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Discrete Tenor Models for Credit Risky Portfolios Driven by
Time-Inhomogeneous Lévy Processes∗
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Abstract. The goal of this paper is to specify dynamic term structure models with discrete tenor structure for
credit portfolios in a top-down setting driven by time-inhomogeneous Lévy processes. We provide
a new framework, conditions for absence of arbitrage, explicit examples, an affine setup which
includes contagion, and pricing formulas for single tranche collateralized debt obligations (STCDOs)
and options on STCDOs. A calibration to iTraxx data with an extended Kalman filter shows an
excellent fit over the full observation period. The calibration is done on a set of CDO tranche spreads
ranging across six tranches and three maturities.
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1. Introduction. Contrary to the single-obligor credit risk models, portfolio credit risk
models consider a pool of credits consisting of different obligors and the adequate quantifi-
cation of risk for the whole portfolio becomes a challenge. A good model for portfolio credit
risk should incorporate two components: default risk, which includes, in particular, the de-
pendence structure in the portfolio (also termed default correlation), and spread risk, which
represents the risk related to changes of interest rates and changes in the credit quality of the
obligors.

The main application of such a portfolio model, which we discuss in section 8, is the
valuation of tranches of collateralized debt obligations (CDOs) and related derivatives. We
would like to emphasize that variants of this model can be used for the valuation of other
asset-backed securities. Currently, due to the sovereign credit crisis that has affected Europe,
the issuance of so-called European safe bonds (ESBs) is discussed, where the underlying
portfolio would consist of sovereign bonds of EU member states with fixed weights set by a
strict rule which is proportional to GDP. Our model is easily adapted for pricing of such and
other similar asset-backed securities whatever the precise specification of these instruments
would be.
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Generally speaking, CDOs are structured asset-backed securities, whose value and pay-
ments depend on a pool of underlying assets—such as bonds or loans—called the collat-
eral. They consist of different tranches representing different risk classes, ranging from senior
tranches with the lowest risk, over mezzanine tranches, to the equity tranche with the highest
risk. If defaults occur in the collateral, the corresponding losses are transferred to investors
in order of seniority, starting with the equity tranche.

Among various portfolio credit risk models, there are two main approaches to be distin-
guished: the bottom-up approach where the default event of each individual obligor is modeled,
and the top-down approach where the aggregate loss process of a given portfolio is modeled and
the individual obligors in the portfolio are not identified. For a detailed overview of bottom-up
and top-down approaches see Lipton and Rennie (2011) and Bielecki, Crépey, and Jeanblanc
(2010). The latter approach was investigated in a series of recent papers; see Schönbucher
(2005), Sidenius, Piterbarg, and Andersen (2008), Ehlers and Schönbucher (2006, 2009),
Arnsdorf and Halperin (2008), Longstaff and Rajan (2008), Errais, Giesecke, and Goldberg
(2010), Filipović, Overbeck, and Schmidt (2011), and Cont and Minca (2013).

In this paper we present a dynamic term structure model with discrete tenor structure
which studies portfolio credit risk in a top-down setting. The framework is developed in
the spirit of the so-called Libor market model. The need for such an approach is illustrated
in Carpentier (2009), and to our knowledge only Bennani and Dahan (2004) studied such
models for CDOs. As in Filipović, Overbeck, and Schmidt (2011) we utilize (T, x)-bonds. In
that paper a dynamic Heath–Jarrow–Morton (HJM) forward spread model for (T, x)-bonds
has been analyzed under the assumption that (T, x)-bonds are traded for all maturities T ∈
[0, T ∗]. Here we acknowledge the fact that the set of traded maturities is only finite. This has
important consequences for modeling, and we introduce a new framework which takes this
fact into account. We show that this framework possesses some clear advantages.

The first major difference is due to the fact that in the no-arbitrage condition in Theorem
5.2 one has to consider only finitely many maturities Tk. The HJM approach instead has
to guarantee the validity of this condition for a continuum of maturities. This restricts the
model in an unnecessary way since traded products are available only for a small number of
maturities. As we will show in the examples in section 6 one gains considerable additional
freedom in the specification of arbitrage-free models. See, in particular, Remark 5.3. The
second difference is that we are able to include a contagion effect in an affine specification
of this approach. It is evident that contagion is an important issue in the current crises. It
should be mentioned that a model with only finitely many maturities can be extracted from
the HJM framework (see Schmidt and Zabczyk (2012)), which of course inherits the HJM
properties.

As driving processes for the dynamics of credit spreads, a wide class of time-inhomogeneous
Lévy processes is used. This allows for jumps in the spread dynamics which are triggered not
only by defaults in the underlying portfolio. In fact the empirical study in Cont and Kan
(2011) reveals that jumps in the spread dynamics not only occur at the default dates of the
obligors in the portfolio, but they can also be caused by a macroeconomic event which is
external to the portfolio. In Cont and Kan (2011) the bankruptcy of Lehman Brothers is
given as an example of such an event. This is a weak point of some of the recently proposed
portfolio credit risk models in which jumps in the spread dynamics occur only at default dates
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in the underlying portfolio (see a detailed discussion in Cont and Kan (2011)). In the model
developed in the sequel we incorporate both types of jumps in the spread dynamics.

The model is calibrated to iTraxx data from January 2008 to August 2010 applying an
extended Kalman filter to a two-factor affine diffusion specification of our approach, as pro-
posed in Eksi and Filipović (2012). Contrary to the usual calibration to data from one day
(see Cont, Deguest, and Kan (2010) for an overview and excellent empirical comparison), we
calibrate the model to a much larger dataset running over 3 years. Already in the simple
two-factor diffusion case a very good performance across different tranches and maturities is
achieved.

The paper is structured as follows. In section 2 we introduce the setting and basic notions.
In section 3 we describe the aggregate CDO loss process L and the driving process X and
specify the dynamics of the credit spreads. Section 4 reviews the forward martingale measure
approach. Section 5 contains the main results on the absence of arbitrage, and section 6
examines these results in a series of explicit examples. In section 7 we focus our attention on
an affine specification which is able to incorporate contagion effects. In section 8 we show how
the valuation of derivatives can be facilitated by introducing appropriate defaultable forward
measures and present a valuation formula for a single tranche CDO (STCDO), which is the
standard instrument for investing in a CDO. Moreover, we study the valuation of call options
on STCDOs. Finally, in section 9 we propose a two-factor affine specification and calibrate it
to data from the iTraxx series.

2. Basic notions and definitions. Let T ∗ > 0 be a fixed time horizon, and let a complete
stochastic basis (Ω,G,G,QT ∗) be given, where G = GT ∗ and G = (Gt)0≤t≤T ∗ is some filtration
satisfying the usual conditions. For simplicity we write Q∗ for QT ∗ . The expectation with
respect to Q∗ is denoted by E∗. The filtration G represents the filtration which contains all the
information available in the market. All the price and interest rate processes in what follows
are adapted to it. Furthermore, assume that the tenor structure 0 = T0 < T1 < · · · < Tn = T ∗

is given. Set δk := Tk+1 − Tk for k = 0, . . . , n− 1.
We assume that default-free zero coupon bonds with maturities T1, . . . , Tn are traded in

the market and denote by P (t, Tk) the time-t price of a default-free zero coupon bond with
maturity Tk. For default-free zero coupon bonds P (Tk, Tk) = 1 for all k. Furthermore, we
assume that P (t, Tk) > 0 for any 0 ≤ t ≤ Tk and all k.

Furthermore, there is a pool of credit risky assets and we denote by L = (Lt)t≥0 the
nondecreasing aggregate loss process. Assume that the total nominal is normalized to 1, and
denote by I := [0, 1] the set of loss fractions such that L takes values in I.

Remark 2.1. This approach is called top-down, as we model the aggregate loss process
directly. In the bottom-up approach one models instead the individual default times: for this,
denote by τ1, . . . , τm the default times of the credit risky securities in the collateral and their
(possibly random) loss given default by q1, . . . , qm. Then

Lt =

m∑
i=1

qi1{τi≤t}.

Remark 2.2. The filtration G denotes the full market filtration to which the aggregate loss
process is adapted. In Ehlers and Schönbucher (2009) the full market filtration is constructed
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as a progressive enlargement of a default-free filtration (known as a background or a reference
filtration) with the default times in the portfolio under a certain version of the immersion
hypothesis. Note that here G is general and we do not restrict ourselves to the case studied
in Ehlers and Schönbucher (2009). In particular, the immersion hypothesis is not needed.

Definition 2.3. A security which pays 1{LTk
≤x} at Tk is called a (Tk, x)-bond. Its price at

time t ≤ Tk is denoted by P (t, Tk, x). Note that P (t, Tk, x) = 0 on the set {Lt > x}.
If the market is free of arbitrage, P (t, Tk, x) is nondecreasing in x and

(1) P (t, Tk, 1) = P (t, Tk).

In Filipović, Overbeck, and Schmidt (2011) a forward rate model for (T, x)-bonds has been
analyzed under the assumption that (T, x)-bonds are traded for all maturities T ∈ [0, T ∗].
Here we acknowledge the fact that in practice the set of maturities for which the bonds are
traded is finite.

Definition 2.4. The (Tk, x)-forward price is given by

F (t, Tk, x) :=
P (t, Tk, x)

P (t, Tk)
(2)

for 0 ≤ t ≤ Tk.

