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Abstract

Index option pricing on world market indices are investigated using
Lévy processes with no positive jumps. Economically this is motivated by
the possible absence of longer horizon short positions while mathemati-
cally we are able to evaluate for such processes the probability of a Rally
Before a Crash (RBC). Three models are used to e¤ectively calibrate in-
dex options at an annual maturity and it is observed that positive jumps
may be needed for FTSE, N225 and HSI. RBC probabilities are shown to
have fallen by 10 points after July 2007. Typical implied volatility curves
for such models are also described and illustrated. They have smirks and
never smile.

1 Introduction

This paper examines the pricing of index options across a number of interna-
tional equity indices using jump di¤usion models with no positive jumps. We
have modeled price processes for some ten years now using processes with two
sided jumps and we cite as examples Carr, Geman, Madan and Yor (2002),
Eberlein and Prause (2002). However, the maturity spectrum of traded options
has expanded considerably and currently on major indices we have over 200
options trading with maturities ranging from 3 to 12 years. We focus attention
here on the structure of Lévy processes consistent with the marginal stock price
distributions extracted from the longer maturity options. In this regard there
are some considerations in support of such an asymmetric modeling choice.
First, we note that economically it has long been recognized that down side

put options implicitly value the crash fears of market participants who have a
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long position in the underlying index (Bates (2000)). From general equilibrium
considerations we know that the aggregate economy must be long the stock in-
dices at all maturities and so this crash protection premium is present across the
option surface. Symmetrically one also has the value of rally fears of participants
who are short the index, embedded in the upside call options. Empirically it has
been observed that measure changes consistent with market option prices are
U-shaped (Jackwerth and Rubinstein (1996), Jackwerth (2000), Carr, Geman,
Madan and Yor (2002)). These observations led Bakshi and Madan (2007) to
derive U-shaped measure changes in an equilibrium with heterogeneous agents
some of whom are short the market index. Empirical investigations on one
month maturity options, in the direction of U-shaped kernels have been further
pursued by Bakshi, Madan and Panayotov (2009). Nonetheless, these latter
fears of a market rally may be su¢ ciently curtailed in �nancial markets by the
absence of signi�cant short positions particularly at the longer option matu-
rities. Furthermore the �nancing of longer term downside protection by the
writing of covered calls also tends to dampen the upward smile or premiums.
Hence for a variety of reasons long maturity stock price distributions embedded
in option prices may well be consistent with processes with no positive jumps.
We are not arguing that upward jumps do not occur under the true measure, but
merely enquiring whether long maturity risk neutral distributions are possibly
consistent with processes of this type.
Additionally we observe a growing interest in such processes especially in the

credit arena where the emphasis is on downward moves and one has access to
�rst passage time distributions for such processes. In this regard we cite Rogers
(2000), Lipton (2002) and Madan and Schoutens (2008). These computations
are involved when working with �nite horizons, and require two dimensional
inversions of Laplace transforms. Somewhat simpler are calculations of certain
probabilities. For example we note that for such processes, called spectrally
negative (Bertoin (1996)), we may easily compute the probability of a y% rally
before an x% crash. The extraction of such information from market option
prices on the calibration of a spectrally negative process could serve as an eco-
nomic indicator of general market interest. We call this probability the Rally
Before Crash (RBC) probability. One may get these probabilities by simula-
tion but this is quite expensive computationally. An analytical computation is
much preferred. The �nite horizon version of these probabilities are actively
traded in foreign exchange markets under names like digital double no touch, or
touch/no touch. The simpler computations are for the perpetual probabilities
presented here. We agree that the daily option surface is potentially rich in
information content, but expect that the most useful information probably lies
in suitable summary transformations that prove to yield explanatory variables
of some predictive signi�cance. It is with such a motivation that we consider
the RBC probability. We might ask whether such a variable is a leading in-
dicator for when the market bottom is behind us and the immediate future is
upwards. An investigation in this direction requires the construction of RBC
probabilities at various maturities as inputs for a more extended study. The
probabilities could also be used to �ne tune the hedging of down side risk.
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From an empirical perspective we further note that longer maturity index
implied volatility curves as presented for example in Broadie, Chernov and Jo-
hannes (2007), display a smirk but no smile. We shall observe later that such
implied volatility curves are a characteristic feature of a process with no positive
jumps.
Such spectrally negative processes or processes with no positive jumps have

