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Abstract. The purpose of this paper is to develop the appropriate
mathematical tools for the study of the duality principle in option pric-
ing for models where prices are described by general exponential semi-
martingales. Particular cases of these models are the ones which are
driven by Brownian motions and by Lévy processes, which have been
considered in several papers.

Generally speaking the duality principle states that the calculation of
the price of a call option for a model with price process S = eH (w.r.t.
the measure P ) is equivalent to the calculation of the price of a put

option for a suitable dual model S′ = eH′
(w.r.t. a dual measure P ′).

More sophisticated duality results are derived for a broad spectrum of
exotic options.

From the paper it is clear that appealing to general exponential semi-
martingale models leads to a deeper insight into the essence of the du-
ality principle.

1. Introduction

Consider an investor who buys a call option in the foreign exchange mar-
kets, for example the Euro/Dollar market. Owning the call option, she has
the right to buy euros for a strike rate K. In case she exercises the option, she
has to pay in dollars. Therefore, the right to buy euros is at the same time
a right to sell dollars at the inverse rate K ′ = 1/K. Thus, the call option
on the Euro/Dollar rate is equivalent to a put option on the Dollar/Euro
rate. The prices of these options determine each other. This obvious fact
was already noted by Grabbe (1983).

Nevertheless, behind this simple observation lies a much deeper result,
which we call the duality principle. Assuming some dynamics about the evo-
lution of the exchange rate (or even the price process of a stock or an index),
what are the dynamics of the reciprocal rate? The duality principle provides
the answer to this natural question. We model asset prices as general expo-
nential semimartingales, hence we work in the widest possible framework,
as far as arbitrage theory is concerned. The appropriate tool to express this
answer turned out to be the triplet of predictable characteristics of a semi-
martingale (cf. Jacod 1979). Indeed, the central result provides the explicit
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model, exponential Lévy model, call-put duality, exotic options.
The second named author acknowledges the financial support from the Deutsche

Forschungsgemeinschaft (DFG, Eb 66/9-2). This research was carried out while the third
named author was supported by the Alexander von Humboldt foundation.

1



2 E. EBERLEIN, A. PAPAPANTOLEON, A.N. SHIRYAEV

form of the triplet of predictable characteristics of the dual process under
the dual martingale measure.

The most standard application of the duality principle relates the value of
a European call option to the value of a European put option. Carr (1994)
derived a put-call duality for the Black and Scholes (1973) model and more
general diffusion models. Chesney and Gibson (1995) considered a two-factor
diffusion model and Bates (1997) considered diffusion and jump-diffusion
models. Schroder (1999) investigated duality results for a number of pay-
offs in diffusion and jump-diffusion models. Fajardo and Mordecki (2006b)
considered Lévy processes, whereas Eberlein and Papapantoleon (2005b)
obtained a number of results for time-inhomogeneous Lévy processes.

Eberlein, Kluge, and Papapantoleon (2006) studied duality results in the
context of fixed income markets. They derived results analogous to those in
foreign exchange and equity markets, for interest rate options such as caps,
floors and options on bonds.

Duality type results were used to derive static hedging strategies for some
exotic derivatives, using standard European options as hedging instruments;
see e.g. Carr, Ellis, and Gupta (1998). They were also used by Bates (1997),
and more recently by Fajardo and Mordecki (2006a), to calculate the so-
called “skewness premium” from observed market prices of vanilla options.

Naturally, once the duality for European options was derived, researchers
looked into analogous results for American options. The duality between
American call and put options is even more interesting than its European
counterpart, since for American options the put-call parity holds only as an
inequality. Carr and Chesney (1996) proved the put-call duality for American
options for diffusion models, Detemple (2001) studied dualities for American
options with general payoffs in diffusion models, while Fajardo and Mordecki
(2006b) proved analogous results in Lévy models.

The duality principle demonstrates its full strength when considering ex-
otic derivatives. In certain cases – a typical example is the Russian option –
it allows to reduce a problem involving two random variables – for example,
the asset price and its supremum – to a problem involving just one ran-
dom variable – in this example, the supremum – under a dual measure. The
computation of expected values (option prices) based on a joint distribution
of two variables is typically very time-consuming; therefore, the evaluation
of an expectation based on a univariate variable speeds up the numerical
computation considerably.

Henderson and Wojakowski (2002) showed an equivalence between float-
ing and fixed strike Asian options in the Black–Scholes model. Vanmaele
et al. (2006) extended those results to forward-start Asian options in the
Black–Scholes model. Eberlein and Papapantoleon (2005a) extended the re-
sults of Henderson and Wojakowski by using Lévy processes as the driving
force for the asset price; they also proved analogous equivalence results for
floating and fixed strike lookback options.

Večeř (2002) and Večeř and Xu (2004) used this change of measure to de-
rive a one-dimensional partial (integro-)differential equation for floating and
fixed strike Asian options in the Black–Scholes and a general semimartin-
gale model. Andreasen (1998) had used this change of measure to derive a
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one-dimensional partial (integro-)differential equation for floating and fixed
strike lookback options in the Black–Scholes and in a jump-diffusion model.

The connection between the choice of an appropriate numeraire and a
subsequent change of measure has been beautifully described in Geman, El
Karoui, and Rochet (1995). The change of measure method itself has already
been used in earlier work, see e.g. Shepp and Shiryaev (1994) and Shiryaev
et al. (1994).

Finally, it is interesting to mention the put-call duality of Peskir and
Shiryaev (2002), who used negative volatility.

2. Exponential semimartingale models

1. Let BT = (Ω,F , (Ft)0≤t≤T , P ) be a stochastic basis (Jacod and Shiryaev
2003, p. 2) with FT = F and S = (St)0≤t≤T be an exponential semimartin-
gale, i.e. a stochastic process with representation

St = eHt , 0 ≤ t ≤ T (2.1)

(shortly: S = eH), where H = (Ht)0≤t≤T is a semimartingale, H0 = 0.
The process S is interpreted as the price process of a financial asset, e.g.

a stock or an FX rate. Together with the compound interest representation
(2.1) for (positive) prices S, which is appropriate for the statistical analysis
of S, the following simple interest representation

St = E(H̃)t, 0 ≤ t ≤ T, (2.2)

with some suitable semimartingale H̃ = (H̃t)0≤t≤T , is convenient for the
study of the process S by martingale methods; see details in Shiryaev (1999).

