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Abstract

Models driven by [evy processes are attractive since they allow for better statistical fitting
compared to classical diffusion models. We derive the dynamics of the forward swap rate
process in a semimartingale setting and introducecaylswap market model. In order to
guarantee positive rates, we model the swap rates as ordinary exponentials. We start with
the most distant rate which is driven by a non-homogenedsy lprocess. Via backward
induction we construct the remaining swap rates such that they become martingales under the
corresponding forward swap measures. Finally we show how swaptions can be priced using
bilateral Laplace transforms.

1 Introduction

The market models of interest rate dynamics have become increasingly popular among practitioners.
These models directly specify the arbitrage-free dynamics of a set of forward Libor or swap rates.
The models for forward swap rates in a pure diffusion (Brownian motion) setting were developed
by Jamshidian (1997), Musiela and Rutkowski (1997b) and Rutkowski (1999, 2001). More recent
approaches to interest rate models involve jump-diffusions and more generally, models driven by
Lévy processes. The latter are becoming increasingly popular in finance since they allow for better
statistical fitting compared to classical diffusion models (see Eberlein (2001), Eberlein and Kluge
(2006), Eberlein and Koval (2005)). Processes that include jumps have already been used in several
papers describing the modelling of various interest rates. In the context of instantaneous, con-
tinuously compounded interest ratespi, Kabanov and Runggaldier (1997) extend the classical
Heath, Jarrow and Morton (1992) (henceforth HIM) framework to the case of diffusion-multivariate
point processes, and @k, Di Masi, Kabanov and Runggaldier (1997) to general semimartingales.
Glasserman and Kou (2003) characterized the arbitrage-free dynamics of interest rates when the
term structure is modelled through forward Libor rates or forward swap rates, in the presence of
both jumps and a diffusion process. They consider the case when the jumps are modelled through a
finite number of marked point processes, in which case the purely discontinuous part is of bounded
variation. More explicitly, they place themselves in the generalized HIM frameworkaok,Bj
Kabanov and Runggaldier (1997) and show that the simple forward rates can be embedded in an
arbitrage-free model of instantaneous forward rates. EberleitDaken (2005) push the forward
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Libor rate approach further into a setting of more general jump processes. Apart from the HIM
framework of Bprk, Di Masi, Kabanov and Runggaldier (1997), they consider theylsetting

of Eberlein and Raible (1999) and construct the discrete te@uy Libor model directly through
backward induction, whence extending the approach of Musiela and Rutkowski (1997a, 1997b)
from the case of pure diffusions to thé@\y setting. Eberlein and Kluge (2006) price swaptions in
the HIM framework using non-homogeneowyi, processes.

In this paper, we will develop a market model of the forward swap rates by allowing the driving
process to be aévy process. In that sense we generalize the corresponding result in Glasserman
and Kou (2003). However, our approach differs in a crucial way from that of Glasserman and Kou
(2003) in that we do not start by showing that the forward swap rate model can be embedded in the
framework of instantaneous forward rates obij, Di Masi, Kabanov and Runggaldier (1997) or
Eberlein and Raible (1999). In fact, as pointed out in Hunt and Kennedy (2000), the extra burden
of proving that the models fall within the HIM class is unnecessary. Instead, we useteairem
based approach and do not explicitly specify the dynamics of the instantaneous forward rates or the
bond prices. The outline of such a modelling approach in a pure diffusion setting can be found in
Pelsser (2000), and in Hunt and Kennedy (2000). Furthermore, we extend the backward induction
method of Rutkowski (1999, 2001) to the case where the forward swap rates are driven by a non-
homogeneous &vy process.

This paper is organized as follows. In Section 2 we consider the so-called regular and reverse
swap market models. We extend the approach given in Hunt and Kennedy (2000), and in Pelsser
(2000), from the pure diffusion setting to a more general semimartingale setting and derive the
condition for those models to be arbitrage-free. In Section 3 we develop the model for forward
swap rates. This setting is appropriate for practical implementations. We discuss the pricing of
plain vanilla swaptions in Section 4 by using Laplace transforms.

Finally we mention that background material aboéti. processes can be found in the text-
books of Applebaum (2004), Bertoin (1996) and Sato (1999), and in a general semimartingale set-
ting in Jacod and Shiryaev (1987). A good reference for applicationéwf processes is Schoutens
(2003).

2 Swap market models under a single measure

In this section we set up a market model for forward swap rates by specifying the arbitrage-free
dynamics of the rates under a single measure. This is a useful approach if we want to determine
the price of more sophisticated derivatives. Assume we are given a collection of dates (called tenor
structure)) < Ty < T1 < ... < Ty, and associated to each tenor datés a zero-coupon bond
that matures at this date. We denote the price at tiofesuch a bond by3(¢, T;).

We extend the approach given in Hunt and Kennedy (2000), and in Pelsser (2000), in order
to find the arbitrage-free dynamics for the forward swap rates undéFyh®rward measur@® y
(also called terminal measuf® and under th&,-forward measur®,. As mentioned in Section 1
this approach is nugraire-based. We start by specifying the dynamics for the forward swap rates
and then determine the necessary relationship for any corresponding term structure model to be
arbitrage-free.

Note that in this section we do not explicitly assume that the driving processésyadrocess.
However, the latter can be embedded in the given setting.

We assume in the sequel that we are given a complete probability §Qage P) equipped
with a filtration (F;):>0, such that the filtered probability spa¢®, F,P, (F;):>0) satisfies the

This is the measure associated to the ataive B(t, T ).



usual conditions, cf. Jacod and Shiryaev (1987).

