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Abstract

Loan spreads are analysed for two types of loans. The first takes losses
at maturity only; the second one follows the formulation of CFOs (Col-
lateralized Fund Obligations), with losses registered over the lifetime of
the contract. In both cases, the implementation requires the choice of a
process for the underlying asset value and the identification of the parame-
ters. The parameters of the process are inferred from the option volatility
surface by treating equity options as compound options with equity itself
being viewed as an option on the asset value with a strike set at the debt
level following Merton (1974). Using data on General Motors stock dur-
ing the year 2002/2003, we show that the use of spectrally negative Lévy
processes is capable of delivering realistic spreads without inflating debt
levels, deflating debt maturities or deviating from the estimated proba-
bility laws. It is also observed that loan spreads are responsive to a high
frequency of small moves and caution against the use of finite activity
processes like jump diffusions.

Credit structuring technology has been very successfully used to develop the
gigantic market of CDOs (Collateralized Debt Obligations), where a variety of
bonds and debt instruments constitute the underlying assets. The more recent
period has seen the advent of CFOs (Collateralized Fund Obligations), struc-
tures that offer investors exposure to funds of funds, and in some cases, private
equity funds or managed accounts. From a practical standpoint, portfolio man-
agers benefit from a risk-tranching approach to investing in a diversified pool of



funds that are often difficult to access separately. In the case of so-called thresh-
old C'FOs, investors receive interest from a fund of funds and the underlying
assets are managed according to incremental trigger levels.

In all cases, the obligations are backed by the NAV (Net Asset Value) of the
fund of funds. Typically, this asset value must maintain a specified ratio (termed
the advance rate) over the total amount of CFOs issued. When the advance rate
is breached, the lowest priority tranche takes a loss to restore this rate and bring
the structure back into compliance. Thereafter, this tranche receives coupons
only on the remaining amount lent. A further reduction of this rate results
in further losses until the lowest priority tranche is exhausted, hence takes no
further losses and receives no further coupons. At that point, all subsequent
losses are absorbed by the next lowest seniority tranche. Traditionally, advance
rates are derived from observed asset price volatility: the more homogeneous
the collateral, the greater the reliance on historical volatility. Another key
determinant of the advance rate is the liquidity of the underlying funds. In
particular rating agencies will observe the redemption periodicity: the lower
the periodicity and the longer the notice period for the collateral, the lower the
advance rate will be (for a description of the various types of advance rates used
in CFO’s one can read Mahadevan and Schwartz (2002)).

Our goal in this paper is to develop in a continuous time setting the pricing of
these loan structures. We obtain closed-form solutions in the case of maturities
defined by an exponential distribution independent of the underlying asset value.
Geman and Yor (1996) explain that a functional of Brownian motion, e.g., the
price of an Asian or double barrier option in the Black Scholes setting, is often
easier to compute for such random maturity times, naturally leading to the
search for the Laplace transform of the price. Since the advance rate of a CFO
is encroached when the infimum of asset value to date breaks a trigger level, we
are interested in the law for the lowest asset value to date. When there are jumps
in asset value, for spectrally negative Lévy processes (i.e., ones exposed only to
downward jumps in value) we may easily access the Laplace transform for the
infimum to date of the process. The fixed maturity distribution then follows on
employing the efficient inversion procedures described in Rogers (2000).

We can therefore develop the pricing of such CFO loan structures when
the logarithm of the asset value is modeled by a spectrally negative process.
Fixed maturity contracts are then priced using the Laplace transform inver-
sion methods developed in Rogers (2000). For related work in jump diffusion
models with exponentially distributed jumps, see Kou and Wang (2003,2004)
and Lipton (2002). We compare the pricing of such contracts with the more
classical and simpler contracts that take loss of coupon and principal just at
the final maturity. The latter ones require the computation of deep out of the
money option prices especially for high priority loans that take loss only after a
very substantial loss in asset value. For such options classical Fourier inversion
methods (Carr and Madan (1999)) for computing option prices from analytical
characteristic functions break down. Here we implement the recently developed
saddlepoint methods of Carr and Madan (2008), following the earlier work of
Rogers and Zane (1999) among others.



