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Abstract

The concept of the gamma of a �nanced return as the highest level
of stress that a return distribution can withstand is introduced. Stress is
measured by positive expectation under a concave distortion of the return
distribution accessed. Four distortions introduced in Cherny and Madan
(2008) are employed in studying the distribution of returns available in
the hedge fund universe. It is shown that the skewness, peakedness and
tailweightedness of the standardized investment return signi�cantly a¤ects
the Sharpe ratios required to reach a target gamma level.

1 Introduction

Hedge funds employ a wide array of dynamic, event driven, and relative value
trading strategies to access statistical arbitrages in �nancial markets. Conse-
quently one expects non-Gaussian return distributions (Brooks and Kat (2002),
Agarwal and Naik (2004), Malkiel and Saha (2005)). Though the Sharpe ratio
adequately evaluates performance for Gaussian returns, its limitations in non-
Gaussian contexts are well recognized (Bernardo and Ledoit (2000), and Kat
(2003)).
Recently, Cherny and Madan (2008) have proposed a family of new perfor-

mance measures improving on the economic properties of the Sharpe ratio and
the Gain-loss ratio, proposed in Bernardo and Ledoit (2000). These new mea-
sures are particularly suited to non-Gaussian environments, by taking account
of the entire distribution of returns in evaluating performance.
In this paper we apply these new performance measures to the hedge fund

universe and thereby describe the sources of hedge fund return performance.
We �rst establish that performance targets in terms of the new measures imply
an analytically determined required Sharpe ratio. The input for determining
the required Sharpe ratio is the standardized zero mean unit variance return
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distribution. It is observed that among the higher moments of this standard-
ized return distribution negative skewness decreases performance re�ected in an
associated increase in the required Sharpe ratio. Furthermore, we discover that
kurtosis is better decomposed into its components of peakedness and tailweight-
edness, both of which contribute positively towards kurtosis but have opposite
e¤ects on performance and required Sharpe ratios.
The new performance measures introduced in Cherny and Madan (2008) in

conjunction with the results of this paper o¤er an axiomatically founded solution
to the problem of adjusting Sharpe ratios for non-Gaussianity. Many other
attempts have also been made in this direction in the literature and include
as examples Sortino and Price (1994), Stutzer (2000), Dowd (2000), Keating
and Shadwick (2002), Kaplan and Knowles (2004), and Ziemba (2005). For
attempts more closely linked to the theoretical foundations of expected utility
theory we cite Hodges (1998), Madan and McPhail (2000) and Koekebakker and
Zakamouline (2007). Importantly, we note, however, that Cherny and Madan
(2008) show that the acceptance sets based on expected exponential utility (or
the Tilt coe¢ cient in Cherny and Madan (2008)) fail to satisfy the axioms
introduced for performance measures therein. In particular the acceptance sets
fail to be convex sets, they are also not scale invariant and are not consistent
with second order stochastic dominance. The solution o¤ered here meets all
these requirements by design.
Though theoretically one may consider the new measures in a portfolio con-

text on asking whether the addition of a fund to an existing portfolio improves
performance. In this �rst application of the new measures, however, we work in
the original context of Sharpe ratios and Gain-Loss ratios by using the measures
in isolation. We therefore leave for future research the extension to a portfolio
context. The new measures could also be of interest to discussions of hedge
fund replication as they describe attributes of hedge fund returns di¤erentiated
from the more prevalent statistics of alphas and betas. In keeping with this
terminology we refer to the new measures as the gammas of the hedge fund
return outcomes.
The new measures aim at measuring the level of acceptability of a poten-

tially risky outcome. This level is by design in�nite for all arbitrages. More
generally one associates with each level of acceptability, or gamma level, 
 for
short, a convex cone of random variables acceptable at this level. It follows
that linear combinations and positive scalar multiples of variables acceptable at
level 
 are also acceptable at the same level. It is important to note that the
acceptability level is not a utility or preference ordering as all arbitrages have
the single acceptability level of in�nity and furthermore acceptability levels do
not di¤erentiate between scaled outcomes.
Intuitively speaking, high gamma levels are to be attained when the return

distribution withstands a high level of stressed sampling. A simple example
illustrates such a procedure. Suppose the return distribution is such that the
expectation of the minimum of n independent draws from the distribution is
still positive, then we say that it is acceptable at level n: The gamma level of
the return distribution is then the largest number 
 such that the expectation of
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the minimum of 1+
 draws from the distribution is still positive. Formally one
constructs such an expectation for a random variable with distribution function
F (x) by merely sampling from the distribution function 	
(F (x)) where