In (2.2) we used the standard notation E(X) = (E(X)t)0≤t≤T for the
stochastic exponential of a semimartingale, defined∗ as the unique strong
solution of the stochastic differential equation

dE(X)t = E(X)t−dXt. (2.3)

From (2.1) and (2.2) it follows that the process H̃ should satisfy the
equation

eHt = E(H̃)t, 0 ≤ t ≤ T (2.4)

which implies ∆H̃ > −1. In other words

Ht = log E(H̃)t, 0 ≤ t ≤ T (2.5)

and vice versa
H̃t = Log(eHt), 0 ≤ t ≤ T (2.6)

where Log X denotes the stochastic logarithm of a positive process X =
(Xt)0≤t≤T :

Log Xt =
∫ t

0

dXs

Xs−
. (2.7)

Note that for a positive process X with X0 = 1 we have for Log X

Log X = log X +
1

2X2
−
· 〈Xc〉 −

∑
0<s≤·

(
log

(
1 +

∆Xs

Xs−

)
− ∆Xs

Xs−

)
. (2.8)

∗For notions of the general theory of stochastic processes and notation in general, we
rely on the monograph Jacod and Shiryaev (2003).
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For details see Kallsen and Shiryaev (2002) or Jacod and Shiryaev (2003).
If µH = µH(ω; ds,dx) and µ

eH = µ
eH(ω; ds,dx) are the random measures

of jumps of H and H̃ then from (2.4)–(2.7) one gets the following useful
formulae

H̃ = H +
1
2
〈Hc〉+ (ex − 1− x) ∗ µH (2.9)

and

H = H̃ − 1
2
〈H̃c〉+ (log(1 + x)− x) ∗ µ

eH (2.10)

where W ∗ µ, for W = W (ω; s, x) and the integer-valued measure µ =
µ(ω; ds,dx), s ∈ [0, T ], x ∈ E, means the integral∫ ·

0

∫
E

W (ω; s, x)µ(ω; ds,dx)

often written as
∫ ·
0

∫
E Wdµ.

It is useful to note that discrete time sequences H = (Hn)n≥0 with H0 = 0
and Fn-measurable random variables Hn can be considered as a semimartin-
gale H = (Ht)t≥0 in continuous time, where Ht = Hn for t ∈ [n, n+1), given
on the stochastic basis B = (Ω,F , (F t)t≥0, P ) with F t = Fn for t ∈ [n, n+1).

In the discrete time setting S = (Sn)n≥0 has a compound interest repre-
sentation

Sn = eHn , Hn = h1 + · · ·+ hn, n ≥ 1, (2.11)

S0 = 1, h0 = 0 and the analogue of the simple interest representation has
the form

Sn = E(H̃)n =
∏

0≤k≤n

(1 + h̃k) (2.12)

with h̃k = ehk − 1, H̃k = h̃1 + · · ·+ h̃k, k ≥ 1, H̃0 = 0. We see that

∆Sn = Sn−1∆H̃n

where ∆Sn = Sn − Sn−1, ∆H̃n = H̃n − H̃n−1 = h̃n (compare with (2.3)).

2. It is known that every semimartingale H = (Ht)0≤t≤T admits a canonical
representation

H = H0 + B + Hc + h(x) ∗ (µ− ν) + (x− h(x)) ∗ µ (2.13)

where
a) h = h(x) is a truncation function; a canonical choice of h is h(x) =

xI{|x|≤1} where IA, denotes the indicator of the set A;
b) B = (Bt)0≤t≤T is a predictable process of bounded variation;
c) Hc = (Hc

t )0≤t≤T is the continuous martingale part of H;
d) ν = ν(ω; ds,dx) is the predictable compensator of the random measure

of jumps µ = µ(ω; ds,dx) of H; for clarity we write also νH and µH

instead of ν and µ.
The continuous martingale Hc has a predictable quadratic characteristic

〈Hc〉 which will be denoted C (= (Ct)0≤t≤T ). For the processes B, C, and
the measure ν we use the notation

T(H|P ) = (B,C, ν)
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which will be called the triplet of predictable characteristics of the semi-
martingale H with respect to the probability measure P .

The concepts of predictability and predictable characteristics played and
play a crucial role in the development of the general theory of Stochastic
Processes, the theory of Semimartingales and their applications, including
Mathematical Finance. Recall that the financial notion of a portfolio is based
on the concept of predictability (non-anticipating). For more details, we refer
to Jacod and Shiryaev (2003), especially the Bibliographical Comments at
the end of the book.

3. From formulae (2.9) and (2.10) it is not difficult to find the relationships
between the triplets T(H|P ) = (B,C, ν) and T(H̃|P ) = (B̃, C̃, ν̃) (with
respect to the same truncation function h):

B̃ = B +
C

2
+ (h(ex − 1)− h(x)) ∗ ν

C̃ = C (2.14)

IA(x) ∗ ν̃ = IA(ex − 1) ∗ ν, A ∈ B(R\{0})

and

B = B̃ − C̃

2
+ (h(log(1 + x))− h(x)) ∗ ν̃

C = C̃ (2.15)

IA(x) ∗ ν = IA(log(1 + x)) ∗ ν̃, A ∈ B(R\{0})

(see more details in Kallsen and Shiryaev (2002) and Jacod and Shiryaev
(2003, p. 66)).

4. It is important to note that the canonical representation (2.13) depends
on the selected truncation function h = h(x). However, the characteristics
C and ν do not depend on the choice of h while B = B(h) does. If h and
h′ are two truncation functions then B(h)−B(h′) = (h− h′) ∗ ν (see Jacod
and Shiryaev 2003, p. 81).

In the sequel the function h = h(x) will be assumed to satisfy the anti-
symmetry property :

h(−x) = −h(x).
We will see that this choice of the truncation function simplifies many formu-
lae. Note that the canonical choice h(x) = xI{|x|≤1} satisfies this property.

3. Martingale measures and dual martingale measures

1. Let Mloc(P ) be the class of all local martingales on a given stochastic
basis B = (Ω,F , (Ft)0≤t≤T , P ). It follows from the canonical representation
(2.13) that if T(H|P ) = (B,C, ν) then

H ∈Mloc(P ) ⇔ B + (x− h(x)) ∗ ν = 0. (3.1)

Similarly, for the process H̃ = Log(eH) we have

H̃ ∈Mloc(P ) ⇔ B̃ + (x− h(x)) ∗ ν̃ = 0. (3̃.1)
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In the sequel, we will assume that the following condition is in force.

Assumption ES. The process I{x>1}ex ∗ ν has bounded variation.

Under assumption ES the property (3̃.1) can be rewritten, taking into
account (2.14), in the following form:

H̃ ∈Mloc(P ) ⇔ B +
C

2
+ (ex − 1− h(x)) ∗ ν = 0. (3.2)

Remark 3.1. The assumption that the process I{x>1}ex ∗ ν has bounded
variation, is equivalent by Kallsen and Shiryaev (2002, Lemma 2.13) to the
assumption that the semimartingale H is exponentially special, i.e., the price
process S = eH is a special semimartingale. This justifies to call it Assump-
tion ES.

Since H̃ ∈Mloc(P ) iff E(H̃) ∈Mloc(P ) we get from (3.2)

E(H̃) ∈Mloc(P ) ⇔ B +
C

2
+ (ex − 1− h(x)) ∗ ν = 0, (3.3)

and, therefore, using (2.4)

S = eH ∈Mloc(P ) ⇔ B +
C

2
+ (ex − 1− h(x)) ∗ ν = 0. (3.4)

2. For the purpose of the next theorem (Theorem 3.4), we shall assume
that S is not only a local martingale but also a martingale (S ∈M(P )) on
[0, T ]. Thus EST = 1 which allows us to define on (Ω,F , (Ft)0≤t≤T ) a new
probability measure P ′ with

dP ′ = ST dP. (3.5)

Since S is a martingale

d(P ′|Ft) = St d(P |Ft), 0 ≤ t ≤ T (3.6)

and since S > 0 (P -a.s.), we have P � P ′ and

dP =
1

ST
dP ′. (3.7)

Let us introduce the process

S′ =
1
S

. (3.8)

Then with H ′ = −H

S′ = eH′
. (3.9)

The following simple but, as we shall see, useful lemma plays a crucial
role in the problem of duality between call and put options. It also explains
the name of dual martingale measure for the measure P ′.