2.1 Regular swap market model

We assume that the tenor structire< Ty < 177 < ... < Ty is given, andy; = T; — T;

fori = 1,..., N, whereTy is a fixed time horizond; is the fraction of a year corresponding to

the period froml;_; to T;. It represents the length of thith accrual period (typically a month, a
quarter, or a year). We consider a family of forward swap rét¢s := S(¢,7;,Tn), t € [0,T;),

which have the same maturity ddi®; for alli = 0,..., N — 1. Given a family of zero-coupon

bond priceg B(t, Tj))oﬁgj for j = 0,..., N which are assumed to be positive semimartingales,
but whose dynamics does not have to be specified any further, the accrual factor for any individual
swap rate from such a family is given by

N
Cin(t):= Y 8B(t,T}), (1)
j=i+l

and the forward swap rate is defined as

B(t,Ti) — B(t, Tn)
Cin(t)

(see e.g. Brigo and Mercurio (2001) and Pelsser (2000) for more details). Musiela and Rutkowski
(1997b) define a probability measuPe = @Ti, which is equivalent to the historical probability
measuré?, to be the forward swap measure associated with the @atexiT,. Under this measure
the relative bond priceg;;_B(t7Ti)f.(ffng(t7TN), (t € [0,T; A'T;)), are local martingales und for
everyl=0,...,N.

By choosing the bond with the largest maturity; to be a nuréraire, the discounted accrual
factor (w.r.t. that nuraraire) reads

S; (t) = ) (2)

- §;B(t,T;))  Cin(t)
Fi= Z i?(t,TNJ) "~ B(t,Ty)’ 3)

j=i+1

which should become a local martingale under the forward medsuréWe also define fof <
i1 < N — 1 the following product

Vo= [] (1 + 6418541 (1) - (4)
=0

We follow the convention that empty sums and products are zero and one, respectively. Note that
PN = Sn(t) =0.
We can rewrite (3) as follows by using (2),

Cin(t)  0ir1B(t, Tiv1) + (0i42B(t, Tiy2) + - -+ dnB(t, Tn))

B(t,Tn) B(t, In)
=81+ 6 B(t,Tiv1) — B(t,Tn) Cis1,n(t) Cirv ()
i+1 i+1 Civ1n(t) B(t,Tn) B(t,Tn)
C'H_LN(t)

= 0i41 + (1 4+ 6;415i+1(2)) m



By substituting theP; from (3) into the above equation, we obtainfot 0, ..., N —1 the recursive
relation ' ‘
Ptl =011 + (1 + (Si_:,_lSi_;,_l(t)) . PtH_l. (5)

Multiplying both sides of the equation (5) bl ' we obtain
VPl = 6 U WP
By backward induction, down fromh= N — 1, it follows that

N-15 qi-1 j
Zj:i 0j+1%;

N—-1
pi— =Y "6 I 0+ St (6)

i—1
vy = k=i+1

Remark 2.1 TheP} in (6) corresponds to the notation; (¢) in Jamshidian (1997). More generally,
Jamshidian (1997) defines a sum

N-1 k
siit) =Y e ] 1+ aSi(1)),
k=j I=i+1

j—1 .
which is equivalent tG‘i’%Pg.
t

Our aim is to develop an arbitrage-free model for the term structure of interest rates specified
through forward swap rateS;(-). The next theorem states the swap rate model under the termi-
nal measuré . This theorem slightly generalizes Theorem 5.1 in Glasserman and Kou (2003)
and is an extension of the approach in Hunt and Kennedy (2000, Section 18.3) from the Gaussian
driving process to a more general setting of jump processes.

Theorem 2.1 For eachi = 0,...,N — 1, let 6;(-) be a bounded®?-valued function andz; :

R, x R" — (—1,00) be a deterministic function i\, (1) 3. LetW ! be a standard Brownian
motion inR¢ with respect td,, andx the random measure of jumps of a semimartingale with the
continuous compensater” (dt, dr) = AV (t,dx)dt. The dynamics af;(-),i = 0,...,N — 1, is
assumed to satisfy

50 _ oyt + 0,0awY + [ Gt 2) e — o) (dt, do). (7)
Si(t—) R

Then this model is arbitrage-free if

i) == S 9 T Ok iciga (0 BSIE-)S;()0, (0600
iS5 2ok=i k1 [l (U 6Si(E=)) - (1 + 6;55(t—))
[1 Eh e T (14 8u5k(-) (1 + Gi(t,2)
3255 0 Tlmya (1 + 018k (1))
Proof. As we want the model (7) to be arbitrage-free, each ofthe = 0,..., N — 1, defined in

(3), has to become a local martingale under the mea&ureThis imposes a relationship between
the finite variation term and the coefficients of the Gaussian and the discontinuous terms in (7),

+ [ Gi(t,x) MV (t,dz). (8)

R’I‘

3For definition of this set we refer to Jacod and Shiryaev (1987, 11.1.27)



which we now derive.
Applying 1td’s formula (in its product rule’s version) to (5) leads to

dPti = (1 + (51+1Si+1(t—)) df)ti—"_l + 5i+1PZf1dSi+1(t) + (5i+1d [Sz’—i-la Pi—H]t . (9)

The quadratic covariation term on the right-hand side of (9) is according to Jacod and Shiryaev
(1987, Definition 1.4.53)

[Siv1, P, = (S50, PPROY + Y ASi(s) AP, (10)

0<s<t

whereAS; 1 (t) and AP/ denote the jumps of;. 1 (t) and P!, respectively. Recall that the
superscript indicates that we consider the the continuous martingale part.
These jumps at timefollow from (7) and (6) by definition:

ASita(t) / Sit1(t=)Git1(t, ) p({t}, dz),

and

AP = / (Z 8it1 H (1 + 6,Sk(t—)(1 + Gi(t, 2)))

Jj=i+1 k=i+2

— J

- Z i1 [ (14 0kSk(t=)) | n({t}, d).
j=i+1 k=i+2

We can now express (9) more explicitly as

AP} = (1+ 0i418i41(t=)) AP 4+ 611 P dSi 11 () + 6i11d (S5 4, PTHYC),

+0i418i+1(t—) | Gipa(t, o)%

R'r
N-1 J '
S Sjer [ (14 8kSu(t-)(1+ Galt,2))) — P+ | pldt, da)
j=it+1 k=i+2

= (1 + 6541801 (t=)) dPITY + 8y PILAS; 4 () + 8i1d(SE,,, P10,

+ 5@+1S¢+1(t—) Gi+1(t,l‘)><

RT
Z 811 H (14 0 Sk(t—)(1 + Gy(t,x))) — P (u— vN)(dt, da)
j=i+1 k=i+2
+6it18i41(t—) | Gira(t, z)x
]R'r
Z 811 H (14 0pSk(t—) (1 + Gy(t,2))) — P vN(dt, da). (11)
j=i+1 k=i+2