	
(y) = 1� (1� y)1+
 (1)

The composition of the two distribution functions F (x) and 	
(x) is called a
concave distortion of the original distribution function. This particular concave
distortion is termedMINV AR by Cherny and Madan (2008) as it is focused on
minimum outcomes. Convex distortions applied to the complementary distrib-
ution function of utility have recently been considered by Jin and Zhou (2007)
in the context of modeling objectives consistent behavioral �nance. We apply
a sequence of concave distortions to the distribution function instead and seek
the highest stress level for the distortion as the 
 level of the strategy.
Alternatively one may de�ne other patterns of stress by choosing other dis-

tortion functions 	
 ; noting that these functions must be for each 
 a concave
distribution function on the unit interval that increases pointwise in 
 to unity
as 
 tends to in�nity. The paper employs three other distortions.
A simple computation shows that these stressed expectations are expecta-

tions under a measure change given by 	0
(F (x)): One therefore sees that low
outcomes with y = F (x) near zero receive a higher weight while simultaneously
good outcomes for y near unity receive a lower weight. Two of the distortions
used have the economically attractive property of a reweighting scheme that goes
to in�nity for large losses and to zero for large gains. Our study con�rms that
these improved economic properties lead to the recommendation that required
Sharpe ratios based on these distortions better re�ect the adjustments needed
for exposure to skewness, peakedness and tailweightedness in return outcomes.
We note that there is an extensive literature dealing with the asset pricing im-

plications of higher moments beginning with Kraus and Litzenberger (1976) with
more recent contributions by Bansal, Hsieh and Viswanathan (1993), Bansal
and Viswanathan(1993), Chapman (1997), Harvey and Siddique (2000), and
Dittmar (2002). Much of this work is concerned with higher moment e¤ects
in systematic factors and their implications for the prices of liquid assets. The
problem we address here is fundamentally di¤erent. We are concerned with the
e¤ects of higher moments of the full distribution on the gamma or acceptability
level of the cash �ow or strategy.
A word of warning is also called for with respect to strategies aimed at max-

imizing Sharpe ratios as studied for example in Goetzmann, Ingersoll, Spiegel
and Welch (2002). Depending on how a Sharpe ratio is increased, it may in-
crease or decrease the gamma of a cash �ow. The results of this paper may be
employed to shed further light on whether one is in fact moving closer to or
further from an arbitrage in adopting a particular strategy to raise the Sharpe
ratio. In fact the �ndings of Agarwal and Naik (2004) with respect to access-
ing left tail risk could be re�ned to determine whether acceptability or gamma
is increased by particular hedge fund strategies. The method of determining
gamma could also be applied to other popularly studied strategies like pairs
trading (Gatev, Goetzmann and Rouwenhorst (2006)) among others.
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The outline of the paper is as follows. Section 2 establishes the tradeo¤
between centered and scaled distributions being accessed and the Sharpe ratios
required to attain a particular 
. The methods are implemented in Section 3 for
a universe of 527 hedge fund returns with a �ve year history of monthly returns
permitting estimation by maximum likelihood of the return distribution F in
the CGMY class of densities (Carr, Geman, Madan and Yor (2002)). In Section
4 we derive the required Sharpe ratios for all 527 hedge funds in accordance with
the theory of Section 2, using 4 di¤erent concave distortions to stress cash �ows
to particular gamma levels. Section 5 reports on the summary relationship
between required Sharpe ratios and measures of skewness and kurtosis, and
kurtosis partitioned into peakedness and tailweightedness. Section 6 concludes.

