finally, the fifth equality
is the conditional Markov property (25). For the remaining equalities we use
Remark 4.11 and the same reasoning backwards. Thus, we have shown (32).

It remains to prove the second claim in the proposition. From the above
calculation, it is obvious that

QTk(Cs = j|Fs ∨ σ(Ct)) = QT ∗(Cs = j|Fs ∨ σ(Ct))

and then in particular also

QTk(Cs = j|Fs;Ct = i) = QT ∗(Cs = j|Fs;Ct = i),

on the set {Ct = i}, for all i, j ∈ K and 0 ≤ t ≤ s ≤ Tk. These are by
definition the transition probabilities under the measures QTk and QT ∗ and
hence, (33) is proved. �

Generally speaking, the immersion property of some filtration enlarge-
ment is not always preserved under an equivalent change of probability
measure. This usually depends on the component of the Radon–Nikodym
density corresponding to the filtration FC , which has to satisfy some condi-
tions. However, in the case of the forward Libor measures, this component is
trivial since the Radon–Nikodym densities are adapted to F. Thus, it turns
out that the immersion property of the enlargement is indeed preserved
under all forward measures.

Theorem 4.17. Let C be a canonically constructed conditional Markov
chain with respect to QT ∗ and let QTk , k = 1, . . . , n − 1, be the forward
measures given by (31). Then the immersion property holds under all QTk ,
i.e. every (F,QTk)-local martingale is a (G,QTk)-local martingale.
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Proof: The proof relies on the following result which can be found for example
in Coculescu and Nikeghbali (2007):

Let P and Q be two equivalent probability measures and assume that
the (H)-hypothesis holds under P. Denote

ψ :=
dQ
dP

, ψt :=
dQ
dP

∣∣∣
Ft
, ψG

t :=
dQ
dP

∣∣∣
Gt
.

Then hypothesis (H) holds under Q if and only if for every X ∈ FT ∗ ,
X ≥ 0

EP[Xψ|Gt]
ψG
t

=
EP[Xψ|Ft]

ψt
.

In our case,
dQTk
dQT∗

is FTk -measurable, which implies ψt = ψG
t and hence,

the condition is trivially fulfilled since

EQT∗ [Xψ|Gt] = EQT∗ [Xψ|Ft],

by (H3). Therefore, we conclude that the immersion property is satisfied
under all QTk . �

5. Absence of arbitrage in the rating based Lévy Libor model

From arbitrage pricing theory we know that in order to have an arbitrage-
free model, the forward prices of defaultable bonds BC(·,Tk)

B(·,T ∗) , where the
default-free bond with maturity T ∗ is used as a numeraire, must be local
martingales with respect to the forward measure QT ∗ . When the default-free
bonds with other maturities are used as numeraires, the forward defaultable
bond price processes have to be local martingales with respect to the corre-
sponding forward measures as well. It can be shown that it is enough to re-
quire that BC(·,Tk)

B(·,Tk) is a local martingale with respect to the forward measure
QTk , for every k = 1, . . . , n− 1. To see this, let us fix some k, l ∈ {1, . . . , n}
and assume that l ≥ k (the other case is treated similarly). We have

BC(t, Tk)
B(t, Tl)

=
BC(t, Tk)
B(t, Tk)

B(t, Tk)
B(t, Tl)

,

where
(
B(t,Tk)
B(t,Tl)

)
0≤t≤Tk

is the density process of the change of measure from

QTk to QTl up to a norming constant; compare equation (9). Hence, BC(·,Tk)
B(·,Tl)

is a QTl-local martingale if and only if BC(·,Tk)
B(·,Tk) is a QTk -local martingale (cf.

Proposition III.3.8(a) in Jacod and Shiryaev (2003)).
So far we have not specified directly the bond prices in the model, but as

we have already specified the inter-rating spreads Hj(·, Tk), j = 1, . . . ,K−1,
any bond price specification we make must be consistent with relation (5)
connecting the bond prices and the inter-rating spreads. Let us explore the
consequences of this for the bond prices. For a fixed t ∈ [0, Tk], we obtain
recursively from (5)

Bj(t, Tk)
Bj−1(t, Tk)

=

k−1∏
l=l0

1
1 + δlHj(t, Tl)

 Bj(t, Tl0)
Bj−1(t, Tl0)

,
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where Tl0 is a tenor date such that t ∈ (Tl0−1, Tl0 ]. Consequently, for each
rating i it follows

Bi(t, Tk)
B(t, Tk)

=
B1(t, Tk)
B(t, Tk)

i∏
j=2

Bj(t, Tk)
Bj−1(t, Tk)

=

 i∏
j=1

k−1∏
l=l0

1
1 + δlHj(t, Tl)

 Bi(t, Tl0)
B(t, Tl0)

.

Since every bond price specification must be consistent with the above
relation, we postulate

Assumption (B). For every i ∈ {1, 2, . . . ,K − 1}

Bi(t, Tk)
B(t, Tk)

=

 i∏
j=1

k−1∏
l=0

1
1 + δlHj(t, Tl)

 e
∫ t
0 λi(s)ds, (34)

for some integrable, F-adapted stochastic process λi(·) that satisfies

e
∫ Tk
0 λi(s)ds =

i∏
j=1

k−1∏
l=0

(1 + δlHj(Tl, Tl)). (35)

It is easily checked that the above specification is indeed consistent and
moreover, Bi(Tk,Tk)

B(Tk,Tk) = 1 due to (35). Recall that by assumption Hj(t, Tl) =
Hj(Tl, Tl), for t ≥ Tl.

Under Assumption (B), the forward bond price process BC(·,Tk)
B(·,Tk) is given

by

BC(t, Tk)
B(t, Tk)

=
K−1∑
i=1

 i∏
j=1

k−1∏
l=0

1
1 + δlHj(t, Tl)

 e
∫ t
0 λi(s)ds1{Ct=i} + qCτ−1{Ct=K}

=
K−1∑
i=1

H(t, Tk, i)e
∫ t
0 λi(s)ds1{Ct=i} + qCτ−1{Ct=K}, (36)

where

H(t, Tk, i) :=
i∏

j=1

k−1∏
l=0

1
1 + δlHj(t, Tl)

.