Recall thatP} has to become a local martingale under the meaByre Eliminating the finite
variation terms — which will be set to equal zero — in the SDE (11) yields when taking (7) into



account
AP} = (1+ 6;11Si41(t=)) AP + P16 S (8=) 041 (8)dWY
8PS (0) [ G (ta)(u— o) (at, da)
R’l‘

+0i418i11(t—) | Gipa(t, w)x

Rr
{Z Jj+1 H (14 0,5k (t=) (1 + Gi(t,2))) PZ“] (n—vN)(dt, dz)  (12)
J=i+1 k=i+2

Multiplying both sides of the equation (12) iy~ we get

vy—ldP;
Gi+15i41(t—)
L+ 0i41841(t—)

Si+1Si41(t—) > N
Gita(t, — (¢, d
1+ 6,181 (t—) ) Jar +1(t,2)(p—vV)(dt, dzx)

; 0i41Siy1(t—) )
+ P G, t, )X
(1 T 6i18i41(t—) ) Jer (% 2)

=V P/t i pitt ( ) O; 1 ()W

+ W) Pt <

N-1 7
X {Z i1 [T (04 6kSk(t=) (1 + Gr(t,2))) — P | (n—vN)(dt,dx).  (13)

j=i+1 k=i+2

In order to obtain a non-recursive expression dét’ we proceed by backward induction, down
from: = N — 1. For clarity, we consider a few steps of this induction procedure.

(1) Incase wheri= N — 1, ¥ 24PN ~! = 0 sincePN = 0 andSy = 0.
(2) If i = N — 2 we obtain
gN=3qpN-2

_ _ 9 N— IN—1SN—-1(t—)
:‘IJN 2dPN 1 \IJN 2PN 1 N—-19N-1 On 1 (1)d N
t— t +W T 1+ 6N 1Sy_1(t—) N—1(t)dW;

IN—1SN-1(t—
4+ gN—2phN-l <1 +1\151\:1]\g]\;(1(t)—)) - Gn_1(t,x)(u — vN)(dt, dx)

_ InN—1SN-1(t—) )
g2 Gn_1(t,
+ ¥ (1+5N_1SN_1(t—) R” N 1( .I‘)X

(= v™)(dt, da),

J
Z 0j+1 (14 6xSk(t—)(1 + Gi(t,z))) — PN
j=N-1 k=N

wherew ~2dPN=1 = 0 from the previous step (1). This yields

Sn_1Sn_1(t—)
UN-83qpN-2 = \I/N_QPJX1< N_19N -1 )0_tdWN
=P T ey iy ) v A



_ IN—1SN-1(t—) )
gN-2 Gn_1(t,
TV <1+5N 1SN 1( —) RT N 1( x))(

-1

{ Z 0j+1 H (1+ 0rSk(t—)(1 + Gi(t, $)))] (u— v™)(dt, dw),

For the more detailed description of this induction procedure we refer to Liinev (2004).

Forageneral,i =0,...,N — 1, it therefore follows that

ply 5:8;(t—)

o L gt

Vilgpi = Z V= <MW> 0;(t)dwr
j=it+1 7

N-1
1 0:8;(t—)
i 1 JRJ (¢
t 2 v (1+5j5j(t—)> RTG](’x)X

j=it1

k=j+1

I
{Z g1 [T (U 6rSk(t—)(1+ Gk(t,ﬂﬁ)))] (u = v™)(dt, dx),

and thus

S WP 5,8(t—
ap} =Pl Y =t < s5i(t-) )9j(t)thN

o WS P\ 655(t-)
N-1 1
o E o ().
- j=i+1 \II;:IPZ_ 1+ 5j5j(t_)

l

Zalﬂ 11 1+5k5k(t)(1+Gk(t,x)))] (1 —vN)(dt, dz),

k=j+1

X

(14)

which indeed represents a local martingale. Now we can investigate the finite variation terms in (9)
and (11):

Sip1 P g (8) S (8= dt + 5z+ld< s PV )+ 01 Siga (1) x

/ Gisi1(t, ) {Z 811 H (14 6,Sk(t—)(1 + Gy(t,2))) — P | N (dt, dx) = 0,

j=i+1 k=i+2

(15)

where from (7) and (14)

N—-1 i—1 J
| WPl §;85(t-)

PH—lc =S; “\A. PH—I t— At— I~ . ) 1
d< i+1> > S+1<t )01+1(t) t— § : \Ili‘_Ptzj—l 1+5ij(t—) ej(t)dt (16)

j=i+2
Combining (15) and (16) we can easily find that the drift termin (7) igfer0,..., N — 1 given



N—-1 i—1 7
Vi Pl ( 5, (t-)
) == 1 pi = >H‘t€it

W j:;l wiolpi \140;5;(t—) ()05 (t)

- Gi(tax)
R’r‘

— 1| AV(t,dz). (17)

[zﬁif 8j1 [Th—ipr (14 0kSk(t=) (1 + Gi(t,2)))
P}

By taking into account the definition (4) and relation (6), we can express the right-hand side of (17)
through forward swap rates and their volatilities, yielding (8).
O

2.2 Reverse swap market models

In this section we consider another type of forward swap rate model for so-called reverse swap
markets. In the pure diffusion setting this model is developed in Hunt and Kennedy (2000), and
Pelsser (2000). We show here that it is indeed possible to extend this model to a semimartingale
setting. Hunt and Kennedy (2000) argue that the model in Section 2.1 is suitable for path-dependent
products such as barrier swaptions where the pricing is done with respect to the collection of swap
rates which are reset on different dates but have a common maturity date. In this section we consider
the reverse situation where the family of swap rates to be modelled, has a common start date and
different maturities. These are the swap rates which underlie for example spread options. Deriving
the arbitrage-free dynamics for the forward swap rates in this case is analogous to the proof of
Theorem 2.1 in Section 2.1. Therefore we do not go into details, but rather present the main steps
for developing the relevant dynamics.