appeared in the literature and a case in point is the �nite moment log stable
process of Carr and Wu (2003). Their motivation was however related to the
term structure of implied volatility skews and a related need to entertain in�nite
variance models for the logarithm of the stock price. We entertain instead,
for the logarithm of the stock price, a �nite variance spectrally negative Lévy
process that extends the original Black and Scholes (1973) and Merton (1973)
geometric Brownian motion model to a jump di¤usion model with no positive
jumps that we shall call a negative jump di¤usion model.
Such a negative jump di¤usion model is speci�ed on choosing the jump mea-

sure. We employ three jump measures in our study. The �rst is just the negative
part of the jump measure of the CGMY model of Carr, Geman, Madan and
Yor (2002). We call this model CGY as one has e¤ectively set M equal to
in�nity: Recently, Kyprianou and Rivero (2007) have introduced two four para-
meter variations of CGY that yield explicit solutions for the RBC probability
in the absence of a di¤usion. As we admit a di¤usion, we shall obtain the RBC
probability by e¢ cient numerical methods. We include in our study these two
models of Kyprianou and Rivero (2007). These models are based on two special
conjugate Bernstein functions and we call the models KR and its conjugate
KRC:
Each of the three models CGY; KR; KRC are calibrated once a month for

one year to each of seven index options SPX; FTSE; EUROSTOXX; N225;
GDAXI; HSI; and IBEX at approximate maturities of a quarter, a half year
and a year. The reason for calibrating separately at each maturity is that the
processes used are Lévy processes and it is known (Konikov and Madan (2000))
that such processes �t well at each maturity but not so well across maturities.
Additionally we note that RBC probabilities may currently only be evaluated
for Lévy processes. The particular choice of a quarter, a half year and a year is
arbitrary, but they are typical horizons of interest.
We �nd that negative jump di¤usion models perform relatively poorly on the

FTSE; HSI and N225: This leads us to conjecture that perhaps these markets
have a greater exposure to the fear of a rally. Surprisingly, for us, the other
markets are well �tted by negative jump di¤usions at all the three maturities.
We next use the negative jump di¤usion model parameter �ts from the an-

nual maturity to compute the 10% RBC risk neutral probabilities where we
take x = y = :1. We observe that the di¤erent models give relatively simi-
lar RBC probabilities after July 2007 (See �gures 2 through 5). Additionally
we provide average parameter values for the three models over the estimation
period.
An important property of negative jump di¤usions with a �nite variation

jump measure is that the upper tail is Gaussian and so implied volatility curves
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will �atten out on the right. From our examples it appears that this property
also holds for some in�nite variation jump measures.
The outline of the paper is as follows. In Section 2 we outline a set of eco-

nomic fundamentals consistent with negative jump di¤usions in the absence of
Rally fears. Section 3 presents the stock price models used in the estimation.
In section 4 we describe the procedure for computing RBC probabilities. Esti-
mation Results are presented in section 5 while section 6 presents the computed
RBC probabilities and a sample of the estimated implied volatility curves. Sec-
tion 7 concludes.

2 Economic Fundamentals

A negative jump di¤usion is a Lévy process and it is thus completely charac-
terised by its distribution at unit time. Equivalently, option prices at a �xed
maturity also give us information via Breeden and Litzenberger (1978) to the
risk neutral distribution at this maturity. We are thus led to focus attention
on the unit period distribution and ask what are the properties of risk neutral
distributions of stock prices at, for example an annual horizon, and what kind of
Lévy processes will match these distributions. In keeping with the general need
to model a positive process we consider distributional models for the logarithm
of the stock price. If we suppose that the year is a long enough time horizon and
there are a su¢ cient number of independent �nite variance e¤ects a¤ecting the
log price at the annual horizon for central limit theorem e¤ects to be dominant,
then we may take the physical distribution of log prices to be Gaussian.
With these assumptions the terminal stock index price S may be written for

a rate of return �; volatility � and initial stock index price S0 as

S = S0 exp

�
�+ �Z � �2

2

�
for a standard normal variate Z:
Under rational expectations, with a Lucas representative agent long the mar-

ket index and utility function U(S) we have that forward prices or spot prices
under zero interest rates, w; of claims paying c(S) are given by (Huang and
Litzenberger (1988))

w =
E [U 0(S)c(S)]