Lemma 3.2. Suppose S = eH ∈ M(P ) i.e. S is a P -martingale. Then the
process S′ ∈M(P ′) i.e. S′ is a P ′-martingale.

Proof. The proof follows directly from Proposition 3.8 on page 168 in Jacod
and Shiryaev (2003) which states that if Z = dP ′

dP then S′ ∈ M(P ′) iff S′Z
is a P -martingale. In our case Z = S and S′S ≡ 1. Thus S′ ∈M(P ′). �
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3. The next theorem is crucial for all calculations of option prices on the
basis of the duality principle (see Section 4). We prepare the proof of the
theorem with the following lemma, which is of interest on its own.

Lemma 3.3. Let f be a predictable, bounded process. The triplet of pre-
dictable characteristics of the stochastic integral process J =

∫ ·
0 fdH, de-

noted by T(J |P ) = (BJ , CJ , νJ), is

BJ = f ·B + [h(fx)− fh(x)] ∗ ν (3.10)
CJ = f2 · C (3.11)

IA(x) ∗ νJ = IA(fx) ∗ ν, A ∈ B(R\{0}). (3.12)

Proof. The last two statements follow directly from the properties of the
stochastic integral J = f ·H:

Jc = f ·Hc (3.13)

and
∆J = f∆H. (3.14)

Indeed, (3.11) follows directly from (3.13) and Jacod and Shiryaev (2003,
I.4.41):

CJ = 〈Jc〉 = f2 · 〈Hc〉 = f2 · C.

From (3.14) we deduce

IA(x) ∗ µJ = IA(fx) ∗ µH , A ∈ B(R\{0}) (3.15)

which gives for νJ , the compensator of the random measure of jumps µJ of
J , the relation (3.12).

For the proof of relation (3.10) we recall the canonical representation of
the semimartingale H:

H = H0 + B + M + (x− h(x)) ∗ µH (3.16)

where M is a local martingale (in fact M = Hc + h(x) ∗ (µH − ν)) and the
canonical representation of the semimartingale J :

J = J0 + BJ + Jc + h(y) ∗ (µJ − νJ) + (y − h(y)) ∗ µJ . (3.17)

From the definition J = f ·H and the representation (3.16) we get

J = f ·B + f ·M + (fx− fh(x)) ∗ µH (3.18)

which gives, together with (3.15), the following formula:

J − (y − h(y)) ∗ µJ =

= f ·B + f ·M + (fx− fh(x)) ∗ µH − (fx− h(fx)) ∗ µH

= f ·B + f ·M + (h(fx)− fh(x)) ∗ µH . (3.19)

The process J − (y − h(y)) ∗ µJ has bounded jumps. Hence this process
is a special semimartingale (Jacod and Shiryaev 2003, Lemma 4.24, p. 44)
and by Proposition 4.23(iii), again from Jacod and Shiryaev (2003, p. 44),
we conclude that the process f · B + (h(fx) − fh(x)) ∗ µH) ∈ Aloc, i.e.
it is a process with locally integrable variation. Note now that the process
f ·B belongs also to the class Aloc since it is a predictable process of locally
bounded variation (Jacod and Shiryaev 2003, Lemma 3.10, p. 29). Hence the
process (h(fx) − fh(x)) ∗ µH ∈ Aloc and using Jacod and Shiryaev (2003,
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Theorem 3.18, p. 33) there exists a compensator of this process given by
the formula (h(fx) − fh(x)) ∗ ν (Jacod and Shiryaev 2003, Theorem 1.8,
pp. 66–67). As a result we get from (3.19) that

J − (y − h(y)) ∗ µJ = [f ·B + (h(fx)− fh(x)) ∗ ν]

+ [f ·M + (h(fx)− fh(x)) ∗ (µH − ν)]

= f ·B + (h(fx)− fh(x)) ∗ ν

+ f ·Hc + h(fx) ∗ (µH − ν). (3.20)

Comparing the decomposition (3.20) of the special semimartingale J −
(y−h(y))∗µJ with the representation of J−(y−h(y))∗µJ from the canonical
representation (3.17) we conclude, by the uniqueness of the representation
of a special semimartingale (Jacod and Shiryaev 2003, I.4.22), that the pro-
cesses BJ and f · B + (h(fx) − fh(x)) ∗ ν are indistinguishable; cf. Jacod
and Shiryaev (2003, p. 3). Therefore, formula (3.10) is proved. �

Theorem 3.4. The triplet T(H ′|P ′) = (B′, C ′, ν ′) can be expressed via the
triplet T(H|P ) = (B,C, ν) by the following formulae:

B′ = −B − C − h(x)(ex − 1) ∗ ν

C ′ = C (3.21)
IA(x) ∗ ν ′ = IA(−x)ex ∗ ν, A ∈ B(R\{0}).

Proof. We give two proofs which are of interest here since these proofs
contain some additional useful relationships between different triplets. The
structure of these proofs can be represented by the following diagram:

T(H|P ′)

(c) ))SSSSSSSSSSSSSS

T(H|P )

(G)

(a)

55llllllllllllll

(b)

))RRRRRRRRRRRRRR
T(H ′|P ′)

T(H ′|P )

(d)

(G)

55kkkkkkkkkkkkkk

(3.22)

where
(G) // means that we use Girsanov’s theorem for calculating the

right side triplet from the left side one.

(a) T(H|P )
(G) // T(H|P ′).

For the calculation of the triplet T(H|P ′) = (B+, C+, ν+) from the triplet
T(H|P ) = (B,C, ν), we use Girsanov’s theorem for semimartingales (Jacod
and Shiryaev 2003, pp. 172–173) which states that

B+ = B + β+ · C + h(x)(Y + − 1) ∗ ν (3.23)
C+ = C (3.24)
ν+ = Y + · ν. (3.25)

Here β+ = β+
t (ω) and Y + = Y +(ω; t, x) are defined by the following formu-

lae (see Jacod and Shiryaev 2003, p. 173):

〈Sc,Hc〉 = (S−β+) · C (3.26)
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and

Y + = MP
µH

( S

S−
|P̃

)
. (3.27)

In (3.27) P̃ = P ⊗ B(R) is the σ-field of predictable sets in Ω̃ = Ω ×
[0, T ] × R, MP

µH = µH(ω; dt, dx)P (dω) is the positive measure on (Ω̃,F ⊗
B([0, T ])⊗ B(R)) defined by

MP
µH (W ) = E(W ∗ µH)T (3.28)

for measurable nonnegative functions W = W (ω; t, x) given on Ω×[0, T ]×R.
The conditional expectation MP

µH

(
S
S−

|P̃
)

is, by definition, the MP
µH -a.s.

unique P̃-measurable function Y + with the property

MP
µH

( S

S−
U

)
= MP

µH (Y +U) (3.29)

for all nonnegative P̃-measurable functions U = U(ω; t, x).
We show that in our special case S = eH , where evidently S