The (Tk, x)-forward prices actually give the distribution of LTk
under the QTk

-forward
measure which will be defined later in (12). Indeed, note that if we take P (·, Tk) as the
numeraire, we obtain

QTk

(
LTk

≤ x|Gt

)
=

1

P (t, Tk)
P (t, Tk)EQTk

(
1{LTk

≤x}|Gt

)
=

P (t, Tk, x)

P (t, Tk)
= F (t, Tk, x).

Furthermore, we set for k ∈ {0, . . . , n− 1} and t ≤ Tk, on {Lt ≤ x},

H(t, Tk, x) :=
F (t, Tk+1, x)

F (t, Tk, x)
.(3)

This quantity relates to credit spreads as follows: intuitively, the credit spread quantifies
the additional yield above the risk-free rate which the holder of a (Tk, x)-bond receives in
compensation for taking the risk that L jumps over the level x. Recall that for the classical
Libor rate, with δk = Tk+1 − Tk,

1 + δk · LIBOR(t, Tk) =
P (t, Tk)

P (t, Tk+1)
.

If the credit spread is denoted by cs(t, Tk, x), then on {Lt ≤ x}

(
1 + δkcs(t, Tk, x)

) (
1 + δkLIBOR(t, Tk)

)
=

P (t, Tk, x)

P (t, Tk+1, x)
(4)
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and

H(t, Tk, x)
−1 = 1 + δkcs(t, Tk, x) =

P (t, Tk, x)

P (t, Tk+1, x)

P (t, Tk+1)

P (t, Tk)
.

As we shall see in section 8, the quantities H(t, Tk, x) and not the credit spreads cs(t, Tk, x)
appear as the main ingredients in pricing formulas for portfolio credit derivatives.

By induction we obtain the following decomposition of the (Tk, x)-forward price. For
t ∈ [0, T ∗], let j(t) := inf{i ∈ N : Ti−1 < t ≤ Ti} denote the unique integer j such that
Tj−1 < t ≤ Tj, with the convention that j(0) = 0. From (3) we obtain

F (t, Tk, x) = 1{Lt≤x}F (t, Tj(t), x)
k−1∏
i=j(t)

H(t, Ti, x).(5)

Summarizing, the model has three ingredients to be specified: the dynamics of the loss
process L, the credit spread via H, and the F (t, Tj(t), x). This, of course, should be done in
a way which excludes arbitrage and leads to tractable pricing formulas. Both points will be
discussed in the next sections.

3. Ingredients of the model. Let us now describe the processes which drive the model. A
realistic assumption is that the dynamics of defaultable quantities related to the assets in the
given portfolio is influenced by the aggregate loss process L. This means that when a default
occurs in the portfolio, the default intensities of the other assets may be affected as well.
In order to incorporate these features, we design a model where two sources of randomness
appear:

(1) a time-inhomogeneous Lévy process X representing the market randomness, which is
driving the default-free and the predefault dynamics, and

(2) the aggregate loss process L for the given pool of credits.
From now on we assume that these two processes are independent with càdlàg trajectories.
Note that this implies that there are no simultaneous jumps of X and L. The independence
assumption can be relaxed at the cost of having less explicit expressions. However, joint jumps
in credit spreads and the loss process are incorporated via an explicit contagion mechanism;
see (11).

The definition and main properties of time-inhomogeneous Lévy processes can be found,
for example, in Eberlein and Kluge (2006). We recall that these processes are also known as
processes with independent increments and absolutely continuous characteristics (PIIAC; cf.
Jacod and Shiryaev (2003)), or additive processes in the sense of Sato (1999). For general
semimartingale theory we refer the reader to the book by Jacod and Shiryaev (2003), whose
notation we adopt throughout the paper. Time-inhomogeneous Lévy processes have already
been used in term structure modeling of interest rates because of their analytical tractability
combined with a high degree of flexibility, which allows for an adequate fit of the term structure
of volatility smiles, i.e., of the change of the smile across maturities; see Eberlein and Kluge
(2006) and Eberlein and Koval (2006). In credit risk modeling there is also evidence that
processes with jumps are a convenient choice as driving processes for the dynamics of credit
spreads; see Cont and Kan (2011), p. 118, where the observation that the jumps in the spreads
are tied not only to defaults in the underlying portfolio is stated.
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Before giving a precise characterization of the driving process, let us describe the aggregate
loss process L in more detail. We assume that Lt =

∑
s≤tΔLs is an I-valued nondecreasing

marked point process with absolutely continuous Q∗-compensator

(6) νL(dt,dy) = FL
t (dy)dt,

where FL is a transition kernel from (Ω × [0, T ∗],P) into (R,B(R)) and P denotes the pre-
dictable σ-algebra on Ω× [0, T ∗].

Note that L is a semimartingale with finite variation and with canonical representation

L = x ∗ μL = x ∗ (μL − νL) + x ∗ νL,

where μL denotes its random measure of jumps. Moreover, L is a special semimartingale since
its jumps are bounded by 1.

The indicator process 1{Lt≤x} is a càdlàg, decreasing process with intensity process

(7) λ(t, x) = FL
t ((x− Lt, 1] ∩ I);

i.e., the process

(8) Mx
t = 1{Lt≤x} +

∫ t

0
1{Ls≤x}λ(s, x)ds

is a Q∗-martingale (see Filipović, Overbeck, and Schmidt (2011), Lemma 3.1).
Let us provide an example for the loss process L. Note that the process defined in Remark

2.1 is also an example for L.

Example 3.1. Consider a compound Poisson process Z = (Zt)t≥0 with only positive jumps,
defined as follows:

Zt =

Nt∑
i=1

Yi, Z0 = 0,

where N = (Nt)t≥0 is a Poisson process with intensity c, and Yi, i ∈ N, are mutually indepen-
dent and identically distributed (i.i.d.) random variables, independent of N , with distribution
P Y on R+ (e.g., take P Y to be a Gamma or an exponential distribution). The Lévy measure
of Z is given by FZ = cP Y . Next, we define the process L = (Lt)t≥0 by

Lt := f(Zt),

where f : R+ → [0, 1] is given by f(x) = 1− e−x. Since f is a nondecreasing function, L is a
nondecreasing process taking values in [0, 1]. Moreover, it is a pure-jump process by definition.
The jumps of L are given by

ΔLt = e−Zt−f(ΔZt).

Hence, FL
t equals

(9) FL
t (E) =

∫
R+

1E(e
−Zt−f(x))FZ(dx) =

∫
R+

c1E(e
−Zt−f(x))P Y (dx)
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for E ∈ B(R+ \ {0}), which completes the example.

We let X be an Rd-valued time-inhomogeneous Lévy process on the stochastic basis
(Ω,G,G,Q∗) with X0 = 0 a.s. and canonical representation given by

(10) Xt = Wt +

∫ t

0

∫
Rd

x(μ − ν)(ds,dx),

where W is a d-dimensional standard Brownian motion with respect to Q∗, μ is the random
measure of jumps of X and ν such that ν(dt,dx) = Ft(dx)dt is its Q

∗-compensator. To ensure
the existence of representation (10) we assume the following:

(A1) There exist constants C̃, ε > 0 such that

sup
0≤t≤T ∗

(∫
|y|>1

exp〈u, y〉Ft(dy)

)
< ∞

for every u ∈ [−(1 + ε)C̃, (1 + ε)C̃ ]d.

This assumption entails the existence of exponential moments of X, i.e., E∗[exp〈u,Xt〉] < ∞
for all t ∈ [0, T ∗] and u as above; cf. Lemma 6 in Eberlein and Kluge (2006).

The main ingredient for our model is the specification of the dynamics of the credit spreads
via specification of H. We assume that

H(t, Tk, x) = H(0, Tk, x) exp

(∫ t

0
a(s, Tk, x)ds +

∫ t

0
b(s, Tk, x)dXs

+

∫ t

0

∫
I
c(s, Tk, x; y)μ

L(ds, dy)

)
,(11)

where we impose the following assumptions (O and P denote, respectively, the optional and
the predictable σ-algebra on (Ω × [0, T ∗])):
(A2) For all Tk there is an Rd

+-valued process b(s, Tk, x), which as a function of (s, x) 
→
b(s, Tk, x) is P ⊗ B(I)-measurable. Moreover,

sup
s∈[0,T ∗],x∈I,ω∈Ω

n−1∑
k=1

bj(s, Tk, x) ≤ C̃

for every coordinate j ∈ {1, . . . , d}, where C̃ > 0 is the constant from (A1). If s > Tk,
then b(s, Tk, x) = 0.

(A3) For all Tk there is an R-valued process c(s, Tk, x; y), which is called the contagion
parameter and which as a function of (s, x, y) 
→ c(s, Tk, x; y) is P ⊗ B(I) ⊗ B(I)-
measurable. We also assume

sup
s≤Tk,x,y∈I,ω∈Ω

|c(s, Tk, x; y)| < ∞

and c(s, Tk, x; y) = 0 for s > Tk.
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(A4) The initial term structure P (0, Tk, x) is strictly positive and strictly decreasing in k
and satisfies

F (0, Tk, x) =
P (0, Tk, x)

P (0, Tk)
≥ P (0, Tk+1, x)

P (0, Tk+1)
= F (0, Tk+1, x).

The drift term a(·, Tk, ·), for every Tk, is an R-valued, O ⊗ B(I)-measurable process such
that a(s, Tk, x) = 0 for s > Tk, which will be specified later. Note that this together with
assumptions (A2) and (A3) implies thatH(t, Ti, x) remains constant after Ti, i.e., H(t, Ti, x) =
H(Ti, Ti, x) for t ≥ Ti.

