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Abstract

A relatively simple approach to correlating unit period returns of Lévy
processes is developed. We write the Lévy process as a time changed
Brownian motion and correlate the Brownian motions. It is shown that
sample correlations understate the required correlation between the Brown-
ian motions and we show how to correct for this. Pairwise tests illustrate
the adequacy of the model and the significant improvement offered over
the Gaussian alternative. We therefore advocate that the correlated time
change model is a simple basic alternative to dependence modeling. From
the perspective of explaining portfolio returns in higher dimensions we
find adequacy for long-short portfolios. The long only portfolios appear
to require a more complex modeling of dependency. We leave these ques-
tions for future research.
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Lévy processes offer a rich class of distributions for modeling financial re-
turns and have been successfully used to capture varying levels of skewness and
kurtosis seen in both the physical and risk neutral return densities. By way
of examples demonstrating this flexibility we cite Eberlein (2001) and Carr,
Geman, Madan and Yor (2002). The Gaussian distribution, associated with
the Brownian motion process, on the other hand, can only capture the level of
volatility thereby making this distribution ill suited to describing risk neutral
distributions that often display, for example, high levels of skewness. For the
physical distribution of daily returns, on the other hand, it is high levels of kurto-
sis that are important. As marginal return distributions are both non-Gaussian
and well characterized by the unit time distribution of a Lévy process and since
returns across assets are clearly not independent, the modeling of dependence
in Lévy processes is called for. Additionally there is a need for some efficiency
in this modeling particularly with respect to the analysis of risks embedded in
multiasset structured products.

We note in this connection that in the risk neutral domain the departures
from the Gaussian model are referred to as the implied volatility smile (Derman
and Kani (1994), Dupire (1994), Rubinstein (1994)) and they have resulted
in the development of the local volatility model as a resolution. In the local
volatility model the local motion of log prices remains a Brownian motion but
the volatility now continuously responds to movements in the asset price and the
passage of time. The additional flexibility accessed is capable of simultaneously
delivering a large class of risk neutral distributions at a continuum of maturities
as explained in some generality by Gyongy (1996). This model is now widely
used in the analysis of risks in equity structured products.

The local volatility model has some well known problems. Among them is
the observation of declining skews in the forward implied volatility curves of
local volatility models (Gatheral (2006)). A resolution was provided by the
generalization of local volatility models to local Lévy models (Carr, Geman,
Madan and Yor (2005)). In a local Lévy model the local motion of log prices
comes from a skewed Lévy process running at a speed continuously responding
to the level of the asset price and calendar time. The presence of a skewed local
motion helps keep forward implied volatility skews from collapsing.

Once local volatility or local Lévy models have been fit to the option surfaces
of a number of underliers the marginal option surfaces of all underliers are
then calibrated. For structured products with payoffs depending on multiple
underliers it becomes necessary to construct correlated path spaces. In the local
volatility context this is typically done by correlating the Brownian motions
driving the various underlying assets. For the local Lévy model there is again
the need to correlate the Lévy processes.

Correlating Lévy processes however, is relatively a more difficult task. Unlike
Brownian motion which is always active, pure jump Lévy processes, even when
they are infinitely active (with an infinite number of jumps or moves in any
interval) are actually silent with no moves at any finite set of prespecified times.
For two independent Lévy processes, when one moves the other has no move
and so it becomes difficult to correlate action with no action. An approach that



has been taken is to introduce a common time change to force all assets to move
at precisely the same instant and we refer to Luciano and Schoutens (2006),
Semeraro (2006), and Luciano and Semeraro (2007). Yet another approach is to
consider a linear mixture of independent Lévy processes as studied in Ballotta
(2008), Madan and Yen (2008), and Madan (2006). These approaches do not
allow one to easily combine prespecified marginal processes.

From the perspective of combining prespecified Lévy processes into a joint
Lévy process we refer to the Lévy copula approach, Cont and Tankov (2004),
Kallsen and Tankov (2006). Such an approach, though potentially feasible has
dependency parameters that are difficult to relate to the widely understood
structure of asset correlations. Furthermore the approach has not as yet been
statistically tested on a pair of assets and we seek methods that are readily
applicable to a larger number of assets.

The analysis of credit derivatives has seen a variety of dependence struc-
tures introduced to marginal processes and we mention Albrecher, Ladoucette
and Schoutens (2007), Moosbrucker (2006) and Baxter (2008). Often the de-
pendence here is one dimensional in the factor analytic sense.