S−
= e∆H , one

may take the following versions of β+ and Y +:

β+ ≡ 1 and Y + = ex. (3.30)

Indeed, in (3.26), for S = eH , we get applying Itô’s formula to eH , that

(eH)c =
∫ ·

0
eHs−dHc

s

and, therefore,

〈Sc,Hc〉 = 〈(eH)c,Hc〉 =
〈 ∫ ·

0
eH−dHc,Hc

〉
=

∫ ·

0
eH−d〈Hc〉 =

∫ ·

0
eH−dC = S− · C (3.31)

and

(S−β+) · C =
∫ ·

0
eH−β+dC. (3.32)

From this formula and the equality (3.26) we see that one may take β+ ≡ 1.
For the proof that one may choose Y + = ex we need to verify (3.29) with

this version of Y +.
We have, using that µH is the random measure of jumps of H:

MP
µH (exU) = E

[ ∫ T

0

∫
R

exU(ω; t, x)µH(ω; dt, dx)
]

= E

[ ∑
0<t≤T

e∆Ht(ω)U(ω; t, ∆Ht(ω))I(∆Ht(ω) 6=0)

]

= E

[ ∫ T

0

∫
R

St(ω)
St−(ω)

U(ω; t, x)µH(ω; dt, dx)
]

= MP
µH

( S

S−
U

)
. (3.33)
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Consequently in (3.23)–(3.25) one may put β+ ≡ 1 and Y + = ex which gives
the following result:

B+ = B + C + h(x)(ex − 1) ∗ ν

C+ = C (3.34)
ν+ = ex · ν.

Remark 3.5. It is useful to note that for the discrete time case the relation
dν+ = exdν can be proved (with the obvious notation) in the following
simple way.

Let hn = ∆Hn and µn = µn(ω; ·) be the random measure of jumps in
time n, i.e.

µn(ω;A) = IA(hn(ω)) for A ∈ B(R\{0}).

The compensator νn = νn(ω; ·) of µn(ω; ·) has here the simple form
νn(ω;A) = P (hn∈A|Fn−1)(ω) (see Jacod and Shiryaev (2003, p. 92) for the
definition of the compensator in the case of discrete time). If ν+

n (ω;A) =
P ′(hn∈A|Fn−1)(ω) then from the already used Proposition 3.8 on page 168
in Jacod and Shiryaev (2003) or, equivalently, from Bayes’ formula (also
called the conversion formula; see Shiryaev (1999, p. 438)) we find that

ν+
n (ω;A) = E′[IA(hn)|Fn−1](ω)

= E[IA(hn)ehn |Fn−1](ω) =
∫

A
exνn(ω; dx).

Therefore,

ν+
n � νn and

dν+
n

dνn
(ω;x) = ex (νn-a.e.).

(b) T(H|P ) // T(H ′|P ).
Because H ′ = −H the triplet T(H ′|P ) = T(−H|P ). Denote T(−H|P ) =

(B−, C−, ν−). Now, it suffices to apply Lemma 3.3 to the process J = −H,
i.e. f ≡ −1, and use the assumption h(−x) = −h(x), to obtain that

B− = −B

C− = C (3.35)
IA(x) ∗ ν− = IA(−x) ∗ ν, A ∈ B(R\{0}).

(c) T(H|P ′) // T(H ′|P ′).
The triplet T(H|P ′) = (B+, C+, ν+) is given by the formulae (3.34). Then

from (3.35) (with evident changes in the notation) we get

B′ = −B+ = −B − C − h(x)(ex − 1) ∗ ν

C ′ = C+ = C (3.36)
IA(x) ∗ ν ′ = IA(−x) ∗ ν+ = IA(−x)ex ∗ ν,

so, the proof using steps (a) and (c) leads to the formulae (3.21).
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(d) T(H ′|P )
(G) // T(H ′|P ′).

Here T(H ′|P ) = T(−H|P ) = (B−, C−, ν−) and T(H ′|P ′) = T(−H|P ′) =
(B′, C ′, ν ′). Similarly to the case (a) we have the following formulae (compare
with (3.23)):

B′ = B− + β− · C− + h(x)(Y − − 1) ∗ ν− (3.37)
C ′ = C− (3.38)
ν ′ = Y − · ν− (3.39)

where β− = β−t (ω) and Y − = Y −(ω; t, x) are given by the formulae (compare
with (3.26) and (3.27))

〈Sc, (−H)c〉 = (S−β−) · C− (3.40)

and
Y − = MP

µ−H

( S

S−
|P̃

)
. (3.41)

Since

〈Sc, (−H)c〉 =
〈
(eH)c,−Hc

〉
=

〈 ∫ ·

0
eH−dHc,−Hc

〉
= −

∫ ·

0
eH−d〈Hc〉

= −
∫ ·

0
eH−d〈(−H)c〉 = −

∫ ·

0
eH−dC−

= (−S−) · C−, (3.42)

comparing (3.40) and (3.42) we see that one may take β− ≡ −1.
Similarly to the calculations in (a) we derive

MP
µ−H (e−xU) = E

[ ∫ T

0

∫
R

e−xU(ω; t, x)µ−H(ω; dt, dx)
]

= E

[ ∑
0<t≤T

e−∆(−Ht(ω))U(ω; t, ∆(−Ht(ω)))I(∆(−Ht(ω)) 6=0)

]

= E

[ ∑
0<t≤T

e∆(Ht(ω))U(ω; t, ∆(−Ht(ω)))I(∆(−Ht(ω)) 6=0)

]

= E

[ ∫ T

0

∫
R

St(ω)
St−(ω)

U(ω; t, x)µ−H(ω; dt, dx)
]

= MP
µ−H

( S

S−
U

)
. (3.43)

Therefore one may take Y − = e−x in (3.41) and from (3.37)–(3.39) and
(3.35) we find that

B′ = −B − C + h(x)
(
e−x − 1

)
∗ ν− (3.44)

C ′ = C (3.45)
ν ′ = e−x · ν− (3.46)

where ν− is such that IA(x) ∗ ν− = IA(−x) ∗ ν, A ∈ B(R\{0}). Hence, as
one easily sees

IA(x) ∗ ν ′ = IA(x) ∗
(
e−x · ν−

)
= IA(−x)ex ∗ ν. (3.47)
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In addition, if h(−x) = −h(x)

h(x)
(
e−x − 1

)
∗ ν− = h(−x)(ex − 1) ∗ ν

= −h(x)(ex − 1) ∗ ν. (3.48)

From (3.44)–(3.48) we find that the triplet T(H ′|P ′) = (B′, C ′, ν ′), ob-
tained using (b), (d), is given by formulae (3.21). Theorem 3.4 is proved. �

Remark 3.6. Note that under assumption ES we can conclude from for-
mulae (3.21) that (|x|2 ∧ 1) ∗ ν ′ ∈ Aloc because

(|x|2 ∧ 1) ∗ ν ′ ≤ K|x|2I{|x|≤1} ∗ ν + I{x<−1} ∗ ν + exI{x>1} ∗ ν.