The level of the resulting loan spreads has critical implications for the ratings
to be assigned to the various tranches. One may obtain a basic mapping between
spreads and ratings from BondsOnlineQuotes.com by country, sector, date and
maturity. For example for the financial sector of the US on December 29 2006
the AAA, AA, A, BBB, BB, B 5 year spreads were 42, 91, 107, 167, 424, and
375 basis points respectively. In this regard we note the important differences
between classical loan contracts taking losses at the end and those that take
them along the way. The latter may well have significantly higher spreads and
therefore lower ratings than the former. The analytical methods of this paper
illuminate these important issues.

The analysis undoubtedly requires the specification of a risk neutral process
for the underlying asset value process and we are well aware of the observed
limitations of geometric Brownian motion in this regard. For longer dated con-
tracts like those appearing in structured finance, Eberlein and Madan (2008)
observe that spectrally negative Lévy processes are well suited to the option
surface at the longer maturities. For our application we are interested in the
distribution of the lowest asset value to date or equivalently, the infimum of
the asset value process to date. The spectrally negative processes are precisely
the ones for which closed forms are available for the law of the infimum of the
process taken at an independent exponential time. Hence we restrict attention
to this class of processes.

Closed form results have been obtained for certain jump diffusion models,
Kou and Wang (2003, 2004), but we question their relevance. One of the origi-
nal motivations for the Gaussian distribution is that it is a limiting distribution
approximately obtained on summing a large number of independent effects. Es-
pecially for longer maturity contracts, one expects many independent effects on
asset values and this suggests that one should use a limit law. Fortunately the
Gaussian distribution is not the only limit law and there are many others. Lévy
(1937) and Khintchine (1938) characterized all the limit laws as self decompos-
able laws (Carr, Geman, Madan and Yor (2007)) and showed in particular that
processes with finitely many jumps or jump diffusions are not limit laws. As a
consequence jump diffusions may not adequately represent the level of activity
in the markets and thereby end up understating required spreads. The models
we use are associated with self decomposable laws at unit time and are limit
laws.

We perform an analysis of the source of spreads on risky loans and conclude
that it is the level of frequent and small price moves in the markets that drives
the spreads and not the structure of infrequent large jumps. Hence we caution
against the use of jump diffusions in setting loan spreads as they may lack the
required high frequency of small moves. Apart from the number of jumps there
is also the issue of the size of jumps. When the sum of all the jumps is infinite we
have a process of infinite as opposed to finite variation. We focus our attention
here on jump processes with finite variation, thereby supposing that the jumps
add uo to a finite value, and leave for future research the development of results
and procedures for processes with infinite variation.

The specific risk neutral process we employ is the CGMY model with only



negative jumps enhanced with a diffusion, that was studied in Eberlein and
Madan (2008). The model has four parameters given by C > 0,G > 0, 0 <
Y < 1 and the diffusion coeflicient ¢ > 0. We term this model CGY SN for the
downsided CGMY with a diffusion component. We present an analysis of the
effects of the four parameters on the loan spreads in both the classical contract
and the more recently defined CFO contract.

Three analyses are conducted, one using stylized parameter values, a second
analysing specifically the effects of activity rates on risky loan spreads and a
third using risk neutral processes extracted from the calibration of equity op-
tion surfaces as a potential source of possibly relevant risk neutral asset price

processes. In this regard we follow the lead of Merton (1974) and KMV and
treat equity prices as call options written on the asset value with a strike set at
the debt level and a maturity matching the debt maturity. We then specify the
asset value process to be in the CGY SN class and calibrate the Merton equity
model to the surface of quoted option prices. We thereby calibrate, possibly
for the first time, the compound option model to the surface of equity options
when the asset value process is taken to be an infinite activity Lévy process.
This allows us to analyse and comment on the effects of jump activity levels on
loan spreads.

We illustrate with an application to data on General Motors for 2002/2003
and conclude that the spectrally negative Lévy process calibration to equity or
asset values is capable of delivering realistic spread levels without inflating debt
levels, deflating debt maturities and deviating from the probabilities embedded
in the estimated process.

The outline of the rest of the paper is as follows. The two loan contracts,
classical and CFO are introduced in Section 1 along with the computational
details for pricing these contracts. Section 2 presents a report on a stylized study
of the effects of different parameters on the resulting loan spreads. Section 3
considers the effects of activity levels or a high frequency of small jumps on risky
loan spreads. The details for the calibration of the Merton (1974) compound
option view of equity options are provided in Section 4. An application to
options on General Motors is undertaken in Section 5 and Section 6 concludes.