In this paper we rely instead, on the observation that many univariate Lévy
processes may be expressed as Brownian motion with drift, time changed by a
subordinator. This is true for the variance gamma, VG, (Madan and Seneta
(1990), Madan, Carr and Chang (1998)), the normal inverse Gaussian, NIG,
(Barndorff-Nielsen (1998)), the hyperbolic (Eberlein and Keller (1995)), the
generalized hyperbolic (Eberlein (2001)), and has recently been shown to be
true for the CGMY (Carr, Geman, Madan and Yor (2002)) and the Meixner
process (Schoutens (2002)) by Madan and Yor (2008). It is natural to try
and introduce dependence by merely correlating the Brownian motions that are
being time changed.

We recognize however that as the independent time changes are active at a
disjoint set of times the correlation of the Brownian motions may be of little help
in continuous time and the resulting processes may remain independent. For
this reason we report in this paper on the performance of this approach as a way
of correlating the unit time random variables resulting from the Lévy processes
and do not construct a joint process in continuous time. It is at this writing, an
open question as to whether the joint density we construct is in fact infinitely
divisible and thereby associated with some multidimensional Lévy process.

We first evaluate the model statistically at the level of explaining pairwise
joint daily returns. We show in this context that once the marginal laws have
been estimated by the univariate densities, the pairwise joint law just requires
an estimation of the correlation between the two Brownian motions that were
marginally subjected to a time change. It is shown that this correlation be-
tween the two Brownian motions is in absolute value always greater than the
sample correlation between the asset returns. The effect of the time change is
to automatically reduce the observed correlation and this effect is greater, the
greater the volatility of the time changes. Given the parameters of the marginal
processes, one may estimate the pairwise correlation of the two Brownian mo-
tions from a simple moment equation involving as input the sample correlation



between the two assets and the parameters of the marginal distributions.

For an application employing the methods developed here to the valuation
of multiasset financial contracts we refer the reader to Madan (2009) where the
dependence model of this paper is used to price options on a basket of stocks.
Madan (2009) correlates the top 50 stocks of the S&P 500 index using the
methods of this paper and proceeds to price and hedge the cash flow to call
options on the basket.

We take data on two auto stocks, Ford and GM, ten stocks in the technol-
ogy sector, six stocks in the financial sector and seven industrial stocks for the
period 1/4/2002 to 6/18/2008 with 1615 daily return observations and estimate
the marginal laws for daily returns in the variance gamma class. The gamma
time change is one of the simpler time changes with full access to the density,
characteristic function and Lévy measure in terms of elementary functions. We
then use the moment equation, pairwise across assets, to infer the implied corre-
lations between the Brownian motions driving the assets. We present both the
raw correlation between the returns and the higher correlation implied between
the Brownian motions. Finally we present chisquare tests of model performance
in terms of p — values for the time changed model, and the Gaussian model
as a benchmark. We conclude that the model makes a significant improvement
in explaining the pairwise joint structure of daily asset returns. For the tech-
nology, and industrial sectors we also evaluate the performance of the implied
multivariate model on a sample of randomly generated portfolios. We find that
the model is quite capable of explaining long-short portfolio returns but is not
adequate to the task of long only portfolios. The latter appears to require a
more complex modeling of dependence. This departure from the model is also
observed to be more pronounced the larger the number of stocks in the long
only portfolio.

The outline of the paper is as follows. Section 1 presents the model in its
general context along with its properties and the moment equation to be used
in the estimation of dependence. The particular case of the variance gamma
is developed in greater detail. Section 2 describes the data and the estimation
of marginal VG laws along with the results. The two sets of correlations are
presented in section 3, while the performance evaluation and chisquare tests are
provided in Section 4. Section 5 reports on the empirical evaluation of portfolio
return distributions implied by the model. Section 6 concludes.

1 Time Changed Brownian Motion and Depen-
dence Modeling

For the purposes of modeling single asset return distributions that have been
centered we consider zero mean univariate Lévy processes (X;(t),t > 0) , starting
at X;(0) = 0, that may be represented as Brownian motions with drift time
changed by a subordinator, i.e. an increasing process with independent and
identically distributed invrements. We denote the subordinators by (G;(t),t >



0) and we suppose that they have unit expectation at unit time. In addition we
suppose that there exist constants #;,0; > 0, such that

Xl(t) = Gl(Gl(t) — t) + o;W; (Gl(t))

for Brownian motions (W;(t),t > 0) that are independent of the subordinators
Gi(t).