E [U 0(S)]
: (1)

These are economies that embed crash fears of participants long the market with
low index outcomes being reweighted upwards as U 0(S) is large for low values of
S: It is such considerations that may lead to an increase in implied volatilities
for the lower strikes but as we have no short positions, there are no rally fears,
and no real need for implied volatilities to rise on the right for large strikes.
For a more detailed analysis of short positions on measure changes we refer the
reader to Bakshi and Madan (2007) and Bakshi, Madan and Panayotov (2009).
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We also know that the Lucas representative agent must price the stock cor-
rectly and hence we must have that

S0 =
E [U 0(S)S]

E [U 0(S)]
: (2)

It is instructive to consider what implied volatility curves one may get when
options are priced using equation (1) in the presence of the restriction (2) for
some reasonable choices of utility functions.
We know that constant relative risk aversion utility functions for log normal

prices shift the mean and leave the volatility unchanged (Rubinstein(1976)) and
so will not match the market implied volatility curves. Beyond constant relative
risk aversion it was shown by Arrow (1965) that if the risky asset is to be a
normal good with an elasticity of demand below unity then we should consider
the class DARA (Decreasing Absolute Risk Aversion) and IRRA (Increasing
Relative Risk Aversion). A simple candidate in this class is the utility function
given by

�U
00(S)

U 0(S)
=
aS��10

S�
; � < 1

where the scaling by S��10 is without loss of generality. The marginal utility
function is then given by

U 0(S) = exp

 
� a

1� �

�
S

S0

�1��!
:

Analytical pricing is di¢ cult in such a speci�cation but one may easily price call
options by simulation. For � = 13:125%, � = 25%; we consider such a utility
for � = :5 that yields the DARA and IRRA property. The parameter a was
chosen at 2 to enforce equation (2). We then priced call options with the initial
spot at 100 and strikes in the range 70 to 130 at 2 dollar intervals. These were
then converted to Black Scholes implied volatilities displayed in Figure (1).
We see from this �gure the characteristic smirk of implied volatilities and

these are the characteristic implied volatilities of a negative jump di¤usion with
a right tail that is Gaussian. In fact more generally we may observe that forward
call option prices w(K) of strike K in the current context are given by

w(K) =
1

A

Z 1

lnK

U 0(ex)(ex �K) 1

�
p
2�
exp

�
� (x� �)

2

2�2

�
dx

A =

Z 1

�1
U 0(ex)

1

�
p
2�
exp

�
� (x� �)

2

2�2

�
dx

Di¤erentiating the call option price twice with respect to the strike we see that
the density of the stock price is g(K) where

g(K) =
1

AK
U 0(K)

1

�
p
2�
exp

�
� (lnK � �)2

2�2

�
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Figure 1: Implied Volatilities from a DARA and IRRA utility function

The density f(k) for the log of the stock price, k = lnK; is then on making the
change of variable

f(k) =
1

A
U 0
�
ek
� 1

�
p
2�
exp

�
� (k � �)

2

2�2

�
and if marginal utility goes to zero as wealth goes to in�nity the density is
bounded above by a Gaussian density with volatility � so implied volatilities
must be bounded by � and will decrease as we raise the strike.
The characteristic implied volatility curve of negative jump di¤usion models

is therefore consistent with Gaussian physical densities and the absence of short
positions generating rally fears. Lévy processes with positive jumps are therefore
associated with physical distributions that are fat tailed on the right or the
presence of rally fears.