1 Analysis of the two contracts

For the classical loan contract, consider a loan in the amount L for a maturity
T with lower priority loans in the amount B. Suppose the asset value of the
borrower is Ay and there is equity capital of H. The loan of L will suffer a loss
of principal if at the final time T, the asset value A falls short of (49— ( B+ H))
and then the loss of principal will be the smaller of L and (A¢ — (B + H) — A).
Hence the principal returned is given by (L — (Ag — (B+ H) — A)+)+. Let ¢
be the continuously compounded coupon rate on the loan with a single payment
on the outstanding balance at the maturity.

Let the risk neutral density of the final asset value be f(A). The loan pricing
equation then requires that the expected present value, at a continuously com-



pounded interest rate of r, of the single payment at maturity equals the amount
L lent upfront or equivalently that

T [T(L= (Ao~ (B 1)~ AY)f(A)dA = L. M
0

One may solve equation (1) for the coupon ¢ noting further that when there is
no risk of loss equation (1) reduces to

eCTe—‘I'T — 1
and
c=r.

Let the lower priority capital be K = B + H. The classical coupon equation
may be expressed as

e [Calla(Ag — K — L) — Calla(Ag — K)| = L

where the subscript A denoted the underlying asset and the quantities in paren-
theses are the strikes of the two call options. We recognize here a call spread,
as it the case of limited insurance protection.

Hence we get that

¢ = —log (i [Calla(Ag — K — L) — Calla(Ao — K)]) %

Typically, the strikes involved in these call options may be deep in the money
(with associated put strikes deep out of the money). For example, for highly
secured AAA loans, there is a substantial amount of lower priority capital re-
ducing the strike far below the at the money point of Aq. It is precisely for these
cases that the Fourier methods of Carr and Madan (1999) break down. This
led us to adopt the saddlepoint pricing methods of Carr and Madan (2008).

‘We next consider the continuous time C' F'O and first associate with the initial
and terminal asset values Ag, A a continuous time process (A(¢),0 < ¢ < T) with
Ao = A(0) and A = A(T). We now take the coupon as being paid continuously
through time on the outstanding balance. Risk neutral pricing now requires
that the integrated expected discounted coupon payments plus the expected
discounted return of principal equal the amount L that was loaned upfront. For
an advance rate of i this yields the coupon equation

L = cE /T e " (L — (X(0) — (B+ H) — X(u)")Tdu + (2)

N
e (L= (X(0) = (B+ H) - X(T))")
a(t) = nggtA(s)
_ v
X = %



If there is no chance of loss we observe that equation (2) reduces to

T
1= c/ e "du 4+ e T
0

or

1—e T = ;(1 —e T

and we have again the result that ¢ = r.

For the computation of the classical coupon defined in equation (1) we just
need the density of the terminal asset value A while for the computation of
the CFO coupon described in equation (2) we need the density g(z,u) of the
infimum, x, to date u, of the asset price process deflated by the advance rate.
In terms of these densities we may rewrite the equation for the CFO coupon as

T oo

c/ / e "™(L— (X(0)— (B+H)—a)")"g(a,u)dadu +
o Jo

[ (- xO- B m-0*) ge)

= L

We may now write this expression in terms of call prices on the infimum
process as

oL / ' [Callx..(X(0) — K — L) — Callx..(X(0) — K)] du
L J ’ ’
% (Callx.r(X(0) — K — L) — Callx.7(X(0) - K)]
=1
Hence
1 — 1 [Callx (X (0) — K — L) — Callx,7(X(0) — K)]
LW [Callx (X (0) — K — L) — Callx (X (0) — K)] du

For log asset price processes in the CGY SN class subject to an evolution
made up of drift, exposure to a Brownian motion with constant volatility o, and
a compensated jump martingale with exposure only to downside or negative
jumps, we have access to the Laplace transform of the logarithm of the deflated
infimum in terms of the Laplace exponent of the logarithm of A(1)/n as follows,

Pya(z) = /000 e ™ME {e“(t)} dt
A B

T A=9(k) B
v(B) = A
E[ezln(z‘l(l)/n)} = exp(¥(2))