2 The gamma of a �nanced return

We develop in this section the theory for inferring the gamma of an investment
return from the level of the Sharpe ratio and the distribution function of the
return standardized to zero mean and unit variance. We note that these return
distributions come from strategies combining long and short positions and so
we take them to be potentially unbounded in both directions. Hence the return
being accessed is given by the real valued random variable X; with a distribution
function FX(x): The acceptability level and hence the gamma of the return will
be determined completely by its distribution function.
We index by the positive real 
 � 0 the level of acceptability of the cash

�ow with arbitrages being acceptable at level in�nity. We follow Cherny and
Madan (2008) and introduce a family of concave distortions given by concave
distribution functions 	
 on the unit interval beginning with 	0(a) = a and
increasing the degree of concavity as we increase 
.
In this formulation, the random variable X is acceptable at level 
 providedZ 1

�1
xd (	
(FX(x))) � 0: (2)

The fact that the benchmark level on the right hand side of (2) is zero is
a consequence of requiring acceptable cash �ows to contain all arbitrages and
hence all positive random variables however small their expectation. The �rst
example of a useful family of concave distortions was noted in the introduction as
MINV AR: The acceptability condition (2) here requires that the expectation
of the minimum of (1 + 
) independent draws from the distribution of X be
positive. This acceptability condition tests for positive worst case expectations
by constructing the worst case using the minimum of independent draws.
Another way of taking a worst case calledMAXV AR in Cherny and Madan

(2008) is to obtain the distribution G of such a random variable that after
drawing from G; independently (1+
) times and taking the maximum outcome
we get the distribution FX : In this case

G(x) = FX(x)
1

1+
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and
	
(y) = y(1+
)

�1
; 0 � y � 1 (3)

We may then combine these two approaches to form the concave distortions
MAXMINV AR given by

	
(y) =
�
1� (1� y)(1+


� 1
1+


where we �rst take the minimum of independent draws and then �nd the dis-
tribution from which to draw, take the maximum outcome to get the law of the
minimum of (
 + 1) draws.
The reverse procedure yields MINMAXV AR with

	
(y) = 1�
�
1� y

1
1+


�1+

:

Cherny and Madan (2008) note that the density of the latter two approaches
with respect to the law of X tends to in�nity and zero as x tends to minus and
plus in�nity, respectively. This property is in accordance with measure changes
seen in economics from a marginal utility perspective where large losses are
exaggerated towards in�nity while large gains are de�ated towards zero. For
MINV AR the density is bounded by 
 + 1 on the left while for MAXV AR it
approaches (1=1 + 
) on the right.
We may de�ne acceptability using any of these candidate distortions to stress

the law of X before evaluating an expectation. We now construct the stan-
dardized (i.e. centered and scaled) distribution being accessed by the random
variable X: Let � be the mean of X and � its standard deviation and de�ne the
standardized random variable Z such that

X = �+ �Z (4)

The distribution of Z by virtue of a zero mean and unit variance accesses higher
moments and under Gaussianity it would be the standard normal variable. In
non-Gaussian domains the density of Z targets, by design, exposure to di¤erent
levels of skewness and kurtosis among other aspects of the distribution.
Consider now the expectation under a concave distortion for the random vari-

able Z with distribution FZ(z): By the concavity of 	 we know that 	0(FZ(z))
in (2) overweights negative outcomes relative to positive ones and so reduces
the expectation under the distortion below the undistorted value of 0: Let cZ(u)
be the negative of the stressed expectation of Z under the distortion 	
 or

cZ(
) = �
Z 1

�1
zd (	
 (FZ(z))) :

Theorem 1 The random variable X attains the acceptability level 
 if and only
if its Sharpe ratio

SR(X) =
�

�
� cZ(
) (5)
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Proof. See Appendix