3 The Risk Neutral Stock Price Models

The risk neutral model for the stock price is given in terms of a pure jump Lévy
process Xt with no positive jumps. The risk neutral drift is set at the interest
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rate r less the dividend yield q: Hence we write the stock price process St as

St = S0 exp ((r � q) t) exp
�
�Wt �

�2t

2

�
exp (Xt)

E [exp (Xt)]
;

where S0 is the initial stock price, Wt is a standard Brownian motion, � is the
volatility of the di¤usion component. From this representation one sees that
the stock price de�ated by the forward price (S0 exp((r � q)t)) is a positive
martingale composed of a geometric Brownian motion and the compensated
exponential of a jump process.
The model is speci�ed on identifying the jump measure and for the purposes

of this paper we just need the characteristic exponent  (u) given by

E [exp (iuXt)] = exp (t (u)) :

Given the characteristic exponent  (u) one may explicitly write down the
characteristic function �t(u) of the logarithm of the stock price St at time t as

�t(u) = E [exp (iu log(St))] = exp (t�(u))

where

�(u) = iu ln(S(0)) + iu

�
r � q � �2

2
�  (�i)

�
� �2u2

2
+  (u):

Standard Fourier methods of Carr and Madan (1999) may then be used to
calibrate the models to option prices to estimate the risk neutral parameters.
We now outline the characteristic functions associated with the three models
used in this paper in three subsections.

3.1 The CGY model

The Lévy measure for the process Xt is just that of the negative side of the
CGMY of Carr, Geman, Madan and Yor (2002) and is given by

k(x) = C
(�Gjxj)
jxj1+Y ; x < 0

and one may evaluate that in this case

 CGY (u) = C�(�Y )
�
(G+ iu)Y �GY

�
We have in�nite activity with Y � 0 and in�nite variation with Y � 1: The
number of parameters in the risk neutral model is 4; and the parameters are
�;C;G; and Y:
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3.2 The model KR

Kyprianou and Rivero (2007) determine Lévy processes that they call the parent
process from a special Bernstein function that is the negative of the Laplace
exponent of the descending ladder heights process at unit time. They propose
in their example 2 the following function for  :

 KR(u) = �
c�u2� (� + iu�)

�(� + iu� + �)

for parameters c; � > 0; � � 0 and � 2 (0; 1): The Lévy measure is explicitly
identi�ed in the paper and re�ects in�nite variation. There are �ve parameters
in the model, �; c; �; � and �

3.3 The model KRC

Kyprianou and Rivero (2007) also show that the following characteristic expo-
nent is associated with the Bernstein function conjugate to the one used in KR
and is a characteristic exponent of a pure jump Lévy process with no positive
jumps.

 KRC(u) =
iu�(� + iu� + �)

c��(� + iu�)
:

There are �ve parameters in the model, �; c; �; �; and �.

4 Rally Before Crash Certi�cates

For any negative jump di¤usion process there is an explicit solution to what
is called the two sided exit problem. This problem is the determination of
the probability that starting at 0 the �rst exit of the process from the interval
[�x; y] for x; y > 0 occurs at the upper boundary y: When working with the

log return ln
�
St
S0

�
for our risk neutral Lévy process this is precisely the risk

neutral probability of a Rally of y% occurring before a Crash of x% occurs.
We therefore call this value the yxRBC probability that we may infer from the
surface of option prices, after the calibration of a negative jump di¤usion model
at some maturity.
The probability is simply expressed (Bertoin (1996, page 194, Theorem 8))

in terms of what is called the scale function W (x) of the Lévy process, and is
given by

yxRBC =
W (x)

W (x+ y)
: (3)

In fact it was the search for closed forms for such scale functions that led Kypri-
anou and Rivero (2002) to formulate their new Lévy processes, some of which
we employ here.
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The scale function is also easily accessed as its Laplace transform is known
in terms of the characteristic exponent (Bertoin (1996)) and we have thatZ 1

0

e��xW (x)dx =
1

�(�i�)� � ln(S(0)) :

From our calibrated characteristic exponents of negative jump di¤usions we
may employ the e¢ cient Laplace transform inversion algorithms by Abate and
Whitt (1995) for example to compute the scale functions. We then get the RBC
probabilities from equation (3).

5 Data and Estimation Results

We obtained data on option prices on the following seven indices, SPX; FTSE;
EUROSTOXX; N225; GDAXI; HSI, and the IBEX once a month for twelve
days in 2007 for all the indices excepting N225 for which our data is for the
year 2005: We used for the calibration of the three models maturities closest
to a quarter, a half year and a year and strikes within 30% of the spot price.
We have 7 indices, 12 days, 3 maturities and 3 models and this resulted in 756
estimations. The average number of strikes at each maturity was 35:
With a view to �rst assessing the ability of a negative jump di¤usion to �t

these option prices we constructed for all indices, days and maturities the min-
imum average percentage pricing error across the strikes over the three models.
This gave us a vector of 252 minimum average pricing errors across the models.
The average pricing error is the average absolute pricing error across the strikes
divided by the average option price. Recognizing that the variance of average
pricing errors may vary systmatically across maturities, for each of the three
maturities we regressed the average pricing errors across the days and indices
on seven dummy variables, one for each index to estimate the behavior of the
best model across the indices. We report in Table 1 the coe¢ cients of these
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three regressions along with the t� statistics in parentheses and R squares.