We consider again the tenor structlre: Ty < 77 < --- < Ty, and a series of swaps starting
on datel” := Ty having maturity date%7, . . ., T, which now differ from those of Section 2.1. We
definefori=1,...,N

Cin(t) = 6;B(t,T)),
j=1

B(t,T) - B(t,T3)

Si(t) i= Si(t, T, T;) = A0 , (18)
.= 0;B(t,T;)
P= 3o St (19)

and

I =[] (1 +6;5;(t).
j=1
Notice thatP;} in (19) should become a local martingale under the forward me&@surénalogous
to (5), it follows from (18) and (19) that, for=1,..., N

(1+6;S:(t)) Pf = 6; + P/, (20)



and, by multiplying both sides witH¢ ™!,
HffPtZ _ 52']:[;'71 + Hiflptiflv
whereP? = 0 andII? = 1. Using induction starting at= 1, it follows that

S 51131 :
Z Hk»—j (1 +51<;Sk( )

P = (21)

The model we want to study has a form similar to that of (7), which means that under the measure
P7 the forward swap rateS;, : = 1, ..., N have the dynamics specified as in (22).

Theorem 2.2 Assume that for each=1,..., N, 6;(-) is a boundedR?-valued function and; :
R, xR" — (-1, 00) is a deterministic function it¥},. (). LetW? be a standard Brownian motion
in R with respect to the measule and letv” (dt, dz) = AT (t, dx)dt be thePr-compensator of
1. Then the model

ds;i(t)
Si(t—)

= q;(t)dt + 0;(t)dWI + | Gi(t,z)(p — vT)(dt,dx), (22)
R’r

is arbitrage-free if

TP 8S50) Y,
)= 3 pE (75557 ) e

- / Git,z) |«
. PP

0; 4
S J - P
Proof. As we want the model (22) to be arbitrage-free, each ofthe = 1,..., N, has to be a

Al(t,dz).  (23)
= Tliey (14 01Sk(t=)(1 + Gi(t, )
local martingale under the measite. Applying Itd’s product rule to (20) yields

dP/~" = (14 6;S;(t—)) dP} + 6; P{_dS;(t) + 6:d [Si, P'], . (24)
By eliminating the finite variation terms in (24) we obtain
dP/™' = (1 4+ 6,5;(t=)) dP} + P{_5;S;(t—)0;(t)dW,]

+ 6P Si(t—) | Gi(t,x)(p— vh)(dt, dx) + 6;Si(t—) | Gilt,z)x
R”™ Rr

)

5; |
A ) - P/ — v (dt,dx
’ ; [Tie; (14 0 Se(t=)(1 + Gi(t, ))) ] (p —v7)(dt, dz)

= (1 + 5151(15—)) dPti + Pf_éiSi(t—)Gi(t)thT + 5151@—) Gi(t, .T) X
RT‘

)

5] — I/T X
* Z H;c:j (1 + 6rSk(t—)(1 + Gk(t:l”)))] (v i, ) 29

J=1




Multiplying (25) by IT:~* we obtain by induction

, T P 5:5;(t—)
P! — _ pt 1?— t‘— Y] . T
dP; T A <1+5jsj(t—)> 0, (t)dW;
Jj=1

T 6;5;(t—)
_ pt : t 4 Vi)
2 (1 T @Sj(t—)) )

J=1

J 5
Gi(t,x , J — v (dt, dz).
- R” i) LZ; . (1+6l8k(t—)(1+Gk(t,x))) (b )t dx)

In order the model (22) to be arbitrage-free, we have to set the finite variation terms in (24) equal to
0 which yields

6; P (t)S;(t—)dt + 6;d(SE, P" €+

G (4 (t. 1 : i _pi | T ) —
+ 8ifi{t-) RTG’(t’ ) ;Hﬁ;j (1 + 8,Sk(t=)(1 + Gi(t, 2))) Fi| vitdt, dz) =0,

from where the condition (23) follows.

3 The Lévy swap rate model

In Section 2 we discussed a general semimartingale framework for swap rates under the terminal
measure. In this section we model the swap rates under the corresponding forward swap measures.
In this sense we extend the backward modelling approach of Rutkowski (1999, 2001) where the
swap rates are driven by a Wiener process under each forward swap measure. We consider again the
family of forward swap rates$' (¢, 7;) := S(¢,T;,Tn) fori = 0,..., N — 1, which have the same
expiry date, but differ in length of the underlying swap agreement. The essence of this approach
is that by fixingT’y, one constructs the model backwards in terms of maturities (thus starting from
the largest maturity), specifying at each step the change of measure such that the following swap
rate process is a local martingale. This type of backward modelling was also used by Eberlein and
Ozkan (2005) in the context of the forwaréwty Libor model.

We assume that the discrete tenor structure Ty, < 71 < ... < Ty is given, andy; =
T, —T;—1 fori = 1,...,N. Since we will proceed by backward induction we $&t = T _;
and, in particular[™ := T§ = Ty. Thus, we consider a “reversed” tenor structore: 73, <
TN_ i < ... <T{ <T§ = Tn. For the explicit construction of the forward swap rates we make
the following assumptions:

Assumption 3.1

For any maturity T;,7 = 0, ..., N — 1, there exists a bounded and continuous deterministic function
v(-,T;) > 0, which represents the volatility of the forward swap rate process S(.,T;). The bound
for the volatilities will be specified later.