Remark 3.2. Specifying the dynamics of H in this way, we allow for two kinds of jumps:
the jumps caused by market forces, represented by the time-inhomogeneous Lévy process X,
and the jumps caused by defaults in the portfolio, represented through the aggregate loss
process L, which allows for contagion effects.

4. The forward measures. In a short excursion we recall the most important results from
default-free Libor models and introduce the forward martingale measures.

In default-free discrete tenor models the forward martingale measures are constructed by
backward induction, together with the forward Libor rates. The measure Q∗ = QT ∗ = QTn

plays the role of the forward measure associated with the settlement date Tn and is called
the terminal forward measure. We shall write W Tn for W and νTn for ν when we wish to
emphasize that Q∗ is the terminal forward measure.

The forward measure QTk
is defined on (Ω,GTk

) by its Radon–Nikodym derivative with
respect to QTn , i.e.,

(12)
dQTk

dQTn

∣∣∣∣
Gt

=
P (0, Tn)

P (0, Tk)

P (t, Tk)

P (t, Tn)
.

We assume that this density has the following representation as a stochastic exponential:

dQTk

dQTn

∣∣∣∣
Gt

= Et
(∫ ·

0
α(s, Tk)dWs +

∫ ·

0

∫
Rd

(β(s, Tk, y)− 1)(μ − ν)(ds, dy)

)
,(13)

where α ∈ L(W ) and β ∈ Gloc(μ) in the sense of Theorem III.7.23 in Jacod and Shiryaev
(2003); for definitions of L(W ) and Gloc(μ) see the same textbook, pp. 207 and 72, respectively.
Then, applying Girsanov’s theorem, we deduce that

(14) W Tk
t := Wt −

∫ t

0
α(s, Tk)ds

is a d-dimensional standard Brownian motion with respect to QTk
and

(15) νTk(ds,dy) := β(s, Tk, y)ν(ds,dy) = F Tk
s (dy)ds

is the QTk
-compensator of μ, where F Tk

s (dy) = β(s, Tk, y)Fs(dy). See Eberlein and Özkan
(2005), section 4, pp. 338–342 for the detailed construction of Libor rates which are driven by
a Lévy process.
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We denote by νL,Tk(dt, dx) = FL,Tk
t (dx)dt the QTk

-compensator of the random measure

μL of the jumps of the loss process. The existence of FL,Tk
t follows in the same way as the

existence of F Tk
t in (15).

Remark 4.1 (constant term structure). Note that if the price processes for default-free bonds
(P (t, Tk))0≤t≤Tk

are constant and consequently equal to 1 for every k = 1, . . . , n, all forward
measures coincide, i.e.,

QT1 = · · · = QTn = Q∗.

5. Absence of arbitrage. The goal of this section is to identify conditions which guarantee
absence of arbitrage in our setting. It is well known that the model is free of arbitrage if
all (Tk, x)-bonds discounted with a suitable numeraire are local martingales and we choose
default-free bonds as numeraires.

The quantity F (t, Tj(t), x) given in (5) is the forward bond price for the closest maturity
from time t (typically less than 3 months). In the following discussion of absence of arbitrage
we do not have to consider this particular forward bond price. The reason for this is that
the market trades only financial instruments whose first tenor date (payment date) is at
least a full tenor period away. As a consequence, we consider P (·, Tk, x) as traded assets,
with k ∈ {2, . . . , n}, and study the question of whether (F (t, Tk, x))0≤t≤Tk−1

are QTk
-local

martingales for any k ∈ {2, . . . , n}. The following lemma shows that the numeraires can be
interchanged arbitrarily.

Lemma 5.1. There is equivalence between the following:
(a) For each k = 2, . . . , n the process

(F (t, Tk, x))0≤t≤Tk−1

is a QTk
-local martingale.

(b) For each k, i = 2, . . . , n the process(
P (t, Tk, x)

P (t, Ti)

)
0≤t≤Ti∧Tk−1

is a QTi-local martingale.
Proof. It suffices to note that for fixed i, k ∈ {2, . . . , n} such that i ≥ k (the other case is

treated in the same way) we have

P (t, Tk, x)

P (t, Ti)
= F (t, Tk, x)

P (t, Tk)

P (t, Ti)
,

where F (·, Tk, x) =
P (·,Tk,x)
P (·,Tk)

is a QTk
-local martingale by (a) and P (·,Tk)

P (·,Ti)
is the density process

of the measure QTk
relative to QTi , up to a norming constant (cf. (12)). Then P (·,Tk,x)

P (·,Ti)
is a

QTi-local martingale by Proposition III.3.8 in Jacod and Shiryaev (2003). The implication
(a) ⇒ (b) is thus shown. (b) ⇒ (a) is obvious.

Now regarding the discussion at the beginning of this section, we specify (5) further as
follows:

(16) F (t, Tk, x) := 1{Lt≤x}
k−1∏
i=0

H(t, Ti, x)
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for any 0 ≤ t ≤ Tk−1, with H(t, Ti, x) given by (11). Recall that H(t, Ti, x) remains constant
for t > Ti by assumption. We examine conditions for absence of arbitrage, i.e., necessary and
sufficient conditions for the (Tk, x)-forward price process F (·, Tk, x) being a local martingale
under the forward measure QTk

for k = 2, . . . , n.
Set

D(t, Tk, x) :=
k−1∑
i=1

a(t, Ti, x) +
1

2

∥∥∥∥∥
k−1∑
i=1

b(t, Ti, x)

∥∥∥∥∥
2

(17)

+

〈
k−1∑
i=1

b(t, Ti, x), α(t, Tk)

〉

+

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1−

〈
k−1∑
i=1

b(t, Ti, x), y

〉
β(t, Tk, y)

−1

)
F Tk
t (dy),

where α and β were introduced in (13). Recall that νL,Tk(dt,dx) = FL,Tk
t (dx)dt is the QTk

-
compensator of the random measure of jumps μL. Analogously to (8), we get that

(18) Mx,Tk
t := 1{Lt≤x} +

∫ t

0
1{Ls≤x}λTk(s, x)ds

is a QTk
-martingale, where λTk(t, x) := FL,Tk

t ((x− Lt, 1] ∩ I). By λ1 we denote the Lebesgue
measure on R.

Theorem 5.2. Assume that (A1)–(A4) are in force, and let k ∈ {2, . . . , n}, x ∈ I. Then
the process (F (t, Tk, x))0≤t≤Tk−1

given by (16) is a QTk
-local martingale if and only if

D(t, Tk, x) = λTk(t, x) −
∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
1{Lt−+y≤x}F

L,Tk
t (dy)(19)

on the set {Lt ≤ x}, λ1 ⊗QTk
-a.s.

Remark 5.3. Note that in the HJM term structure models, by considering the continuum
of maturities one puts unnecessary restrictions on the model. It is a major advantage of models
with discrete tenor structure that only those maturities which are traded in the market are
considered. It will become clear in the various examples which are discussed in section 6 that
the drift condition (19) can be satisfied while there is still a high degree of freedom to specify
the intensity of the loss process. This is not the case in the HJM framework, where the risky
short rate is directly connected to the intensity of the loss process; see equation (3.11) in
Filipović, Overbeck, and Schmidt (2011). For example, we are able to specify the dynamics
of the spreads and still have an arbitrary intensity of the loss process. Moreover, we are able
to specify an affine version of the model which includes contagion.

Proof. We calculate first the dynamics of the forward price processes under the forward
measures and then derive the drift conditions. We fix x and Tk and define

G(t) = G(t, k, x) :=
k−1∏
i=0

H(t, Ti, x)
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such that F (t, Tk, x) = G(t)1{Lt≤x}. Using integration by parts yields

dF (t, Tk, x) = G(t−)d1{Lt≤x} + 1{Lt−≤x}dG(t) + d
[
G,1{L·≤x}

]
t

=: (1′) + (2′) + (3′).

We deal separately with each of the above three summands. Regarding (1′), (18) yields

d1{Lt≤x} = dMx,Tk
t − 1{Lt≤x}λTk(t, x)dt

= 1{Lt−≤x}dM
x,Tk
t − 1{Lt−≤x}λTk(t, x)dt

= 1{Lt−≤x}
(
dMx,Tk

t − λTk(t, x)dt
)

since a short computation shows that dMx,Tk
t = 1{Lt−≤x}dM

x,Tk
t . Hence,

(1′) = G(t−)1{Lt−≤x}
(
dMx,Tk

t − λTk(t, x)dt
)

= F (t−, Tk, x)
(
dMx,Tk

t − λTk(t, x)dt
)
.

Regarding (2′), we obtain using (11)

G(t) = G(0) exp

(∫ t

0

k−1∑
i=1

a(s, Ti, x)ds

+

∫ t

0

k−1∑
i=1

b(s, Ti, x)dXs +

∫ t

0

∫
I

k−1∑
i=1

c(s, Ti, x; y)μ
L(ds, dy)

)
.

