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Abstract

We report on the adequacy of using Sato processes to value equity
structured products. In models used to price options on realized variance,
the latter must be a random variable with a positive variance. An analysis
of this variance of realized variance for Sato processes shows that these
processes may be suited to option contracts on realized volatility. Nonlin-
ear pricing principles based on hedging to acceptability are outlined for
the purpose of pricing structured transactions. It is shown that typically
different products should be priced using different models. Pricing com-
parisons of Sato process prices with other standard models like Heston
stochastic volatility, with and without jumps, VGSA, local volatility and
local CGMY are also provided. Sato processes tend to overprice cliquets
relative to other models. They also maintain the value of long dated
out-of-the-money realized variance options.

1 Introduction
Equity structured products have cash flows defined by functions of the stock
price from contract initiation to either maturity or early termination. There
are now a wide variety of structures issued by the financial industry including
as typical examples locally and globally, capped and floored, arithmetic or pro-
duct cliquets, options on realized variance, and swing or reverse swing cliquets.
The industry has undergone considerable growth with the US notional in 2004
standing at 12 billion dollars, rising to 50 billion dollars in 2005 and a further
projected growth of up to 25% in 2006. It is the fastest growing investment
class in the United States. Structured Retail Products reports that there are
over 140,000 individual product offerings from over 900 companies representing
a total world sales of over 600 billion Euros.

∗We would like to thank seminar participants at Columbia University, Princeton University,
Institut Henri Poincare, the Global Derivatives Meeting in Paris, May 2007 and the CARISMA
Financial Innovation workshop in London, June 2007, for their suggestions and comments. We
take responsibility for any remaining errors.
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Figure 1: Total Number of Monthly Issues ending in August 2006

For a better appreciation of the development of this market we present graphs
of the total number of monthly issues, and the financial value of these issues in
eight major financial markets. These are Belgium, France, Germany, Italy, The
Netherlands, Spain, the UK and USA. Figure (1) presents the total number of
issues, while the financial values are presented in Figure (2). The longest series
is for Belgium with 128 monthly observations, beginning in January 1996. We
have kept the same length for all series ending in August 2006 and have filled
in the earlier periods with zeros for the other series. The series lengths were for
Belgium, 128, France 110,Germany 78, Italy 105, The Netherlands 86, Spain 82,
the UK 117, and the USA 86.We observe a steady growth in issues in Belgium,
The Netherlands, Spain and the UK, a stabilisation in France and rapid growth
in the German, Italian and US markets. In terms of volume, there is a steady
rise in most markets and rapid growth in the German and US markets. An
appendix provides a list of product names and their common abbreviations.
The pricing, marking and risk management of these products is typically

done by the simultaneous calibration, across strike and maturity, of a stochastic
process model to the prices of vanilla options at market close. The calibrated
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Figure 2: Total Financial Value of monthly Issues ending in August 2006
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model is then employed to generate stock price paths and the product price
is determined on computing a discounted expected cash flow of the specified
payoff. The product is then regularly marked to market using a model selected
for this purpose for the period the product is held by the issuer. Different
products are generally marked using different models that address the product
risks adequately. The validity of such a pricing methodology is grounded as we
show below (See section 6) in the principles of pricing to acceptability (Carr,
Geman, Madan (2001)).
Four important lessons emerge from this analysis (See section 6 for further

details). First and foremost is the observation that risk neutral pricing though
useful is not relevant for the pricing of structured products. We interpret risk
neutral pricing in its classical form of pricing all products under a single change
of measure. This linear pricing rule applies to liquid markets quoting bidirec-
tional prices but the ask and bid prices for structured products are respectively
convex and concave functionals. Second, price variation across models is incor-
rectly seen as model risk as the highest are close to ask prices while the lowest
are close to bid prices and the other model valuations are not associated with
any transaction and do not have the status of being prices. Third risk neu-
tral models are useful as one seeks the maxima and minima of admissible risk
neutral valuations to determine ask and bid prices respectively. It is expected,
for example, that the maximum risk neutral valuation will occur for different
products at different models. Hence, it is natural, proper and accurate for differ-
ent products to be marked using different models. Fourth and finally, we show
that if the same cone of acceptability is applied across the industry then even
though ask and bid prices are not linear, arbitrage across market partcipants is
nonetheless excluded.
Apart from the underlying asset, the relatively most liquid traded assets

with market information are vanilla options on the underlying. The activity of
issuing, marking to market, and risk managing structured products has naturally
led to demands for creating stochastic process models capable of synthesizing
the surface of vanilla option prices. These prices are typically represented by
the matrix of implied volatilities indexed by the strike and maturity dimensions.
It is well recognized that the Black and Scholes (1973) and Merton (1973)

geometric Brownian motion model is not capable of such a surface synthesis.
Hence this model is never used as a candidate model for structured product
valuation. Early improvements on this model offered by Lévy processes like the
variance gamma model (Madan and Seneta (1990), Madan, Carr and Chang
(1998)), or the hyperbolic model (Eberlein and Keller (1995), Eberlein (2001))
were found to be successful in synthesizing the slice across strikes for a given
maturity, and on occasion the slice across maturity for a given strike. These
models are on occasion employed to price structures possessing a dominating
cash flow at a point of time, like a structured note or a credit default swap.
However, these models have a theoretical term structure of skewness and kurtosis
inconsistent with observed market surfaces. For Lévy processes (see Konikov
and Madan 2002), the skewness decreases like the reciprocal of the square root
of maturity while excess kurtosis decreases like the reciprocal of maturity, but
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these entities are often constant or increasing in market implied surfaces. As a
consequence, these models are not employed to value structures with a balanced
cash flow at a variety of dates.
Models that can synthesize the surface include the Heston stochastic volatil-

ity model (Heston (1993)), preferably including jumps (Bakshi, Cao and Chen
(1997)), Lévy stochastic volatility models like VGSA proposed in Carr, Ge-
man, Madan and Yor (2003), and nonparametric structures like local volatility
(Dupire (1994), Derman and Kani (1994)) and the local Lévy model (Carr,
Geman, Madan and Yor (2004)). The stochastic volatility models are two di-
mensional Markov models and it is known that the vanilla option surface is not
really capable of identifying entities like the rate of mean reversion in variance or
the volatility of the instantaneous variance. The nonparametric structures like
local volatility and local Lévy processes are one dimensional Markov processes
with local volatility accessing all its skewness from the leverage effect engineered
by the dependence of volatility on the asset price. Local Lévy processes have
an additional source of skewness embedded in a skewed local motion.
Recently, Carr, Geman, Madan and Yor (2007) showed that a wide class

of additive processes (with independent but inhomogeneous increments) can
also synthesize the surface of option prices, remarkably with as few as four
parameters. These processes are associated with the law at unit time of a
subclass of Lévy processes defined by the condition that the law at unit time
be self decomposable or a limit law. Sato (1991) showed that when such a self
decomposable law is scaled to define the marginal law at time t as that of tγ

times the unit time law, then there always exists an additive process possessing
these marginal laws. We term this additive process the Sato process.
The fact that Sato processes fit the surface well on many underliers for most

days does not automatically qualify them as good models for stuctured product
valuation. In this regard we answer the title of Schoutens, Simons and Tistaert
(2004), "A Pefect Calibration! Now what?". This is done by first investigating
how forward implied volatility curves in the model contrast with those observed
in reality across the spectrum of assets and time periods.
Additionally, our interest in Sato processes is further motivated by contracts

trading options on realized variance or volatility, with a long maturity. The
underlier for these contracts is an average realized variance that in many models
converges to its expected value. Consequently the variance of the cash flow
declines towards zero. As a result, out-of-the-money options on realized variance
have negligible model values. In order that long maturity out-of-the-money
options on realized variance be valuable in a model, the average realized variance
must remain a random variable and not converge to a constant. We show that
the Sato processes have this feature. An alternative approach, not pursued here,
is to employ processes with long range dependence (Heyde and Yang, 1997).
The object of this paper is to report on the adequacy of Sato processes as

valuation models for equity structured products. We report on the properties of
the forward return distributions embedded in these processes and compare the
valuations they provide for structured products with the stochastic volatility,
local volatility and local Lévy models. In the process we develop a uniform

5



methodology for simulating a large class of Sato processes based on the Ziggurat
method of Marsaglia and Tsang (1984).
We find that the inhomogeneity embedded in Sato processes enhances for-

ward return skews and reduces at the money volatilities. This leads to a possible
overpricing of cliquets relative to other models. In contrast, Sato processes do
maintain the value of long dated out of the money options on variance or volatil-
ity, while in contrast these values drop sharply towards zero for a number of
parametric models.
The outline of the paper is as follows. Section 2 presents the Sato process,

its spot and forward characteristic functions and Lévy systems. A preliminary
evaluation of embedded forward returns is presented in section 3 based on an
illustrative calibration to S&P 500 options on May 17, 2006. Section 4 presents
a theoretical analysis of the variance of long maturity average realized variance
for Sato processes. The uniform strategy for the simulation of a large class of
Sato processes is developed in Section 5. Section 6 outlines the pricing principles
relevant for the pricing of structured products. Section 7 summarizes a number
of standard models used for structured product pricing. Section 8 presents the
parameter values for the calibrated models. The products priced in this study
are described in Section 9. Pricing results are reported in Section 10. Section
11 concludes.