A particular special case of this structure is the Variance Gamma model
(Madan and Seneta (1990), Madan, Carr and Chang (1998)) where the processes
G, (t) are gamma processes with unit mean rate and variance rate v;. The density
of the level of the process at unit time is then the gamma density given by

1 a1 _ =z
flx) = —/———=avi Lemir,
A1)

There are many other examples of such Lévy processes used for modeling
financial asset returns that were cited in the introduction. We now consider
introducing dependence between thees random variables at unit time by merely
correlating the Brownian motions and keeping the time changing subordinators
independent. We may then write at unit time that X; = X;(1) is

Xi (i) 07 (Gz — 1) + g\ G7Zl

where G; = G;(1) and the variables Z; are standard normal variates with cor-
relations p;; between Z; and Z; for i # j. We shall refer to this model of
dependence as the multiply time changed multivariate normal model.

There is now dependence between the unit returns as the covariances

EXiXj]| =0i0;E {\/@} E [\/(TJ} Pij (1)
are not zero.
The sample correlations between the asset returns are given by
~ E X, X;]
E[X?) E [X}]

ij
Theorem 1 The sample correlations ﬁij are dominated in absolute value by the
correlations between the Brownian motion p;;.

Proof. Consider first the case of positive sample covariance. In this case

G = FE X, X;]
K E[X? E [x?]
< E[Xin}
0;0;
- EXiX;]
O’iO'jE [\/Gi E [\/Gj
= Pij



The last inequality follows from the concavity of the square root function

and the fact that
E [\/5} < VE[G] =1

A similar argument holds for negative covariances. m

We learn from Theorem 1 that sample correlations understate the real cor-
relations between the Brownian motions and this understatement is greater, the
larger the time change volatilities. We also see from equation (1) that once we
have estimated the marginal laws and have the specification of the time change
and the parameters 6;,0;, and the parameters for the subordinators we may
estimate the correlation between the Brownian motions implied by the time
change model by

FE X, X]

pij - O'iO'jE [\/Gi E [\/Gj

as the numerator is estimated by evaluating a sample covariance and we need
to just compute the expectation of the square root of our subordinators.

In the particular case of the variance gamma model the density of the time
change at unit time has a single parameter v; and

B [\/@} = /OOO #\/an%fle*”%dx

1
vy 1
vi' ()
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()
r(z)
Hence once we have estimated the marginal distribution parameters o, v;, 6;
by maximum likelihood on time series data on daily returns, we estimate the
correlation implied between the Brownian motions. The latter correlation is

what is needed to simulate observations from the joint law proposed by the
model.

2 Data and Marginal Laws

We took time series data on stock prices from 4/1/2002 to 6/18/2008 for the
following tickers, F, GM in the automobile sector. For the technology sector
we considered 10 names and they were AAPL, AMZN, CSCO, DELL, IBM,
INTC, MSFT, ORCL, QCOM, and Y HOO. For the financial sector we took
BAC,C,GS, MER, LEH, and M S. Finally we considered the following stocks
as a group, XOM, SUN, XRX, WMT, VZ, MMM, and KO. In total we
had 25 stocks. For each stock we standardized the daily returns to a zero
mean and unit variance and then binned the data into 100 evenly spaced bins
in the the interval +5 standard deviations and maximized the log likelihood
of the binned data following the methods of Carr, Geman, Madan and Yor
(2002). The estimated VG parameters are presented for all 25 stocks in Table



1. The parameters are for daily returns and need to be scaled for their annual
counterparts, but as we shall use them at the daily level, we present them
without scaling. The value of 4 is given in basis points as these values are small
representing daily third moments. For typical graphs displaying the quality of
the fit by these estimation methods we refer the reader to Madan (2006). For a
sample of goodness of fit tests associated with these densities we refer to Carr,
Geman, Madan and Yor (2002).