In the sequel we are going to provide necessary and sufficient conditions for
the local martingality of the forward defaultable bond price process BC(·,Tk)

B(·,Tk) .
Let us begin by stating the main result.

Theorem 5.1. Let Tk be a tenor date. Assume that the processes Hj(·, Tk),
j = 1, . . . ,K − 1, are given by (15) and that Assumption (B) holds. Then
the process BC(·,Tk)

B(·,Tk) defined in (36) is a local martingale with respect to the
forward measure QTk and the filtration G if and only if the following condi-
tion is satisfied:
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for almost all t ≤ Tk on the set {Ct 6= K}

bH(t, Tk, Ct) + λCt(t) =

(
1− qCt

e−
∫ t
0 λCt (s)ds

H(t−, Tk, Ct)

)
λCtK(t) (37)

+
K−1∑

j=1,j 6=Ct

(
1− H(t−, Tk, j)e

∫ t
0 λj(s)ds

H(t−, Tk, Ct)e
∫ t
0 λCt (s)ds

)
λCtj(t).

Before proving this theorem, we need some auxiliary results. In the fol-
lowing lemma we deduce the dynamics of the process H(·, Tk, i) for each i
under the measure QTk .

Lemma 5.2. Let Tk be a tenor date and assume that Hj(·, Tk) are given
by (15). The process H(·, Tk, i) defined in (36) has the following dynamics
under QTk

H(t, Tk, i) = H(0, Tk, i)

×Et

( ·∫
0

bH(s, Tk, i)ds−
·∫

0

i∑
j=1

k−1∑
l=1

hj(s−, Tl)
√
csγj(s, Tl)dW Tk

s (38)

+

·∫
0

∫
Rd

(
i∏

j=1

k−1∏
l=1

(
1 + hj(s−, Tl)(e〈γj(s,Tl),x〉 − 1)

)−1
− 1

)
(µ− νTk)(ds, dx)

)
,

where hj(s, Tl) is defined in (18) and

bH(s, Tk, i) := −
i∑

j=1

k−1∑
l=1

hj(s−, Tl)bHj (s, Tl)

+
i∑

j=1

k−1∑
l=1

hj(s−, Tl)
〈
γj(s, Tl),

k−1∑
m=l+1

`(s−, Tm)csσ(s, Tm)
〉

−
i∑

j=1

k−1∑
l=1

1
2

(hj(s−, Tl)− hj(s−, Tl)2)‖
√
csγj(s, Tl)‖2

+
1
2

∥∥∥ i∑
j=1

k−1∑
l=1

hj(s−, Tl)
√
csγj(s, Tl)

∥∥∥2
(39)

+
∫
Rd

[
i∏

j=1

k−1∏
l=1

(
1 + hj(s−, Tl)(e〈γj(s,Tl),x〉 − 1)

)−1
− 1

+
i∑

j=1

k−1∑
l=1

hj(s−, Tl)〈γj(s, Tl), x〉

×

(
k−1∏

m=l+1

(
1 + `(s−, Tm)(e〈σ(s,Tm),x〉 − 1)

))]
F Tks (dx).

Proof: The proof is deferred to the appendix. �
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Furthermore, we make the following observation: the processes H(·, Tk, i)
and C do not jump simultaneously, i.e. ∆H(t, Tk, i)∆Ct = 0 QTk -a.s. for
t ∈ [0, T ∗]. This property is a consequence of the canonical construction of C.
A similar result concerning a canonically constructed default time is stated
in Jakubowski and Nieweglowski (2009a, Proposition 2). The proposition
below is a slight generalization since we deal with a series of jump times
and, in addition, require the property to hold under all forward measures
QTk .

Proposition 5.3. Let (Yt)0≤t≤T ∗ be an F-adapted semimartingale and (τn)
a sequence of random times representing the jump times of a conditional
Markov chain constructed by the canonical construction. Then

QTk(∆Yτn 6= 0) = 0, n ∈ N,

for every forward measure QTk (1 ≤ k ≤ n).

Proof: See Appendix B. �

Using these results, we are now able to prove the main theorem.

Proof of Theorem 5.1: Recall from Theorem 4.16 that C is a conditional
Markov chain under every forward measure QTk , k = 1, . . . , n.

According to Bielecki and Rutkowski (2002, Proposition 11.3.1), for each
i the process

M i
t = 1{Ct=i} −

t∫
0

λCsi(s)ds (40)

is a QTk -martingale.
Moreover, we will make use of an auxiliary process H ij , for i, j ∈ K, i 6= j,

defined in Bielecki and Rutkowski (2002, page 333):

H ij
t =

∑
0<u≤t

1{Cu−=i}1{Cu=j}.

This process counts the number of jumps of C from the state i to the state
j in the time interval [0, t] and it is known that

M ij
t = H ij

t −
t∫

0

λij(u)1{Cu=i}du (41)

is a QTk -martingale; see Bielecki and Rutkowski (2002, page 407).
In particular, the process H iK is useful for us since it takes the following

values: it equals 1 if and only if C jumped from i to the default state K
(remember that this state is absorbing) during the time interval [0, t] and
otherwise it equals zero. Therefore, we can use it to rewrite the defaultable
bond price process in the following way:

BC(t, Tk) =
K−1∑
i=1

(
Bi(t, Tk)1{Ct=i} + qiB(t, Tk)H iK

t

)
.
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The forward defaultable bond price process is then given by

BC(t, Tk)
B(t, Tk)

=
K−1∑
i=1

(
Bi(t, Tk)
B(t, Tk)

1{Ct=i} + qiH
iK
t

)

=
K−1∑
i=1

(
H(t, Tk, i)e

∫ t
0 λi(s)ds1{Ct=i} + qiH

iK
t

)
.