By Itô’s formula for semimartingales

(2′) = F (t−, Tk, x)

((
k−1∑
i=1

a(t, Ti, x) +
1

2

∥∥∥∥∥
k−1∑
i=1

b(t, Ti, x)

∥∥∥∥∥
2)

dt

+

k−1∑
i=1

b(t, Ti, x)dWt +

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1

)
(μ − ν)(dt, dy)

+

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1−

〈
k−1∑
i=1

b(t, Ti, x), y

〉)
ν(dt, dy)

+

∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
μL(dt, dy)

)
.(20)

We finally incorporate the dynamics of the driving processes under the Tk-forward measure
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and obtain by (14) and (15)

(2′) = F (t−, Tk, x)

((
k−1∑
i=1

a(t, Ti, x) +
1

2

∥∥∥∥∥
k−1∑
i=1

b(t, Ti, x)

∥∥∥∥∥
2

+

〈
k−1∑
i=1

b(t, Ti, x), α(t, Tk)

〉

+

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1−

〈
k−1∑
i=1

b(t, Ti, x), y

〉
β(t, Tk, y)

−1

)
F Tk
t (dy)

+

∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
FL,Tk
t (dy)

)
dt

+

k−1∑
i=1

b(t, Ti, x)dW
Tk
t +

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1

)
(μ− νTk)(dt, dy)

+

∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
(μL − νL,Tk)(dt, dy)

)
.

It remains to calculate the covariation part (3′). Since 1{Lt≤x} does not have a continuous
martingale part, we conclude that

[
G,1{L·≤x}

]
t
=
∑
s≤t

ΔG(s)Δ1{Ls≤x}.

Moreover,

Δ1{Ls≤x}(ω) = 1{Ls≤x}(ω)− 1{Ls−≤x}(ω)

=

⎧⎨
⎩

−1 if Ls−(ω) ≤ x and Ls(ω) > x,

0 otherwise .

Therefore,

Δ1{Ls≤x} = −1{Ls−≤x,Ls>x} = −1{Ls−≤x,Ls−+ΔLs>x}

and it follows that

Δ1{Ls≤x} =
∫
R

z μ1{L·≤x}({s} ,dz) = −
∫
I
1{Ls−≤x}1{Ls−+y>x}μL({s} ,dy).

In (20) we already computed the dynamics of G, and hence we deduce that

(3′) = −G(t−)1{Lt−≤x}
∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
1{Lt−+y>x}μL(dt,dy).
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Summing up the calculations, we obtain on {F (t−, Tk, x) > 0}

dF (t, Tk, x)

F (t−, Tk, x)
=

(
− λTk(t, x) +D(t, Tk, x)

+

∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
FL,Tk
t (dy)

−
∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
1{Lt−+y>x}F

L,Tk
t (dy)

)
dt+ dM̃t

for some local martingale M̃ and withD(t, Tk, x) given by (17). This concludes the proof.
Remark 5.4. If the driving process X does not have a Brownian part W (cf. (10)), then

an inspection of the proof shows that the model is free of arbitrage if the drift condition (19)
holds when the term D(t, Tk, x) is replaced by

D(t, Tk, x) =

k−1∑
i=1

a(t, Ti, x)(21)

+

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1−

〈
k−1∑
i=1

b(t, Ti, x), y

〉
β(t, Tk, y)

−1

)
F Tk
t (dy).

6. Examples. Up to now we defined the basic ingredients for specifying models with
discrete tenor structure which are free of arbitrage. Note that these models can be calibrated
to any given initial term structure. However, for a given family of intensities (λ(t, x))t≥0,x∈I
the drift has to satisfy condition (19). We shall now discuss some simple examples which
already show the high degree of flexibility. Let us repeat that this is not the case in the
HJM framework developed in Filipović, Overbeck, and Schmidt (2011) since the risky short
rate in fact determines the form of the compensator of the loss process; see equation (5.1) in
Filipović, Overbeck, and Schmidt (2011).

We start with any initial term structure, represented by a family H(0, Tk, x) for k =
0, . . . , n− 1 and x ∈ I and arbitrary intensities (λ(t, x))t≥0, x∈I .

In the following examples we consider the case with constant term structure; see Remark
4.1. In this case the Tk-forward measures coincide, and hence λTk(t, x) = λ(t, x), α(t, Tk) = 0,
β(t, Tk, y) = 1, F Tk

t (dy) = Ft(dy), and FL,Tk
t (dy) = FL

t (dy).
Example 6.1 (Gaussian spread movements). This example will specify a simple d-factor

Gaussian model. We consider no jumps in the spreads, i.e., Ft(dy) = 0 and c = 0 (no direct
contagion). The volatilities b(t, Ti, x) can be chosen arbitrarily such that (A2) is satisfied.
Thereafter we proceed iteratively:

1. Let

a(t, T1, x) = λ(t, x)− 1

2
‖b(t, T1, x)‖2.

2. For k = 2, . . . , n− 1 let

a(t, Tk, x) =
1

2

(∥∥∥∥∥
k−1∑
i=1

b(t, Ti, x)

∥∥∥∥∥
2

−
∥∥∥∥∥

k∑
i=1

b(t, Ti, x)

∥∥∥∥∥
2)

.
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Clearly, this model is free of arbitrage and can be calibrated to any given initial term structure.
Note that the drift of the H with closest maturity compensates the intensity λ(t, x).

Example 6.2 (Lévy driven spread movements without Gaussian component). We assume pure-
jump spread movements such that (21) holds. With c = 0, we proceed analogously to the
Gaussian example and start with arbitrary Ft(dy) and b(t, Ti, x) such that (A1) and (A2) are
satisfied:

1. Define

a(t, T1, x) = λ(t, x)−
∫
Rd

(
e〈b(t,T1 ,x),y〉 − 1− 〈b(t, T1, x), y〉

)
Ft(dy).

2. For k = 2, . . . , n− 1 define

a(t, Tk, x) =

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1−

〈
k−1∑
i=1

b(t, Ti, x), y

〉)
Ft(dy)

−
∫
Rd

(
e〈

∑k
i=1 b(t,Ti,x),y〉 − 1−

〈
k∑

i=1

b(t, Ti, x), y

〉)
Ft(dy).

Example 6.3 (contagion). Next, we incorporate a direct contagion; i.e., c does not vanish.
We continue with the Lévy setting of Example 6.2. Contagion can be specified via the function
c: if the loss process has a jump of size y at t, then

H(t, Tk, x) = H(t−, Tk, x)e
c(t,Tk ,x;y)

since X and L do not jump simultaneously. We can specify an arbitrage-free model with the
following steps:

1. Let

a(t, T1, x) = λ(t, x)−
∫
Rd

(
e〈b(t,T1,x),y〉 − 1− 〈b(t, T1, x), y〉

)
Ft(dy)

−
∫
I

(
ec(t,T1,x;y) − 1

)
1{Lt−+y≤x}FL

t (dy).

2. For k = 2, . . . , n− 1 let

a(t, Tk, x) =

∫
Rd

(
e〈

∑k−1
i=1 b(t,Ti,x),y〉 − 1−

〈
k−1∑
i=1

b(t, Ti, x), y

〉)
Ft(dy)

+

∫
I

(
e
∑k−1

i=1 c(t,T1,x;y) − 1
)
1{Lt−+y≤x}FL

t (dy)

−
∫
Rd

(
e〈

∑k
i=1 b(t,Ti,x),y〉 − 1−

〈
k∑

i=1

b(t, Ti, x), y

〉)
Ft(dy)

−
∫
I

(
e
∑k

i=1 c(t,Ti,x;y) − 1
)
1{Lt−+y≤x}FL

t (dy).
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For some applications it may be interesting to simplify this setting further. As examples
we discuss additive and multiplicative jumps in H:

1. Additive jumps. We choose (deterministic) functions C(t, x) and let

ec(t,Tk ,x;y) := H(t−, Tk, x)
−1y C(Tk − t, x) + 1.

This yields a jump of size ΔLtC(Tk − t, x) of H at time t, i.e.,

H(t, Tk, x) = H(t−, Tk, x) + ΔLtC(Tk − t, x),

while the specification

ec(t,Tk,x;y) :=
(
1 +H(t−, Tk, x)y C(Tk − t, x)

)−1

yields a jump of size δ−1
k ΔLtC(Tk− t, x) in the credit spread as defined in formula (4):

cs(t, Tk, x) = cs(t−, Tk, x) + δ−1
k ΔLtC(Tk − t, x).

2. Multiplicative jumps. Again we choose (deterministic) functions C(t, x) and let

ec(t,Tk ,x;y) := y C(Tk − t, x).

In this case,

H(t, Tk, x) = H(t−, Tk, x)ΔLt C(Tk − t, x),

and in the drift condition we have the following simplification:∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
1{Lt−+y≤x}FL

t (dy)

=

∫
I

(
yk−1

k−1∏
i=1

C(Ti − t, x)− 1

)
1{Lt−+y≤x}FL

t (dy).(22)

This expression depends on the distribution of the losses via FL
t . For various ap-

proaches concerning the dependence on the loss process see Cont, Deguest, and Kan
(2010).

Example 6.4 (relation to a bottom-up model). Continuing Remark 2.1 we consider a bottom-
up model with m entities and associated default times τ1, . . . , τm. The loss process is

Lt =

m∑
i=1

1{τi≤t}qi,

where qi is the loss given default of entity i. Assume that qi are constant and τi has default
intensity λi; that is,

1{τi≤t} −
∫ t

0
1{τi>s}λi(s)ds
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is a martingale for i = 1, . . . ,m. Then the compensator of L is

νL(dt, dx) = FL
t (dx)dt =

m∑
i=1

λi(t)1{τi>t}δ{qi}(dx)dt.

For intuition consider i.i.d. exponentially distributed τi where the intensity parameter is λ
and qi = q. Then

FL
t (dx) = λ

m∑
i=1

1{τi>t}δ{q}(dx) = λ(m− q−1Lt)δ{q}(dx).