By Theorem 1 the function cZ(
) is seen to be the Sharpe ratio needed to
attain the acceptability level 
: Intuitively it is clear that if Z is negatively
skewed then the expectation under a concave transformation would be more
negative and hence the Sharpe ratio needed for any level 
 would be higher.
The e¤ect of an increase in just the kurtosis is less clear. In fact it is well known
that kurtosis is made of two e¤ects, one associated with the peakedness of a
distribution and the other with the weight in the tails. The net e¤ect is generally
ambiguous. In this connection we note that Dittmar (2002) following Darlington
(1970) argues for kurtosis being dominated by tailweightedness. This is incorrect
as observed in Moors (1986). We shall later in our regression summary separate
out these e¤ects.
The gamma of a zero cost cash �ow or self �nanced strategy is determined

on solving in 
 the equation
�

�
= cZ(
): (6)

Though the mean, variance and Sharpe ratio appear explicitly in equation (6)
the gamma of a strategy goes way beyond a mean variance analysis. This is
because the distribution of the entire centered and scaled random variable Z is
synthesized in the function cZ(
):
We now establish some general properties about the behavior of the gamma

target Sharpe ratio as a function of 
:

Theorem 2 The required Sharpe ratio for level 
; cZ(
); is increasing in 
 and
provided @2

@
2	
 < 0 then
@2

@
2 cZ(
) < 0

Proof. See Appendix

To get some further insights into the nature of the gamma target Sharpe
ratios engineered by higher moment access it is instructive to construct the
function cZ(
) for a class of distributions that give us access to variations in the
structure of higher moments. A robust class in this regard is given by the law at
unit time of a pure jump Lévy process that may be left or right skewed by having
a smaller or larger rate of positive jumps compared to equally sized negative
ones. A particularly manageable class in this regard is the variance gamma
model of Madan and Seneta (1990), Madan, Carr and Chang (1998) or its
generalization to the CGMY class of Lévy processes introduced in Carr, Geman,
Madan and Yor (2002). The characteristic exponent  (�) of the centered and
scaled to unit variance CGMY random variable Z is the function

�(�) = E [exp (i�Z)] = exp ( (�))

 (�) = �i� GY�1 �MY�1

(Y � 1) (MY�2 +GY�2)

+
(M � i�)Y �MY + (G+ i�)

Y �GY
Y (Y � 1) (MY�2 +GY�2)
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The parameter C was substituted out to organize a unit variance and

C =
1

�(�Y )Y (Y � 1) (MY�2 +GY�2)
:

For future reference we note that the skewness and kurtosis of the centered
and scaled CGMY law at unit time for this Lévy process are

Skewness =
(2� Y )

�
MY�3 �GY�3

�
MY�2 +GY�2

(7)

Kurtosis� 3 =
(2� Y )(3� Y )

�
MY�4 +GY�4

�
MY�2 +GY�2

(8)

We observe that as Y approaches the level 2 the process gets closer to
Gaussian with skewness and excess kurtosis vanishing. The parameter Y con-
trols the relative weight given to small moves as compared with large ones. The
skewness is computed by evaluating i 000(0) while the excess kurtosis is given
by  (iv)(0): Another robust class of distributions which could be investigated in
this context is the class of generalized hyperbolic (GH) distributions (Eberlein
(2001)).
We present in Figure 1 graphs of the function cZ(
) for di¤erent values of the

parameters G;M; Y and the MINMAXV AR concave distortion. The graphs
are obtained by inverting the characteristic function for the distribution func-
tion, passing it under the MINMAX concave transformation and numerically
evaluating the expectation of the stressed distribution.
We observe that negative skewness associated with low values for G and

high values for M are associated with signi�cantly higher gamma target Sharpe
ratios. Hence the mere attainment of a higher Sharpe ratio does not amount
to an increase in the cash �ow gamma. It may even be a worse outcome if the
Sharpe ratio is not su¢ ciently high to compensate for the additional skewness.
Similarly a low Sharpe ratio may yield a high gamma if the target curve is
decreased by the type of investment made.
We may see the net e¤ect of kurtosis by setting G =M to get zero skewness

and varying M to re�ect di¤erent kurtosis levels for Y = :5: We present in
Figure 2 the e¤ect of kurtosis on the required Sharpe ratio. We observe that an
increase in kurtosis reduces the required Sharpe ratio for entering any particular
cone of acceptability. It appears that the e¤ect of peakedness might dominate
that of tailweightedness.