TABLE 1
Results of Average Percentage
Error Regressions on Index Dummies
t-statistics in parentheses

Maturity
Index 3 Months Half Year One Year
SPX 0.0107 0.0057 0.0041

(1.0806) (0.8689) (0.7611)
FTSE 0.0624 0.0389 0.0422

(6.3072) (5.8555) (7.8154)
EUROSTOXX 0.0093 0.0086 0.0073

(0.9378) (1.2898) (1.3610)
N225 0.0206 0.0196 0.0138

(2.4861) (2.9470) (2.5645)
GDAXI 0.0033 0.0014 0.0004

(0.3318) (0.2186) (0.0746)
HSI 0.0455 0.0399 0.0317

(4.6015) (6.0121) (5.8663)
IBEX 0.0079 0.0053 0.0049

(0.8041) (0.8007) (0.9087)
R2 29.23% 32.53% 41.00%

We observe from Table 1 that the negative jump di¤usion �ts option prices
well for all indices with the possible exceptions of FTSE; N225; and HSI as
these are the indices with the signi�cant t-statistics. We may compare the
average percentage errors with those reported in Carr, Geman, Madan and Yor
(2007). We observe that the quality of �ts are generally of a comparable order
and in fact for many cases superior to those reported for the Sato processes in
Carr, Geman, Madan and Yor (2007). The �ts are also generally better as we
increase the maturity. These results with respect to maturity are consistent with
the general expectation that the extent of shorting decreases with the maturity.
We therefore comment further on the results for the one year maturity alone.
We present in Tables 2 through 4 the average parameter values for the three
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models at the one year maturity.

TABLE 2
Average Parameter Values
for CGY

Parameter
Index � C G Y
SPX 0.0603 0.8095 5.2127 0.0440
FTSE 0.0810 0.7394 4.4519 0.0241
EUROSTOXX 0.0912 0.9573 4.9742 0.00004
N225 0.1236 1.2117 8.8641 0.1056
GDAXI 0.0863 0.7162 4.4218 0.0826
HSI 0.0382 5.4288 10.0935 0.0126
IBEX 0.0817 0.6699 4.0453 0.1764

TABLE 3
Average Parameter Values
for KR

Parameter
Index � c � � �
SPX 0.0306 1.2154 0.3088 0.9133 0.7401
FTSE 0.0412 2.6608 0.1717 0.0013 0.8860
EUROSTOXX 0.0692 1.5652 0.1865 0.2187 0.9619
N225 0.1203 0.3783 0.2024 0.1665 0.2376
GDAXI 0.0306 0.4207 0.1955 0.0397 0.7340
HSI 0.0440 0.8228 0.2969 3.4002 0.9315
IBEX 0.0573 0.4527 0.1557 0.4203 0.7427

TABLE 4
Average Parameter Values
for KRC

Parameter
Index � c � � �
SPX 0.0540 1.4496 0.2009 0.8388 0.00179
FTSE 0.0667 1.3612 0.2532 0.6599 0.00045
EUROSTOXX 0.0992 1.1126 0.0117 0.0893 0.00015
N225 0.1359 1.8854 1.1861 3.1894 0.00822
GDAXI 0.0721 1.4662 0.1444 0.6718 0.00852
HSI 0.0386 1.0872 0.0252 0.0797 0.00022
IBEX 0.0761 1.7497 0.2880 1.1969 0.00083

We observe from these tables that N225 and HSI have parameter values
that contrast with the other indices. The di¤usion coe¢ cients are comparable
across models and indices excepting N225 where it is substantially higher for all
the three models. However, we note that the N225 data is for a di¤erent period,
two years prior to the other indices. For the one year maturity the best model
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Figure 2: Rally Before Crash Probabilities for SPX over 2007 using CGY, KR,
and KRC

out of the 84 cases was KRC in 51 cases followed by KR in 19 cases and CGY
in 14 cases. However the di¤erences between models in the average percentage
error is not very large and the average di¤erence in the average percentage error
between the best and second best is only 24 basis points.