Note that the compensator naturally depends on the number of defaults that have occurred
already: as fewer and fewer entities remain in the pool, the intensity for a further loss decreases.

7. An affine specification. Affine processes are a powerful tool for yield curve modeling
because they represent a rich class of processes, allowing for jumps and stochastic volatil-
ity, while still retaining a high degree of tractability; see Cuchiero, Filipović, and Teichmann
(2010) and Errais, Giesecke, and Goldberg (2010) for self-exciting affine processes. To our
knowledge Duffie and Gârleanu (2001) is the first paper using affine jump diffusions for mod-
eling of stochastic intensities of single obligors in a dynamic bottom-up credit portfolio model.
This section will illustrate how these processes can be used in our setup. Note that this is
very different from the setting in Filipović, Overbeck, and Schmidt (2011); already Example
6.1 illustrates that Gaussian behavior of the spreads in a model with discrete tenor structure is
possible, while in their setting this would generate arbitrage possibilities; see also Remark 5.3.
Moreover, in our approach we are able to find an affine specification which includes contagion,
as we will show in the following.

For simplicity we discuss only the case of affine processes which are driven by a diffusion
and a constant term structure as in Remark 4.1. Denote by T := {T0, . . . , Tn} the tenor
structure, and let Z ⊂ Rd be some closed state space with nonempty interior. Consider a
d-dimensional Brownian motion W , and let μ be defined on Z by

μ(z) = μ0 +
d∑

i=1

μi zi

for some vectors μi ∈ Rd, i = 0, . . . , d. Furthermore, we assume that σ is defined on Z with
values in Rd×d such that

1

2
σ(z)�σ(z) = ν0 +

d∑
i=1

νi zi(23)
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for some matrices νi ∈ Rd×d, i = 0, . . . , d. For any z ∈ Z we denote by Z = Zz the continuous,
unique strong solution of

dZt = μ(Zt)dt+ σ(Zt)dWt, Z0 = z.

The class of models we consider is of the form

H(t, Tk, x) = exp

(
A(t, Tk, x) +B(t, Tk, x)

�Zt(24)

+

∫ t

0

∫
I
c(s, Tk, x, Ls−; y)μL(ds, dy) +

∫ t

0
d(s, Tk, x, Ls−, Zs)ds

)
.

The first line is the part which is affine, while the second part considers a contagion term
which can have arbitrary dependence on L but no dependence on Z. The term d defines a
drift which will compensate default and contagion risk. The assumptions on the functions A,
B, c, and d are as follows:

(B1) A and B satisfy the following system of Riccati equations:

−∂tA(t, Tk, x) = B(t, Tk, x)
�μ0 +B(t, Tk, x)

�2ν0
k∑

i=1

B(t, Ti, x)(25)

−B(t, Tk, x)
�ν0B(t, Tk, x),

−∂tB(t, Tk, x)j = B(t, Tk, x)
�μj +B(t, Tk, x)

�2νj
k∑

i=1

B(t, Ti, x)(26)

−B(t, Tk, x)
�νjB(t, Tk, x)

for 0 ≤ t ≤ Tk.
(B2) The function c : R+ × T × I × I × I satisfies

sup
t≤Tk ,x,l,y∈I

|c(t, Tk, x, l; y)| < ∞.

(B3) The compensator of the loss process satisfies FL
t (A) = m(t, Lt−, Zt, A) for all A ∈ B(I),

where m(t, l, z, ·) is a σ-finite Borel measure for each (t, l, z) ∈ R+×I ×Z. Moreover,
m is affine, i.e.,

m(t, l, z, ·) = m0(t, l, ·) +
d∑

i=1

mi(t, l, ·)zi

for some mi : R
+ × I × B(I) → R+, i = 0, . . . , d.



CREDIT PORTFOLIO MODELING 633

(B4) The additional drift is affine, i.e.,

d(t, Tk, x, l, z) = d0(t, Tk, x, l) +

d∑
i=1

di(t, Tk, x, l)zi, k = 1, . . . , n,

and

di(t, T1, x, l) =

∫
I

(
1− ec(t,T1,x,l;y)1{y≤x−l}

)
mi(t, l, dy),

di(t, Tk, x, l) =

∫
I

(
e
∑k−1

j=1 c(t,Tj ,x,l;y) − e
∑k

j=1 c(t,Tj ,x,l;y)
)
1{y≤x−l}mi(t, l, dy)

for i = 0, . . . , d and k = 2, . . . , n.

Remark 7.1. Note that in (B3) we require m(t, l, z, ·) not to be a signed measure. This
implies restrictions on mi depending on the state space: if Z = Rd1 × (R+)d2 , with d1 > 0
and d = d1 + d2, then mi(t, l, ·) = 0 for i = 1, . . . , d1, as otherwise there exist z ∈ Z such that

m0(t, l, A) +

d∑
i=1

mi(t, l, A)zi < 0

for some l and A. This contradicts FL
t (A) = m(t, Lt−, Zt, A) ≥ 0.

We assume that all functions which appear here are càdlàg in each variable.

The input parameters for the model are the coefficients μi, νi, as well as the contagion
function c and the Borel-measures mi, i = 0, . . . , d. Note that we do not need to specify
boundary conditions on the Riccati equations. They can be used to improve the fit on the
initial term structure. The following proposition shows that the above conditions lead indeed
to an arbitrage-free model.

Proposition 7.2. Assume (B1)–(B4). Then (F (t, Tk, x))0≤t≤Tk−1
given by (16) with H as

in (24) are Q∗-local martingales.

We start with a small lemma which is proved directly by applying Itô’s formula.

Lemma 7.3. Consider H as in (24), and assume that A and B are differentiable in t with
càdlàg derivatives. Then H can be represented as in (11) with

a(t, Tk, x) = ∂tA(t, Tk, x) + ∂tB(t, Tk, x)
�Zt +B(t, Tk, x)

�μ(Zt)

+ d(t, Tk, x, Lt−, Zt),

b(t, Tk, x) = B(t, Tk, x)
�σ(Zt),

c(t, Tk, x; y) = c(t, Tk, x, Lt−; y).

Proof of Proposition 7.2. Note that all assumptions of Theorem 5.2 are satisfied. In
particular, (A1) is trivially true since Ft is 0 as a consequence of the continuity of (Zt). At
the same time this allows us to choose C̃ in (A1) equal to infinity, and (A2) follows.
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Our aim is to show that the drift condition (19) is satisfied. In this regard, consider the
case where X is the d-dimensional Brownian motion W . We compute

k−1∑
i=1

a(t, Ti, x) +
1

2

∥∥∥∥∥
k−1∑
i=1

b(t, Ti, x)

∥∥∥∥∥
2

+

∫
I

(
e
∑k−1

i=1 c(t,Ti,x;y) − 1
)
1{Lt−+y≤x}FL

t (dy)− λ(t, x)

=

k−1∑
i=1

(
∂tA(t, Tk, x) + ∂tB(t, Tk, x)

�Zt +B(t, Tk, x)
�μ(Zt)

)

+
1

2

∥∥∥∥∥
k−1∑
i=1

B(t, Ti, x)
�σ(Zt)

∥∥∥∥∥
2

+

k−1∑
i=1

d(t, Ti, x, Lt−, Zt)(27)

+

∫
I

(
e
∑k−1

i=1 c(t,Ti,x,Lt−;y) − 1
)
1{Lt−+y≤x}m(t, Lt−, Zt, dy)− λ(t, x).(28)

Note that according to (7), λ(t, x) = m(t, Lt−, Zt, (x−Lt, 1]∩I). Now we consider the equation
above for all possible values l ∈ I of Lt and z ∈ Z of Zt. We have that m(t, l, z, [0, x − l] ∩
I) +m(t, l, z, (x − l, 1] ∩ I) = m(t, l, z,I), and we obtain

(28) =

∫
I
e
∑k−1

i=1 c(t,Ti,x,l;y)1{l+y≤x}m(t, l, z, dy) −m(t, l, z,I).

We set z0 ≡ 1 to simplify the notation. By (B4), we obtain

(27) = d(t, T1, x, l, z) +

k−1∑
i=2

d(t, Ti, x, l, z)

=
d∑

j=0

zj

(∫
I

(
1− ec(t,T1,x,l;y)1{y≤x−l}

)
mj(t, l, dy)

+
k−1∑
i=2

∫
I

(
e
∑i−1

j′=1
c(t,Tj′ ,x,l;y) − e

∑i
j′=1

c(t,Tj′ ,x,l;y)
)
1{y≤x−l}mj(t, l, dy)

)

=

d∑
j=0

zj

(∫
I

(
1− e

∑k−1
j′=1

c(t,Tj′ ,x,l;y)1{y≤x−l}
)
mj(t, l, dy)

)

=

∫
I

(
1− e

∑k−1
j′=1

c(t,Tj′ ,x,l;y)1{y≤x−l}
)
m(t, l, z, dy).
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Hence, (27) + (28) = 0. Our final step consists in proving that

0 =
k−1∑
i=1

(
∂tA(t, Ti, x) + ∂tB(t, Ti, x)

�z +B(t, Ti, x)
�μ(z)

)

+
1

2

∥∥∥∥∥
k−1∑
i=1

B(t, Ti, x)
�σ(z)

∥∥∥∥∥
2

.(29)

As this equation is affine in z, i.e., of the form
∑d

i=0 αizi, it is sufficient to show that αi = 0
for i = 0, . . . , d. First, we consider α0 and show that

0 =

k−1∑
i=1

(
∂tA(t, Ti, x) +B(t, Ti, x)

�μ0

)
+

k−1∑
i,j=1

B(t, Ti, x)
�ν0B(t, Tj , x).(30)

Note that (23) implies that νj is symmetric for any j = 1, . . . , d. Hence, by (B1),

0 =

k−1∑
i=1

(
∂tA(t, Ti, x) +B(t, Ti, x)

�μ0

)

+
k−1∑
i=1

B(t, Ti, x)
�ν0

i∑
j=1

B(t, Tj, x)

+
k−1∑
i=1

B(t, Ti, x)
�ν0

i∑
j=1

B(t, Tj, x)

−
k−1∑
i=1

B(t, Ti, x)
�ν0B(t, Ti, x),

and this is exactly (30). In a similar way, (B1) yields

0 =

k−1∑
i=1

(
∂tB(t, Ti, x)j +B(t, Ti, x)

�μj

)
+

k−1∑
i,l=1

B(t, Ti, x)
�νjB(t, Tl, x)

for j = 1, . . . , d such that (29) is proven. Summarizing, we obtain that the drift condition
(19) holds, and we conclude by Theorem 5.2.