The specific structure of the Lévy density employed for the down jumps is the
negative side of the CGMY model and is given by

efG\:v\

We therefore have access to the characteristic function of the logarithm of
the infimum of advance rate deflated asset values taken at an independent ex-
ponential time. We may without loss of generality absorb the deflation by the
advance rate into the underlying process parameters and henceforth we work
with an advance rate of unity. From the characteristic function of the logarithm
at independent exponential times one easily derives the Laplace transform of
call prices on the infimum. The actual finite maturity call prices follow on in-
verting this Laplace transform which we then integrate to construct the required
coupon rates. We follow Rogers (2000) to change the contour of integration in A
to avoid having to solve the equation ¥(f) = A. We find that this method works
well for finite variation processes which requires Y < 1 for our chosen process.
For Y > 1 the altered contour remains at distance from the original contour
for typical settings advocated in the Laplace inversion as described in Rogers
(2000). We leave for future research the case of infinite variation or Y > 1.

2 Stylized investigation of parameters and loan
spreads

For a stylized investigation of the effects of varying the parameters of the spec-
trally negative Lévy process on the structure of loan spreads, we took three
settings for each of the parameters that we may regard as low medium and
high. However, instead of choosing the level of C' as a parameter we chose
instead the aggregate volatility v, where

C
2

vi=o0 +F(2—Y)G2*Y' (4)
We then used three levels for the proportion of total volatility due to the diffusion
component which gave us ¢ in terms of v and we solved for C' given presepcified
levels for Y, G from equation (4). The parameters are then specified on choosing
three levels of aggregate volatility, diffusion proportions, and G,Y respectively.
This gives us 81 cases in all. In addition we have some loan specific and market
specific variables that influence the loan spread. These are the levels of lower
priority capital, the loan maturities for the contract specific variables, and the
level of risk free interest rates as the market specific variable. Choosing three
levels for each of these three variables gives us 27 cases for these variables. In
total we therefore have 2187 = 81 % 27 cases. The specific levels of the required



variables are presented in Table 1.

TABLE 1
Input Settings

Variable Levels
volatility 25 | b | .75
G 1 5 10
Y 25 | b | .75
diffusion proportion | .25 I 5}
Lower Capital 70 80 | 90
Maturity 1 3 5
Interest Rate 025 1 .05 | .1

For each of these 2187 cases we computed the classical coupon rate and the C FO
coupon rate. We would like to summarize the effects of the various inputs on the
coupon rates and recognize that the coupon rate is a deterministic function of
these inputs. Recognizing that one may use linear regression to get some idea of
the slopes of complicated nonlinear functions we set up a fixed effects regression
model where the constant term reflects the first level for all 7 variables. We
then add 14 dummy variables for the second and third levels of the 7 input
variables. The regression therefore has 15 explanatory variables inclusive of
the constant term. There are two regressions, with the classic coupon and the
CFO coupon as the dependent variable in turn. The results of the regression are
presented in Table 2. We exclude the presentation of t-statistics as this does not
have any real interpretation since there is no randomness involved but a mere
linear projection of a more complicated function. The R square is included as



a measure of the quality of the linear projection.

TABLE 2
Regressions of Classic and CFO coupons in basis points
Classic Coupon CFO coupon
Variable Coefficient Coefficient
Constant 99.0039 147.0567
vol2 139.9759 237.9077
vol3 580.6227 959.2871
G2 30.1862 61.7368
G3 31.6579 69.0987
Y2 2.1139 5.1053
Y3 4.2783 9.6203
dp2 0.1807 12.5320
dp3 4.6589 29.4034
LC2 -194.6241 -365.3774
LC3 -345.89 -622.57
T2 136.2704 234.4470
T3 176.64 301.15
R2 -26.7642 -36.4063
R3 -72.73 -99.9435
RSQUARE 0.7668 0.7599

We make the following remarks on these results.

The average CFO coupon exceeds the classic coupon suggesting that more
risk is taken in the CFO structure.

The diffusion component has a positive effect on spreads suggesting that
spreads are responsive to the level of small activity. The role of the diffu-
sion component is analysed in greater depth in the next section.

The total volatility has a high, positive and nonlinear effect that is more
pronounced for the CFO structure.

Interestingly, the effect of raising G which increases the relative size of
the small activity has a positive effect that is relatively linear. This also
suggests that the cumulated effects of small jumps are important.