Let us calculate its dynamics under QTk and extract the drift part.
For each i = 1, . . . ,K − 1, making use of (41) we have

qiH
iK
t = qiM

iK
t +

t∫
0

qiλiK(u)1{Cu=i}du. (42)

Next, we apply the integration by parts formula which yields

H(t, Tk, i)e
∫ t
0 λi(s)ds1{Ct=i} =

t∫
0

H(u−, Tk, i)e
∫ u
0 λi(s)dsd1{Cu=i} (43)

+

t∫
0

1{Cu−=i}d
(
H(u, Tk, i)e

∫ u
0 λi(s)ds

)
,

since the quadratic covariation process
[
H(·, Tk, i)e

∫ ·
0 λi(s)ds,1{C·=i}

]
van-

ishes. To see this, we remark that for any two semimartingales X, Y the
quadratic covariation is given by [X,Y ]t = 〈Xc, Y c〉t +

∑
s≤t ∆Xs∆Ys. In

our case the continuous martingale part of 1{C·=i} is zero since this process
has finite variation, and hence the covariation of the two continuous mar-
tingale parts equals zero. As far as the jumps are concerned, this sum is
also zero, since H(·, Tk, i), which is F-adapted, and 1{C·=i} have no common
jumps by virtue of Proposition 5.3 (obviously the indicator process jumps
only when a jump of C happens and then the claim follows directly from
the proposition).

Using (40) it follows

d1{Cu=i} = dM i
u + λCui(u)du. (44)

Furthermore, since e
∫ ·
0 λi(s)ds is a continuous process with finite variation,

we obtain

d
(
H(u, Tk, i)e

∫ u
0 λi(s)ds

)
= H(u−, Tk, i)e

∫ u
0 λi(s)dsλi(u)du

+ e
∫ u
0 λi(s)dsdH(u, Tk, i), (45)

where
dH(u, Tk, i) = H(u−, Tk, i)

(
bH(u, Tk, i)du+ dMH

u

)
, (46)

by Lemma 5.2 (we denote by MH the local martingale part in (38)). Note
that MH is F-adapted and a local martingale with respect to F, but due to
the immersion property, it remains a local martingale with respect to the
enlarged filtration G as well (see Theorem 4.17).
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Consequently, combining (42), (43), (44), (45) and (46) we obtain

BC(t, Tk)
B(t, Tk)

=
K−1∑
i=1

t∫
0

H(u−, Tk, i)e
∫ u
0 λi(s)dsdM i

u

+
K−1∑
i=1

t∫
0

H(u−, Tk, i)e
∫ u
0 λi(s)dsλCui(u)du

+
K−1∑
i=1

t∫
0

1{Cu=i}H(u−, Tk, i)e
∫ u
0 λi(s)dsλi(u)du

+
K−1∑
i=1

t∫
0

1{Cu=i}e
∫ u
0 λi(s)dsH(u−, Tk, i)bH(u, Tk, i)du

+
K−1∑
i=1

t∫
0

1{Cu−=i}e
∫ u
0 λi(s)dsH(u−, Tk, i)dMH

u

+
K−1∑
i=1

qiM
iK
t +

K−1∑
i=1

t∫
0

qiλiK(u)1{Cu=i}du.

The drift part, denoted by D(t, Tk), is therefore given by

D(t, Tk) =

t∫
0

K−1∑
i=1

H(u−, Tk, i)e
∫ u
0 λi(s)dsλCui(u)du

+

t∫
0

K−1∑
i=1

1{Cu=i}H(u−, Tk, i)e
∫ u
0 λi(s)ds

(
λi(u) + bH(u, Tk, i)

+ qiλiK(u)
1

H(u−, Tk, i)e
∫ u
0 λi(s)ds

)
du

=

t∫
0

K−1∑
i=1

H(u−, Tk, i)e
∫ u
0 λi(s)dsλCui(u)du

+

t∫
0

1{Cu 6=K}H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

(
λCu(u) + bH(u, Tk, Cu)

+ qCuλCuK(u)
1

H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

)
du,
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since H(u, Tk, j) > 0, for every j ∈ K \ {K}. We have
K−1∑
i=1

H(u−, Tk, i)e
∫ u
0 λi(s)ds

H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

λCui(u)

=
K−1∑

i=1,i 6=Cu

H(u−, Tk, i)e
∫ u
0 λi(s)ds

H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

λCui(u) + λCuCu(u)

=
K−1∑

i=1,i 6=Cu

(
H(u−, Tk, i)e

∫ u
0 λi(s)ds

H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

− 1

)
λCui(u)− λCuK(u),

where we have used the property λjj(u) = −
∑K

i=1,i 6=j λji(u) that holds for
every row of the intensity matrix Λ. Hence, we obtain

D(t, Tk) =

t∫
0

1{Cu 6=K}H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

×

(
λCu(u) + bH(u, Tk, Cu)

+ qCuλCuK(u)
1

H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

+
K−1∑

i=1,i 6=Cu

(
H(u−, Tk, i)e

∫ u
0 λi(s)ds

H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

− 1

)
λCui(u)

−λCuK(u)

)
du.