2 The Sato Process

The Sato processes we consider, as models for the logarithm of the stock price,
are constructed from the law at unit time of a subclass of pure jump Lévy
processes. Let L(t) denote this Lévy process and we suppose that the Lévy
density is k(x), x ∈ R−{0}. The appropriate subclass is defined by the condition
that L(1) = X be a zero mean self decomposable (SD) random variable with
no Gaussian component. It is shown in Sato (1999) that self decomposability is
equivalent to h(x) = |x|k(x) being a decreasing function of x for x > 0 and an
increasing function of x for x < 0. Carr, Geman, Madan and Yor (2007) refer
to the size scaled Lévy density h as the self decomposability characteristic.
For the Sato process the marginal laws of (X(t), t ≥ 0) are given by scaling

and for a scaling constant γ > 0, we have

X(t)
(d)
= tγX (1)

It follows that the characteristic function of X(t) is of the form

φX(t)(u) = E[eiuX(t)]

= φX(ut
γ).

= exp

µ Z ∞

−∞

³
eiut

γx − 1− iutγx1|x|<1
´
k(x)dx

¶
The process X(t) is employed in modelling the process for the logarithm of
the stock price on incorporating in addition a drift correction. Since for a risk
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neutral stock price model the continuously compounded return equals r − q,
where r is the continuously compounded interest rate and q is the dividend
yield, we define

S(t) = S(0)e(r−q)t+X(t)(E[exp (X(t))])−1,

where we assume that E [exp (X(t))] is finite. We may then write

ln

µ
S(t)

S(0)

¶
= (r − q)t− ln

³
φX(t)(−i)

´
+X(t). (2)

It is shown in Carr, Geman, Madan and Yor (2007) that X(t) is an additive
process with the inhomogeneous Lévy density g(x, t) given by

g(x, t) = 1x>0

Ã
−h

0 ¡ x
tγ

¢
γ

t1+γ

!
+ 1x<0

Ã
h0
¡
x
tγ

¢
γ

t1+γ

!
(3)

The self decomposability property of h0 < 0 for x > 0 and h0 > 0 for x < 0 is
then critical to g(x, t) being positive and thus a density. The subclass of Sato
processes we focus on here is one in which the inhomogeneous Lévy density is
itself also decreasing in x for positive x and increasing in x for negative x. This
is the case for example when h(x) and h(−x) are both completely monotone
functions for x > 0.
Since we know that we have an additive process consistent with the marginals

the forward log returns have an easily defined characteristic function given by

φ
ln(S(t+h)

S(t) )
(u) =

exp (iu((r − q)h− lnφX(−i(t+ h)γ) + lnφX(−itγ))
φX(u(t+ h)γ)

φX(ut
γ)

(4)

We may employ these characteristic functions to construct forward log return
densities by Fourier inversion. We use these densities via the transform methods
of Carr and Madan (1999) to price options on the forward gross return

³
S(t+h)
S(t)

´
.

We report on the prices of options on the forward gross return and construct
the Black-Merton-Scholes implied volatility curves for these forward starting
options at a variety of forward dates t for a range of maturities h and associated
strikes a. A forward starting call option with a 100 dollar notional on the gross
return pays at t+ h for the strike a the cash flow

100

µ
S(t+ h)

S(t)
− a

¶+
.

This option has a time t price wt(a, h) in the model obtained given by

wt(a, h) = Et

"
e−rh

µ
S(t+ h)

S(t)
− a

¶+#
.
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Note that the conditional expectation Et by the independence of the increments
depends only on the calendar time t.
The self decomposable characteristics we employ, in addition to the Vari-

ance Gamma (V G) (Madan, Carr and Chang (1998)), the Normal Inverse
Gaussian (NIG) (Barndorff-Nielsen (1998)), and the Meixner (MXNR) process
(Schoutens (2002), (2003)) reported in Carr, Geman, Madan and Yor (2007) are
the CGMY (Carr, Geman, Madan and Yor (2002)) and the GH, the generalized
hyperbolic model (Eberlein (2001), Eberlein, Prause (2002)).

3 Properties of Forward Returns

We have observed that many implied volatility surfaces on many underliers and
on many days are well fitted by the marginal distributions associated with the
Sato process and the spot characteristic functions (4) taken at t = 0. This
finding was reported in Carr, Geman, Madan and Yor (2007).
We now assess the impact of the time inhomogeneity built into the Sato

process on the distribution of forward log returns. For this purpose we construct
forward Black-Merton-Scholes implied volatility surfaces σt(a, h) from the for-
ward gross return call prices wt(a, h). These are the forward, at time t > 0,
gross return implied volatility surfaces associated with any Sato process model
calibrated to market implied volatilities at time 0. Every Sato process when
calibrated at time 0 produces via the characteristic function (4) the forward call
option surface wt(a, h) for any forward date t, across the range of strikes a and
maturities h. These prices may then be transformed into Black-Merton-Scholes
implied volatilities σt(a, h). Our objective here is to ascertain the difference be-
tween these forward implied volatility surfaces and those produced by the Sato
process at time 0. The latter are consistent with wide market observations as
documented in Carr, Geman, Madan and Yor (2007), the former may not be.
With a view to detecting whether these forward return distributions are close

to the spot distributions associated with the Sato process at time 0, we first ask
if these forward Sato option prices are well fitted by the time 0 Sato process
or the spot Sato model. In essence we ask if the family of forward Sato return
distributions are similar to the type of distributions seen daily in the spot option
surfaces.
For this exercise we consider 8 models. These are the scaled self decom-

posable forms of the VG,NIG,MXNR,GH and the CGMY model with Y
fixed at the levels .25, .5, .75 and 1.25. These models are all fitted to European
option prices on the S&P500 index for May 17, 2006 with maturities between
one month and two years. The data is obtained from OptionMetrics available
at WRDS the Wharton Research Data Service. Only out-of-the money options
are utilized to minimize the impact of American features. Furthermore, Euro-
pean prices are constructed by first fitting a geometric Brownian motion model
of constant volatility to the American price and using this volatility via the
Black Scholes formula to generate a European price that is subsequently used
in the calibrations. There were 230 options in all. The fit statistics reported
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are the root mean square error (RMSE), the average absolute error (AAE)
and the average percentage error (APE) defined as the average absolute error
divided by the average option price. Table 1 presents the fit statistics of the
eight models on the spot surface.

TABLE 1
Spot Surface Fit Statistics
Model RMSE AAE APE
VGSSD 0.6942 0.5502 0.0331
CGMYSSD1 0.6905 0.5468 0.0328
CGMYSSD2 0.6968 0.5525 0.0332
CGMYSSD3 0.7129 0.5662 0.0340
CGMYSSD4 0.7767 0.6073 0.0365
NIGSSD 0.7084 0.5636 0.0338
MXNRSSD 0.6889 0.5471 0.0328
GHSSD 0.6892 0.5466 0.0329

We observe that all the models fit the 230 options of the spot surface at a
comparable level.
We next construct the forward option price surfaces wt(a, h) for t = 1, 2, 5

years. We construct three surfaces using 21 strikes a ranging from 80 to 120 in
2 dollar intervals, and four maturities h, ranging from .25 to one year in steps
of .25. This gives us a total of 84 options for each of the three forward dates.
These prices are obtained by Fourier inversion of the characteristic function for
forward returns (4) modified as described in Carr and Madan (1999) for option
pricing. The parameter values used are those estimated for the spot model and
hence we investigate the nature of future implied volatilities of the estimated
spot model in the model.
We then fit each Sato process model at time 0, to each of its three forward

surfaces. The fit statistics of all eight models are presented in Tables 2, 3 and
4.

TABLE 2
One Year Forward Surface
Model RMSE AAE APE
VGSSD 0.0907 0.0715 0.0537
CGMYSSD1 0.0991 0.0814 0.0395
CGMYSSD2 0.0859 0.0718 0.0348
CGMYSSD3 0.1459 0.1223 0.0594
CGMYSSD4 0.1426 0.0943 0.0457
NIGSSD 0.0693 0.0561 0.0272
MXNRSSD 0.0783 0.0638 0.0309
GHSSD 0.0626 0.0494 0.0240
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TABLE 3
Two Year Forward Surface
Model RMSE AAE APE
VGSSD 0.0898 0.0716 0.0596
CGMYSSD1 0.1051 0.0863 0.0447
CGMYSSD2 0.0869 0.0694 0.0359
CGMYSSD3 0.1683 0.1378 0.0709
CGMYSSD4 0.2056 0.1492 0.0764
NIGSSD 0.0758 0.0605 0.0312
MXNRSSD 0.0905 0.0752 0.0389
GHSSD 0.0848 0.0682 0.0353

TABLE 4
Five Year Forward Surface
Model RMSE AAE APE
VGSSD 0.0783 0.0623 0.0640
CGMYSSD1 0.3362 0.2478 0.1453
CGMYSSD2 0.1319 0.1042 0.0611
CGMYSSD3 0.2046 0.1621 0.0929
CGMYSSD4 0.2882 0.2166 0.1217
NIGSSD 0.1018 0.0803 0.0461
MXNRSSD 0.1248 0.1034 0.0603
GHSSD 0.1290 0.1061 0.0622

We observe from the reported average percentage errors in these tables, that for
each model as we go out in the forward date, the quality of the fit of the spot
model to the forward surface deteriorates. This is indicative of a divergence of
the internal forward return distributions of the model from what is seen in spot
markets.
We may also measure the average difference in implied volatilities for all

strikes and maturities between the forward implied volatility curves and the spot
curve for each model. These are measured by the root mean square difference
in implied volatilities and are reported in Table 5.