Remark 7.4. The previous proof shows that the coupled Riccati equations for A and B
may be simplified by considering

Ak(t, x) :=

k∑
i=1

A(t, Ti, x), Bk(t, x) :=

k∑
i=1

B(t, Ti, x).

Then (25) and (26) are equivalent to

−∂tA
k(t, x) = Bk(t, x)μ0 +Bk(t, x)�ν0Bk(t, x),(31)

−∂tB
k(t, x)j = Bk(t, x)μj +Bk(t, x)�νjBk(t, x)(32)
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for k = 1, . . . , n and j = 1, . . . , d. Equations (31) and (32) are the classical Riccati equations
for multivariate affine processes. In dimension d = 1 the solutions are well known, while in
the general case efficient numerical schemes are available to compute Ak and Bk.

Up to now the modeling was quite general. In the following example we give a concrete
one-dimensional affine specification which is much simpler. We will use a two-dimensional
extension later on in the section on calibration.

Example 7.5. We choose a Feller square-root process as a driver: consider d = 1 and
μ0 ≥ 0, μ1 ∈ R as well as ν1 = σ2/2. Then

dZt = (μ0 + μ1Zt)dt+ σ
√

ZtdWt,

with Z0 = z > 0. The Feller condition 2μ1 > σ2 ensures positivity of Z. In this case the
Riccati equations (31) and (32) have explicit solutions; see Cuchiero, Filipović, and Teichmann
(2010), for example. The compensator of the loss process is specified via

m(t, l, z, dy) = m0 +m1pα,β(dy)z,

where pα,β is a Beta(α, β)-distribution. Finally, the contagion parameter is assumed to be a
function of the loss process, i.e.,

c(t, Tk, x, l; y) = c(Tk − t, y).

Choosing c decreasing in y guarantees that upward jumps in the loss process lead to downward
jumps in the price process and hence to upward jumps in the credit spreads. Computing the
terms d1, . . . , dk by a simple numerical integration is the last step for specifying an arbitrage-
free model.

8. Pricing of portfolio credit derivatives. In this section we study the valuation of portfo-
lio credit derivatives. In particular, we focus our attention on single tranche CDOs (STCDOs)
and call options on STCDOs.

8.1. STCDO. The valuation of derivatives can often be facilitated by using appropriate
defaultable forward measures. We illustrate this by considering a standard instrument for
investment in a credit pool, a so-called STCDO. An STCDO is specified by

– a collection of future dates (tenor dates) T1 < T2 < · · · < Tm,
– lower and upper detachment points x1 < x2 in [0, 1], and
– a fixed spread S.

The STCDO offers a premium in exchanges for payments at defaults: the premium leg (re-
ceived by the investor) consists of a series of payments equal to

S[(x2 − LTk
)+ − (x1 − LTk

)+],(33)

received at Tk, k = 1, . . . ,m− 1. Letting

f(x) := (x2 − x)+ − (x1 − x)+ =

∫ x2

x1

1{x≤y}dy,(34)

we have that (33) = Sf(LTk
).
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The default leg (paid by the investor) consists of a series of payments at times Tk+1,
k = 1, . . . ,m− 1, given by

(35) f(LTk
)− f(LTk+1

).

This payment is nonzero only if ΔLt �= 0 for some t ∈ (Tk, Tk+1]. In the literature alterna-
tive payment schemes can be found as well (see Filipović, Overbeck, and Schmidt (2011), for
example). We have

(35) =

∫ x2

x1

[
1{LTk

≤y} − 1{LTk+1
≤y}
]
dy =

∫ x2

x1

1{LTk
≤y,LTk+1

>y}dy.

Let us denote by e(t, Tk+1, x) the value at time t of a payment given by 1{LTk
≤x,LTk+1

>x} at

the tenor date Tk+1. To calculate e(t, Tk+1, x), it is convenient to replace the measure QTk+1

by a new one. As already discussed, the market trades only financial instruments whose first
tenor date is at least a full tenor period away. In this regard we introduce a time horizon
δ < T1 and consider the forward prices on [0, δ]. Applying Theorem 5.2 with respect to the
tenor structure {δ, T1, . . . , Tm} yields an arbitrage-free construction of forward prices. Assume
the following:
(A5) The processes (F (t, Tk, x))0≤t≤Tk−1

are true QTk
-martingales for every k = 2, . . . , n

and x ∈ I. Moreover, (F (t, T1, x))0≤t≤δ is a true QT1-martingale.
Assumption (A5) allows us to switch to a measure under which the numeraire is given by the
(Tk, x)-forward price. This is not an equivalent measure change, but it still yields a measure
which is absolutely continuous with respect to the initial one. Similar measure changes have
been introduced in Schönbucher (2000) and have been successfully applied to the pricing
of credit risky securities; cf. Eberlein, Kluge, and Schönbucher (2006). Let x ∈ [0, 1] and
k ∈ {1, . . . ,m− 1}. We define the (Tk+1, x)-forward measure QTk+1,x on (Ω,GTk+1

) by its
Radon–Nikodym derivative

dQTk+1,x

dQTk+1

:=
F (Tk, Tk+1, x)

EQTk+1
[F (Tk, Tk+1, x)]

=
F (Tk, Tk+1, x)

F (0, Tk+1, x)
,

where the last equality follows under (A5). The corresponding density process is

dQTk+1,x

dQTk+1

∣∣∣∣∣
Gt

=
F (t, Tk+1, x)

F (0, Tk+1, x)
.

As already mentioned, QTk+1,x is not equivalent to QTk+1
if QTk+1

(LTk
> x) > 0.

Lemma 8.1. Assume (A5). Let x ∈ I and k ∈ {1, . . . ,m− 1}. Then, for every t ≤ Tk,

e(t, Tk+1, x) = P (t, Tk+1, x)EQTk+1,x

(
k∏

i=0

H(Ti, Ti, x)
−1 − 1

∣∣∣∣Gt

)
.

Proof. The price at time t of a contingent claim with payoff

e(Tk+1, Tk+1, x) = 1{LTk
≤x} − 1{LTk+1

≤x}
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at Tk+1 equals

(36) e(t, Tk+1, x) = P (t, Tk+1)EQTk+1

(
1{LTk

≤x} − 1{LTk+1
≤x}

∣∣Gt

)
.

Regarding the second term, observe that

(37) P (t, Tk+1)EQTk+1

(
1{LTk+1

≤x}|Gt

)
= P (t, Tk+1, x)

by (A5). For the first term we have

EQTk+1

(
1{LTk

≤x}|Gt

)

= EQTk+1

⎛
⎝1{LTk

≤x}

(
k∏

i=0

H(Tk, Ti, x)

)(
k∏

i=0

H(Tk, Ti, x)

)−1 ∣∣∣∣∣Gt

⎞
⎠

= EQTk+1

(
F (Tk, Tk+1, x)

k∏
i=0

H(Ti, Ti, x)
−1

∣∣∣∣Gt

)
,

which follows from (16) and H(t, Ti, x) = H(Ti, Ti, x) for t ≥ Ti. Changing to the measure
QTk+1,x yields

EQTk+1
(1{LTk

≤x}|Gt) = F (t, Tk+1, x)EQTk+1,x

(
k∏

i=0

H(Ti, Ti, x)
−1

∣∣∣∣Gt

)
.

Therefore,

e(t, Tk+1, x) = P (t, Tk+1)
P (t, Tk+1, x)

P (t, Tk+1)
EQTk+1,x

(
k∏

i=0

H(Ti, Ti, x)
−1

∣∣∣∣Gt

)

− P (t, Tk+1, x)

= P (t, Tk+1, x)EQTk+1,x

(
k∏

i=0

H(Ti, Ti, x)
−1 − 1

∣∣∣∣Gt

)
,

and the lemma is proved.
Proposition 8.2. Assume (A5). Then the value of the STCDO at any time t ∈ [0, δ] is

(38) πSTCDO(t, S) =

∫ x2

x1

(
S

m−1∑
k=1

P (t, Tk, y)−
m−1∑
k=1

e(t, Tk+1, y)

)
dy.