6 Rally Before Crash Results

For each index we used the three models with the parameter values as �tted at
the one year maturity and computed via inverse Laplace transforms the scale
functions and then the risk neutral probability of a 10% rally before a 10% crash.
The results are best presented graphically and we present as a sample just the
results for the SPX; FTSE; EUROSTOXX and GDAXI: The di¤erent colors
are for the di¤erent models with blue for CGY , red for KR and black for KRC:
We notice that the models are closer to each other earlier in the year and a
little further apart later in the year. The risk neutral probability of a 10%
percent rally before a 10% crash fell uniformly across the models and indices
by approximately 10 points post July 2007 as the subprime crisis unfolded. A
model was used only if the average pricing error was below the generous cuto¤
of 15% and there were more than 5 options available for the calibration.
For negative jump di¤usions with a �nite variation jump measure the right
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Figure 3: Rally Before Crash Probabilities for FTSE over 2007 using CGY, KR
and KRC.
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Figure 4: Rally Before Crash Probabilities for EUROSTOXX over 2007 using
CGY, KR and KRC.
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Figure 5: Rally Before Crash Probabilities for GDAXI using CGY, KR and
KRC

15



70 80 90 100 110 120 130

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

strike

im
pl

ie
d 

vo
la

til
ity

SPX

Figure 6: SPX implied volatility curves for CGY, KR, KRC on December 14
2007.

tail of the probability density of log prices at unit time is Gaussian and implied
volatilities will converge to the level re�ected in the di¤usion component. We
believe that this pattern is also maintained for the in�nite variation models. We
present the implied volatility curves for the last day of the estimation in 2007 for
all three models for the SPX; FTSE; EUROSTOXX and the GDAXI: We
observe that the curves are very close to each other and display the characteristic
smirk of a negative jump di¤usion. The model CGY is represented by a blue
star, for KR we use a red circle while for KRC we employ a black plus sign.

7 Conclusion

We investigate the pricing of index options in world index options markets using
a risk neutral model for the logarithm of the stock price as a Lévy process with
a di¤usion component and no positive jumps. The asymmetry is motivated
economically by the possible absence of signi�cant short positions, especially at
the longer maturities and this feature makes the �nancial markets asymmetric
with respect to long and short positions. Additionally we have the impact
of call overwriting strategies that have a similar e¤ect. Mathematically we are
encouraged to use such models as for such processes we may compute interesting
probabilities like the probability of a y% rally occuring before an x% crash.
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Figure 7: FTSE implied volatility curves for CGY, KR, KRC on December 14
2007.
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Figure 8: EUROSTOXX implied volatility curves for CGY, KR, KRC on De-
cember 14 2007.
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Figure 9: GDAXI implied volatility curves for CGY, KR, KRC on December
14 2007.
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Finite maturity versions of these probabilities trade in foreign exchange markets
as digital touch/no touch securities.
Three models are used in our investigations, the CGMY model with no

positive jumps that e¤ectively sets M to in�nity and we call it here CGY: In
addition we employ two recent variations of CGY proposed by Kyprianou and
Rivero (2007) that we here call KR and its conjugate model KRC:
We show that all three models perform relatively well in pricing index op-

tions for the indices SPX; FTSE; EUROSTOXX; N225; GDAXI; HSI and
IBEX: The performance on the FTSE; N225; andHSI is signi�cantly inferior.
This leads us to conjecture that these markets may be exposed to the presence
of a fear of rallies possibly caused by short positions on the part of highly risk
averse participants. The resulting demand for upside calls can lift the right tail
of the stock price density above a Gaussian density creating a need for a model
with positive jumps.
We also compute the risk neutral probabilities of a 10% rally before a 10%

crash and show that this probability fell by 10 points after July 2007 as compared
to the start of the year. Finally we present the characteristic or signature implied
volatility curve of a negative jump di¤usion that generates a Gaussian tail on
the right with implied volatility curves that �atten out on the right at the level
of the di¤usion component of the model.
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