Now the proof is finished since condition (37) implies that the drift term
D(·, Tk) vanishes and thus, BC(·,Tk)

B(·,Tk) is a QTk -local martingale. Conversely, if
BC(·,Tk)
B(·,Tk) is a QTk -local martingale, then its drift term D(·, Tk) (i.e. the pre-

dictable process with finite variation in its semimartingale decomposition)
vanishes, which implies that on the set {Cu 6= K}

bH(u, Tk, Cu) + λCu(u) =

(
1− qCu

e−
∫ u
0 λCu (s)ds

H(u−, Tk, Cu)

)
λCuK(u)

+
K−1∑

j=1,j 6=Cu

(
1− H(u−, Tk, j)e

∫ u
0 λj(s)ds

H(u−, Tk, Cu)e
∫ u
0 λCu (s)ds

)
λCuj(u),

for almost all u ∈ [0, Tk], which is exactly condition (37). �

Remark 5.4. Condition (37) which we have just established can be com-
pared with the HJM drift condition given in Jakubowski and Nieweglowski
(2009a, Theorem 5) and with the consistency conditions in the defaultable
HJM models by Bielecki and Rutkowski (2000) and Eberlein and Özkan
(2003). The latter two papers treat these conditions as conditions on the
intensity matrix Λ, and thus in general obtain different migration processes
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for different maturities (see the discussion in Bielecki and Rutkowski (2002,
page 407)). In our Libor modeling framework we want the migration process
to be the same for different maturities in order to exploit formula (2) for the
defaultable Libor rates. Therefore, our condition is treated as a drift condi-
tion on bHj (·, Tl), for j = 1, . . . , i, l = 1, . . . , k − 1 (recall that bH(·, Tk, i) is
given by (39)). The drift terms bHj (·, Tl) are then obtained as solutions of
the given SDEs and Assumption (SUP) is needed for the existence of the so-
lution (see Eberlein, Kluge, and Schönbucher (2006) for a detailed discussion
of the case with no credit migration).

6. Valuation of credit derivatives

The purpose of this section is to illustrate the valuation of credit deriva-
tives in the model. By the term credit derivative we mean a derivative linked
to some credit risk sensitive underlying asset. Thus the only credit risk in-
volved in such a contract is the risk related to the underlying asset, while the
counterparty risk (i.e. the risk that one of the parties in the contract might
default) is considered negligible. Very often this underlying asset is a default-
able corporate bond. Therefore, we begin by calculating the arbitrage-free
price BC(t, Tk), t ≤ Tk, of a defaultable bond with fractional recovery q in
the rating based Lévy Libor model.

Proposition 6.1. The price at time t ≤ Tk of a defaultable bond with
maturity Tk and fractional recovery q is given by

BC(t, Tk)1{Ct 6=K} = B(t, Tk)
K−1∑
i=1

1{Ct=i}

[
EQTk [1− piK(t, Tk)|Ft] (47)

+
K−1∑
j=1

EQTk [1{t<τ≤Tk}1{Ct=i}1{Cτ−=j}qj |Ft]
EQTk [1{Ct=i}|Ft]

]
,

or equivalently, by

BC(t, Tk)1{Ct 6=K} = B(t, Tk)
K−1∑
i=1

1{Ct=i} (48)

×

[
1 +

K−1∑
j=1

EQTk [1{Ct=i,CTk=K}1{Cτ−=j}(qj − 1)|Ft]

EQTk [1{Ct=i}|Ft]

]
.

Proof: The promised payoff of such a bond at maturity time Tk equals

BC(Tk, Tk) = 1{CTk 6=K} + 1{CTk=K}qCτ− .

Using the risk-neutral valuation formula, its time-t value is given as the
conditional expectation with respect to the forward measure QTk

BC(t, Tk) = B(t, Tk)EQTk [1{CTk 6=K} + 1{CTk=K}qCτ− |Gt]

= B(t, Tk)
(
EQTk [1{CTk 6=K}|Gt] + EQTk [1{CTk=K}qCτ− |Gt]

)
.
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Therefore,

BC(t, Tk)1{Ct 6=K} = B(t, Tk)
(
EQTk [1{CTk 6=K}|Gt] (49)

+EQTk [1{Ct 6=K}1{CTk=K}qCτ− |Gt]
)
,

since 1{Ct 6=K}1{CTk 6=K} = 1{CTk 6=K} for t ≤ Tk, because K is an absorbing
state.

Using the conditional Markov property of C (equation (24)), for the first
summand in (49) we get

EQTk [1{CTk 6=K}|Gt] = EQTk [1{CTk 6=K}|Ft ∨ σ(Ct)]

=
K−1∑
i=1

EQTk [1{CTk 6=K}1{Ct=i}|Ft]
EQTk [1{Ct=i}|Ft]

1{Ct=i}

=
K−1∑
i=1

EQTk [(1− 1{CTk=K})1{Ct=i}|Ft]
EQTk [1{Ct=i}|Ft]

1{Ct=i},

where we have applied Lemma 4.2 to obtain the second equality and the
third one is obvious. On the set {Ct = i} we have

EQTk [1{CTk=K}1{Ct=i}|Ft]
EQTk [1{Ct=i}|Ft]

= EQTk

[
EQTk [1{CTk=K}1{Ct=i}|FTk ]

EQTk [1{Ct=i}|FTk ]

∣∣∣Ft]
= EQTk [piK(t, Tk)|Ft], (50)

where the first equality follows from Proposition 4.8 and the chain rule
for conditional expectations and the second one is simply the definition of
conditional transition probabilities (Definition 4.5). Therefore, we obtain

EQTk [1{CTk 6=K}|Gt] =
K−1∑
i=1

EQTk [1−piK(t, Tk)|Ft]1{Ct=i}. (51)

The second summand in (49) is given by

EQTk [1{Ct 6=K}1{CTk=K}qCτ− |Gt]
= EQTk [1{Ct 6=K}1{CTk=K}qCτ− |Ft ∨ σ(Ct)]

=
K−1∑
i=1

EQTk [1{Ct=i}1{CTk=K}qCτ− |Ft]
EQTk [1{Ct=i}|Ft]

1{Ct=i} (52)

=
K−1∑
i=1

EQTk [1{t<τ≤Tk}1{Ct=i}qCτ− |Ft]
EQTk [1{Ct=i}|Ft]

1{Ct=i}

=
K−1∑
i=1

K−1∑
j=1

EQTk [1{t<τ≤Tk}1{Ct=i}1{Cτ−=j}qj |Ft]
EQTk [1{Ct=i}|Ft]

1{Ct=i},

where the second equality follows again by Proposition 4.8 and the subse-
quent equalities are obvious when we note that

1{Ct=i}1{CTk=K} = 1{t<τ≤Tk}1{Ct=i}.
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The first equality in (52) still has to be justified. Recall that by the condi-
tional Markov property

EQTk [1A|Gt] = EQTk [1A|Ft ∨ σ(Ct)], (53)

for every A ∈ σ(Cu) with u ∈ [t, Tk]. We show that (53) holds for every
A ∈ FCt,Tk , where FCt,Tk :=

∨
t≤u≤Tk σ(Cu). The proof follows by a monotone

class argument. More precisely, property (53) can be proved for the generator
of FCt,Tk , which consists of the finite intersections of the sets from σ(Cu), u ∈
[t, Tk]. In addition, the family A of the sets A satisfying (53) is a monotone
class.