3 The Gamma Levels of Hedge Funds

Perhaps the segment of the �nancial market most focused on accessing non-
Gaussian returns by engaging in dynamic or event driven arbitrage strategies is
the universe of hedge funds. As they attempt to exploit arbitrage opportunities
they may in fact succeed in attaining high levels of gamma for the four accept-
ability indices discussed here. It is therefore interesting to ascertain the level of
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gamma attained in the hedge fund universe. For this purpose we obtained data
on some 662 hedge funds with a continuous history of �ve years of monthly data
and a positive mean return. We recognize the limitations of this procedure as it
is likely to bias upwards the performance levels both on account of the survival
bias and on account of the long reporting period with the inherent practice of
smoothing such data by fund managers. The general qualitative results on the
relationship of performance to other statistics of the data may yet be robust to
these limitations. By way of a comparative backdrop we also extracted data on
44 single name stocks and 10 market indices for a similar �ve year period using
for this purpose 60 monthly nonoverlapping returns. Monthly returns were used
for the stocks and the indices to keep the analysis of the stocks and indices on
the same basis as the hedge funds. We thus had 716 sets of 60 monthly return
observations.
For each of these return series we computed the level of volatility, skewness

and kurtosis. We report in Table 1 the volatilities, skewness, and kurtosis in
the single stocks, the indices and the hedge funds at each of seven quantile
levels. We observe considerable di¤erences in line with stylized observations on
hedge fund returns. They have substantially lower volatilities but yet couple
this with much higher levels of skewness and kurtosis. For example at the 95th
percentile the skew is as high as 1:7754 while at the 5% level it is �2:0812:
The corresponding numbers for single stocks and indices are :5612;�:0695 and
�:8751;�0:9104: The single stock kurtosis levels at the 95% level are 6:9330 with
indices at 4:7377 while the hedge funds have 17:7058: Yet this picture on skews
and kurtosis is associated with much lower volatilities across the board. Again
at the 95% level the hedge funds have a volatility of 4:39% with the indices at
6:48% and single name stocks at 11%: Taken at face value these observations
are consistent with substantial di¤erences between how hedge funds earn their
monies and what one would get from investing in stocks or indices. One may
expect that the levels of the gamma attained by hedge funds are possibly also
higher. Some part of these e¤ects are related to the survival and smoothing
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biases already noted.

TABLE 1
quantiles for vol, skew and kurtosis

quantiles
.01 .05 .25 .5 .75 .95 .99

Stocks .0361 .0448 .0613 .0713 .0895 .1100 .1431
Vol Indices .0343 .0343 .0384 .0538 .0597 .0648 .0648

Funds .0054 .0069 .0101 .0152 .0243 .0439 .0590

Stocks -1.0297 -.8751 -.4131 -.1327 .0612 .5612 1.3663
Skew Indices -.9104 -.9104 -.8226 -.4891 -.2740 -.0695 -.0695

Funds -4.6922 -2.0812 -.5355 -.0670 .4863 1.7754 2.9625

Stocks 2.3771 2.4691 2.8231 3.4607 4.2637 6.9330 10.4426
Kurtosis Indices 2.5240 2.5240 2.7213 3.7157 4.5908 4.7377 4.7377