TABLE 5
RMSE of Spot and Forward Implied Volatility Curve
Model One Year Two Years Five Years
VGSSD 0.0255 0.0323 0.0407
CGMYSSD1 0.0534 0.0551 0.0555
CGMYSSD2 0.0524 0.0534 0.0537
CGMYSSD3 0.0508 0.0517 0.0517
CGMYSSD4 0.0494 0.0504 0.0525
NIGSSD 0.0511 0.0519 0.0517
GHSSD 0.0536 0.0549 0.0549
MXNRSSD 0.0534 0.0544 0.0538
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Figure 3: Forward Implied Volatilities for the VG Sato Process.

We observe that generally the inhomogeneity tends to take the implied
volatility curves further from the initial spot curve as we move further into
the future of the Sato process models.
To further investigate the nature of this divergence we graph the forward

implied volatility curves for each model. The curves are for fixed maturities of 3
months, 6 months, 9 months and one year. For each maturity we show in blue
the spot curve, while in red, black, and magenta we show the curve one year
forward, two years forward, and five years forward. We present 5 graphs, one
for CGMY with Y = .5, and the others for Sato processes associated with the
V G, NIG, MXNR, andGH distributions. Each graph contains four subgraphs,
one for each of four maturities, with four curves on each subgraph, for the spot
implied volatility curve, and the one, two and five year forward implied volatility
curves.
We see from these graphs that the forward return distributions are closer to

each other than they are to the spot distribution. They also have substantially
lower at the money volatilities and sharper skews than those of the spot curve.
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Figure 4: Forward Implied Volatilities for the CGMY Sato process with Y=0.5
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Figure 5: Forward Implied Volatilities for the NIG Sato process
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Figure 6: Forward Implied Volatilities for the MXNR Sato process
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Figure 7: Forward Implied Volatilities for the GH Sato process
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4 The Variance of Realized Variance for Sato
Processes

We are interested here in analysing the long term behavior of average realized
quadratic variation for the additive Sato processes associated with the scaled
marginals of a self decomposable law at unit time. For this purpose it is sufficient
to focus attention on the symmetric case. The inhomogeneous Lévy density for
the jumps is given on the positive side by

g(x, t) = − h0
³ x
tγ

´ γ

tγ+1
. (5)

We define by q(t) the realized quadratic variation to time t per unit time or

q(t) =
V (t)

t

V (t) =
X
s≤t

(∆X(s))2

The expectation of V (t) is easily evaluated on noting that

M(t) = V (t)−
Z t

0

Z ∞

−∞
x2g(x, u)dudx

is a martingale. Hence

E [V (t)] = −2
Z t

0

du

Z ∞

0

dx x2h0
³ x

uγ

´ γ

uγ+1

Making the change of variable yuγ = x we get

E [V (t)] = −2
Z ∞

0

dy y2h0(y)
µZ t

0

du u2γuγ
γ

uγ+1

¶
=

µ
−
Z ∞

0

dy y2h0(y)
¶µZ t

0

du 2γu2γ−1
¶

=

µ
−
Z ∞

0

dy y2h0(y)
¶
t2γ

The expectation of V (t)/t is thenµ
−
Z ∞

0

dy y2h0(y)
¶
t2γ−1

and this is constant, increasing or decreasing according as γ equals, exceeds, or
is below 1/2. We note that this expectation is the price of the variance swap
contract to time t. For Lévy processes X(t) this price is a constant independent
of maturity and here with scaling we have the possibility of a term structure in
the variance swap rate.
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From the perspective of options on q(t), our interest shifts to the random
variable q(t). The Laplace transform of q(t) is

E [exp (−λq(t))] = E

·
exp

µ
−λ
t
V (t)

¶¸
and we may determine the variance of q(t) from the Laplace transform of V (t).
It is shown in Carr, Geman, Madan and Yor (2005) that whenX(t) is a Lévy

process with Lévy density g(x) then V (t) is a Lévy process with Lévy density

v(y) =
g(
√
y)

2
√
y
+
g(−√y)
2
√
y

, y > 0

It follows that the Laplace transform of V (t) is

E [exp (−λV (t))] = exp
µ
−t
Z ∞

0

(1− e−λy)v(y)dy

¶
and so for q(t) we get

E

·
exp

µ
−λ
t
V (t)

¶¸
= exp

µ
−t
Z ∞

0

³
1− e−λy/t

´
v(y)dy

¶
The negative of the partial derivative of this Laplace transform with respect

to λ evaluated at λ = 0 is

E

·
V (t)

t

¸
=

Z ∞

0

yv(y)dy

and this is constant across t as expected. For the second partial derivative we
have

∂

∂λ

µ
exp

µ
−t
Z ∞

0

³
1− e−λy/t

´
v(y)dy

¶µ
−
Z ∞

0

e−λy/tyv(y)dy

¶¶
= exp

¡−t R∞0 ¡
1− e−λy/t

¢
v(y)dy

¢ ¡− R∞0 e−λy/tyv(y)dy
¢2

+ exp
¡−t R∞

0

¡
1− e−λy/t

¢
v(y)dy

¢ R∞
0

e−λy/ty2v(y)dy 1t

Evaluating at λ = 0 and subtracting the square of the expectation we get
that the variance is R∞

0
y2v(y)dy

t

and thus the variance of q(t) decreases like t, with the variable approaching a
constant, as we expect.
In the case of a Sato process, however, we have that the inhomogeneous Lévy

density for V (t) is

v(y, t) =
g(
√
y, t)

2
√
y

+
g(−√y, t)
2
√
y
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The Laplace transform of V (t) is now

E [exp (−λV (t))] = exp
µ
−
Z t

0

Z ∞

0

(1− e−λy)v(y, u)dydu

¶
and for q(t) we get

E

·
exp

µ
−λ
t
V (t)

¶¸
= exp

µ
−
Z t

0

Z ∞

0

(1− e−λy/t)v(y, u)dydu

¶
The mean value is given by

1

t

Z t

0

Z ∞

0

yv(y, u)dydu

and in the symmetric case we have

1

t

Z t

0

Z ∞

0

y
g(
√
y, u)√
y

dydu = −1
t

Z t

0

du

Z ∞

0

dy
√
yh0

µ√
y

uγ

¶
γ

uγ+1

We now make the substitution
√
y = uγw to get

−1
t

Z t

0

du

Z ∞

0

dw h0(w)uγw2
γ

uγ+1
u2γ2 =

µ
−
Z ∞

0

dw h0(w)w2
¶
t2γ−1

as we computed before.
For the variance we wish to evaluate the second partial derivative with re-

spect to λ and on subtracting the square of the mean we will have on evaluating
at λ = 0 the term

1

t2

Z t

0

Z ∞

0

y2v(y, u)dydu =
1

t2

Z t

0

Z ∞

0

y2
g(
√
y, u)√
y

dydu

= − 1
t2

Z t

0

Z ∞

0

p
y3h0

µ√
y

uγ

¶
γ

uγ+1
dydu

= − 2
t2

Z t

0

Z ∞

0

u3γw3h0(w)
γ

uγ+1
u2γwdwdu

=

µ
−
Z ∞

0

w4h0(w)dw
¶
1

t2

Z t

0

2γu4γ−1du

=

µ
−
Z ∞

0

w4h0(w)dw
¶
t2(2γ−1)

2

and we see that unlike the Lévy case the variance of q(t) is constant, increasing
or decreasing according as 2γ equals, exceeds or falls short of unity. Hence, for
the Sato process q(t) can remain a random variable with a positive variance at
all t.
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5 Uniformly Simulating Sato Processes

Suppose we wish to generate the path of the Sato process from time 0 to time
T. We do this by generating the paths of the log price and then taking the
exponential. The log price over an interval of length t has a drift as implicitly
specified in the equation (2) plus a sum of jumps with the compensator given
through the density in equation (3). Making the change of variable u = x/tγ we
may write the density for the compensator of the corresponding process U(t)
with jumps u as

l(u, t) = 1u>0

µ
−h

0(u)γ
t

¶
+ 1u<0

µ
h0(u)γ

t

¶
. (6)

We may then simulate the process lnS(t) as

lnS(t) = lnS(0) + a(t) +
X
s≤t

sγ∆U(s)

where U(t) is a jump process with compensator specified via the density (6) and
a(t) is the drift component.
The process U(t) has an arrival rate of jumps decreasing in time as is evi-

denced by the division by t in equation (6). The distribution of jump sizes is
however independent of t and has a decreasing density in the absolute value of
the jump size. Of course these jumps in the process U have to be scaled by tγ

at time t to get the jumps of the process for the logarithm of the stock price.
The arrival rate of jumps in the process U(t) on the positive side, for jumps

exceeding ε, is given by
Ap

t
=
γ

t

Z ∞

ε

−h0(u)du

while on the negative side we get

An

t
=
γ

t

Z −ε

−∞
h0(u)du.