Here K is a constant and the processes on the right-hand side are predictable
processes of bounded variation, hence belong toAloc (cp. Jacod and Shiryaev
2003, Lemma I.3.10). Similarly, we get that ν ′ satisfies assumption ES, be-
cause

I{x>1}e
x ∗ ν ′ = I{x<−1}e

−xex ∗ ν = I{x<−1} ∗ ν

and I{x<−1} ∗ ν ∈ Aloc.

Remark 3.7 (Symmetry). In case the original market (S, P ) and the dual
market (S′, P ′) satisfy the property

Law(S|P ) = Law(S′|P ′) (3.49)

we say that these markets are symmetric. For processes S = eH and S′ = eH′

where the laws Law(S|P ) and Law(S′|P ′) are completely determined by the
corresponding triplets T(H|P ) and T(H ′|P ′) – this is, for example, the case
for Lévy processes H and H ′ – the symmetry property (3.49) holds iff ν ′ = ν.
This is clear since by (3.21) C ′ = C and by (3.21) and (3.4)

B′ = −B − C − h(x)(ex − 1) ∗ ν

=
C

2
+ (ex − 1− h(x)) ∗ ν − C − h(x)(ex − 1) ∗ ν

= −C

2
− (−ex + 1 + h(x)ex) ∗ ν

= −C

2
− (ex − 1− h(x)) ∗ ν ′ = B.

This means T(H|P ) = T(H ′|P ′). The case of Lévy processes has been dis-
cussed in this context by Fajardo and Mordecki (2003).

Corollary 3.8. Suppose that H is a P -Lévy process with local characteris-
tics (b, c, F ). Then the process H ′ is a P ′-Lévy process with local character-
istics (b′, c′, F ′) given by the formulae (we take h(−x) = −h(x)):

b′ = −b− c−
∫

R
h(x)(ex − 1)F (dx)

c′ = c

F ′(A) =
∫

R
IA(−x)exF (dx), A ∈ B(R\{0}).

Proof. The proof follows from Theorem 3.4 and Jacod and Shiryaev (2003,
Corollary 4.19, p. 107). �
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Remark 3.9. The formulae (3.21) provide a simple way to see that the
process S′ = eH′ ∈Mloc(P ′).

Indeed, by (3.4) it is sufficient to check that

B′ +
C ′

2
+ (ex − 1− h(x)) ∗ ν ′ = 0. (3.50)

From (3.21) (with −h(−x) = h(x))

B′ +
C ′

2
+ (ex − 1− h(x)) ∗ ν ′

=
[
−B − C − h(x)(ex − 1) ∗ ν

]
+

C

2
+ [e−x − 1− h(−x)]ex ∗ ν

= −
[
B +

C

2
+ (ex − 1− h(x)) ∗ ν

]
= 0

where the last equality follows from the assumption S = eH ∈Mloc(P ) and
criterion (3.4).

4. Now we consider some examples that show how to calculate the triplet
T(H ′|P ′) from the triplet T(H|P ) and for which particular models in finance
assumption ES is satisfied.

Example 3.10 (Diffusion models). The dynamics of the asset price process
are described by the stochastic differential equation

dSt = Stσ(t, St)dWt, S0 = 1, (3.51)

where W = (Wt)0≤t≤T is a standard Brownian motion. If the local volatility
function σ : R+ × R −→ R is Lipschitz, i.e. satisfies the conditions

(a) |σ(t, x)− σ(t, y)| ≤ K|x− y|, ∀t ∈ [0, T ], K constant
(b) t 7→ σ(t, x) is right continuous with left limits, ∀x ∈ R,

then the SDE (3.51) has a unique strong solution (cp. Protter 2004, Theorem
V.6), for which

St = E
( ∫ ·

0
σ(u, Su)dWu

)
t

= exp
( ∫ t

0
σ(u, Su)dWu −

1
2

〈 ∫ ·

0
σ(u, Su)dWu

〉
t

)
= exp

( ∫ t

0
σ(u, Su)dWu −

1
2

∫ t

0
σ2(u, Su)du

)
.

This class of diffusion models, which are also known as local volatility models,
were introduced by Dupire (1994); we refer to Skiadopoulos (2001) for a
survey of this literature.

Now, assuming the canonical setting (Jacod and Shiryaev 2003, p. 154),
these models fit in the general exponential semimartingale framework with
driving process H = (Ht)0≤t≤T , where

Ht =
∫ t

0
σ(u, eHu)dWu −

1
2

∫ t

0
σ2(u, eHu)du, (3.52)
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and triplet T(H|P ) = (B,C, ν) where

B = −1
2

∫ ·

0
σ2(u, eHu)du

C =
∫ ·

0
σ2(u, eHu)du

ν ≡ 0,

and, of course, S = eH ∈ Mloc(P ). If S = eH ∈ M(P ), which holds if, for
example, Novikov’s condition is satisfied, then applying Theorem 3.4, we get
that T(H ′|P ′) = (B′, C ′, ν ′), where

B′ = −B − C = −1
2

∫ ·

0
σ2(u, eHu)du

C ′ =
∫ ·

0
σ2(u, eHu)du

ν ′ ≡ 0.

In particular, if the volatility parameter σ is constant, then the SDE takes
the form dSt = σStdWt and we recover the model in the seminal paper of
Black and Scholes (Samuelson model). The solution of this SDE has the
simple form

St = eσWt−σ2

2
t,

i.e. Ht = σWt− σ2

2 t and hence Bt = −σ2

2 t and Ct = σ2t. Evidently B+ C
2 = 0

which implies by (3.4) that S ∈Mloc(P ) and, in fact, S ∈M(P ).
The process S′ = eH′

= e−H has stochastic differential

dS′
t = −σS′

t(dWt − σdt). (3.53)

Since S′ ∈Mloc(P ′) from formula (3.53) one can deduce that the process
W ′

t = Wt − σt, 0 ≤ t ≤ T is a P ′-local martingale. This is a particular case
of the classical Girsanov theorem which can be easily checked directly us-
ing the fact (already mentioned before in Lemma 3.2) that W ′ ∈ Mloc(P ′)
iff W ′S ∈ Mloc(P ). The last property follows from calculating d(W ′S) by
Itô’s formula. The fact that W ′ is a P ′-Brownian motion follows also from
Lévy’s characterization of a Brownian motion (Revuz and Yor 1999, Theo-
rem IV.(3.6)). So, dS′

t = −σS′
tdW ′

t .

Example 3.11 (Poisson model). Consider S = eH with

Ht = απt − λ(eα − 1)t, α 6= 0 (3.54)

where π = (πt)0≤t≤T is a Poisson process with parameter λ > 0 (Eπt = λt).
Take h(x) ≡ 0. Then the corresponding triplet (B,C, ν) has the following
form:

Bt = −λ(eα − 1)t
Ct = 0 (3.55)

ν(dt, dx) = λI{α}(dx)dt.

By (3.4) S ∈ Mloc(P ) ⇔ B + (ex − 1) ∗ ν = 0. With the process given in
(3.54)

Bt + (ex − 1) ∗ νt = −λ(eα − 1)t + λ(eα − 1)t = 0.
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So, S ∈ Mloc(P ) and even S ∈ M(P ) and with respect to the measure P ′

the process S′ is a local martingale. This follows directly from criterion (3.4)

B′ + (ex − 1) ∗ ν ′ = 0. (3.56)

By Theorem 3.4
B′

t = λ(eα − 1)t
and

(ex − 1) ∗ ν ′t = (e−x − 1)ex ∗ νt = λ(1− eα)t.
Hence, the property (3.56) does hold and S′ ∈Mloc(P ′).