TABLE 1

VG parameter estimates
for the period 1/4/2002 to 6/18/2008
using daily log price relative returns

TICKER o v f in basis points
AAPL 0.0257 0.5737 13.6183
AMZN 0.0287 1.1043 30.6629
BAC 0.0166 2.7696 -22.1156
C 0.0201 2.4699 0.0004
CSCO 0.0218 0.7300 -9.5081
DELL 0.0188 0.7543 0.2387
F 0.0237 0.6088 25.1879
GM 0.0238 0.9076 24.0957
GS 0.0179 0.5790 0.0352
IBM 0.0146 0.8653 0.0167
INTC 0.0224 0.6473 -1.5322
KO 0.0109 0.7669 -0.2736
LEH 0.0275 2.6239 -31.2588
MER 0.0200 0.8421 0.0410
MMM 0.0126 0.8760 -0.0734
MS 0.0213 0.9177 -0.0457
MSFET 0.0202 2.7847 -23.4115
ORCL 0.0235 1.0347 -0.0021
QCOM 0.0239 0.6561 29.4362
SUN 0.0200 0.3400 -52.9221
VZ 0.0157 0.7489 -0.7597
WMT 0.0133 0.5167 12.1704
XOM 0.0140 0.4373 -37.9893
XRX 0.0220 0.9247 0.0506
YHOO 0.0349 3.1129 -0.0023

3 Sample and Implied Correlations

For each of the four sectors, auto, technology, financial and industrial we com-
puted the pairwise sample correlations and the implied correlations between the
Brownian motions. We present four matrices for each of the four sectors, with
the sample correlation matrix in the upper diagonal and the higher implied cor-
relation between the Brownian motions in the lower diagonal. The matrices are
respectively, for the four sectors of dimension 2, 10, 6 and 7.

F GM
F 1 0.6270
GM 0.7901 1



AAPL AMZN CSCO DELL IBM INTC MSFT ORCL QCOM YHOO

AAPL 1 .2535 .3293 3472 3245 .3529 2195 .2848 .2694 2180
AMZN 4009 1 .3522 3517 3089 3294 .1966 .2809 2675 .3587
CSCO 4885 .4956 1 .5o14  .5347  .6228 3712 5197 4351 .3854

DELL  .5065 4864 7156 1 5072 5768 .3429 4587 4023 .3451
IBM .4894 4418 7173 .6691 1 5674 3657 .5034 .3649 3228

INTC 5196 4599 .8158 7428 7554 1 3887 .5267 4416 .3888
MSFT 4437 .3768 .6676 .6064 .6684  .6937 1 .3469 .2702 .2242
ORCL 4133 .3865 .6709 5820  .6604 6745 .6099 1 .3489 3130
QCOM  .4662 4391 .6698 .6089  .5709  .6747 5667 .5252 1 .2859
YHOO .3911 .6102 .6151 5416 5238  .6158 A877 .4885 5323 1

BAC C GS MER LEH MS
BAC 1 47114079 3387 4400 4381

C 1 1 7014 .5332 .7209 .7148
GS .8012 .9341 1 .6521 7975 7955
MER 9203 .9824 1 1 .6356 .6137
LEH .8991 .9993 .9922 1 1 7967
MS 9055 1 1 1 1 1

XOM SUN XRX WMT VZ MMM KO
XOM 1 4354 2654 3692 4165 2816  .3727
SUN  .6467 1 1329 1182 1640  .1159  .1007
XRX 3449 2165 1 2678 .3002 1791 2143
WMT 4339 1741 .3449 1 3955 2878 3327
VZ 5138 2529 4051 4825 1 2081 .3305
MMM 5891 .3036 .4106 .5967 4517 1 .2352
KO 4689 1586 .2955 4148 4314  .5218 1

We see from these matrices the degree of understatement in sample correla-
tions induced by the non-Gaussian nature of the marginal distributions. For the
financial sector some implied correlations were slightly above unity and these
were truncated at unity in the matrices being presented. We checked that ex-
cepting the implied correlation matrix for the financial sector where we had to
truncate values above unity, all the remaining matrices had all positive eigen-
values and were positive definite matrices. The financial sector has been partic-
ularly disturbed over this time period and given the absence of strictly positive
definite matrices here we exclude it from the performance study reported in the
next section.