The distribution of jump sizes ε+ v on the positive side is

fp(v) =
h0(ε+ v)R∞
ε

h0(u)du
, v > 0

while on the negative side it is

fn(v) =
h
0
(−ε− v)R −ε

−∞ h0(u)du
, v > 0

Both fp(v), fn(v) are decreasing densities, for all Sato processes that we
consider. This makes them ideally suited to simulation using a Ziggurat cover
as described in Marsaglia and Tsang (1984). We draw from these densities by
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the Ziggurat method where for the distribution of the tail we approximate by
an exponential density, except for the CGMY. In the case of the CGMY we
have an exact expression in terms of the incomplete gamma function. The shape
parameter can be organized to be 2−Y > 0, on integrating by parts two times.
We use the Ziggurat to simulate the paths on a daily basis. For the first

day however the division of arrival rates by t amounts to a division by zero and
we cannot do the simulation of the first day using the Ziggurat. Here we use
the time 0 characteristic function of the log price for one day and construct
the cumulative distribution function by Fourier inversion. An application of the
inverse uniform method then yields a draw from the log price process at the
first day. Subsequently we employ the Ziggurat method, first drawing a Poisson
number of positive and negative jumps, and then using the Ziggurat to sample
the actual jump sizes of the process for U(t). The move in the logarithm of the
stock price is then formed by adding to the required drift, the positive jumps in
U(t), scaled at time t by tγ , and subtracting the similarly scaled jumps on the
negative side.

6 Structured Product Pricing Principles

The standard methodology of risk neutral pricing is not relevant for the pricing
of structured products, though we shall see that risk neutral models play a
critical role. Under the principles of risk neutral pricing all products are priced
under a single change of measure and this linearity of the pricing operator is a
consequence of the absence of arbitrage (Harrison and Kreps (1979), Harrison
and Pliska (1981)). These are the pricing principles relevant to liquid markets
where one may transact in both directions at the same price. For specially
designed structured products there are two transaction prices and one buys at
the ask price and sells at the bid price and these prices are not generally given
by a linear operator.
The properties of the bid and ask prices may be seen by considering the con-

sequences of hedging to acceptability. A structured product may be represented
as a state contingent cash flow whereby we payout in present value terms the
sum x = (xs, s ∈ S) for a finite set of states s. We may hedge this liability by
trading in zero cost or self financed liquid assets with asset j yielding the cash
flow (Yjs, s ∈ S). With the position αj in liquid asset j and the sale of x at the
ask price a we have the net cash flow

c = a+ α0Y − x.

The cash flow c is certainly acceptable if cs ≥ 0 for all states ≥ s.More generally
we adopt the definition of acceptable cash flows of Artzner, Eber, Delbaen and
Heath (1998), also studied in the form presented here in Carr, Geman and
Madan (2001). In this formulation the cash flow c is acceptable if it belongs to
a convex cone containing the positive orthant. More specifically we suppose the
existence of a finite set of valuation or test measures given by the columns of
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the positive matrix B such that c is acceptable just if cB or

a+ (α0Y − x)B ≥ 0.
The ask price for the cash flow is the smallest such price and is then the solution
to the linear programming problem

a(x) = Min(a,α) a

s.t. a+ α0Y B ≥ xB

By virtue of being a solution to such a minimization problem we see that the
ask price is a convex functional of the liability x and linear pricing does not
hold.
A similar argument shows that the bid price b(x) is the solution to

b(x) = Max(b,β) b

s.t. b+ β0Y B ≤ xB

The solution to a maximization problem is a concave functional and again we
do not have a linear pricing rule.
These considerations establish our remark in the introduction that direc-

tional ask prices are convex functionals while bid prices are concave functionals.
We may learn more about the ask and bid prices by considering the dual to

these linear programming problems. The dual to the ask price problem yields

a(x) = Maxq≥0 q0x
s.t. Y Bq = 0

10q = 1
q ≥ 0

Similarly we have for the bid price problem that

b(x) = Minq≥0 q0x
s.t. Y Bq = 0

10q = 1
q ≥ 0

The nonnegativity of q along with the condition that the entries sum to
unity yields that Bq is a special measure on the set of scenarios, one that is in
the convex hull of the test measures B. Furthermore, the measure Bq is a risk
neutral measure as it reprices the zero cost liquid assets Y at their zero market
price. The measures Bq are then a subcollection of risk neutral models with the
bid price the smallest of these model valuations while the ask price is the largest.
Hence in general we may compute a wide range of admissible model valuations
with the ask price being the largest valuation and the bid price, the smallest

21



valuation. All other valuations do not represent prices but are just candidate
valuations. The differences in model valuations are therefore not evidence of
model risk but just intermediate calculations in the procedure to locate the bid
and ask prices.
We also learn from the dual that the ask price will be attained for different

products at different models and the use of different models to mark different
products is no inconsistency but just the logical consequence of hedging to
acceptability.
Though risk neutral valuation is not relevant for structured product valua-

tion as linear pricing fails, risk neutral models and valuations by market tested
equivalent martingale measures remain useful. This is because the models de-
fined byBq are risk neutral models by virtue of the repricing condition Y Bq = 0.
However the search is constrained to be in the convex hull of B and not over
all risk neutral models or equivalent martingale measures. Were we to take
the latter, it is well known that the ask price would be a superreplication price
while the bid price would be a subreplication price and the spread too wide.
Our subsequent analysis restricts attention to market tested equivalent martin-
gale measures as embedded in calibrated pricing models commonly used in the
financial industry.
Finally we observe that these nonlinear, convex and concave ask and bid

prices are free of arbitrage provided market participants use the same cone
of acceptability. In this case, for 0 < λ < 1, the purchase of the package
λx1 + (1− λ)x2 at the ask price a(λx1 + (1− λ)x2) coupled by the sale of the
components at the bid prices λb(x1), (1−λ)b(x2) results in the non-positive cash
flow

−a(λx1 + (1− λ)x2) + λb(x1) + (1− λ)b(x2)

≤ −a(λx1 + (1− λ)x2) + b(λx1 + (1− λ)x2) ≤ 0.

The first inequality is a consequence of the concavity of the bid price and the
second follows from the domination of bid prices by ask prices.
There are then four important consequences of hedging to acceptabilty, noted

in the introduction. The ask and bid prices are not given by a linear or risk
neutral pricing principle. The former is a convex functional obtained as the
maximum of admissible risk neutral valuations while the latter is a concave
functional obtained as the minimum of a similar set of risk neutral valuations.
The model valuations supporting products vary with the product being priced.
Finally, agreement on the cone of acceptability leaves these nonlinear pricing
rules free of exposure to arbitrage.

7 The Reference Models

Apart from the Sato processes used to calibrate the surface there are a number
of standard models used in the financial industry for calibrating a surface of
option prices and then valuing a variety of structured products. These include
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the Heston stochastic volatility (HSV ) model (Heston (1993)), a stochastic
volatility extension of the Merton jump diffusion model that we term (SV J),
(Bakshi, Cao and Chen (1997)). A stochastic volatility extension of a Lévy
process termed (V GSA) (Carr, Geman, Madan and Yor (2003)). In addition
we consider two nonparametric structures, local volatility (LV ) (Dupire (1994),
Derman and Kani (1994)) and a local Lévy (LL) (Carr, Geman, Madan and
Yor (2004)) process that in particular is a localized form of CGMY. We briefly
summarize these processes in separate subsections of this section.

7.1 HSV

The Heston stochatic volatility model has the risk neutral stock price S(t) evolv-
ing in accordance with the stochastic differential equations

dS(t) = (r − q)S(t)dt+
p
v(t)S(t)dWS(t)

dv(t) = κ
¡
θ2 − v

¢
dt+ λ

p
v(t)dWv(t)

dWS(t)dWv(t) = ρdt

where r is the risk free rate, q the dividend yield, κ is the mean reversion rate
in the variance, θ is the long term volatility, λ is the volatility of volatility,
(WS(t),Wv(t), t ≥ 0) are standard Brownian motions with instantaneous corre-
lation ρ. This is a five parameter process where in addition to κ, θ, λ, and ρ one
also estimates the level of the initial variance v(0). The model was simulated
with a Milstein first order correction to the diffusion evolution and as zero is
a reflecting boundary with positive θ, we replaced the simulated value of y on
each path by 10−7 whenever it went negative.

7.2 SVJ

The Merton jump diffusion model is extended to incorporate stochastic volatility
by the model specification in differential form

dS(t) = (r − q)S(t)dt+
p
v(t)S(t)dWS(t)

+S(t_)
Z ∞

−∞
(ex − 1) (µ(dx, dt)− λJk(x)dxdt)

dv(t) = κ (η − v) dt+ λ
p
v(t)dWv(t)

dWS(t)dWv(t) = ρdt

k(x) =
1

σJ
√
2π
exp

µ
−(x− µJ)

2

2σ2J

¶
This model extends the Heston model by allowing for jumps of size x at time t
as counted by the random measure µ(dx, dt) with arrival rate λJ and Gaussian
jump sizes of mean µJ and jump variance σ

2
J . There are in all 8 parameters,

given by v(0), λJ , µJ , σJ , κ, η, λ, and ρ.
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7.3 VGSA

This is a VG Lévy process running at a speed given by a CIR or square root
process. The specific dynamics are

S(t) = S(0) exp ((r − q)t)
exp (X(Y (t))

E[exp (X(Y (t))]

Y (t) =

Z t

0

y(u)du

dy(t) = κ(θ − y(t))dt+ λ
p
y(t)dWy(t)

where (X(t), t ≥ 0) is the two parameter V G process with Lévy measure

k(x) = exp (Ax−B|x|)
A = (G−M)/2

B = (G+M)/2

There are in all six parameters, y(0), G,M, κ, θ, and λ.