Example 3.12 (Discrete time, CRR-model). In the Cox–Ross–Rubinstein
model (CRR-model) asset prices are modeled by Sn = eHn , with Hn =
h1 + · · ·+ hn, n ≥ 1, H0 = 0, where (hn)n≥1 is a P -iid sequence of random
variables which have only two values.

If h̃n = ehn − 1 then Sn =
∏

k≤n(1 + h̃k) and Sn = (1 + h̃n)Sn−1, n ≥ 1,
with S0 = 0. For simplicity let us assume that the random variables hn take
the values lnλ and ln 1

λ with λ > 1. So

h̃n =
{

a = λ−1 − 1,
b = λ− 1.

If the probability measure P is such that

P
(
hn = ln

1
λ

)
= P (h̃n = a) =

b

b− a
=

λ

1 + λ
(3.57)

and
P (hn = ln λ) = P (h̃n = b) =

−a

b− a
=

1
1 + λ

(3.58)

then we find that
Eehn = E(1 + h̃n) = 1.

This means that the measure P is a martingale measure for the sequence
S = (Sn)n≥0. Indeed it is the unique martingale measure for the CRR-model;
see Shiryaev (1999, Example 2 on pp. 477–480).

With the truncation function h(x) = x and the martingale measure P we
easily find that the triplet T(H|P ) = (B, 0, ν) where (with ∆Bn = Bn −
Bn−1)

∆Bn = Ehn =
1− λ

1 + λ
lnλ (3.59)

and (with νn(A) = ν({n} ×A))

νn({lnλ}) = P (hn = ln λ) =
1

1 + λ

νn

({
ln

1
λ

})
= P

(
hn = ln

1
λ

)
=

λ

1 + λ
.

(3.60)

Note that from (3.59) and (3.60) we find ∆Bn+(ex−1−x)∗νn = 0 which
is another derivation of the martingale property for S under the measure P
given by (3.57) and (3.58).

Based on formulae (3.21) we find directly that

∆B′
n = ∆Bn, ν ′n = νn (3.61)

and from the previous note and (3.4) it follows that S′ ∈ Mloc(P ′) (in fact
S′ ∈M(P ′)).
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Example 3.13 (Purely discontinuous Lévy models). In this class of models,
asset prices are modeled as S = eH , where H = (Ht)0≤t≤T is a purely
discontinuous Lévy process with triplet T(H|P ) = (B, 0, ν). We can also
work with the triplet of local characteristics denoted by (b, 0, F ) which, using
Jacod and Shiryaev (2003, II.4.20), is related for our case to the triplet of
semimartingale characteristics via

Bt(ω) = bt, ν(ω; dt, dx) = dtF (dx).

Let S = eH ∈Mloc(P ), then the characteristic b takes the form

b = −
∫

R
(ex − 1− h(x))F (dx).

and criterion (3.4) is satisfied. For Lévy processes H, S = eH ∈ Mloc(P )
implies S ∈ M(P ); see, e.g. Lemma 4.4. in Kallsen (2000). Therefore, we
can apply Theorem 3.4 and the triplet T(H ′|P ′) = (B′, 0, ν ′) is given by

IA(x) ∗ ν ′ = IA(−x)ex ∗ ν (3.62)

and B′ = −B − h(x)(ex − 1) ∗ ν = −(ex − 1 − h(x)) ∗ ν ′. Therefore S′ =
eH′ ∈Mloc(P ′).

When considering parametric models it is very convenient to represent
the Lévy measure F = F (dx) in the form

F (dx) = eϑxf(x)dx (3.63)

where ϑ ∈ R and f is an even function, i.e. f(x) = f(−x). In that case, the
triplet of local characteristics of the dual process H ′ is (b′, 0, F ′) where∫

IA(x)F ′(dx) =
∫

IA(−x)e(1+ϑ)xf(x)dx

and, of course, b′ = −
∫

R(ex − 1− h(x))F ′(dx).

Examples of parametric models are:

Example 3.13.1 (Generalized hyperbolic model). Let H = (Ht)0≤t≤T be
a generalized hyperbolic process with Law(H1|P ) = GH(λ, α, β, δ, µ), cp.
Eberlein (2001, p. 321) or Eberlein and Prause (2002). Then the Lévy
measure of H admits the representation (3.63) with parameters ϑ = β,
0 ≤ |β| < α and

f(x) =
1
|x|

∫ ∞

0

exp(−
√

2y + α2 |x|)
π2y(J2

|λ|(δ
√

2y ) + Y 2
|λ|(δ

√
2y ))

dy + λe−α|x|I{λ>0},

where α > 0, δ > 0, λ ∈ R, µ ∈ R, cp. Eberlein (2001, p. 323). Here Jλ and
Yλ are the modified Bessel functions of first and second kind respectively.
The moment generating function exists for u ∈ (−α − β, α − β), hence, as-
sumption ES is satisfied. The class of generalized hyperbolic distributions
contains several other distributions as subclasses, for example hyperbolic
distributions (Eberlein and Keller 1995), normal inverse Gaussian distribu-
tions (Barndorff-Nielsen 1998) or limiting classes (e.g. variance gamma). We
refer to Eberlein and v. Hammerstein (2004) for an extensive survey.

Example 3.13.2 (CGMY model). Let H = (Ht)0≤t≤T be a CGMY Lévy
process, cp. Carr, Geman, Madan, and Yor (2002); another name for this
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process is (generalized) tempered stable process. The Lévy measure of this
process admits the representation (3.63) with the following parameters

ϑ =
{

G, x < 0
−M, x > 0 and f(x) =

C

|x|1+Y
,

where C > 0, G > 0, M > 0, and Y < 2.
The CGMY processes are closely related to stable processes; in fact, the

function f coincides with the Lévy measure of the stable process with index
α ∈ (0, 2), cp. Samorodnitsky and Taqqu (1994, Def. 1.1.6). Due to the ex-
ponential tempering of the Lévy measure, the CGMY distribution has finite
moments of all orders. Moreover, the moment generating function exists,
hence assumption ES is satisfied. Again, the class of CGMY distributions
contains several other distributions as subclasses, for example the variance
gamma distribution (Madan and Seneta 1990) and the bilateral gamma dis-
tribution (Küchler and Tappe 2006).

Example 3.13.3 (Meixner model). Let H = (Ht)0≤t≤T be a Meixner pro-
cess with Law(H1|P ) = Meixner(α, β, δ), α > 0, −π < β < π, δ > 0, cp.
Schoutens and Teugels (1998) and Schoutens (2002). The Lévy measure of
the Meixner process admits the representation (3.63) with ϑ = β

α and

f(x) =
δ

x sinh(πx
α )

.

The Meixner distribution possesses finite moments of all orders. Moreover,
the moment generating function exists, hence, assumption ES is again sat-
isfied.

Remark 3.14. Notice that in all the cases considered H ′ is a P ′-Lévy
process from the same class of processes, just with a new parameter ϑ in
representation (3.63).