4 Performance Evaluation

We wish to evaluate whether the model describing unit time returns as multi-
variate Brownian motion taken at independent gamma subordinators evaluated
at unit time makes an improvement against the benchmark of a purely Gaussian
model. For this purpose we took our stocks pairwise in the three groups of auto,
technology and industrial and we computed by simulation over 100000 readings
the expected number of observations in a number of cells for both the bench-
mark Gaussian model and the alternate model proposed here. We then counted
the observed number in each of the cells with an expected number exceeding
2% and 1% of the total number of observations in the time series. From these
we computed two chisquare statistics, one for the benchmark and one for the
alternate model (Mood and Graybill (1974)). We also computed p — values for
both models. A high chisquare statistic with an associated low p—value reflects
a poor explanation of the empirically observed joint distribution of returns by
the associated model.

We report the chisquare statistics in three matrices, for the three sectors,
with the upper diagonal for the Gaussian model and lower diagonal for the
correlated time change model. Since the p — values for the Gaussian model
and also the time changed model under independence are zero we do not report
these. Instead we report p — values only for the correlated time change model
with the upper diagonal containing the less stringent test for cells with expected
outcomes in excess of 2% of the observations while the lower diagonal is the more
stringent test with expected outcomes in excess of 1% of the observations. There
are then three matrices for the p — values. The matrix dimensions are now 2,
10, and 7 for the three sectors reported. We first present the chisquare statistics
followed by the p — values.

chisquares F GM
F 0 390.6481
GM 17.2854 0

chisquares AAPL AMZN CSCO DELL IBM INTC MSFT
AAPL 0 384.61 329.10 302.14 398.79 329.93 832.99
AMZN 18.72 0 324.42  312.77 403.43 337.80 822.63
CcSCoO 5.67 20.69 0 300.28 448.09 513.44 951.88

DELL 24.26 21.99 20.17 0 329.65 387.29 T77.54
IBM 20.27 24.29 24.62 11.56 0 461.33 1056.67
INTC 19.00 30.52 32.87 19.38  19.94 0 907.52
MSFT 129.64 164.99 197.02 184.16 183.23 229.99 0
ORCL 13.91 18.62 13.15 2558 2591  31.09 202.72
QCOM 17.37 38.08 25.23 17.67  26.52  26.69  152.09
YHOO 164.41  161.21 12550 127.06 122.97 158.52 241.18

10

ORCL
288.80
365.25
354.17
281.06
411.56
427.22
966.75
0
32.22
111.40

QCOM YHOO

445.78
496.64
438.46
370.39
465.87
425.41
1038.19
432.75
0

164.81

597.57
784.37
598.90
462.63
564.98
527.02
1226.04
494.15
753.19
0



chisquares XOM SUN XRX WMT VZ MMM KO
XOM 0 312.94 170.17 108.08 155.43 725.49 159.11
SUN 24.47 0 252.59 169.31 214.96 906.56 212.06
XRX 17.77  10.24 0 213.64 321.58 983.21 286.81
WMT 12.13  20.04 21.80 0 217.10 840.04 204.90

VZ 16.69 18.98 39.10  39.87 0 959.72  332.13
MMM 21.23 1524 29.19 11.56 31.28 0 920.82
KO 24.48 25.08 42.08 3195 50.99 @ 33.30 0

p —vals F GM
F 0 1392
GM .0033 0

p—vals AAPL AMZN CSCO DELL IBM INTC MSFT ORCL QCOM YHOO

AAPL 0 1757 9912 1124 .2083 3284 0 5327 .2970 0
AMZN 2883 0 .0550 0377 .0186 .0039 0 .0982 .0009 0
CcSCO  .8036 .0017 0 1247 .0385 .0018 0 5145 .0469 0
DELL  .3379 1327 .0023 0 7122 .1509 0 .0825 .3435 0

IBM .2267  .000036  .00012 4289 0 .0966 0 .0265 .0222 0
INTC 1429  .00035 .0000052 .0238 .000041 0 0 .0085 .0313 0
MSFT 0 0 0 0 0 0 0 0 0 0
ORCL  .1068  .00012 .00022 .0011  .000323 .0000013 0 0 .0037 0
QCOM 0711 .0015 .000133  .0279  .001711 .0033 0 .000122 0 0
YHOO 0 0 0 0 0 0 0 0 0 0

p—wvals XOM SUN XRX WMT VZ MMM KO
XOM 0 0575  .2749 1347 3375 .1696 .0574

SUN .0843 0 .7442 2182 .1658 .3618 .0338
XRX 4729 3557 0 1132 .0017 .0328  .00038
WMT 2549 .0394  .3663 0 .0008 7122 .0102
VZ 1062 .5394 .000038  .0053 0 .0184  .000029
MMM 1324 1657 .00044  .5767 .0269 0 .0103
KO .0008 .0309 .000099 .0029 .0000022 .0124 0

We make the following remarks on these results.

e The multiply time changed multivariate normal model is clearly a signifi-
cant improvement over a simple Gaussian correlated model.

e Though in some cases the larger number of cells are better explained by
the multiply time changed multivariate normal model, this is generally
not the case.