Assumption 3.2
We assume that the initial term structure of interest rates, specified by bond prices B(0,T;), i =

10



0,...,N, is given and that B(0,T;) are strictly decreasing in the second variable, i.e. B(0,T;) >
B(0,T;+1),i=0,..., N —1. Consequently, the initial term structure S(0, T;, T ) of forward swap
rates is given by

Cin(0)
We assume a complete stochastic béQisFr-, Pr«, (F)o<t<7+) to be given. Suppose again that

a family of bond price3(¢, T;,,), m = 1,..., N, is given. Foranyn = 1,..., N — 1 the accrual
factor (1) can be rewritten as

S(0, T3, Tn) =

3

N
Cnemn(®) = Y &BtT) =Y oniBtTF), (€0, Ty-ms]).  (26)
I=N—-m+1 0

>
I

We also define the relative bond prices for a fixed 0, ..., NV, and for everyk =0, ..., N, by

B(t,Ty) o B(t, Ty)
Cioin(®t)  &Bt,T) +-- +0nB(t,Ty)’

ZN_ip1(t, Ty) == (27)

which can be rewritten in terms of backward dates as

B(t,Ty) B(t,Ty)

Zon(t, T = Tk Tk , te[0, T AT 4],

(& I5) CNomN(®t)  ON-mi1 Bt TS )+ ...+ OnB(t,T) 0. 2
(28)

for any fixedm € {1,..., N}. Forallt € [0, 7] the forward swap rate for dafe, equals
B(t,T}) — B(t,T")
S(t,Tr) = o
( ) 5N—m+1B(t,T;;L_1) + ... —|—5NB(75, T*)

= Zm(t, ) — Z(t, TF). (29)

Remark 3.1 Since obviously'y_1 v (t) = dnB(t,Tn) = dnB(t,T%), it is evident that

. BT BT 1 o
Z1(t,T;) = = = —F T, T
1(t7 k) CN—l,N(t) 5NB(t,T*) 5N B(tv k> )7 (30)

where F(t, T}, T*) stands for the forward process corresponding to the time pdijitand 7.
The related forward martingale measure is assumed tB/beas given above.

We postulate that the forward swap measure for the’Batevhich we now denote @T*, coincides
with Pp«. Note that in order to stress the fact that we are dealing with the forward swap measure
and to avoid any confusion with a forward measure, we add the tilde.

We proceed with the backward construction of forward swap measures. We start by defining the
forward swap rate for the daii§ by postulating thab (-, 77") is given by

t ~ *
S(t,T7) = S(0, T} )exp (/0 v(s, Ty )dLY ) , (31)

where

~ t t T~ ¢ *
B = [Cvadss [ vaWT o [ [ (ub =570 (ds.da) (32)
0 0 0 JR
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is a non-homogeneoustlyy process undePr-, i.e. WT" is a standard Brownian motiom is
positive such thangT* (| bs | +cs)ds < oo, u* is the random measure of jumps of the process,
and?™L(ds, dx) = F,(dz)ds is the Pr--compensator of:“. We assume that theéy measures
Fy, which are measures ddwith F; ({0}) = 0 andfOT* Jg (z* A1) Fy(dz)ds < oo, satisfy the
following additional integrability condition

T*
/ / exp(ux)Fs(dz)ds < oo,
0 |z|>1

for | u |< (14 €)M, whereM, e are positive constants such the} , v(-,7;") < M. For the
sake of notation we consider a 1-dimensional driving pro(:E%é) only. The extension to a higher
dimensional process is straightforward.

The swap rate proces¥¢, T;°) has to be a martingale und@y-. This is achieved through the
specification ofbs). Therefore, we choose the drift characterisficg such that

t ¢

/ (s, T7 )bsds = — (/ / (e"’(s’Tl*)x -1- ’y(s,Tl*)x) vk (ds, dx)
0 0o JR
1

t
+2/0 csfyz(s,Tl*)ds>. (33)

With this specificatiort (¢, 7}°) can be written as a stochastic exponential
S(t,Ty) = S0, 17)& (V (-, T7)) where

t ity aF3
V(1) = [ 2T Ve
0

+ /t/R (ev(&Tf)x — 1) (uL - ZT*’L) (ds,dzr).
0

ThefDT*—dynamics of the forward swap rate is then given by

as(t, 17) = S(t—,17) (&, 1) yed W,

+ / (erTf Jo _ 1) (ML — ﬁT*’L> (dt,dx)) , (34)
R
o

forall ¢ € [0, T}, whereW?™ = WT" andi? "L = v 7L, with initial condition

B(0,T¥) — B(0,T*)

Now we need to specify the proceSs-, 75 ), and the martingale measure for the date
Referring to Remark 3.1 we have tit- = Py, and

. 1B-TH 1

= 20kl o (T T
oy B(T*) 6y B0 T6,T7)

follows a (strictly) positive local martingale undBf-. The dynamics 0¥ can be expressed in a
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general form as

dZy(t,T) = Zu(t—, TF) <a1(t,T;)dWE* + /R Bu(,t, 1) (= 777F) (dt,dw)) (35)

for somea and/3; (index1 refers to the corresponding index4f), and for any daté};. Consider
now the relative bond pric&.(-, 77),

B(t,T}) 4Ty

Zo(t, T, =
( k) 5NB(t T*) + On— 1B(t T*) 5N_1Z1(t,T1*) +1

(36)

We further use Lemma A.1 from the Appendix. This lemma corresponds to Lemma 2.3 in Rutkowski
(2001), which we generalized to our setting. We modified it slightly to include the measure trans-
form. Based on the dynamics (35), and by applying the lemma to the prodgsses; (-, 7}’) and

H = én_17Z:1(-,T7), we define the forward swap measure associated with theltfatey setting

its Radon-Nikodym density as the stochastic exponential atTifne

AP

—L = En (MY,
o Tr (M7)
where
IN—1Z1(s—, TT) a1 (s, 1) =
= [ o 1) e
0 1+5N 121(8— T*) 5
ON-1Z1(s—,T7)B1(x,t,T7) L ~T*L
/ / ( 1+5N IZI(S_ T*) (/IJ v )(ds,dm)
Then

t * *

e On-1Z1(s—, T})au (s, T})
_/ ds

Wyt =W 0 14+ 0n-1Z1(s—,TY)

is the forward Brownian motion for the dal§ and

SIL (1 + 5N—1Z1(3—7Tf)51(90737T1*)> ST*L
14+ 0n-1Z1(s—,TY)

is theIF’Tl*—compensator of”. According to Lemma A.1, the procegs(-, Ty) is alocal martingale

under the new measuffv&f. In order to express the measure change through the swap rates instead
of using the relative bond prices, we use the following relations. First notice that from (29) and (30)
we obtain that