7.4 LV

The local volatility model is a nonparametric model with continuous sample
paths and stock price dynamics given by

dS(t) = (r − q)S(t)dt+ σ(S(t), t)S(t)dW (t)

with a nonparametric local volatility surface σ(S, t) and (W (t), t ≥ 0) a driving
Brownian motion. The function σ(S, t) may be inferred from the call option
price surface C(K,T ) for the call price of strike K and maturity T via the
Dupire equation

σ2(K,T ) = 2
CT + qC + (r − q)KCK

K2CKK

For smooth derivatives with respect to both arguments we employ model prices
from a calibration of V GSSD to infer the local volatility function.

7.5 LL

The local Lévy model is a generalization of local volatility that runs a pure jump
Lévy process with Lévy measure k(x) at a nonparametric space time dependent
speed a(S, t). The dynamics are given in compensated jump form by

dS(t) = (r − q)S(t)dt+ S(t_)
Z ∞

−∞
(ex − 1) (µ(dx, dt)− a(S(t_), t)k(x)dxdt)

The specific Lévy measure we localize is CGMY where the C parameter is
absorbed by the speed function and

k(x) = 1x<0
exp(−5|x|)
|x|1.5 + 1x>0

exp (−10x)
x1.5
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This specification is the result of a number of studies on a variety of index
options. The nonparametric speed function may be recovered on solving the
convolution equationZ ∞

−∞
b(y, t)ψe(k − y)dy = cT + qc+ (r − q)ck

c(k, T ) = C(ek, T )

ψe(z) = 1z<0

Z z

−∞
(ez − ex) k(x)dx+

1z>0

Z ∞

z

(ex − ez) k(x)dx

a(K,T ) =
b(ln(K), T )

K2CKK
.

Again for smooth derivatives we employed call option prices from the calibration
of V GSSD.

7.6 The Sato processes

We employ the Ziggurat simulator described in section 4 to simulate the Sato
processes. This method is readily applied to processes with an elementary closed
form for the Lévy measure. Hence we restricted attention to the MXNR and
CGMY processes. The V G is also amenable to analysis but as forward returns
are in this case from a compound Poisson process with finite activity and a
charge at zero we considered just the CGMY and MXNR processes. For
CGMY we considered three values of Y and these are .25, .5 and .75.

8 The Calibrated Models

We present here the parameters and fit statistics for the calibrated processes.
The fit statistics are in order the root mean square error (RMSE), the average
absolute error (AAE), and the average percentage error (APE). The number
of options used in the calibration was 230 and they ranged in maturity from a
month to two years.
The HSV parameters were initial volatility 0.1424, long term volatility

0.1564, mean reversion 3.1140, volatility of volatility 0.4764 and correlation
−0.7124. The fit statistics are 0.6453, 0, 4798, 0.0288.
The SV J parameters were initial variance 0.02064, jump arrival rate 2.52,

mean jump size 0.000574, jump standard deviation 0.0155,mean reversion 2.701,
volatility of volatility 0.5147, and correlation −0.6987. The fit statistics were
0.6251, 0.4705, 0.0283.
The V GSA parameters were initial speed 10.8277, negative decay rate 24.9927,

positive decay rate 46.0252, mean reversion of speed 2.7896, long term speed
5.9009 and volatility of speed 7.1422. The fit statistics were 0.7445, 0.5735,
0.0345.
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Local volatility and Local Lévy used V GSSD for generation with the para-
meters σ = .1218, ν = 0.6566, θ = −0.1209, γ = 0.5326. The fit statistics were
0.6942, 0.5502, 0.0331.
The CGMY SSD parameters for Y = .25 were C = 0.7461, G = 7.0953,

M = 25.46, γ = 0.5329. The fit statistics were 0.6905, 0.5468, 0.0328. The
respective values for Y = .5 were C = 0.3673, G = 5.9112, M = 28.3871, and
γ = 0.5332. The fit statistics were 0.6968, 0.5525, 0.0332. For Y = .75 we have
C = 0.1829, G = 4.8074, M = 38.7755, γ = 0.5337. The fit statistics were
0.7129, 0.5662, 0.0340.
Finally for the Meixner process the parameters were a = 0.1755, b = −1.7765,

d = 0.6349 and γ = 0.5329. The fit statistics were 0.6889, 0.5481, 0.0328.

9 The Structured Products Priced

On these path spaces we priced four cliquets, options on realized variance and
options on volatility. The first two cliquets priced are arithmetical with local
floors and global caps, or local caps and global floors. We denote by Rn the
return over month n. For each product we consider five maturities given by the
end of the first to the fifth year.
For the locally floored and globally capped cliquet with local floor LF and

global cap GC the payoff at maturity is

LFGC(ω) =Min

" X
n

(Rn ∨ LF ), GC
#

while for the locally capped with cap LC and globally floored with floor GF it
is

LCGF (ω) =Max

" X
n

(Rn ∧ LC), GF
#

We denote by ω a particular realization of the path space of prices and returns.
The local floors and caps were ±5, 10, 15 percent while the global caps and floors
were ±25 and 50 percent. There were therefore 6 products in each of the two
classes LFGC and LCGF.
In addition to these basic cliquets we priced swing and reverse swing cli-

quets. Swing cliquets payoff on large local moves independent of direction and
incorporate a global cap. The reverse swing cliquet pays on small moves locally
and has the payoff dropping to zero for a large move. The exact payoff on the
swing cliquet is

SC(ω) =Min

" X
n

(|Rn|− k)+ , GC

#
while the payoff on the reverse swing cliquet is

RSC(ω) =Min

" X
n

(k − |Rn|)+ , GC
#
.
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The prices of these claims are spot prices and are discounted expected values
of the associated cash flows. We denote these by wLFGC , wLCGF , wSC , and
wRSC . For the swing cliquet we used the strikes of 5, 10, 15% with global caps
at 25, 50% and this gave 6 products. For the reverse swing cliquet the values for
k were still 5, 10, 15% but the global caps were set at 500, and 1000 to provide
us with again 6 products.
In addition to cliquets we considered options on variance and volatility. De-

note by Rt the return on day t, measured as a log price relative. The realized
variance to day T is defined by

1

T

TX
t=1

R2t

For an option on variance with strike k quoted as a volatility in annualized
terms the payoff to the option is

V arOpt(ω) = 10000

Ã
252

T

TX
t=1

R2t − k2

!+
For an option on volatility the payoff is

V olOpt(ω) = 100


vuut252

T

TX
t=1

R2t − k

+

Our quote on the variance and volatility options are on a forward basis and are
not discounted. For the variance option we have

wvaropt =
p
E[V arOpt(ω)]

while for the vol option we quote

wvolopt = E [V olOpt(ω)]

By the concavity of the square root function we expect that wvolopt < wvaropt.

For the strikes on the variance and volatility options we used six strikes starting
at 10% and increasing by 5 percentage points to a maximum of 35%. This gave
six products for both the variance and volatility options.

10 The Prices

The structured prices are presented in six tables for the six product classes,
LFGC,LCGF, SC,RSC, V arOpt, and V olOpt. Each table has 9 columns for
the nine modelsHSV, SV J, V GSA,LV, LL,CGMY SATO(Y = .25, .5 and .75),
and MXNRSATO. There are thirty rows in each table to cover the five annual
maturities for each of six products. For the cliquets the first fifteen rows employ
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the lower absolute global cap for three local caps or floors while the last fifteen
rows use the larger absolute global cap. For the variance and volatility options
we have six strikes and five maturities for each strike. We comment on each of
the six tables in the following subsections, in the order of the products listed
above, combining the comments on the variance and volatility options into one
subsection.

10.1 LFGC

The Sato processes give a higher value for these cliquets with SV J and LL
giving values closer to these from among the other processes. Local volatility
gives the lowest values excepting the large local floor of −15%. In each case the
values rise with maturity and the global cap and fall as we lower the local floor.
The sharper skews for forward returns in Sato processes observed in Section 3
probably account for the higher cliquet prices.

10.2 LCGF

For the local cap of 5% the Sato processes give a substantially higher value,
excepting V GSA. For higher caps the values are closer with SV J and LV giving
among the highest values for the 15% local cap, though the CGMY SATO(Y =
.75) is close for this cap. As we raise the local cap the optionality disappears
and we have an in the money situation with the calibrated models in basic
agreement. For an effective cap the Sato processes have higher prices possibly
due to lower at the money volatilities as seen in section 3.
The values rise as we raise the local cap and the maturity and fall as the

global floor is dropped. The increase is quite pronounced for most models as we
raise the local cap, but it is particularly so for HSV and LV for the 5% local
cap and the global floor of −25%.