Property (53) can be extended to bounded FCt,Tk -measurable random vari-
ables X:

EQTk [X|Gt] = EQTk [X|Ft ∨ σ(Ct)]. (54)

Now we just have to note that the random variable 1{Ct=i}1{CTk=K}qCτ−
is FCt,Tk -measurable, then use (54) and we have established (52).

Finally, combining (51) and (52) we get (47). The second equality (48)
follows by inserting (50) into (47). �

Let us consider now the valuation of a credit default swap. It is a financial
contract offering protection against default of an underlying asset. The pro-
tection buyer A periodically pays a fixed amount S, called the credit swap
premium (or the credit swap rate), to the protection seller B until default of
the underlying asset or the maturity date of the contract, whichever comes
first. The protection seller agrees in turn to make a payment that covers
the loss of A if default occurs. The underlying asset is issued by some third
party C and both counterparties A and B are assumed to be risk-free.

Here we consider a defaultable bond with maturity date Tm (where Tm is
one of the tenor dates) and fractional recovery of treasury value q as the un-
derlying asset and assume the following fee payment scheme: the protection
buyer pays a fixed amount S periodically at tenor dates T1, . . . , Tm−1 until
default of the underlying bond. The protection seller is obliged to make a
payment that covers the loss if default happens, i.e. the amount

1− qCτ−

has to be paid at Tk+1 if default occurs in (Tk, Tk+1].

Proposition 6.2. The swap rate S for the credit default swap described
above is given by

S =

∑m
k=2B(0, Tk)

∑K−1
j=1 EQTk [(1− qj)1{Tk−1<τ≤Tk,Cτ−=j}]∑m−1

k=1 B(0, Tk)EQTk [1− piK(0, Tk)]
, (55)

where i denotes the rating class observed at time 0.
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Proof: The value of the premium leg at any time point t ≤ T1 is given by
m−1∑
k=1

SB(t, Tk)EQTk [1{τ>Tk}|Gt]

=
m−1∑
k=1

SB(t, Tk)
K−1∑
l=1

EQTk [1− plK(t, Tk)|Ft]1{Ct=l},

where we have used formula (51).
The value of the default leg at t ≤ T1 is given by

m∑
k=2

B(t, Tk)EQTk [(1− qCτ−)1{Tk−1<τ≤Tk}|Gt],

and similarly to the proof of Proposition 6.1, we have

EQTk [(1− qCτ−)1{Tk−1<τ≤Tk}|Gt]

=
K−1∑
l=1

1{Ct=l}
K−1∑
j=1

EQTk [(1− qj)1{Tk−1<τ≤Tk,Cτ−=j}1{Ct=l}|Ft]
EQTk [1{Ct=l}|Ft]

.

The swap rate S is by definition the rate that makes the value of the credit
default swap at time 0 equal to zero. The value of the premium leg at time
0 is given by

S
m−1∑
k=1

K−1∑
l=1

B(0, Tk)EQTk [1− plK(0, Tk)]1{C0=l},

and the value of the default leg at time 0 equals
m∑
k=2

B(0, Tk)
K−1∑
l=1

1{C0=l}

K−1∑
j=1

EQTk [(1− qj)1{Tk−1<τ≤Tk,Cτ−=j}1{C0=l}]

EQTk [1{C0=l}]
.

By assumption the observed rating class at time 0 is i. Hence, EQTk [1{C0=i}] =
1 and we obtain the swap rate S by solving

S
m−1∑
k=1

B(0, Tk)EQTk [1− piK(0, Tk)]

=
m∑
k=2

B(0, Tk)
K−1∑
j=1

EQTk [(1− qj)1{Tk−1<τ≤Tk,Cτ−=j}],

which produces (55). �

The rating based Lévy Libor model is particularly useful for pricing of
interest rate derivatives such as forward rate agreements (FRAs), interest
rate swaps and caps and floors, where the underlying interest rate is the
defaultable forward Libor rate.

We begin by introducing a new set of probability measures which repre-
sent the defaultable counterparts of forward measures and are convenient
tools for pricing of these derivatives. Such a concept was first introduced
by Schönbucher (2000) and further explored for credit derivative valuation
in Eberlein, Kluge, and Schönbucher (2006). The novelty in our definition
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below is credit migration and non-zero recovery of the defaultable bond.
Due to the non-zero recovery assumption our defaultable measures are not
survival measures, as in the aforementioned papers.

Definition 6.3. The defaultable forward measure QC,Tk for the settlement
date Tk is defined on (Ω,GTk) by

dQC,Tk

dQTk

:=
B(0, Tk)
BC(0, Tk)

BC(Tk, Tk).

This corresponds to the choice of BC(·, Tk) as a numeraire (remember
that BC(·, Tk) is a strictly positive process as long as the recovery rate q is
not zero, and thus a valid choice for a numeraire).

Restricted to the σ-field Gt the defaultable forward measure becomes

dQC,Tk

dQTk

∣∣∣∣∣
Gt

=
B(0, Tk)
BC(0, Tk)

BC(t, Tk)
B(t, Tk)

, (56)

since BC(·,Tk)
B(·,Tk) is a QTk -martingale.

It can be easily proved that the defaultable forward Libor rate LC(·, Tk) is
a martingale under the corresponding defaultable forward measure QC,Tk+1

,
just as the default-free forward Libor rates are martingales under their own
forward measures (cf. Proposition 3.19 in Grbac (2010)).