Remark 3.15. Theorem 3.4 cannot be applied, for example, to stable pro-
cesses, because they do not satisfy Assumption ES. In fact, stable processes
may not even have finite first moment, cp. Samorodnitsky and Taqqu (1994,
Property 1.2.16). This fact makes them particularly unsuitable for option
pricing, although these models are applied for risk management purposes,
cp. Rachev (2003).

Example 3.16 (Stochastic volatility Lévy models). This class of models
was proposed by Carr, Geman, Madan, and Yor (2003) and further investi-
gated in Schoutens (2003).

Let X = (Xt)0≤t≤T be a pure jump Lévy process and Y = (Yt)0≤t≤T be
an increasing process, independent of X. The process Y acts as a stochastic
clock measuring activity in business time and has the form

Yt =
∫ t

0
ysds

where y = (ys)0≤s≤T is a positive process. Carr, Geman, Madan, and Yor
(2003) consider the CIR process as a candidate for y, i.e. the solution of the
stochastic differential equation

dyt = K(η − yt)dt + λy
1
2
t dWt,
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where W = (Wt)0≤t≤T is a standard Brownian motion. For other choices of
Y see Schoutens (2003).

The stochastic volatility Lévy process is defined by time-changing the
Lévy process X with the increasing process Y , that is

Zt = XYt .

The process Z is a pure jump semimartingale with canonical decomposition

Zt = Z0 + BZ + h(x) ∗ (µZ − νZ) + (x− h(x)) ∗ µZ ,

where the compensator of the random measure of jumps of Z has the form
νZ(ds,dx) = y(s)νX(dx)ds, where νX denotes the Lévy measure of X.

Asset prices are modeled as S = eH , where H is a semimartingale such
that νH(ds,dx) := νZ(ds,dx) = y(s)νX(dx)ds and S ∈Mloc(P ), therefore,
T(H|P ) = (B, 0, νH), where

B = −(ex − 1− h(x)) ∗ νH .

If S ∈ M(P ) – for sufficient conditions, see Kallsen (2006) – then applying
Theorem 3.4, we get that T(H ′|P ′) = (B′, 0, ν ′) with

IA(x) ∗ ν ′ = IA(−x)ex ∗ νH

=
∫

IA(−x)exνX(dx)y(s)ds

and B′ = −(ex − 1− h(x)) ∗ ν ′.

4. The “call-put duality” in option pricing

Let S = (St)0≤t≤T be the price process as given in (2.1) and fT = fT (S)
the payoff of the option. Here fT (S) = fT (St, 0≤ t≤T ) is an FS

T -measurable
functional, where FS

T = σ(St, 0≤ t≤T ). In order to simplify the notation we
assume that the current interest rate is zero. For detailed formulae in the
case of a positive interest rate (and dividend yield) we refer to Eberlein and
Papapantoleon (2005b).

As is well known, in a complete market, where the martingale measure
P is unique, the rational (or arbitrage-free) price of the option is given by
EfT (= EP fT ). In incomplete markets one has to choose an equivalent mar-
tingale measure. In this paper we do not discuss the problem of the choice of
a reasonable martingale measure, for example, in the sense of minimization
of a distance (L2-distance, Hellinger distance, entropy minimization, etc.)
from the given measure P or in the sense of constructing the simplest possi-
ble measure (e.g. Esscher transformation). The practitioners’ point of view
is that the choice of this measure is the result of a calibration to market
prices of plain vanilla options. We will assume that the initial measure P
is a martingale measure and all our calculations of EP fT will be done with
respect to this measure P . In the case of an incomplete market this option
price EP fT could be called a quasi rational option price.
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A. European call and put options. In case of a standard call option
the payoff function is

fT = (ST −K)+, K > 0, (4.1)

whereas for a put option it is

fT = (K − ST )+, K > 0. (4.2)

The corresponding option prices are given by the formulae

CT (S;K) = E(ST −K)+ (4.3)

and

PT (K;S) = E(K − ST )+ (4.4)

where E is the expectation operator with respect to the initial martingale
measure P . From (4.3) for S = eH we get

CT (S;K) = E
[
ST

fT

ST

]
= E′

[ fT

ST

]
= E′(1−KS′

T )+

= KE′
( 1

K
− S′

T

)+
= KE′(K ′ − S′

T )+ (4.5)

where K ′ = 1
K . Comparing here the right hand side with (4.4) we find the

following result.

Theorem 4.1. For standard call and put options the option prices satisfy
the following duality relations:

1
K

CT (S;K) = P′T (K ′;S′)

and
1
K

PT (K;S) = C′
T (S′;K ′)

where K ′ = 1
K , P′T (K ′;S′) and C′

T (S′,K ′) are the corresponding option
prices for puts and calls with S′ as underlying price process, computed with
respect to the dual measure P ′.

Corollary 4.2. Call and put prices in markets (S, P ) and (S′, P ′) which
satisfy the duality relation, are connected by the following “call-call parity”

CT (S;K) = KC′
T (S′;K ′) + 1−K

and the following “put-put parity”

PT (K;S) = KP′T (K ′;S′) + K − 1.

Proof. From the identity (ST −K)+ = (K − ST )+ + ST −K we get, taking
expectations with respect to the measure P , the well-known call-put parity :

CT (S;K) = PT (K;S) + 1−K.

The result follows from the duality relations in Theorem 4.1. �
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B. Standard call and put options of American type. The general
theory of pricing of American options (see, for example, Shiryaev (1999,
Chapters VI and VIII)) states that, for payoff functions described by the
process e−λtft, 0 ≤ t ≤ T , λ ≥ 0, the price V̂T (S) of the American option is
given by the formula

V̂T (S) = sup
τ∈MT

Ee−λτfτ , (4.6)

where MT is the class of stopping times τ such that 0 ≤ τ ≤ T .
For a standard call option fτ = (Sτ −K)+ and for a standard put option

fτ = (K − Sτ )+ where K > 0 is a constant strike.
Denote

ĈT (S;K) = sup
τ∈MT

Ee−λτ (Sτ −K)+ (4.7)

and

P̂T (K;S) = sup
τ∈MT

Ee−λτ (K − Sτ )+. (4.8)

Similarly to the case of European options we find that for fτ = (Sτ −K)+

ĈT (S;K) = sup
τ∈MT

E
[
e−λτfτ

ST

ST

]
= sup

τ∈MT

E′
[
e−λτ fτ

ST

]
= sup

τ∈MT

E′
[
e−λτfτS

′
T

]
= sup

τ∈MT

E′
[
e−λτfτE

′(S′
T |Fτ )

]
= sup

τ∈MT

E′
[
e−λτfτS

′
τ

]
= sup

τ∈MT

E′
[
e−λτ (Sτ −K)+S′

τ

]
= sup

τ∈MT

E′
[
e−λτ (1−KS′

τ )
+
]

= K sup
τ∈MT

E′
[
e−λτ (K ′ − S′

τ )
+
]

= K P̂′T (K ′;S′).

Thus, similarly to the statements in Theorem 4.1 we have for American
options the following duality relations:

1
K

ĈT (S;K) = P̂′T (K ′;S′)

and also
1
K

P̂T (K;S) = Ĉ′
T (S′;K ′).