The effect of increasing Y are positive. This again suggests that raising
the level of small activity raises spreads. A deeper analysis of activity
levels is conducted in the next section.

The effect of higher priority is negative as expected, nonlinear and more
pronounced for the CFO structure.

The effects of maturity are positive, slightly nonlinear, and more pro-
nounced for the CFO structures



e Interestingly, lower interest rate environments necessitate larger spreads.
This is a feature that could have been missed in the recent period of
declining rates, at least in the United States.

We present in addition in Tables 3 and 4 respectively, the average levels of
spreads for both the classic and CFO coupons in the three interest rate regimes
for the three maturities.

TABLE 3
Classic Coupons by Rate and Maturity
Ratel | Rate2 Rate3
Maturityl | 160.38 | 152.92 | 138.09
Maturity2 | 323.88 | 293.95 | 241.65
Maturity3 | 378.81 | 336.64 | 265.14

TABLE 4
CFO Coupons by Rate and Maturity
Ratel | Rate2 | Rate3
Maturityl | 250.86 | 237.55 | 213.15
Maturity2 | 519.94 | 478.64 | 406.33
Maturity3 | 602.71 | 548.09 | 454.19

3 Activity rates and Risky Loan Spreads

A number of authors have considered, following Merton (1976), the enhancement
of diffusion models by the addition of a jump component with either exponential
or Gaussian jumps. In the context of structures like the CFO we have closed
form results for the exponential case (Lipton (2002), Kou and Wang (2004)). We
may also apply the methods of this paper for finite jump activity processes by
merely taking Y < 0 (Carr, Geman, Madan and Yor (2002) define the notion of
finite and infinite activity for a Lévy process by the integral of the Lévy measure
being respectively finite or infinite) . The choice Y = —1 is the exponential jump
case. We analyse in this section the effects of changing Y on the level of loan
spreads for risky loans, be they classical or like a CFO.

For this purpose we fix an overall volatility at 50% and view this as the
market calibrated volatility. We fix for the purpose of this study the value
of G = 1. We consider two levels, 50% and 60%, for the proportion of total
volatility attributed to the diffusion component and set the parameter C to
take the rest of the volatility. In order to study closely the effects of changing Y
from finite to infinite activity we vary the parameter Y from —1 to .9 in steps
of .02. The value of —1 represents the exponential jump case, as then the Lévy
measure in equation (3) is just an exponential function. For other values of
Y > —1, the activity level or the number of jumps expected in unit time rise
till we reach infinite activity when Y > 0. The number of jumps expected in
an interval is given by the integral of the Lévy measure over its domain and for

10



Y < 0 this integral is CGYT'(-=Y) < oo. For Y > 0 the integral is infinite and we
have infinitely many jumps in any interval, most of which will be small. With
Y < 1 the sum of all the jumps has a finite expectation given by CGYT'(1 —Y)
obtained on integrating the identity function against the Lévy measure.

We present in Figure (1) two graphs displaying the loan spread in blue for
the classic and CFO loan when the diffusion proportion is 50%, and in red for
the same loans when the diffusion proportion is 60%. We observe that loan
spreads rise with an increase in the diffusion component and with an increase in
the level of small activity. We conclude that finite activity models are likely to
understate the risk of loans, especially when diffusion components are reduced
to create substantial short maturity spreads, as the level of small activity is then
reduced since for these models all the small activity comes from the diffusion
component.

With a view to studying the effect of activity levels on the term structure
of loan spreads, we construct the term structure for four activity levels repre-
sented by Y = (—.75, —.25,.25,.75). We used a volatility of 50% and a diffusion
proportion of 50% with G = 1 for all the graphs. We present in Figure (2) two
graphs representing for the classic loan and the C'FO loan the term structure of
spreads for the four activity levels. We observe that loan spreads rise substan-
tially with the level of small activity and longer maturity loans are likely to be
understated using finite activity processes.

We note further that such finite activity models have return distributions
that do not correspond to limit laws over any horizon. The class of limit laws
includes the Gaussian distribution and is fully characterized by the class of self
decomposable laws (Lévy (1937) and Khincthine (1938)). Limit laws are of
necessity ones of infinite activity and they have unimodal distributions (Sato
(1999)). Hence we caution against the use of finite activity processes when
analysing long dated loan arrangements. For the longer maturities, the distrib-
ution should definitely be a limit law as considerable time has lapsed to allow for
a large number of independent effects to have been aggregated into the return.