Funds 2.4203 2.7696 3.6528 4.8035 7.5710 17.7058 37.9672

To evaluate the gamma levels one needs to access the distribution function,
distort it by making a worst case expectation computation using concave dis-
tribution transformations and then evaluate the highest level 
 of the concave
transformation for which the expectation is positive. With 60 data points the
construction of a nonparametric distribution function is on shaky grounds. We
therefore recommend the use of a robust parametric model and we suggest that
one minimizes the number of parameters to be estimated by a nonlinear opti-
mizer like maximum likelihood estimation.
We further recognize that the return distribution being estimated is the

result of potentially many trades conducted in varied markets over the month.
Hence the monthly return aggregates the result of many possibly independent
outcomes. This suggests that a limit law like the Gaussian distribution may
be relevant. However, the extensive non-Gaussian nature of these distributions
argue against the Gaussian model. Hence we are led to other limit laws. The
collection of all limit laws were characterized by Lévy (1937) and Khintchine
(1938). These are the class of self decomposable random variables and they
contain many non-Gaussian alternatives. Self decomposable random variables
are in�nitely divisible and therefore are a subclass of the distributions of Lévy
processes at unit time. However, to be a limit law the arrival rate of jumps as
described by the Lévy density must have a special structure. First the process
must have in�nite activity as discussed for example in Carr, Geman, Madan
and Yor (2002). Secondly, when we multiply the Lévy density k(x) by jxj we
must get a function that is decreasing in x for positive x and increasing in x for
negative x (see for example Sato (1999)): A classic example of such a process is
the variance gamma model of Madan and Seneta (1990) and Madan, Carr and
Chang (1998) where the required function that is increasing and decreasing for
negative and positive x respectively is just exp (�jxj) : We employ the further
generalization attained in the CGMY model of Carr, Geman, Madan and Yor
(2002).
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The centered and scaled CGMY class considered in the previous section are a
�exible collection of such limit laws for all values of the parameters. We therefore
expect monthly hedge fund returns to be described well by such distributions.
The distributions have been tested on daily stock returns and can in any case be
further tested for any particular application. Here we illustrate the calculations
using this family of densities. We expect only small di¤erences from movements
in Y that really controls the level of small activity. With a view to minimizing
parameters we centered and scaled the return data, �xed Y at 0:5 and estimated
just G;M for 716 sets of the return data.
The levels of gamma for the hedge funds were then generated by constructing

simulated cash �ows of 1000 readings by drawing from the centered and scaled
estimated distribution by the inverse distribution function method applied to a
draw of uniform random numbers. The distribution function was obtained by
Fourier inversion techniques. Simulated cash �ows were obtained on scaling by
the known standard deviation and adding back the mean. This method would
give us a matrix of 1000 readings of cash �ows on 716 underliers. However,
we dropped underliers that were estimated close to Gaussian distributions and
those with negative means as our interest is in the structural relationship of
non-Gaussianity to the gamma level of acceptability that is positive only with
a positive mean. We were left with 27 stocks, all the 10 indices and 527 hedge
funds. There was then a total of 564 underliers.
For these 564 cash �ows with 1000 simulated readings we computed the

gamma on building an empirical distribution function out of the cash �ow,
distorting it by level 
; evaluating the expectation of the distorted distribu-
tion function by numerical integration and maximizing the level of the index 

yielding a positive distorted expectation. All the four new performance mea-
sures of Cherny and Madan (2008) based on the four distortions of MINV AR;
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MAXV AR; MINMAXV AR and MAXMINV AR were used.

TABLE 2
Gamma Levels of Funds From Standardized CGMY

quantiles
Based on .01 .05 .25 .5 .75 .95 .99

Stocks 0 0 .0205 .1177 .2444 .3243 .3525
MINVAR Indices 0 0 .0515 .1265 .1945 .2492 .2492

Funds .0438 .1640 .4216 .7175 1.1345 2.0668 3.43

Stocks 0 0 .0188 .0883 .1983 .2779 .3097
MAXVAR Indices 0 0 .0423 .0957 .1564 .1964 .1964

Funds .0407 .1374 .3309 .4966 .7142 1.2346 1.9026

Stocks 0 0 .0098 .0494 .1079 .1426 .1563
MAXMINVAR Indices 0 0 .0231 .0535 .0863 .1062 .1062