B(t,TY)

2t T7) = SnB(t, T%)

= S(t,T7) + Z1(t,T*) = S(t, T) + 6" (37)
Differentiating both sides of the last equality and invoking (34) and (35), we obtain
Z1 (t_v Tl*)al(tv Tl*) thT* + Zl(t_u Tl*) / ,81([13, t, Tl*) (ML - DT*7L) (dta d.’L’)
R

= S(t=, THm (&, T7)dW," + S(t—,Tf)sz($,t,Tf)(u —vh)(dt,dx),  (38)
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where for the shorthand notation, we havexsét, T5) = (¢, T7)/c; andys(z, t, Ty) = e BT1)T
1. As the Gaussian and the jump part of a semimartingale do not interact (see Jacod and Shiryaev
(1987, 11.2.34)), in order for this equality to hold we set

Z (t_v Tl*)al (t) Tl*) = S(t_) Tl*)’yl (t7 Tl*)

Z1(t=,T7) Br (2, 8, T7) = S(t—=, T{ )2 (2, £, T7).

ConsequentlﬁTf is explicitly given by the formula

W T /t OnaSls= Tm(sTH) o
0 1+ 6n_105" +0n_1S(s—,T})

and thePr; -compensator ofi” by

L — (14 on-1S(s—,T7)v2(x, 8, T7) ST*L
1+5N*16N +5N,15( TY)

Now we can define the next forward swap rafe, 7;) by postulating that undév?Tl*

3 ~ %
S(T) = S(0,T5 )exp ( / w(s,TQ*)dLZI), (39)
0
where
by ! TTed ! L _ ~THL
:/ bslds—i—/ VesWs!t +/ /:U(u —v'r )(ds,dw). (40)

In order to makes(t, 1) aPT*-martlngale we choose the drift ter(rb\S ) such that

[ (// T 1= 9(s, T)a) P10 (ds, do)

5 /0 e (s, T3 )ds ) (41)

With this specmcatlon of the drift tern§(¢, 7%’ ) can be written as a stochastic exponerfiigl 73 ) =
S0, 75)& (V (-, T5)) where

t —~— E3
Vit Ty) = / (8, T3 ) /e
0

+ /t/ <ev(87T5‘)x — 1) (uL — '17T1*’L> (ds,dx).
0o Jr

The@Tf-dynamics of the forward swap rate is then given by
as(t,T3) = S(t=,T5) (1(t, T3) e,

+/R (eV(t’Tg)m - 1) (ML - DTl*’L> (dt, dm)) (42)
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for all t € [0, T5] with the initial condition

B(0,75) — B(0,T%)
Sn_1B(0,T}) + onB(0,T%)

S(0,7T5) =

As the next inductive step, we need to specify the prosgssl’y ) and the martingale measure for
the datel’y. From the previous step we know that the procéss, T7) follows a (strictly) positive

local martingale unddFTl*. In general, the dynamics &f; can then be expressed as

dZy(t, T}) = Zo(t—, T}) <a2(t,T,:)d'M7ff —|—/Rﬁ2(x,t, Ty) (ML —aTﬁL) (dt,dx)) (43)

for somea; andf, (index2 now refers to the corresponding index4n), and for any datd}’. At
this step we consider the relative bond priégs:, 777),
ON—2B(t,T5) + on_1B(t,T}) + oNB(t, T*) 1+ 0n-_222(t,T5)"

Z3(t, Ty) = (44)

Applying Lemma A.1 to process&s = Z»(-,T;) andH = dn_22>(-, T5), we define the forward
swap measure associated with d@tg by setting its Radon-Nikodym density as the stochastic
exponential at timé’;,

dPry
— ET*( )a
dPr;
where
M2 = / ON—2Z2(5—,T5)a(s, T3 )dW
0 14+ 0n_2Zs(s—,Ty) ’
OIN—2Z2(5— Tz )B2(x, 5, Ty ) L ~T*L
/ / < 1+ 0n-2Z2(s—,T5) (,u . )(ds,dﬂU)-
Then

—~—r tSN_oZa(s—,Ts Ty
Wl =W —/0 v-2Zolsm, T3 )oa(, Ty) (t € [0,T3))

14+ 6n—2Z2(s—,T)

is the forward Brownian motion for the dalg and

ST5L _ 1+5N72Z2(5—7T5)52($a57T2*) STTL .
14+ 6n—2Z2(s—,T5)

is thef”T;-compensator ofi’. According to Lemma A.1, the proce&s(-, T;) is a local martingale
under the new measuf?-};. In order to express the measure change through the swap rates instead
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of using the relative bond prices, notice that

. (28) B(t,Ty)
Zo(t, T3) ‘=
2(T7) Sn_1B(t,TF) + onB(t, T%)
D S, 1) + Zo(t, T
&9 Z4(t,T%)

N S(t7 TQ) + 1+ 5N—1Z1(t, T*) + 5N_1S(t, Tl*) ’
where the proces8; (-, 7%) is already known from the previous step, cfr. (37). Differentiating the
last equality we can thus find the coefficients of the Gaussian and the discontinuous terms of the
processZ,(-, T*), and consequently defirfaﬂ;.