Therefore, we are able to calculate the prices of the aforementioned de-
faultable forward Libor rate derivatives as conditional expectations with
respect to the defaultable forward measures. More precisely, we have the
following result providing a valuation formula for a defaultable contingent
claim with a promised GTk -measurable payoff Y at maturity Tk and fractional
recovery of treasury value q upon default. It generalizes Proposition 15.2.3
in Bielecki and Rutkowski (2002) and Proposition 7 in Eberlein, Kluge, and
Schönbucher (2006), where models without credit migration were consid-
ered.

Proposition 6.4. Let Y be a promised GTk-measurable payoff at maturity
Tk of a defaultable contingent claim with fractional recovery q upon default
and assume that Y is integrable with respect to QTk . The time-t value of
such a claim is given by

πt(Y ) = BC(t, Tk)EQC,Tk [Y |Gt].

Proof: The payoff at maturity Tk of the given defaultable claim equals

Y 1{CTk 6=K} + qCτ−Y 1{CTk=K} = Y BC(Tk, Tk),

and, using the risk-neutral valuation formula under the forward measure
QTk , its time-t value is given by

πt(Y ) = B(t, Tk)EQTk [Y BC(Tk, Tk)|Gt].
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Recalling Definition 6.3 of the defaultable forward measure QC,Tk and ap-
plying the abstract Bays’ rule we obtain

πt(Y ) = B(t, Tk)
EQC,Tk [Y BC(Tk, Tk)

B(Tk,Tk)
BC(Tk,Tk) |Gt]

EQC,Tk [ B(Tk,Tk)
BC(Tk,Tk) |Gt]

= B(t, Tk)
BC(t, Tk)
B(t, Tk)

EQC,Tk [Y |Gt]

= BC(t, Tk)EQC,Tk [Y |Gt].

�

Example 6.5 (Defaultable Libor rate caps and floors). Recall that
an interest rate cap (resp. floor) is a financial contract in which the buyer
receives payments at the end of each period in which the interest rate exceeds
(resp. falls below) a mutually agreed level called the strike. The payment
that the seller has to make covers exactly the difference between the strike
and the interest rate at the end of each period (settlement in arrears). Every
cap (resp. floor) is a series of caplets (resp. floorlets), each of which is a call
(resp. put) option on the subsequent forward rate.

Suppose that we want to price a cap on the defaultable forward Li-
bor rate. The payoff of a caplet with strike K and maturity Tk is given
by BC(Tk+1, Tk+1)(LC(Tk, Tk) − K)+ (this corresponds to the settlement
scheme which assumes the reduction of the principal value of the contract in
case of default that we adopted at the beginning of the paper; see comments
before equation (2) and Bielecki and Rutkowski (2002, Section 14.1.4, page
431)). Then the time-t price of the caplet is given by

Ct(Tk,K) = δkBC(t, Tk+1)EQC,Tk+1
[(LC(Tk, Tk)−K)+|Gt]

and the price of the defaultable forward Libor rate cap at time t ≤ T1 is
given as a sum

Ct(K) =
n∑
k=1

δk−1BC(t, Tk)EQC,Tk [(LC(Tk−1, Tk−1)−K)+|Gt].

Appendix A

Assume that a complete stochastic basis (Ω̃,G, (Gt)0≤t≤T∗ ,QT∗) is given and all
processes we consider are defined on this basis.

Lemma A.1. Let U be a real-valued special semimartingale such that U0 = 0 with
canonical representation given by

U = U c + x ∗ (µU − νU ) +A,

where U c is the continuous martingale part, µU is the random measure of jumps of
U with compensator νU and A is the predictable, finite-variation process.

Put Vt := V0 expUt and let δ > 0 be a real number. Define two semimartingales
Z1 and Z2 by setting

(A1) Z1
t := 1 + δVt = 1 + δV0 expUt, t ≥ 0

(A2) Z2
t := 1

δ (Vt − 1) = 1
δ (V0 expUt − 1), t ≥ 0.
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In (A2) we impose an additional assumption that V, V− > 1 to ensure that Z2 is
positive. Then

Zit = Zi0 exp
(

(vi− · U c)t + ln
(
1 + vi−(ex − 1)

)
∗ (µU − νU )t + (vi− ·A)t

+( 1
2 (vi− − (vi−)2) · 〈U c, U c〉)t +

[
ln
(
1 + vi−(ex − 1)

)
− vi−x

]
∗ νUt

)
,

where i = 1, 2 and

v1
t :=

δVt
1 + δVt

, v2
t :=

Vt
Vt − 1

, t ≥ 0.

Proof: The statement for the semimartingale Z1 can be found in Eberlein, Grbac,
and Schmidt (2010, Lemma A.1) and the result for Z2 follows similarly. A detailed
proof is given in Grbac (2010, Lemma 1.10). �

Lemma A.2. Consider a stochastic basis (Ω,F , (Ft)0≤t≤T∗ ,P) and denote by W
a standard d-dimensional Brownian motion and by µ the random measure of jumps
of some semimartingale with compensator ν(ds, dx) = Fs(dx)ds. Fix an m ∈ N
and let V k, k = 1, . . . ,m, be given by

V kt = V k0 exp

( t∫
0

bk(s)ds+

t∫
0

σk(s)dWs +

t∫
0

∫
Rd

Sk(s, x)(µ− ν)(ds, dx)

)
,

for some σk ∈ L(W ) and Sk ∈ Gloc(µ). Further let δk > 0 be real numbers, for
k = 1, . . . ,m. Then

m∏
k=1

1
1 + δkV kt

=

(
m∏
k=1

1
1 + δkV k0

)
exp

− t∫
0

m∑
k=1

ak(s)ds−
t∫

0

m∑
k=1

vks−σ
k(s)dWs

−
t∫

0

∫
Rd

ln
m∏
k=1

(
1 + vks−(eS

k(s,x) − 1)
)

(µ− ν)(ds, dx)

 ,

where

vks :=
δkV

k
s

1 + δkV ks

and

ak(s) := vks−b
k(s) + 1

2 (vks− − (vks−)2)‖σk(s)‖2

+
∫
Rd

(
ln
(

1 + vks−(eS
k(s,x) − 1)

)
− vks−Sk(s, x)

)
Fs(dx).