10.3 SC

For the 5% strike the Sato processes give intermediate values when compared
with the values of the other models. At higher strikes the Sato processes give
a higher value, excepting LL that remains comparable with the Sato processes.
The Sato processes reach the tails more easily than the models dominated by dif-
fusion components. This is also a feature of the sharply rising implied volatility
curves for forward returns seen in Section 3.
The values fall with the strike and rise with maturity. The drop with strike

is quite marked for the parametric models (HSV, SV J, V GSA) and LV. It is
less so for LL and the Sato processes.

10.4 RSC

The reverse swing cliquet with a lower global cap was more like a bond and
we raised the cap to see the differences between the models. Focusing on the
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Locally Floored and Globally Capped Cliquets

LF Global Cap 25 Sato processes
HSV SVJ VGSA LV LL Y=.25 Y=.5 Y=.75 MXNR
6.51 7.18 6.33 5.97 6.95 7.83 7.81 7.84 8.07
11.17 11.91 10.19 10.28 11.87 13.24 13.33 13.35 13.39

-5 13.79 14.35 12.26 13.06 14.87 16.24 16.25 16.35 16.28
15.04 15.56 13.32 14.61 16.37 17.62 17.52 17.61 17.48
15.60 16.05 13.94 15.27 16.85 17.93 17.86 17.92 17.76

3.49 4.06 3.83 3.14 4.77 5.16 5.21 5.13 5.29
5.86 6.40 5.96 5.29 8.22 9.41 9.50 9.27 9.47

-10 7.18 7.44 6.91 6.86 10.43 12.17 12.14 11.96 12.17
7.83 8.13 7.36 7.87 11.71 13.89 13.70 13.59 13.74
8.30 8.63 7.73 8.28 12.31 14.82 14.60 14.52 14.59

2.77 3.24 3.09 2.72 3.76 3.93 4.02 3.94 3.97
4.49 4.77 4.70 4.51 6.44 7.33 7.46 7.23 7.32

-15 5.29 5.14 5.24 5.75 8.11 9.65 9.68 9.43 9.60
5.55 5.40 5.39 6.53 9.05 11.24 11.12 10.96 11.10
5.79 5.60 5.58 6.74 9.45 12.27 12.08 11.95 12.07

Global Cap 50

6.66 7.43 6.42 6.13 7.26 7.95 7.92 7.92 8.20
12.99 14.21 11.26 11.59 13.29 14.38 14.48 14.53 14.73

-5 18.43 19.80 15.44 16.63 18.45 19.44 19.59 20.00 20.00
22.53 23.97 18.83 20.70 22.75 23.30 23.55 24.30 23.96
25.29 26.70 21.37 23.59 25.86 26.09 26.40 27.31 26.66

3.59 4.23 3.91 3.29 5.06 5.27 5.31 5.21 5.41
7.10 7.92 6.85 6.29 9.36 10.37 10.43 10.21 10.55

-10 10.11 10.88 9.38 9.24 13.07 14.65 14.63 14.57 14.95
12.38 13.32 11.39 11.79 16.21 18.07 18.06 18.21 18.45
14.17 15.12 12.94 13.61 18.54 20.73 20.72 20.95 21.03

2.87 3.40 3.17 2.87 4.05 4.04 4.11 4.01 4.09
5.67 6.20 5.58 5.50 7.51 8.25 8.33 8.14 8.33

-15 8.03 8.33 7.63 8.05 10.52 11.92 11.94 11.81 12.12
9.75 10.11 9.22 10.30 13.03 14.96 14.96 14.97 15.23
11.14 11.42 10.45 11.85 14.90 17.41 17.36 17.40 17.59



Locally Capped and Globally Floored Cliquets

Global Floor -25
Sato Processes

LC HSV SVJ VGSA LV LL Y=.25 Y=.5 Y=.75 MXNR
0.48 0.53 2.44 0.43 0.74 2.35 2.50 2.81 2.51
1.33 1.01 4.90 1.43 2.03 4.63 4.83 5.44 4.85

5 1.94 1.44 6.90 2.16 3.28 6.42 6.73 7.70 6.84
2.45 1.81 8.53 2.95 4.31 7.99 8.41 9.57 8.47
3.03 2.22 10.01 3.50 5.24 9.40 9.82 11.02 9.81

2.82 3.10 3.35 3.12 2.29 3.11 3.18 3.29 3.24
5.63 5.68 6.25 6.19 4.69 5.96 6.06 6.34 6.13

10 7.84 7.80 8.64 8.62 6.84 8.19 8.42 8.99 8.56
9.79 9.70 10.64 10.84 8.60 10.08 10.46 11.22 10.52
11.62 11.36 12.45 12.62 10.13 11.72 12.15 12.97 12.16

3.22 3.62 3.46 3.38 2.85 3.25 3.28 3.32 3.34
6.43 6.73 6.43 6.69 5.68 6.31 6.32 6.44 6.40

15 9.01 9.29 8.86 9.36 8.17 8.75 8.85 9.19 9.01
11.27 11.60 10.92 11.83 10.24 10.81 11.07 11.51 11.13
13.39 13.63 12.77 13.86 12.02 12.60 12.89 13.36 12.92

Global Floor -50

-0.31 -0.36 1.87 -0.35 0.17 1.92 2.06 2.37 2.05
-0.38 -1.00 3.75 -0.50 0.76 3.68 3.96 4.55 3.90

5 -0.46 -1.55 5.41 -0.59 1.56 5.21 5.58 6.46 5.58
-0.44 -1.72 6.82 -0.29 2.28 6.62 7.06 8.19 7.05
-0.20 -1.76 8.17 -0.14 2.91 7.95 8.40 9.60 8.29

2.21 2.44 2.82 2.54 1.76 2.70 2.76 2.87 2.80
4.44 4.33 5.22 4.95 3.60 5.06 5.24 5.50 5.24

10 6.33 5.91 7.32 7.02 5.44 7.07 7.36 7.84 7.39
8.04 7.56 9.14 9.06 7.01 8.83 9.22 9.93 9.23
9.75 9.09 10.87 10.72 8.36 10.41 10.87 11.68 10.80

2.65 3.02 2.94 2.83 2.32 2.84 2.86 2.89 2.89
5.35 5.53 5.40 5.58 4.62 5.42 5.51 5.60 5.52

15 7.66 7.66 7.56 7.99 6.85 7.66 7.81 8.04 7.86
9.73 9.77 9.44 10.30 8.76 9.60 9.86 10.23 9.87
11.77 11.74 11.22 12.27 10.39 11.33 11.65 12.10 11.59



Swing Cliquet
Sato Processes

Strike HSV SVJ VGSA LV LL Y=.25 Y=.5 Y=.75 MXNR
6.56 7.06 4.47 6.28 6.53 5.66 5.47 5.21 5.80
11.43 12.18 7.23 10.64 10.47 9.12 9.02 8.62 9.26

5 14.63 15.30 9.40 13.32 12.89 11.24 11.12 10.79 11.33
16.38 16.91 11.12 14.77 14.37 12.41 12.39 12.16 12.53
17.16 17.51 12.35 15.65 15.17 12.94 13.02 13.01 13.17

1.46 1.82 1.15 0.82 3.12 2.49 2.46 2.26 2.55
2.93 3.73 1.92 1.68 5.33 4.88 4.75 4.32 4.88

10 4.26 5.42 2.62 2.48 6.94 6.64 6.38 5.90 6.62
5.38 6.71 3.25 3.09 8.27 7.88 7.54 7.08 7.86
6.26 7.78 3.76 3.74 9.25 8.65 8.32 7.95 8.66

0.32 0.48 0.29 0.11 1.68 1.19 1.25 1.12 1.21
0.69 1.07 0.48 0.30 2.93 2.78 2.74 2.45 2.76

15 1.05 1.61 0.68 0.60 3.87 4.07 3.93 3.58 4.09
1.36 2.08 0.85 0.81 4.77 5.12 4.85 4.49 5.14
1.60 2.49 0.99 1.07 5.47 5.86 5.52 5.21 5.89

7.06 7.84 4.62 6.57 7.13 6.04 5.87 5.57 6.18
13.57 15.15 7.81 12.36 12.56 10.69 10.50 9.96 10.83

5 18.97 20.98 10.60 16.97 16.65 14.05 13.86 13.35 14.25
23.16 25.13 13.05 20.20 19.88 16.41 16.25 15.86 16.69
26.06 27.91 15.10 22.68 22.23 17.91 17.87 17.73 18.35

1.49 1.90 1.15 0.83 3.37 2.61 2.58 2.37 2.66
3.07 4.07 1.95 1.80 6.07 5.48 5.32 4.85 5.48

10 4.56 6.07 2.69 2.86 8.24 7.84 7.53 6.98 7.87
5.87 7.76 3.35 3.70 10.23 9.73 9.29 8.71 9.78
6.95 9.21 3.90 4.54 11.80 11.11 10.64 10.11 11.21

0.33 0.49 0.29 0.11 1.81 1.24 1.29 1.16 1.25
0.70 1.10 0.48 0.33 3.25 3.03 3.01 2.71 3.03

15 1.07 1.67 0.68 0.77 4.40 4.66 4.50 4.13 4.70
1.40 2.19 0.85 1.10 5.55 6.10 5.77 5.38 6.16
1.65 2.63 0.99 1.44 6.48 7.22 6.80 6.41 7.30