C. Floating strike lookback call and put options. Suppose S ∈M(P )
and let α be such that α ≥ 1. For a floating strike lookback call option we
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get

CT (S;α inf S) = E(ST − α inf
t≤T

St)+

= E

[
ST

(
1− α inft≤T St

ST

)+]
= E′(1− αeinft≤T Ht−HT

)+

= E′(1− αeH′
T−supt≤T H′

t
)+

= αE′
( 1

α
− eH′

T−supt≤T H′
t

)+
. (4.9)

In order to simplify the last expression further, let us assume that the process
H ′ = (H ′

t)0≤t≤T satisfies the following reflection principle:

Law(sup
t≤T

H ′
t −H ′

T |P ′) = Law(− inf
t≤T

H ′
t|P ′). (4.10)

This property, of course, holds if the process H ′ is a Lévy process with
respect to P ′ (see e.g. Kyprianou 2006, Lemma 3.5). From (4.9) and (4.10)
we find that

1
α

CT (S;α inf S) = E′
( 1

α
− einft≤T H′

t

)+

= E′
( 1

α
− inf

t≤T
S′

t

)+
= P′T

( 1
α

; inf S′
)
. (4.11)

Similarly, assuming the following reflection principle

Law(H ′
T − inf

t≤T
H ′

t|P ′) = Law(sup
t≤T

H ′
t|P ′) (4.12)

which again holds, for example, for Lévy processes (Kyprianou 2006, Lemma
3.5) we get

1
β

PT (β supS;S) = C′
T

(
supS′;

1
β

)
, (4.13)

where 0 < β ≤ 1. Hence we have the following results.

Theorem 4.3. Let H satisfy (4.10), then the calculation of the price of the
lookback call option CT (S;α inf S) (α ≥ 1) with floating strike α inf S can
be reduced via formulae (4.11) to the calculation of the price P′T ( 1

α ; inf S′)
which is the price of a lookback put option with fixed strike.

Theorem 4.4. Let H satisfy (4.12), then the calculation of the price of the
lookback put option PT (β supS;S) (0<β≤1) with floating strike β supS can
be reduced via formulae (4.13) to the calculation of the price C′

T (supS′; 1
β )

which is the price of a lookback call option with fixed strike.
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D. Floating strike Asian options. Suppose again S ∈ M(P ) and con-
sider the price

CT

(
S;

1
T

∫
S

)
= E

(
ST −

1
T

∫ T

0
Stdt

)+

= E
[
ST

(
1− 1

T

∫ T

0

St

ST
dt

)+]
= E′

(
1− 1

T

∫ T

0

S′
T

S′
t

dt
)+

= E′
(
1− 1

T

∫ T

0
eH′

T−H′
tdt

)+

= E′
(
1− 1

T

∫ T

0
eH′

T−H′
(T−u)−du

)+
. (4.14)

Now, assume that the following property holds:

Law(H ′
T −H ′

(T−t)−; 0 ≤ t < T |P ′) = Law(H ′
t; 0 ≤ t < T |P ′). (4.15)

It is well-known that (4.15) holds if H ′ is a Lévy process; see e.g. Kyprianou
(2006, Lemma 3.4).

From (4.14) and (4.15) we conclude

CT

(
S;

1
T

∫
S

)
= E′

(
1− 1

T

∫ T

0
eH′

udu
)+

= E′
(
1− 1

T

∫ T

0
S′

udu
)+

= P′T
(
1;

1
T

∫
S′

)
. (4.16)

Similarly

PT

( 1
T

∫
S;S

)
= C′

T

( 1
T

∫
S′, 1

)
. (4.17)

Therefore we have the following result.

Theorem 4.5. Let H satisfy (4.15), then the calculation of prices of Asian
call and put options CT (S; 1

T

∫
S) and PT ( 1

T

∫
S;S) with floating strikes

1
T

∫
S can be reduced via formulae (4.16) and (4.17) to the calculation of

the prices P′T (1; 1
T

∫
S′) and C′

T ( 1
T

∫
S′; 1) of fixed strike Asian put and call

options.

Remark 4.6. Similar duality results can be obtained for Asian options on
the geometric and the harmonic average (cf. Papapantoleon 2006)

E. Forward-start options. Suppose S ∈M(P ). The payoff of a forward-
start call option is (ST − St)+, where t ∈ (0, T ). Similarly, the payoff of the
forward-start put option is (St − ST )+. The price of the forward-start call
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option is given by the formula

Ct,T (S;S) = E(ST − St)+ = E
[
ST

(ST − St)+

ST

]
= E′

(
1− St

ST

)+
= E′

(
1−

S′
T

S′
t

)+

= E′(1− eH′
T−H′

t)+

= E′(1− eH′
T−H′

(T−u)−)+.

Appealing once again to (4.15) we have the following relation between a
forward start call option and a plain vanilla put option

Ct,T (S;S) = E′(1− eH′
u)+

= P′T−t(1;S′), (4.18)

where u = T − t. Similarly, we get a relationship between a forward-start
put option and a European plain vanilla call option

Pt,T (S;S) = C′
T−t(S

′; 1). (4.19)

Therefore, we have the following result.

Theorem 4.7. Let H satisfy (4.15), then the calculation of the prices of
forward-start call and put options Ct,T (S;S) and Pt,T (S;S) can be reduced
via formulae (4.18) and (4.19), to the calculation of the prices of plain
vanilla European put and call options P′T−t(1;S′) and C′

T−t(S
′; 1).

Remark 4.8. It is an interesting problem to investigate which processes
satisfy (4.10), (4.12) and/or (4.15) beyond Lévy processes.
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tions to finance. In O. E. Barndorff-Nielsen, T. Mikosch, and S. I.
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pp. 99–128. Wiley.

Eberlein, E. and K. Prause (2002). The generalized hyperbolic model:
financial derivatives and risk measures. In H. Geman, D. Madan,
S. Pliska, and T. Vorst (Eds.), Mathematical Finance-Bachelier Con-
gress 2000, pp. 245–267. Springer Verlag.

Eberlein, E. and E. A. v. Hammerstein (2004). Generalized hyperbolic
and inverse Gaussian distributions: limiting cases and approximation
of processes. In R. Dalang, M. Dozzi, and F. Russo (Eds.), Seminar
on Stochastic Analysis, Random Fields and Applications IV, Progress
in Probability 58, pp. 221–264. Birkhäuser.
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cesses. Working paper, IBMEC.

Fajardo, J. and E. Mordecki (2006b). Symmetry and duality in Lévy mar-
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Večeř, J. and M. Xu (2004). Pricing Asian options in a semimartingale

model. Quant. Finance 4 (2), 170–175.

Ernst Eberlein, Department of Mathematical Stochastics, University of
Freiburg, Eckerstr. 1, 79104 Freiburg, Germany

E-mail address: eberlein@stochastik.uni-freiburg.de

Antonis Papapantoleon, Department of Mathematical Stochastics, Univer-
sity of Freiburg, Eckerstr. 1, 79104 Freiburg, Germany

E-mail address: papapan@stochastik.uni-freiburg.de

Albert N. Shiryaev, Steklov Mathematical Institute, Gubkina str. 8, 119991
Moscow, Russia

E-mail address: albertsh@mi.ras.ru