Recall that the premium Sf(LTk
) is paid at times T1, . . . , Tm−1, whereas the default

payments are due at time points T2, . . . , Tm.
Proof. The value of the premium leg at time t equals

m−1∑
k=1

P (t, Tk)EQTk
(Sf(LTk

)|Gt) =

m−1∑
k=1

SP (t, Tk)

∫ x2

x1

EQTk
(1{LTk

≤y}|Gt)dy

= S
m−1∑
k=1

∫ x2

x1

P (t, Tk, y)dy,
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where we have used (37). On the other side, the default payment at time Tk+1 is given by
f(LTk

)− f(LTk+1
). Its value at time t is equal to

P (t, Tk+1)EQTk+1
(f(LTk

)− f(LTk+1
) | Gt)(39)

= P (t, Tk+1)EQTk+1

( ∫ x2

x1

1{LTk
≤y,LTk+1

>y}dy
∣∣∣Gt

)

=

∫ x2

x1

P (t, Tk+1)EQTk+1

(
1{LTk

≤y,LTk+1
>y}

∣∣∣Gt

)
dy

=

∫ x2

x1

e(t, Tk+1, y)dy.

Hence, the value of the default leg at time t is given by

m−1∑
k=1

∫ x2

x1

e(t, Tk+1, y)dy.

Finally, the value of the STCDO is the difference of these two values, and thus we obtain
(38).

The STCDO spread S∗
t at time t is the spread which makes the value of the STCDO equal

to zero; i.e., one has to solve πSTCDO(t, S) = 0. The previous proposition yields

S∗
t =

∫ x2

x1

∑m−1
k=1 e(t, Tk+1, y)dy∫ x2

x1

∑m−1
k=1 P (t, Tk, y)dy

.(40)

Corollary 8.3. Assume (A5), and assume that the default-free bond prices P (·, Tk) and the
loss process L are conditionally independent, given Gt, for all k ∈ {1, . . . , n} and t ∈ [0, δ].
Then

(41) e(t, Tk+1, x) = P (t, Tk+1)F (t, Tk, x)− P (t, Tk+1, x).

Proof. Conditional independence of P (·, Tk) and L implies

EQTk+1
(1{LTk

≤x}|Gt) = EQTk
(1{LTk

≤x}|Gt)

since
dQTk

dQTk+1
|Gt =

P (0,Tk+1)
P (0,Tk)

P (t,Tk)
P (t,Tk+1)

is the density process for this change of measure (cf. (12)).

Then

EQTk+1
(1{LTk

≤x}|Gt) =
P (t, Tk, x)

P (t, Tk)
= F (t, Tk, x)

and we obtain from (36)

e(t, Tk+1, x) = P (t, Tk+1)F (t, Tk, x)− P (t, Tk+1, x).
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Corollary 8.4. Under the assumptions of Corollary 8.3, the price at time t ∈ [0, δ] of the
STCDO is given by

(42) πSTCDO(t, S) =

∫ x2

x1

(
m∑
k=1

ckP (t, Tk)F (t, Tk, y)−
m−1∑
k=1

P (t, Tk+1)F (t, Tk, y)

)
dy,

where c1 = S, ck = 1 + S for 2 ≤ k ≤ m − 1, and cm = 1. The STCDO spread S∗
t at time

t ∈ [0, δ] is equal to

S∗
t =

∑m−1
k=1

∫ x2

x1
P (t, Tk+1)(F (t, Tk, y)− F (t, Tk+1, y))dy∑m−1
k=1

∫ x2

x1
P (t, Tk)F (t, Tk, y)dy

.

Proof. The proof follows by inserting (41) into (38) and (40).

Remark 8.5. Corollary 8.4 shows that under conditional independence of the default-free
bond prices and the loss process, the STCDO spreads are given in terms of the initial term
structure of the default-free bond prices and the (Tk, x)-forward prices. This allows one to
extract (Tk, x)-forward prices from market data.

8.2. Options on an STCDO. Consider an STCDO as defined in the previous subsection.
Let us study an option which gives the right to enter into such a contract at time T1 at a
prespecified spread S. This is equivalent to a European call on the STCDO with payoff

(
πSTCDO(T1, S)

)+
at T1. Assume that (A5) holds. The value of the European call at time t ∈ [0, δ] is given by
the expectation under the forward measure QT1 :

πcall(t, S) = P (t, T1)EQT1

((
πSTCDO(T1, S)

)+ ∣∣Gt

)

= P (t, T1)EQT1

⎛
⎝
(∫ x2

x1

(
S

m−1∑
k=1

P (T1, Tk, y)−
m−1∑
k=1

e(T1, Tk+1, y)

)
dy

)+ ∣∣∣∣∣Gt

⎞
⎠

since, by (38),

πSTCDO(T1, S) =

∫ x2

x1

(
S

m−1∑
k=1

P (T1, Tk, y)−
m−1∑
k=1

e(T1, Tk+1, y)

)
dy.

Assuming for simplicity that P (t, Tk) = 1 for all Tk and t ≤ Tk, which implies the conditional
independence which is assumed in Corollaries 8.3 and 8.4, we obtain

πcall(t, S) = EQ∗

((∫ x2

x1

m∑
k=1

dkF (T1, Tk, y)dy

)+ ∣∣∣∣Gt

)
,
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where d1 = S − 1, dk = S for 2 ≤ k ≤ m − 1, and dm = 1, which follows from (42). Note
that the measure QT1 coincides with the terminal forward measure Q∗ = QTn ; cf. Remark 4.1.
Recall that

F (T1, Tk, y) = F (0, Tk, y) exp

(
k−1∑
i=1

∫ T1

0
a(t, Ti, y

)
dt

+

k−1∑
i=1

∫ T1

0
b(t, Ti, y)dXt +

k−1∑
i=1

∫ T1

0

∫
I
c(t, Ti, y; z)μ

L(dt, dz)

)
1{LT1

≤y}

for k ≥ 2 and F (T1, T1, y) = F (0, T1, y)1{LT1
≤y}. We further assume F (0, Ti, y), a(t, Ti, y),

b(t, Ti, y), and c(t, Ti, y; z) are constant in y between x1 and x2. For simplicity we denote
a(t, Ti, y) = a(t, Ti, x1) by a(t, Ti) and similarly for the other quantities. Then we have

∫ x2

x1

m∑
k=1

dkF (T1, Tk, y)dy =
m∑
k=1

dkF (0, Tk) exp

(
k−1∑
i=1

∫ T1

0
a(t, Ti)dt+

k−1∑
i=1

∫ T1

0
b(t, Ti)dXt

+

k−1∑
i=1

∫ T1

0

∫
I
c(t, Ti; z)μ

L(dt, dz)

)∫ x2

x1

1{LT1
≤y}dy

= f(LT1)

m∑
k=1

dkF (0, Tk) exp

(
k−1∑
i=1

∫ T1

0
a(t, Ti)dt

+

k−1∑
i=1

∫ T1

0
b(t, Ti)dXt +

k−1∑
i=1

∫ T1

0

∫
I
c(t, Ti; z)μ

L(dt, dz)

)

for f defined in (34). Note that f : I → I, and so f(LT1) ≥ 0. Thus, the value of the option
at time t is given by

πcall(t, S) = EQ∗

(
f(LT1)

(
d̃1 +

m∑
k=2

d̃k exp

(
k−1∑
i=1

∫ T1

0
a(t, Ti)dt

+

k−1∑
i=1

∫ T1

0
b(t, Ti)dXt +

k−1∑
i=1

∫ T1

0

∫
I
c(t, Ti; z)μ

L(dt, dz)

))+ ∣∣∣∣Gt

)
,

where d̃k = dkF (0, Tk) for 1 ≤ k ≤ m. Assume now that L and X are conditionally indepen-
dent, given Gt. Therefore, if c = 0 and a(·, Ti) and b(·, Ti) are conditionally independent of L,
given Gt, for all Ti, this expression simplifies further to

πcall(t, S) = EQ∗ (f(LT1)|Gt)EQ∗

((
d̃1 +

m∑
k=2

d̃k exp

(
k−1∑
i=1

∫ T1

0
a(t, Ti)dt

+

k−1∑
i=1

∫ T1

0
b(t, Ti)dXt

))+ ∣∣∣∣Gt

)
,



642 ERNST EBERLEIN, ZORANA GRBAC, AND THORSTEN SCHMIDT

where

EQ∗ (f(LT1)|Gt) = EQ∗
(
(x2 − x1)1{LT1

≤x1} + (x2 − LT1)1{x1<LT1
≤x2}|Gt

)
= x2Q

∗ (LT1 ≤ x2|Gt)− x1Q
∗ (LT1 ≤ x1|Gt)

− EQ∗
(
LT11{x1<LT1

≤x2}|Gt

)
.

As far as the second factor in πcall(t, S) is concerned, it is similar to the expressions
that appear in valuation formulas for swaptions in term structure models without defaults. It
can be computed using Fourier transform techniques under appropriate technical assumptions;
cf. Eberlein and Kluge (2006) and Keller-Ressel, Papapantoleon, and Teichmann (to appear).
In particular, we refer the reader to Eberlein, Glau, and Papapantoleon (2010) and Eberlein
(2013) for Fourier transform methods in a general semimartingale setting. For the affine
specification given in section 7, this approach may be simplified further.

9. Calibration. In this section we give a calibration exercise with a two-factor affine diffu-
sion which on one side shows the flexibility of our framework in a simple specification and fur-
ther illustrates the implementation of the model. For the calibration, we use the affine model
from section 7 and implement an extended Kalman filter as suggested in Eksi and Filipović
(2012). In contrast to typical calibration approaches we fit the model not only to data of
single days but to the data of a period of 2.5 years, namely from February 2008 to August
2010. The model is able to provide a surprisingly good fit across the different tranches and
maturities, as we shall illustrate.