4 Calibration of the Merton (1974) compound
option interpretation of Equity options to the
option surface

Merton (1974) introduced the representation of stock prices as call options on
the underlying asset value struck at the debt level with a maturity matching

the debt maturity. KMV~ adopted this representation and used the model to
simultaneously infer asset values and volatilities from option data to construct
their distance to default measure. Recently Bharath and Shumway (2008) re-
ported on an investigation of the performance of this model. We follow this
perspective but modify the underlying asset value process to be in the CGY SN
class and employ the full option surface of quoted prices on strikes and maturities
to estimate the initial asset value and the model parameters of the underlying

11
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Figure 1: Graph displaying risky loan spreads in blue for a 50% diffusion com-
ponent and in red for a 60% diffusion component on the classic and CFO loan
structures. The spreads are presented as functions of the level of activity proxied
by the parameter Y.
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Figure 2: Graphs displaying the term structure of loan spreads for classic loan
and the CFO loan at four activity levels with Y=-0.75, -0.25, 0.25, 0.75 respec-
tively in solid line, dashed line, dotted line and dashed and dotted line.
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Lévy process for asset values. We then use the underlying asset value process
to price the classic loan and the CFO loan on this asset value.

The specific dynamics for the asset value process A = (A(t),t > 0) is given
by

o0

dA(t) = (r—q) A(t_)dt—|—aA(t_)dW—|—A(t_)/ (e” — 1) (p(dz, dt)—k(x)dxdt)

— 00

where the Lévy density is as defined in equation (3). The characteristic function
for the logarithm of the asset value at a future date t is given by

E [0 = exp (t(u))

o?u?

Wb(u) +CT(=Y) (G +iw) =G ) + i

€
|
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We use the saddle point methods of Carr and Madan (2008) to compute options
prices from this characteristic function.

We take for a prospective company on a particular date an estimate of the
debt level D and debt maturity M as the strike and maturity for the call option
that represents the equity value. For a prospective set of parameter values
0,C,G,Y we determine the initial asset value Ay from the observed stock price
Sp on solving the equation

SQ = C(Ao,D,M;O‘,C,G,Y)

where the function C(A, K,T;0,C,G,Y) is the call pricing function for the
CGY SN model.

To calibrate the parameters of the CGY SN model we then simulate the asset
price process starting at Ay and develop a matrix of N x 10000 representing
asset values at N dates matching equity option maturities with 10000 paths of
asset values. For each equity option maturity we transform the asset values to
equity values by

S(t) =C(A(t),D,M;0,C,G,Y)

where we take a stationary view of the relationship between asset values and
equity values that may come from debt being constantly rolled over to a fixed
maturity. Alternatively we could take a nonstationary view and subtract from
M the elapsed time. However, these are small values of option maturity relative
to the much larger debt maturity and we worked with a stationary view.
Given 10000 readings of the equity price for each option maturity we may
price options at all the traded strikes using a discounted expected cash flow
computation. This gives us call prices consistent with the compound option
view of these equity options. We then compute the least squares criterion to
minimize the distance between these model prices and the observed market
option prices. The underlying asset price process is then estimated by the

14



parameter values that minimize this least squares criterion. We simulated the
asset price process at a weekly time step and at this setting, we computed the
minimization criterion in 4.5 seconds of cpu time. The seeds of the random
number generators for the simulation are frozen to force the objective function
to have a nonrandom output as is needed for classical optimization algorithms.

5 Illustrative Application to the General Mo-
tors case

We illustrate a first application of the procedure to data on GM for the year
ending 2002/2003. From the computsat Database for the year 2003 we took
the annual financial statement and obtained a debt level in millions of dollars
of 191,133. The level of equity outstanding in the financial statement was
25,268 and the average stock price for the month of December 2003 was 49.4377.
Dividing the equity value by the stock price gives us the number of shares
outstanding at 511.1076 million shares. The strike per share was then set at the
debt level per share and this number was 373.9584. The period duration reported
in compustat is 12 years and we took this value for M the debt maturity.