Proof: One has to apply Lemma A.1 to each process 1+ δkV
k and then to calculate

the product of exponentials. �

Proof of Theorem 3.1: Part (a) is a direct consequence of relation (6) and specifi-
cation (15) for Hj(·, Tk), which ensures that Hj(·, Tk) ≥ 0.

Let us now prove part (b) and calculate the dynamics of Li(·, Tk). We make use
of the representation (6) and rely on Lemma A.1 and the connection between the
ordinary and the stochastic exponential of a semimartingale given in Kallsen and
Shiryaev (2002, Lemma 2.6).
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Firstly, for the Libor rate L(·, Tk) given in (7), we apply Lemma A.1 to Z1
t =

1 + δkL(t, Tk) and the special semimartingale

Ut =

t∫
0

bL(s, Tk)ds+

t∫
0

√
csσ(s, Tk)dWTk+1

s

+

t∫
0

∫
Rd

〈σ(s, Tk), x〉(µ− νTk+1)(ds, dx)

to obtain

1 + δkL(t, Tk) = (1 + δkL(0, Tk)) (57)

× exp

 t∫
0

aL(s, Tk)ds +

t∫
0

`(s−, Tk)
√
csσ(s, Tk)dWTk+1

s

+

t∫
0

∫
Rd

ln
(

1 + `(s−, Tk)(e〈σ(s,Tk),x〉 − 1)
)

(µ− νTk+1)(ds, dx)

 ,

where the drift term is

aL(s, Tk) := `(s−, Tk)bL(s, Tk)

+
1
2

(`(s−, Tk)− `(s−, Tk)2)‖
√
csσ(s, Tk)‖2

+
∫
Rd

(
ln
(

1 + `(s−, Tk)(e〈σ(s,Tk),x〉 − 1)
)

−`(s−, Tk)〈σ(s, Tk), x〉
)
FTk+1
s (dx)

= − 1
2
`(s−, Tk)2‖

√
csσ(s, Tk)‖2

+
∫
Rd

(
ln
(

1 + `(s−, Tk)(e〈σ(s,Tk),x〉 − 1)
)

−`(s−, Tk)(e〈σ(s,Tk),x〉 − 1)
)
FTk+1
s (dx), (58)

with `(s, Tk) defined in (14). Inserting (8) for bL(s, Tk) yields the second equality.
Similarly, for Hj(·, Tk), j = 1, . . . , i, we have

1 + δkHj(t, Tk) = (1 + δkHj(0, Tk))

× exp

 t∫
0

aHj (s, Tk)ds +

t∫
0

hj(s−, Tk)
√
csγj(s, Tk)dWTk+1

s

+

t∫
0

∫
Rd

ln
(

1 + hj(s−, Tk)(e〈γj(s,Tk),x〉 − 1)
)

(µ− νTk+1)(ds, dx)

 ,
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with the drift term

aHj (s, Tk) := hj(s−, Tk)bHj (s, Tk)

+
1
2

(hj(s−, Tk)− hj(s−, Tk)2)‖
√
csγj(s, Tk)‖2

+
∫
Rd

(
ln
(

1 + hj(s−, Tk)(e〈γj(s,Tk),x〉 − 1)
)

−hj(s−, Tk)〈γj(s, Tk), x〉
)
FTk+1
s (dx). (59)

Multiplying these two expressions we get

1 + δkLi(t, Tk) = (1 + δkL(t, Tk))
i∏

j=1

(1 + δkHj(t, Tk))

= (1 + δkLi(0, Tk))

× exp

 t∫
0

(
aL(s, Tk) +

i∑
j=1

aHj (s, Tk)
)

ds

+

t∫
0

√
cs

(
`(s−, Tk)σ(s, Tk) +

i∑
j=1

hj(s−, Tk)γj(s, Tk)
)

dWTk+1
s

+

t∫
0

∫
Rd

ln

((
1 + `(s−, Tk)(e〈σ(s,Tk),x〉 − 1)

)

×
i∏

j=1

(
1 + hj(s−, Tk)(e〈γ1(s,Tk),x〉 − 1)

))
(µ− νTk+1)(ds, dx)


= (1 + δkLi(0, Tk))

× exp

( t∫
0

(
aL(s, Tk) +

i∑
j=1

aHj (s, Tk)
)

ds

+

t∫
0

`i(s−, Tk)
√
csσi(s, Tk)dWTk+1

s

+

t∫
0

∫
Rd

lnβi(s, x, Tk)(µ− νTk+1)(ds, dx)

)
,

with σi(s, Tk) given in (17) and βi(s, x, Tk) in (20).
To establish (16), another application of Lemma A.1 is needed, this time to the

semimartingale Z2
t = Li(t, Tk) with Vt = 1 + δkLi(t, Tk) and

Ut =

t∫
0

(
aL(s, Tk) +

i∑
j=1

aHj (s, Tk)
)

ds+

t∫
0

`i(s−, Tk)
√
csσi(s, Tk)dWTk+1

s

+

t∫
0

∫
Rd

lnβi(s, x, Tk)(µ− νTk+1)(ds, dx).
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The process v2 from Lemma A.1 equals

v2
s =

1 + δkLi(s, Tk)
δkLi(s, Tk)

= `−1
i (s, Tk),

where `i(s, Tk) is defined in (19). Thus, it follows

Li(t, Tk) = Li(0, Tk) exp

 t∫
0

bLi(s, Tk)ds+

t∫
0

√
csσi(s, Tk)dWTk+1

s

+

t∫
0

∫
Rd

ln
(

1 + `i(s−, Tk)−1(βi(s, x, Tk)− 1)
)