9.1. The dataset. The calibration is performed on data from the iTraxx Europe index;
more specifically it consists of implied zero-coupon spreads of the iTraxx Europe.1 In the
market there are STCDOs on the iTraxx Europe with detachment points {x1, . . . , xJ} =
{0, 0.03, 0.06, 0.09, 0.12, 0.22, 1}. The zero-coupon spreads are the quoted spreads of the STC-
DOs, in our notation given by

R(t, τ, j) := −1

τ
log

(
1

xj+1 − xj

∫ xj+1

xj

F (t, t+ τ, x)dx

)
,(43)

where τ denotes time to maturity. In the data we have τ ∈ {3, 5, 7, 10}. In the model we will
later consider the case where F (t, T, x) is constant in the intervals [xj, xj+1) and then

−τ · R(t, τ, j) = logP (t, t+ τ, xj)− log P (t, t+ τ)

since F (t, T, x) = P (t, T, x)P (t, T )−1 by definition. Therefore, the rate R indeed refers to a
spread above the risk-free rate.

The realized index spreads are shown in Figure 1. With the beginning of the credit crisis,
volatility, as well as the credit spreads, jumped to very high levels, stabilizing thereafter. In
the first quarter of 2010 a new increase due to the European debt crises can easily be spotted.
Figure 2 shows the evolution of the tranche spreads for different maturities and tranches. The
spread curves follow a similar pattern. Consequently, it is plausible to capture the dynamics
with a low number of factors. It is important to mention that in the observation period
defaults did not occur in the underlying pool.

1We thank Dr. Peter Schaller for providing us the data.
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Figure 1. The iTraxx Europe zero-coupon index spread for the period February 2008 to August 2010. The
different graphs refer to the time to maturity of 3, 5, 7, and 10 years.

9.2. Model specification. Our aim is to calibrate a simple two-factor affine diffusion
model to the whole dataset using Kalman filtering. To this end, we specify the model under
the physical probability measure P. Prices of traded products are computed under the risk-
neutral measure Q which we obtain by a change of measure where the affine structure is
kept.

A principal component analysis reveals that two factors already explain 88.30% of the
realized variance; see Eksi and Filipović (2012). We therefore consider a two-dimensional
affine process Z = (Z1, Z2)� ∈ R+ × R+ =: Z satisfying

dZ1
t = κ1(Z2

t − Z1
t )dt+ σ1

√
Z1
t dW

1
t ,

dZ2
t = κ2(θ2 − Z2

t )dt+ σ2
√

Z2
t dW

2
t ,

and Z0 = (z1, z2) ∈ Z. Here κ1, κ2, θ2, σ1, and σ2 are positive constants and W 1 and W 2 are
independent standard Brownian motions. The factor Z2 is the stochastic mean reversion level
of Z1.

For the measure change we specify the market prices of risk by

λi
t =

λi
√

Zi
t

σi
, i = 1, 2,

with constants λ1, λ2 ∈ R. Using Girsanov’s theorem, we change to an equivalent measure Q

where W̃ i
t = W i

t +
∫ t
0 λ

i
sds, i = 1, 2, are independent standard Brownian motions. Then, under

Q, Z is again affine and satisfies the following dynamics (see Cheridito, Filipović, and Kimmel
(2010)):

dZ1
t = (κ1 + λ1)

(
κ1

κ1 + λ1
Z2
t − Z1

t

)
dt+ σ1

√
Z1
t dW̃

1
t ,

dZ2
t = (κ2 + λ2)

(
κ2

κ2 + λ2
θ2 − Z2

t

)
dt+ σ2

√
Z2
t dW̃

2
t .
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Figure 2. The upper graph shows the iTraxx Europe 9%–12% tranche spread from February 2008 to August
2010 for different maturities. The lower graph illustrates the iTraxx Europe tranche spreads from February 2008
to August 2010 for a fixed maturity of 5 years.

Hence, Z is an affine process under Q and we may apply the results from section 7.
For a complete specification of the model we need to specify the compensator of the loss

process L and the contagion parameter c. According to our setup we assume that m depends
in an affine way on Z and we assume that it is driven only by Z1, i.e.,

m(t, l, z, dy) = m0(t, l, dy) +m1(t, l, dy)z1.

We choose the jump distribution from the beta family, more precisely

m(t, l, z, dy) =
1

B(a1, b1)
ya1−1(1− y)b1−1dy +

z1
B(a2, b2)

ya2−1(1− y)b2−1dy,

where all coefficients are positive. Finally, we specify the contagion parameter and assume
that

(44) c(t, Tk, x, Lt−; y) = cy(Tk − t).
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We consider H specified as in (24) together with (25) and (26), and it follows from Propo-
sition 7.2 that this is an arbitrage-free model.

9.3. The calibration procedure. For the estimation of the (unobserved) variables Z from
the observed STCDO prices we use an extended Kalman filter following Eksi and Filipović
(2012). Furthermore, we make the following two assumptions: first, we assume that tranche
spreads are piecewise constant between the detachment points, that is,

H(t, Tk, x) = H(t, Tk, xi+1) for x ∈ [xi, xi+1).

Second, we assume that observed prices are given by model implied prices with additive noise.
More formally, we assume that at observation times 0 = t0, t1, t2, . . .

R(tk, τ, j) = −1

τ
log

(
1

xj+1 − xj

∫ xj+1

xj

F (tk, t+ τ, x) dx

)
+ ε(k, τ, j + 1)

=: α(τ, xj+1)−
1

τ
β(τ, xj+1)Ztk − cLtk + ε(k, τ, j + 1).

Note that with H also F is affine. Moreover, as A and B are piecewise constant, the terms α
and β are straightforward to compute; see Gehmlich, Grbac, and Schmidt (2013) for detailed
computations. The measurement error consists of independent and normally distributed ran-
dom variables, where the variance of the measurement errors may differ across the observed
tranches: ε(k, τ, j + 1) ∼ N (0, σj+1).

We approximate the conditional distribution of Ztk , given Ztk−1
, by a normal distribution

where the first and the second moments are matched. This is in line with a quasi-maximum-
likelihood approach and simplifies the computations considerably. The moments of the affine
diffusion Z can be computed using the Kolmogorov backward equation; see Proposition 3.1
in Eksi and Filipović (2012). This enables us to apply the extended Kalman filter algorithm
to obtain a calibration to the full dataset. The details of this approach and the extension to
more factors can be found in Gehmlich, Grbac, and Schmidt (2013).

Remark 9.1. As an alternative to the filtering approach which we favor here one could
also use nonlinear least squares to fit the model to data. Such an approach is pursued in
Longstaff and Rajan (2008), notably on a quite different model. They fit the unknown pa-
rameter vector θ, as well as the unobserved factor process Z, to the data by minimizing the
sum of squared distances between the observed prices and the model prices computed with
parameter θ and the factor process Z1, . . . , ZT taking values z1, . . . , zT . Applying this proce-
dure to market data of the CDX NA IG for the period from October 2003 to October 2005
they fit a three-factor model. A comparison to the filtering approach reveals on one side that
nonlinear least squares give access only to the parameters under the risk-neutral measure.
On the other side, with the filtering approach one gets additional regularity on the estimated
factor process in comparison to nonlinear least squares. In this regard, it is surprising that
the model considered here is able to provide an excellent fit to a longer and more turbulent
time series with only two factors. For details we refer the reader to the calibration results in
the following section.
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9.4. Calibration results. The extended Kalman filter allows a calibration to the full
dataset from February 2008 to August 2010. On one side, the Kalman filter provides an esti-
mation of the hidden state process Z, and on the other side, maximizing the quasi-likelihood
function, given the estimated values of Z, gives the estimator of the parameter vector. Table
1 shows the estimated values.

Table 1
Estimated parameter values.

λ1 λ2 κ1 κ2 θ2 σ1 σ2 c a1 b1 a2 b2

-0.0780 -2.5472 1.5722 1.8569 0.4720 0.7305 0.1739 -0.0571 0.6797 5.1597 0.2492 22.26

It turns out that the jump distribution in m1 is quite close to an exponential distribution,
as a2 is small. However, a1 contributes significantly to the fit of the model. The contagion
parameter c is negative, as expected. An occurring loss, i.e., an upward jump in the loss
process, leads to a downward jump in the (T, x)-bond prices by a downward jump in H.

Based upon the estimated parameter values and the filtered factor process we regenerate
the data. In Figures 3 and 4 we plot estimated vs. observed values. For brevity, the longest
maturity which shows a similar behavior is left aside. The graphs can be used for the diagnosis
of the model fit. It is remarkable that the two-factor model is able to provide an excellent fit
across all tranches and over the whole data period. This underlines the stability of the ap-
proach, which leads to improved hedging performance, as shown in Eksi and Filipović (2012).
They obtain a similar fit with a two-factor affine model when incorporating additionally a
catastrophic component. As pointed out, a two-factor model with a zero catastrophic com-
ponent is not able to provide a good fit to the supersenior tranche. In our approach, the
additional freedom obtained by considering a discrete tenor structure allows us to incorporate
a contagion term which improves the fit substantially. Compare, in particular, Figure 4.
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Figure 3. Estimated and realized data—part 1.
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Figure 4. Estimated and realized data—part 2.
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