11



e The multiply time changed multivariate normal model could be further
improved, especially if one wants a better description of tails.

e Minimally, investigations of dependence could employ the multiply time
changed multivariate normal model.

e Interestingly, modeling the dependence between all the assets with MSFT
and Y HOO proved particularly difficult. However, even here we observe
from the chisquare statistics the magnitude of the improvement made by
the multiply time changed multivariate normal model.

5 Performance on Portfolio returns

We now evaluate the ability of the multiply time changed multivariate normal
model to explain portfolio returns. We restrict attention to the technology
sector, excluding for this purpose both M SFT and Y HOO and the industrial
sector. So we have eight stocks from technology and seven stocks from our so-
called industrial sector. We may generate by simulation a large number (we use
100000) of returns consistent with the model. For each of a randomly selected
set of portfolios we may construct returns consistent with the model and build
a histogram of expected outcomes in a variety of cells. From the time series
data we determine the observed number of portfolio returns in the same cells
and then evaluate a chisquare statistic and a p — value for each portfolio. We
report the results of such an experiment in this section.

We formed for each of the two sectors technology and industrial a thousand
randomly selected long-short portfolios and a thousand long only portfolios. For
the long-short portfolio of n assets we generated n independent normal variates
and scaled them to be on the unit n sphere. For the long only we generated
n independent normals and scaled the absolute values by their sum. For each
portfolio we constructed the simulated return from the model and determined
the expected number in 21 cells in the 5% to 95% quantiles. From the time
series we determined the portfolio returns in the data. We then constructed
the chisquare statistic and p — values. Finally we constructed empirical com-
plementary distribution function of the p — values across the 1000 portfolios for
each sector and each type of portfolio. We present in Figure (1) a graph of the
complementary distribution functions that describes the proportion of portfo-
lios with a p — value greater than the target p — value given on the z — axis.
A dominating complementary distribution function thereby reflects a superior
model in its ability to explain the univariate laws of arbitrary selected portfolios.

We see from these graphs that the p—wvalues are consistently higher for long-
short portfolios and this suggests that the dependence embedded in long only
portfolios is much harder to capture for the multiply time changed multivariate
normal model. The performance with respect to long-short portfolios is quite
adequate.

With a view to possibly detecting a size effect in the departure of long-
only portfolios from the model we combined the two sectors of 8 technology

12



portfolios of 8 tech stocks
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Figure 1: Long-Short portfolio complementary distribution function of p-values
in blue. Long only portfolios are in red.
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Size effect for long only portfolios
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Figure 2: The 8 technology stocks complementary distribution function (CDF)
of p values for long only portfolios is shown in blue. The 7 industrial stock
portfolios p value CDF is shown in red. The 15 stock portfolio p-value CDF is
in black

stocks and 7 industrial stocks and formed long-only portfolios with 15 stocks
and recomputed the p —values for such portfolios. We present in Figure (2) the
complementary distribution function of the 15 stock p — values compared with
the two sets of 8 stock and 7 stock portfolios. There appears to be a clear size
effect associated with the departure of long-only portfolios from the model.

6 Conclusion

We develop a relatively simple approach to correlating the unit period returns
resulting from Lévy processes. The basic idea is to write the Lévy process as a
time changed Brownian motion and to correlate the Brownian motions. We show
in this context that sample correlations understate the correlation between the
Brownian motions and develop an expression that uses the laws of the marginal
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time changes to correct the sample correlation upwards.

We perform tests of pairwise modeling of dependence between stocks and
show that the model makes a significant and quite adequate improvement over
Gaussian correlations in describing the dependence. We therefore advocate that
at a minimum one should use the correlated time change model over Gaussian
models of dependence. The model could be further improved particular with
respect to enhancing the modeling of dependence in the tails.

We also evaluate the model from the perspective of explaining portfolio re-
turns in larger dimensions and find that we have some degree of adequacy for
long-short portfolios. The long only portfolios appear to require a more complex
modeling of dependency. We leave these questions for future research.
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