Extension to the general case is straightforward. Consider the induction step with respect to
Suppose that we have already defined the forward swap$&tes; ), ..., S(t, Ty ), and specified
the forward swap measuf@;H . At this step we would like to determine the forward swap measure

@Tﬁn and the forward swap rate(-, 7}, ;). We consider the relative bond prices
B(t,T}) B(t,T}) Zn(t,T})

Zna1 (8, T7) = = - '
A = @ Sy B Th) + - INBLTY) 14 by mZm(tT5)

Applying Lemma A.1 to process€s = Z,,,(-, 1}) andH = dn—_m Zm (-, T}y, ), itis clear that we can
define the forward swap measure associated withhatdy setting its Radon-Nikodym density as

APy
L — g (M), (45)
d]P)T:Lfl
where
t * *
OIN—mZm(s—, T Yam (s, T%) 1 _
Mm: YT m ’Tm dWSm 1
¢ /0 L+ 6N—mZm(s—, T5)
t * *
ON—mZm(s—, Ty)Bm(@, s, T7,) L _ ~Tr L
s o —vim-1") (ds,dz). 46
+/0 /R( bz Ty ) (e s
Then
L ) E SN —mZm(s—, T ) am (s, T)F)
Wm =W, ™ — mEm S m A Sm telo,T;
t t /0 1+5N—mZm(S_;T;1> s ( E[ ) m])
is the forward Brownian motion for the dafé&, and
L

vaT;L,L = (14 5N*mZm(S_7T;L)ﬂm(xv SvT;;L) ﬁT;mfv
1+ 0N-—mZm(s—,T%)

is theIF’T;L-compensator ofi’. Therefore it suffices to analyze the process

B(t,T7)
Zm ,T* = o
(t m) (5N_m+1B(t T* ) + -4+ 5NB(t, T*)

»Tm—1

=St Ty) + Zm(t,T7),
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where

Zm—1(t, T*)

Zo(t, T*) =
( ) 1+6N m+1Zm l(t T*)+5N m—l—lS(a m 1)

The proces<Z,,,—1(-,7%) is known from the preceding step and is a function of the forward swap
ratesS(¢,17),...,S(t, T _;). Consequently, we can express, (-, 7*) using the terms

» tm—1
S(t,TY),...,8(t,T;,_,) and their volatilities. Having found the probability measiite. , we

y tm—1

introduce the forward swap ratt, T, . ),

t ~ *
S(ETE ) = S(0,T2exp ( / v(s,mﬂmf{m) ,

and so forth. ~
dPr,

The precise form of~ = ——1 in (45)-(46) is easy to find by using the following rea-
IP‘T* dPr,

m—1

soning. Recall thaT’i is the probability measure associated to the awaimeC;_, y andPy is the
probability measure associated to the waire B(-, T). According to the change of niamire
theorem (see Geman, El Karoui and Rochet (1995)) we set

pi = @|F _Cian(®) B0, Ty) _ P
t - d]P)N t B(t,TN) Cifl,N(O) Pgil .

In view of Girsanov's theorem and equation (14) we can deduce the Radon-Nikodym deriyative
as a stochastic exponential given by

dP;

oln=a ([ [ [ (e =1) (=) o)) = & ()

where

-1 -1

: Wi— P ([ 6;85(t-)

= , . t,T; 47
Pt ; ‘I/i:2PtZ:1 (1 +5ij(t—)> ’Yl( ’ ]) ( )

and

N-1 i—1
: viZ 8;5;(t—)
Yit,z) — 1= Bk 773 £
(0) Z:: v 2Pt <1+6j5j(t)> (@, 8, Tj)x

[Z‘SZH H (1 + 6,8k (t—)(1 + v2(2,t, Tk))) (48)

k=j+1

We proceed by writing

dP;  dP; Py dP; 1 _ e(xiy L
dP, dPn dP, dPn oy - E(XHk)

N

By applying Lemmas 2.4 and 2.6 from Kallsen and Shiryaev (2002) and taking into account that
EWMEWV) = E(U 4+ V + [U,V]) for any two semimartingale§ andV, we finally obtain the
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connection between any two forward swap measBresdPy:

dP;
dPy,

=£(2), (49)
with

t (NZ1¢j N N-1j ' N
7~ S Enle D) Sl )
p

il e < yhPpi! °
N 1 Gi(sx)
+1
,] =1 \II’L 2PL 1 _
//‘ s e il (AR O (50)
] k \I/k 2Pk 1 +1

: 5,
where¢/ = W/ "'p7/ (H&ST((S)))

l

Gi(s,a) = W7 (%) Yo, 5, T) Z b T[] (14 0uSu(s—)(1 + a5, T)) |

v=7+1

W’“is the standard Brownian motion with respect to the forward swap mea@suaad 7*-L is

the P,,-compensator of.”. By using (49)-(50) we easily obtain the connection between the two
consecutive forward swap measufgsandP; ;. Notice that the process driving the most distant
forward swap rat& (¢, Ty —1, T ) is a non-homogeneougly process. This is however not true for

the process driving (¢, 7;,Tn), i < N — 1, constructed during the backward induction, since the
associated compensatars+1: contain random terms. It simplifies the numerical implementation

if all driving processes are non-homogeneo@sy processes. This can be achieved by introducing
an approximation, where we replace the random terms by their deterministic initial values at time
t=0.

4 Pricing of swaptions

In this section we consider the pricing of swap rate based options, or swaptions, more precisely we
shall price a swaption where the underlying swap starts at tenor timeZantl ends at time point

Tw. By using general valuation results (see e.g. Musiela and Rutkowski (1997h)), the tinfle

price of the forward payer swaption is given by

N -
PSO = Z 6kB(O, Tk)E]PTiJrl [(S(Tlu j—lia TN) - K)+]
k=i+1

= C;n(0)E i1 [(S(T3, T}, Tw) — K), ] - (51)

Raible (2000) proposed a method for the evaluation of European stock optionséivyasktting

by using bilateral (or, two-sided) Laplace transforms. The approach is based on the observation
that the pricing formula for European options can be represented as a convolution. Whence one
can use the fact that the bilateral Laplace transform of a convolution is the product of the bilateral
Laplace transforms of the factors (the latter transforms are usually known explicitly). Inversion of
the bilateral Laplace transform then yields the option prices as a function of the current price of the
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underlying asset, and can be accomplished through the Fast Fourier Transform algorithm. See also
the related work of Carr and Madan (1999), and Lee (2004).

Eberlein andOzkan (2005) showed how caplets can be priced using bilateral Laplace trans-
forms. This method could also be employed for pricing the forward payer swaptions (51) as we
shall shortly explain in the following. We do not give all technical assumptions or details accompa-
nying that approach, instead we refer the reader to Raible (2000).