(µ− νTk+1)(ds, dx)

 ,

which is exactly (16). A tedious calculation, carried out by making use of Lemma
A.1 and inserting (58) for aL(s, Tk) and (59) for aHj (s, Tk), yields the drift term
bLi(s, Tk) given in (21). �

Proof of Lemma 5.2: Let us fix a rating j ∈ {1, . . . , i} and for every l = 1, 2, . . . , k−1
express the dynamics of Hj(·, Tl) under the measure QTk . Recall that

WTl+1
s = WTk

s −
s∫

0

√
cu

(
k−1∑

m=l+1

`(u−, Tm)σ(u, Tm)

)
du

and

νTl+1(ds, dx) =
k−1∏

m=l+1

β(s, x, Tm)νTk(ds, dx) =
k−1∏

m=l+1

β(s, x, Tm)FTks (dx)ds,

with β(s, x, Tm) defined in (13). Therefore, equation (15) becomes

Hj(t, Tl) = Hj(0, Tl) exp

 t∫
0

bHj (s, Tl, Tk)ds+

t∫
0

√
csγj(s, Tl)dWTk

s

+

t∫
0

∫
Rd

〈γj(s, Tl), x〉(µ− νTk)(ds,dx)

 , (60)

where

bHj (s, Tl, Tk) := bHj (s, Tl)−
〈
γj(s, Tl),

k−1∑
m=l+1

`(s−, Tm)csσ(s, Tm)
〉

−
∫
Rd

〈γj(s, Tl), x〉

(
k−1∏

m=l+1

β(s, x, Tm)− 1

)
FTks (dx).
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An application of Lemma A.2 to the processesHj(·, Tl) given by (60), for j = 1, . . . , i
and l = 1, . . . , k − 1, yields

H(t, Tk, i) =
i∏

j=1

k−1∏
l=0

1
1 + δlHj(t, Tl)

= H(0, Tk, i) exp

(
−

t∫
0

i∑
j=1

k−1∑
l=1

aHj (s, Tl, Tk)ds

−
t∫

0

i∑
j=1

k−1∑
l=1

hj(s−, Tl)
√
csγj(s, Tl)dWTk

s

−
t∫

0

∫
Rd

ln
i∏

j=1

k−1∏
l=1

(
1 + hj(s−, Tl)(e〈γj(s,Tl),x〉 − 1)

)
(µ− νTk)(ds, dx)

)

with hj(s, Tl) defined in (18) and

aHj (s, Tl, Tk) := hj(s−, Tl)bHj (s, Tl, Tk)

+
1
2

(hj(s−, Tl)− hj(s−, Tl)2)‖
√
csγj(s, Tl)‖2

+
∫
Rd

(
ln
(

1 + hj(s−, Tl)(e〈γj(s,Tl),x〉 − 1)
)

−hj(s−, Tl)〈γj(s, Tl), x〉

)
FTks (dx).

Finally, we express the ordinary exponential as the stochastic exponential, which
yields

H(t, Tk, i) = H(0, Tk, i)

×Et

( ·∫
0

bH(s, Tk, i)ds−
·∫

0

i∑
j=1

k−1∑
l=1

hj(s−, Tl)
√
csγj(s, Tl)dWTk

s

+

·∫
0

∫
Rd

(
i∏

j=1

k−1∏
l=1

(
1 + hj(s−, Tl)(e〈γj(s,Tl),x〉 − 1)

)−1

− 1

)
(µ− νTk)(ds, dx)

)
,

where bH(s, Tk, i) is given in (39) and obtained by plugging in the expressions for
aHj (s, Tl, Tk) and bHj (s, Tl, Tk). �

Appendix B

Proof of Proposition 5.3: Let us fix an arbitrary jump time of Y and denote it by
ξ. Recall that for the jump times of a canonically constructed conditional Markov
chain we have

τn =
n∑
i=1

ηi,

where

ηi = inf
{
t ≥ 0 : e

∫ τi−1+t
τi−1 λCi−1,Ci−1

(u)du ≤ U1,i

}
,
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for an F-adapted matrix of stochastic intensities Λ and a sequence of random vari-
ables (U1,i) that are uniformly distributed on [0, 1] and mutually independent. More-
over, they are independent from F by construction.

We claim that
QT∗(τn = ξ) = 0, n ∈ N. (61)

For n = 1 we have

QT∗(τ1 = ξ) = QT∗(η1 = ξ) = QT∗

(
e
∫ η1
0 λC0,C0

(u)du = e
∫ ξ
0 λC0,C0

(u)du
)

= QT∗

(
U1,1 = e

∫ ξ
0 λC0,C0

(u)du
)

= 0,

which follows by a simple calculation since U1,1 is an absolutely continuous random

variable independent from the Fξ-measurable random variable e
∫ ξ
0 λC0,C0

(u)du. This
result also follows directly from Proposition 2 in Jakubowski and Nieweglowski
(2009a).

For n ≥ 2 we show the claim by writing

QT∗(τn = ξ) = QT∗

(
ηn = ξ −

n−1∑
i=1

ηi

)
= QT∗

(
U1,n = e

∫ ξ
τn−1

λCn−1,Cn−1
(u)

du
)

and noting that U1,n is independent from e
∫ ξ
τn−1

λCn−1,Cn−1
(u)du

due to the canonical
construction of C.

Since Y is a semimartingale, its trajectories are càdlàg functions on [0, T ∗] and
therefore the set of all jump times of Y is at most countable. Denote these jump
times by ξm,m ∈ N. Then it easily follows that for every n ∈ N

QT∗(∆Yτn 6= 0) = QT∗

 ⋃
m≥1

{τn = ξm}

 ≤ ∞∑
m=1

QT∗(τn = ξm) = 0,

by the claim which we proved above.
Finally, since every forward measure QTk is equivalent to the terminal forward

measure QT∗ , we get

QTk(∆Yτn 6= 0) = 0, n ∈ N.

�
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