Funds .0214 .0738 .1760 .2679 .3892 .6591 .9670

Stocks 0 0 .0098 .0488 .1049 .1372 .1499
MINMAXVAR Indices 0 0 .0229 .0527 .0844 .1032 .1032

Funds .0212 .0726 .1673 .2495 .3529 .5645 .7887

The results are presented in Table 2. We observe that subject to the survival
and smoothing biases the hedge funds do indeed access much higher levels of
gamma. The highest values are for those based on MINV AR that has the
least discount on large losses. This is followed by MAXV AR and then we have
dual worst case constructions with MINMAXV AR being the severest of the
four. However, we do have a substantial improvement over purely static long
positions in the underliers. These observations are broadly consistent with the
�ndings of Fung and Hsieh (1997).

4 Gamma Required Sharpe Ratios for Hedge
Funds

We may choose a level of acceptability 
� and construct for such a level the
Sharpe ratios required of funds by estimating the law of the centered and scaled
random variable accessed by the fund, FZ(x) and then computing cZ(
�) the
target Sharpe ratio needed for attaining the level 
�. We performed this exer-
cise for the 527 funds at 
� = 1:0 for acceptability based on MINV AR and
MAXV AR: For the joint distortions ofMAXMINV AR andMINMAXV AR
we reduced the target level of 
� to 0:75: These values for the level of accept-
ability are not far out of range of those observed around the :75 quantile of the
levels reported in Table 2. We study the relationship between performance and
other statistics of the return distribution via the required Sharpe ratio given the
wide spread use of this statistic.
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Of the four distortions we recall that the latter three involving reweighted
expectations that exaggerate large losses, are in agreement while the �rst based
on MINV AR is relatively uncorrelated with the others. This suggests that
MINV AR based acceptabilities may not be the appropriate ones to use. The
correlation of MAXV AR based targets with the joint distortions are :9673 and
:9850 while that between the two joint distortions is :9955:On the other hand the
correlations of MINV AR with the other three are just :0911; :3349 and :2462:
We are led to recommend the construction of required Sharpe ratio targets on
either of the two joint distortions. The four distortions at these acceptability
levels gave average required Sharpe ratio targets of :5394; :7619; :9947 and 1:17
respectively with standard deviations of :03; :05; :05 and :07 respectively.

5 Gamma skewness and kurtosis

With a view to broadly summarizing the e¤ects of skewness and kurtosis on
required Sharpe ratios and hence the gamma, we constructed for each fund in
our sample the skewness and kurtosis associated with the estimated parameters
of the centered and scaled returns being accessed, in accordance with equations
(7) and (8). We then regressed each of the four required Sharpe ratios on the
levels of skewness and kurtosis in the distribution accessed. The results are
presented in Table 3.

TABLE 3
Regression Coe¢ cients of Required Sharpe Ratios
on Skewness and Kurtosis

Constant Skewness Kurtosis R2

MINVAR 0.5536 0.00076 -0.0055 83.45
t-stat (0.98) (-7.07)

MAXVAR 0.7572 -0.0529 -0.0037 64.08
t-stat (-29.10) (-2.06)

MAXMIN 0.9954 -0.0566 -0.0062 76.54
t-stat (-35.36) (-3.90)

MINMAX 1.1674 -0.0763 -0.0071 74.88
t-stat (-35.65) (-3.30)

We see that for targets based on MINV AR skewness has the wrong sign and
is not signi�cant. The higher R2 is probably just a consequence of the lower
variability of this target. For all the other measures we have a strongly signi�-
cant and negative coe¢ cient associated with skewness, con�rming that negative
skew must be compensated by higher Sharpe ratios to maintain cash �ow ac-
ceptability. As noted earlier exposure to kurtosis is dominated by peakedness
and hence we have a reduction in the required Sharpe ratios. Kurtosis is signif-
icant as indicated by the t-statistics but the e¤ect is not as strong as that of
skewness.
We separate out the e¤ects of peakedness and tailweightedness of the dis-

tribution by regressing the required Sharpe ratios on skewness and two sepa-
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rate measures for peakedness and tailweightedness. We are working with zero
mean variables scaled to unit variance and for such variables one may measure
peakedness by evaluating the probability of the variable being below unity in
absolute value. We measure tailweightedness by computing the probability of
being above 2 in absolute value. The results of this regression are provided in
Table 4.