We then used the Sato process of the four parameter VG.SSD model reported
in Carr, Geman, Madan and Yor (2007) as an option surface synthesizer. We fit
this model for each trading day in December 2003 and averaged the parameter
values over the 22 days. The average parameter values were

o =0.2803; v = 0.9027; 6 = —0.1131; v = 0.5314

From these parameter values and the initial stock price of 49.4377 we may
construct target strikes and maturities of our own. Essentially we use the Sato
process as a surface interpolator to give us option prices at strikes and maturities
of our choosing. We used four maturities of a quarter, a half year, 9 months and
a year. For each of these maturities we used 9 strikes struck at 80% of the spot
to 120% of the spot at 5% intervals. We obtained a total of 36 target option
prices to be calibrated by the Merton compound option equity pricing model.

We first calibrated the CGY SN Lévy process model to these 36 target option
prices at our 9 strikes and 4 maturities. Here we just fit the equity option data
with a CGY SN Lévy model with no Mertonian compound option input. The
estimated parameters were

o =0.2064; C = 0.0956; G = 1.1818; Y = 0.4953

We used these values as the starting values for the estimation of the Merton
compound option model. The calibrated asset value process was estimated at

o =0.0189; C =0.2297; G =1.0991; Y = 0.3604

We then computed the loan spreads for lower priority capital at 70% for the
5 year classic loan and CFO loan, with both the equity and Merton asset value
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calibration.

TABLE 5

GM Loan Spreads 2003

Loan Equity Calibration Asset Calibration
Classic  110.55 224.94

CFO 192.02 336.52

The average credit default spread for GM in the month of December 2003 was
174.50, a number that lies within the range of the equity calibration for a lower
priority capital of 70%. The credit default spread for the month of December
2002 was 345.20. We performed the same exercise for the year 2002 with a level
of long term debt of 134272 million dollars, an equity of 6814 and an average
share price of 37.14. The equity calibration yielded the parameter values for the
model CGY SN of

o =.005; C = 3.1340; G = 3.6533; Y = .2451.

The asset value process with a maturity equal to the period duration of 12
years yielded the parameter values of

o =.0445; C =4.3443; G = 3.3445; Y = 0.0086

The corresponding loan spreads at 70% lower priority capital of 70% are
presented in Table 6.

TABLE 6
GM Loan Spreads 2002
Equity Calibration Asset Calibration
Classic  566.82 751.32
CFO 922.98 1206.04

These spreads are significantly higher than the credit default spread of 345.20.
However if we raise the priority to lower priority capital of 85% the values are
as displayed in Table 7.

TABLE 7

GM Loan Spreads 2002 with Lower Capital 85%
Equity Calibration Asset Calibration

Classic  217.59 337.46

CFO 341.19 516.23

We conclude with the observation that the calibration of either the equity
value or the asset value to the option surface using the spectrally negative
Lévy process model in the CGY SN class is capable of yielding realistic credit
spreads without having to deflate maturities to one year and inflate debt levels to
total liabilities as appears to be the case with the diffusion model applications
as reported in Bharath and Shumway (2008) and Vassalou and Xing (2003).
Furthermore we do not deviate from the underlying probability laws as appears

to be the case with KMV®.
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6 Conclusion

Loan spreads are computed for two types of loans, the first is a classical loan
taking loss of coupon and principal at maturity while the second follows the
structure of the more recent CFO contracts. It is noted that the issues of
rating counterparties are intimately connected with the level of implied loan
spreads. The actual computation of a loan spread requires the choice of the
underléing asset value process and a knowledge of the parameters. We follow

KMV ™~ and develop procedures for inferring asset value parameters from the
surface equity option prices when the asset value process is taken in the CGY SN
class of spectrally negative processes. The procedures are illustrated for data
on General Motors for the years 2002/2003 and we conclude that the spectrally
negative Lévy process calibration in the CGY SN class is capable of delivering
realistic spreads without inflating debt levels, deflating debt maturities and
deviating from the underlying estimated probably laws.

We also analyse the effects of activity rates on loan spreads to find that
these spreads are responsive to a high level of small activity. This leads us
to caution against the use of jump diffusions in forming loan spreads as such
processes do not possess a good frequency of small moves, except in the diffusion
component that has to be often reduced to match short maturity spreads. We
further note that finite activity jump diffusions have a jump component that is
inconsistent with the unit period return being a limit law. This property makes
such processes particularly ill suited to long dated contracts as the passage of
time allows for a large number of independent effects on the asset values.
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