Reverse Swing Cliquets
Global Cap 500

Sato Processes
Local Cap HSV SVJ VGSA LV LL Y=.25 Y=.5 Y=.75 MXNR

27.93 27.84 33.94 24.92 39.18 37.35 35.90 33.86 35.33
53.45 53.17 67.44 47.57 75.88 78.76 75.44 70.78 74.15

5 76.39 75.76 97.69 67.79 109.06 118.27 113.52 106.21 111.08
96.89 96.17 124.83 86.07 138.75 154.79 148.89 139.36 145.46
115.41 114.40 149.07 102.45 165.49 188.23 181.34 169.94 177.00

79.38 78.86 87.55 76.24 92.47 90.97 89.67 87.72 88.87
151.07 149.72 170.10 145.08 177.61 181.93 178.68 174.09 177.19

10 215.52 213.17 244.55 206.62 254.47 266.46 261.65 254.29 259.08
273.21 270.34 311.30 261.93 323.33 343.63 337.51 327.81 334.01
325.12 321.44 369.74 311.19 377.57 389.27 388.96 386.75 388.43

135.29 134.51 143.76 132.59 147.96 146.68 145.45 143.58 144.53
257.27 255.29 277.22 252.15 283.30 288.02 284.90 280.49 283.28

15 366.93 363.59 397.47 359.12 405.13 417.31 413.19 406.23 410.59
408.62 407.72 409.36 405.47 409.36 409.37 409.37 409.37 409.37
389.40 389.39 389.40 388.56 389.40 389.40 389.40 389.40 389.40

Global Cap 1000

27.93 27.84 33.94 24.92 39.18 37.35 35.90 33.86 35.33
53.45 53.17 67.44 47.57 75.88 78.76 75.44 70.78 74.15

5 76.39 75.76 97.69 67.79 109.06 118.27 113.52 106.21 111.08
96.89 96.17 124.83 86.07 138.75 154.79 148.89 139.36 145.46
115.41 114.40 149.07 102.45 165.49 188.23 181.34 169.94 177.00

79.38 78.86 87.55 76.24 92.47 90.97 89.67 87.72 88.87
151.07 149.72 170.10 145.08 177.61 181.93 178.68 174.09 177.19

10 215.52 213.17 244.55 206.62 254.47 266.46 261.65 254.29 259.08
273.21 270.34 311.30 261.93 323.33 343.63 337.51 327.81 334.01
325.12 321.45 370.96 311.19 385.05 413.62 406.35 394.58 401.93

135.29 134.51 143.76 132.59 147.96 146.68 145.45 143.58 144.53
257.27 255.29 277.22 252.15 283.30 288.02 284.90 280.49 283.28

15 366.93 363.59 397.47 359.12 405.37 418.06 413.42 406.25 410.69
465.15 461.03 505.29 455.09 514.75 536.19 530.23 520.72 526.58
553.35 548.14 601.68 540.58 612.71 642.89 635.72 624.13 631.18



Options on Variance
Sato Processes

HSV SVJ VGSA LV LL Y=.25 Y=.5 Y=.75 MXNR
11.8791 12.7620 8.9487 11.5133 14.1940 13.1588 13.3587 12.9085 13.3285
12.0206 13.0562 7.7240 11.7427 13.5320 13.5212 13.8933 13.5326 13.9245

10 12.1142 13.2807 7.1442 12.2678 13.0491 13.7560 13.8767 13.9932 14.3499
12.1654 13.3500 6.7817 12.6359 12.9323 13.9556 14.1271 14.2751 14.6620
12.1563 13.3747 6.4981 12.8979 12.7962 14.0972 14.0347 14.4664 14.5286

8.1392 9.3108 6.0495 6.8958 12.2783 11.1961 11.4310 10.8681 11.2451
7.7291 9.1799 4.4159 7.2976 11.2930 11.5657 11.9597 11.5111 11.8985

15 7.4704 9.0933 3.5502 8.0429 10.5452 11.7767 11.8967 12.0204 12.3530
7.2324 8.9292 2.9470 8.5832 10.2718 11.9774 12.1616 12.3059 12.6815
6.9869 8.7466 2.4973 8.8597 9.9986 12.1395 12.0530 12.4923 12.5132

4.8132 6.1330 3.6499 3.3338 10.5534 9.3995 9.7202 9.0711 9.3441
4.0476 5.5808 2.0494 3.9071 9.2655 9.7601 10.2006 9.7872 10.0478

20 3.4764 5.1572 1.3040 5.0538 8.3185 9.9415 10.0947 10.3148 10.5328
2.9698 4.6919 0.8544 5.8544 7.8956 10.1316 10.3980 10.5869 10.8478
2.5095 4.2866 0.5553 6.2488 7.4968 10.3077 10.2756 10.7604 10.6199

2.5277 3.6707 1.9767 1.2372 9.0655 7.8797 8.2572 7.5724 7.6912
1.7801 3.0391 0.8328 2.0268 7.5714 8.1646 8.6804 8.3398 8.4910

25 1.2416 2.4830 0.3096 3.6436 6.4692 8.3364 8.5130 8.8676 8.9477
0.8855 2.0342 0.1855 4.6138 5.9115 8.5224 8.8855 9.1145 9.2502
0.6122 1.6399 0.0687 5.0554 5.4720 8.6939 8.7138 9.2896 8.9534

1.1798 1.9485 1.0322 0.3217 7.8162 6.6335 6.9531 6.3033 6.3069
0.6276 1.4898 0.2446 1.1083 6.1761 6.7945 7.3828 7.1109 7.1961

30 0.3646 0.9440 0.0000 2.9246 4.9938 6.9532 7.1784 7.6353 7.6253
0.2147 0.5885 0.0000 3.9018 4.3778 7.1192 7.5799 7.8702 7.9161
0.0982 0.5040 0.0000 4.3325 3.9207 7.3230 7.3614 8.0550 7.5051

0.4894 0.9056 0.5195 0.0000 6.7858 5.5801 5.8307 5.2559 5.2037
0.2666 0.5917 0.0000 0.5220 5.0295 5.6411 6.2995 6.0708 6.1135

35 0.0000 0.1407 0.0000 2.3457 3.7904 5.7883 6.0046 6.6057 6.5177
0.0000 0.1235 0.0000 3.3295 3.1796 5.9442 6.4886 6.8007 6.7560
0.0000 0.1093 0.0000 3.7683 2.7163 6.2026 6.2109 7.0003 6.2191



Options on Volatility
Sato Processes 

Strike HSV SVJ VGSA LV LL Y=.25 Y=.5 Y=.75 MXNR
4.8266 5.3324 2.7537 4.8385 4.9675 4.4794 4.5474 4.4019 4.7096
5.1094 5.7390 2.2129 4.9472 4.9559 4.7065 4.8432 4.6752 4.9447

10 5.2857 6.0455 1.9711 5.1765 4.8958 4.8567 4.9039 4.8789 5.1692
5.4012 6.1938 1.8251 5.3062 4.9502 4.9719 4.9881 5.0528 5.3471
5.4520 6.2870 1.7101 5.4434 4.9571 5.0258 4.9794 5.1583 5.3590

1.7579 2.2164 0.9655 1.3239 2.8967 2.5301 2.5949 2.4169 2.6201
1.6378 2.2174 0.5465 1.4473 2.6859 2.7050 2.8023 2.6046 2.8101

15 1.5643 2.2242 0.3646 1.6319 2.4817 2.7961 2.8206 2.7795 2.9930
1.4906 2.1829 0.2563 1.7545 2.4266 2.8812 2.8782 2.9121 3.1386
1.4121 2.1237 0.1871 1.8189 2.3504 2.9324 2.8683 2.9822 3.1371

0.4964 0.7834 0.2830 0.2486 1.7557 1.4575 1.5462 1.3776 1.4859
0.3605 0.6626 0.0935 0.3274 1.4770 1.5900 1.6733 1.5396 1.6331

20 0.2713 0.5785 0.0391 0.4789 1.2614 1.6416 1.6727 1.6751 1.7862
0.2007 0.4855 0.0169 0.5946 1.1717 1.6992 1.7256 1.7717 1.8892
0.1450 0.4102 0.0073 0.6566 1.0766 1.7419 1.7187 1.8157 1.8692

0.1144 0.2368 0.0689 0.0285 1.1002 0.8672 0.9562 0.8172 0.8535
0.0580 0.1645 0.0128 0.0720 0.8359 0.9482 1.0291 0.9504 0.9847

25 0.0287 0.1125 0.0019 0.1990 0.6458 0.9831 1.0119 1.0521 1.0929
0.0147 0.0765 0.0007 0.2991 0.5545 1.0254 1.0709 1.1207 1.1687
0.0071 0.0498 0.0001 0.3500 0.4845 1.0537 1.0536 1.1537 1.1367

0.0213 0.0575 0.0161 0.0017 0.7138 0.5356 0.5929 0.4943 0.4979
0.0061 0.0341 0.0010 0.0186 0.4842 0.5724 0.6472 0.6026 0.6124

30 0.0021 0.0140 0.0000 0.1122 0.3352 0.5956 0.6282 0.6796 0.6910
0.0007 0.0055 0.0000 0.1877 0.2645 0.6232 0.6772 0.7335 0.7492
0.0002 0.0040 0.0000 0.2254 0.2163 0.6514 0.6552 0.7615 0.7001

0.0032 0.0109 0.0036 0.0000 0.4809 0.3365 0.3708 0.3069 0.3012
0.0010 0.0048 0.0000 0.0037 0.2851 0.3504 0.4178 0.3904 0.3893

35 0.0000 0.0003 0.0000 0.0650 0.1712 0.3656 0.3886 0.4526 0.4486
0.0000 0.0002 0.0000 0.1236 0.1239 0.3855 0.4395 0.4907 0.4860
0.0000 0.0002 0.0000 0.1547 0.0922 0.4166 0.4135 0.5158 0.4268



larger global cap of 1000, we see that the Sato processes are close to LL with
the parametric models (HSV, SV J, V GSA) and LV giving substantially lower
values. The values rise with the global cap, the local payout strike and the
maturity.