TABLE 4
Regression Coe¢ cients of Required Sharpe Ratios
Skewness, Peakedness and Tailweightedness

Constant Skewness Peakedness Tailweight R2

MINVAR 1.0738 0.00832 -0.8662 2.0137 96.70
t-stat (23.21) (-115.69) (30.58)

MAXVAR 0.8121 -0.0536 -0.3494 3.889 59.01
t-stat (-26.73) (-8.34) (10.56)

MAXMINVAR 1.2864 -0.0539 -0.7447 4.8321 64.26
t-stat (-26.41) (-17.45) (12.87)

MINMAXVAR 1.4479 -0.0741 -0.7966 5.7761 64.57
t-stat (-28.20) (-14.52) (11.97)

We see from Table 4 that required Sharpe ratios are indeed negatively related
to peakedness and positively related to tailweightedness for all the acceptabil-
ity indices. The e¤ect of skewness in the case of MINVAR still has the wrong
sign and is now also signi�cant. However, as commented already, this measure
underweights negative skewness. For all the other stressed expectations de�n-
ing acceptability we have negative and signi�cant coe¢ cients for skewness and
peakedness and positive and signi�cant coe¢ cients for tailweightedness.

6 Conclusion

We apply in this paper the new performance measures developed in Cherny
and Madan (2008) to the universe of hedge funds. These measures go beyond
the mean and variance in assessing performance and are particularly suited to
the evaluation of non-Gaussian outcomes that are typical for hedge funds. The
new measures create indices of acceptability and we introduce the concept of
the return gamma as the highest level of acceptability attained by an accessed
return distribution. Operational procedures for constructing the gamma are
implemented and illustrated for data on hedge fund returns.
Return distributions are stressed using the principle of computing expecta-

tions after a concave distortion. Four distortions are used that were introduced
in Cherny and Madan (2008) and are called MINVAR, MAXVAR, MAXMIN-
VAR and MINMAXVAR. For MINVAR the stress procedure is to draw from
the distribution a number of times and take the worst outcome. For MAXVAR
one takes a distribution and draws from it a number of times and the law of
the best outcome must match the cash �ow distribution being evaluated. The
other procedures combine these stress technologies.
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It is shown that target gamma levels imply a required Sharpe ratio that is
responsive to the skewness, peakedness and tailweightedness of the return dis-
tribution accessed. Of the four distortions the two joint distortions are highly
correlated and are the recommended distortions for evaluating performance or
establishing target Sharpe ratios from both a practical and theoretical perspec-
tive.
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Appendix

Proof. of Theorem 1.
X attains the acceptability 
 by condition (2) if and only ifZ 1

�1
xd (	
 (FX(x))) � 0:

By construction of Z; (4) we have that

FX(x) = FZ

�
x� �
�

�
and hence we have acceptability just ifZ 1

�1
xd

�
	


�
FZ(

x� �
�

)

��
� 0

Now make the change of variable to z = (x� �) =� to get the equivalent
condition

�

Z 1

�1
(�+ �z) d (	
(FZ(z))) � 0:

From the de�nition of cZ and the fact that 	
(FZ(z)) is another distribution
function we get the result that

�� �cZ(
) � 0;

or the desired lower bound on the Sharpe ratio.

Proof. of Theorem 2.
This follows by noting using integration by parts that

cZ(
) =

Z 1

�1
(	
(FZ(z))� 1z>0)dz:

Hence
@

@

cZ(
) =

Z 1

�1

@

@

	
(FZ(z))dz

and for any acceptability index it is shown in Cherny and Madan (2007) that
@
@
	
(a) � 0: Di¤erentiation once more gives the result on the second derivative.
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