10.5 VarOpt and VolOpt

Options on variance are priced above options on volatility as expected. The
values drop with the strike quite substantially for the parametric models HSV,
SV J, and V GSA. This drop is less marked for LV but is still quite substantial
at the lower maturities when compared with LL. For the longer maturities LV
and LL are comparable. The values rise with maturity for LV and fall for LL.
The Sato processes maintain value with both strike and maturity with the values
not falling that fast with strike or maturity. This is presumably a consequence
of the effects of scaling as outlined in the theoretical analysis of the variance of
realized quadratic variation for Sato processes presented in Section 4.
Finally we present graphs of prices for the six products using six models.

The products are the locally floored and globally capped cliquet LFGC with
the floor at −10 and the cap at 25, the locally capped at 10 and globally floored
at −25 LCGF cliquet, the swing cliquet SC with a strike at 10 and cap 25, the
reverse swing cliquet RSC with strike 10 and cap 500 and the variance V AR
OPTION and volatility options V OL OPTIONS struck at 25. The six models
are HSV, SV J, V GSA, LV, LL, and CGMY Sato with Y = .5. The other Sato
prices were similar and we graph just one Sato price.

11 Conclusion

This paper presents the properties of Sato processes, introduced in Carr, Geman,
Madan and Yor (2007), as models for structured product pricing. These are ad-
ditive processes with inhomogeneous but independent increments. We observe
that the forward return distributions depart from spot return distributions with
falling at the money volatilities and sharper skews. To their advantage they
are possibly suitable as models for options on realized variance, as the inhomo-
geneity induces realized variance to remain a random variable over the longer
horizon, unlike the situation for Lévy processes or more generally short memory
processes. In addition we develop a uniform simulation method for a wide class
of Sato processes based on the construction of a Ziggurat from the base Lévy
density.
With respect to pricing structured products it is shown that linear or risk

neutral pricing principles are not relevant. Instead the ask and bid prices are
shown to be concave and convex functionals respectively, consistent with the
principles of hedging to acceptability. It is also observed that ask prices are the
maximum of a range of risk neutral valuations while bid prices are the minimum
of a similar range. The risk neutral valuations correspond to selected equivalent
martingale measures. A natural consequence is that different products should
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be priced by different risk neutral models. The resulting nonlinear pricing is
also free of arbitrage provided there is agreement across market participants on
the cone of acceptable risks.
Path spaces are generated for a variety of Sato processes and a number of ref-

erence models commonly used in the industry. Comparative prices are provided
for a range of structured products including options on realized variance. It is
observed that the Sato processes over price cliquets relative to other models.
They also maintain the value of long dated options on realized variance.

31



References

[1] Artzner, P., Delbaen F., Eber, J. and D. Heath, (1998), “Definition of
coherent measures of risk,” Mathematical Finance 9, 3, 203-228.

[2] Bakshi, G., C. Cao and Z. Chen (1997), “Empirical performance of alter-
native option pricing models,” Journal of Finance, 52, 2003-2049.

[3] Barndorff-Nielsen, O.E. (1998), “Processes of normal inverse Gaussian
type,”Finance and Stochastics, 2, 41-68.

[4] Black, F. and Scholes M., 1973. The pricing of options and corporate lia-
bilities. Journal of Political Economy 81, 637-654.

[5] Carr, P. and D. Madan (1999), “Option valuation using the fast Fourier
transform,” Journal of Computational Finance, 2, 61-73.

[6] Carr, P., H. Geman and D. Madan (2001), “Pricing and hedging in incom-
plete markets,” Journal of Financial Economics, 62, 131-167.

[7] Carr, P., H. Geman, D. Madan and M. Yor (2002), “The fine structure
of asset returns: An empirical investigation,” Journal of Business, 75, 2,
305-332.

[8] Carr, P., H. Geman, D. Madan and M. Yor (2003), “Stochastic volatility
for Lévy processes,” Mathematical Finance, 13, 345-382.

[9] Carr, P., Geman, H., Madan, D. and M. Yor (2004), “From local volatility
to local Lévy models,” Quantitative Finance, 5, 581-588.

[10] Carr, P., H. Geman, D. Madan and M. Yor (2005), “Pricing options on
realized variance,” Finance and Stochastics, 9, 453-475.

[11] Carr, P., H. Geman, D. Madan and M. Yor (2007), “Self decomposability
and option pricing,” Mathematical Finance, forthcoming.

[12] Derman, E. and I. Kani (1994), “Riding on a smile,” Risk 7,32-39.

[13] Dupire, B. (1994), “Pricing with a smile,” Risk 7, 18-20.

[14] Eberlein, E. and U. Keller (1995), “Hyperbolic distributions in finance,”
Bernoulli, 1, 281-299.

[15] Eberlein, E. (2001), “Application of generalized hyperbolic Lévy motions
to finance,” In Lévy Processes: Theory and Applications, (Eds), O.E.
Barndorff-Nielsen, T. Mikosch, and S. Resnick, Birkhäuser Verlag, 319-326.

[16] Eberlein, E. and K. Prause (2002), “The generalized hyperbolic model: Fi-
nancial derivatives and risk measures,” In Mathematical Finance-Bachelier
Finance Congress 2000, (Eds) H. Geman, D. Madan, S. Pliska and T. Vorst,
Springer Verlag, 245-267.

32



[17] Harrison, J. and Kreps, D., (1979),“Martingales and arbitrage in multi-
period securities markets,” Journal of Economic Theory 20, 381-408.

[18] Harrison, J.M. and Pliska, S., (1981), “Martingales and stochastic inte-
grals in the theory of continuous trading,” Stochastic Processes and Their
Applications, 15, 215-260.

[19] Heston, S. (1993), “A closed-form solution for options with stochastic
volatility with applications to bond and currency options.” Review of Fi-
nancial Studies, 6, 327-343.

[20] Heyde, C.C. and Y. Yang (1997), “On defining long range dependence,”
Journal of Applied Probability, 34, 939-944.

[21] Konikov, M. and D. Madan (2002), “Stochastic volatility via Markov
chains,” Review of Derivatives Research, 5, 81-115.

[22] Madan, D., Carr, P., and Chang E., 1998. The variance gamma process
and option pricing. European Finance Review 2, 79-105.

[23] Madan D. B. and E. Seneta, (1990), “The variance gamma (VG) model for
share market returns,” Journal of Business, 63, 511-524.

[24] Marsaglia, G. and W.W. Tsang, (1984), “A fast, easily implemented
method for sampling from decreasing or symmetric unimodel density func-
tions,” SIAM Journal of Scientific Statistical Computing, 5, 2.

[25] Merton R., 1973. Theory of rational option pricing. Bell Journal of Eco-
nomics and Management Science 4, 141—183.

[26] Sato, K. (1991), “Self similar processes with independent increments,”
Probability Theory and Related Fields, 89, 285-300.

[27] Sato, K. (1999), Lévy processes and Infinitely Divisible Distributions, Cam-
bridge Uinversity Press, Cambridge.

[28] Schoutens, W. (2002), “The Meixner process in finance,” Eurandom Report
2001-002, Eurandom, Eindhoven.

[29] Schoutens, W. (2003), Lévy processes in Finance, Wiley, New Jersey.

[30] Schoutens, W., Simons, E. and Tistaert, J. (2004), “A perfect calibration!
Now what?” Wilmott Magazine, March.

33



Appendix on Some Product Names and Abbreviations
AL Altiplano
AN Annapurna
BB Bull Bear
BO Best of Option
BR Bear
CA Callable
CC Capped Call
CF Click Fund
CL Credit Linked
CO Call Overwriting
CQ Cliquet
DC Downside Cliquet
DD Dividend
DI Digital
DP Dispersion
DRC Digital Reverse Convertible
ET Enhanced Tracker
EXO Exotic
FL Floater
FU Fix Upside
GRC Geared Reverse Convertible
HM Himalaya
IC Investment Certificate
KJ Kilimanjaro
KO Knock Out
LA Ladder
LB Lookback
Lev. Long w. SL Leverage Long with stop loss
Lev. Short w. SL Leverage Short with stop loss
NA Napoleon
PB Precipice Bond
PF Profiled
PI Portfolio Insurance
PO Podium
PT Protected Tracker
PU Putable
PW Power Option
RA Range
RB Rainbow
RC Reverse Convertible
RF Reverse Floater
SO Spread Option
ST Steepener
TR Target Return
UC Uncapped Call
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VS Volatility Swap
WH Whale
WO Worst Of Option
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