We concentrate on the purely discontinuous case () in (32)) since we will use generalized
hyperbolic Levy processes in the implementations. We consider the forward swap rate in the form
as given in (31):

t ~
S(t: T, Ty) = S(0, T, T )exp (/ 'v(s,Ti)dLsT"“) ,
0

where the condition (33) now simplifies to

t
/ v(s, T+ ds = / / e7(ST — (s, T;)x ) T L(ds, dx).
0
We define .
X, ::/ 'y(s,Ti)dzzi“
0

so that

S(T,,T;, Ty)
X =1 — 7
e < S(o,Ti,TN)>

Ti Ti
:/ 7(57E)bzi+1d3+/ /x’y(s,Ti) (it — o1l (ds, dz).
0 0o JR

By definingw(z, K) := (z — K) ., the payoff of the swaption is given hy(S(7;,T;, Ty ), K)

and its price at tim¢ = 0 by Ci,]\,(O)EHDTH1 [w(S(T;,T;, Tn), K)]. We consider the modified
payoff @(z, K) = w(e *,K). Let¢ = —InS(0,7;,Ty), thenS(T;, T;, Ty) = e SitX7i,
Furthermore, denote by ((;, K') the time zero price of the swaption, and Igtv] be the bilateral
Laplace transform ofy:

400
Liwl(z) = / e w(z)de, z=R+iucC, RucR.

—0o0

The price of the swaption at time zero can be written (apart from the discount factor) as a convolution
of functionsw(z) andp(z), taken at the poing;:

(Cza ) _ z N(O)EENDTZ'H [w(e_CH‘XTi , K)]
= Cin (O)E™41 [@(G — X1, K]

NG /R WG — oK) pla)(da),

wherep is the density ofX7,. As mentioned above, the bilateral Laplace transform of a convolution
equals the product of the bilateral Laplace transforms of the factors. Thus, we have that

LIVI(R +iu) = C; N(0)L[w](R + iu) - L[p](R + iu), (ueR). (52)
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By Theorem B.2 in Raible (2000) the bilateral Laplace integral defidifig](z) converges abso-
lutely, and¢{ — V({, K) is a continuous function. Hence, according to Theorem B.3 in Raible
(2000) we can invert the bilateral Laplace transform to obtain the swaptionlprice

R-+ioco
V(G K) = —— / T LV (2)da

B 27i R—ioco

1 [t ;
=— S EHILIVI(R + iu)du
27 J_ o
oGl N
= lim ¢S LIV)(R + iu)du. (53)
2T M — oo J_p
N — oo

Note the identityL[p](R + iu) = (iR — u), wherey(iR — u) := EFTin {ei(iR‘“)XTi} is the
extended characteristic function &t . By substituting (52) into (53) we finally obtain the swaption
pricing formula

GR N
V(G K) = Cin(0) 5~ Tim | OL[](R + i) (R — w)du (54)
N — oo N

According to Raible (2000) it is sufficient to consider the case where the strike price equals one,
since
V(G,K)=KV(¢;+InK,1).

The bilateral Laplace transforiw] for K = 1is given byL[w](z) = (2(z+1))7!, if Rez < —1.
We remark that this approach can be used also for more complicated payoff functions as long as the
payoff depends only oiX7, (for examples, we refer to Raible (2000)).
The characteristic function oX7, has the following form and simplifies in the purely discon-
tinuous case (see Eberlein and Raible (1999)):
X(u) i= BTt o7
T; T
= exp (m/ (s, T;)bs ™ ds
0
T; .
+/ / (eIW(S’T")z — 1 —iuy(s, ﬂ)aj) vlivnl(ds, d:p)>
o Jr
T;
= exp (—iu/ / (eV(S’Ti)x —1— (s, TZ)JU) vlvl(ds, dr)
o Jr
T .
+/ / (eI“V(s’Ti)x — 1 —iury(s, Tz)x) UTi+1’L(ds,dx)>
o Jr

T .
= exp (/ / (e‘"V(s’Ti)z — jue? T _ (1 — 1u)) vlitnk(ds, d:c)) . (55)
0o JR

The characteristic function (55) can be determined more precisely once the distributignisof
specified (generalized hyperbolic or normal inverse Gaussian for instance). See e.g. Schoutens
(2003) for a number of &vy processes and their characteristic functions. Hence, we can calculate
equation (54) numerically in an efficient way.
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5 Concluding remarks

In this paper we derived the dynamics of the forward swap rate process in a semimartingale setting
in explicit form and introduced aévy swap market model where swap rates are modeled as ordi-
nary exponentials. Starting from the most distant swap rate (which is driven by a non-homogeneous
Lévy process), we constructed the other swap rates such that they become martingales under the
corresponding forward swap measures. We also showed how swaptions can be priced in this frame-
work by using Laplace transform methods. A topic for future research will be to investigate further
swap derivatives in theévy framework and to test the performance of the model.

A Appendix

In this Appendix we will prove a general result which is applied in Section 3. The lemma corre-
sponds to Lemma 2.3 in Rutkowski (2001), which we generalized to a semimartingale setting. It is
also modified slightly to include the measure transform.

Lemma A.1 LetG, H be real-valued adapted processes under some probability meRsaatis-
fying the following SDEs

4Gy = g1(1) AW, + /R ot 7) (1 — v)(dt, da) (56)
dHy = hy(t) dW; + /Rhg(t, x) (p — v)(dt,dx) (57)

where W, is P-Brownian motion and/(dt, dx) is the P-compensator of the random measure of
jumpsp. Letgs, hy be square-integrabl®-a.s. andgs, he € Gioc(1t). Supposdd; > —1. Define
Y, := (1 + H;)~!. Then the procesg G has the local martingale dynamics

dYG)t = Y- (g1(t) — Yt—GtJll(t))th

Gi— + ga(t, z) Gy B
* /]R (1 + Ht_ -+ hQ(ta CL’) 1 + Ht— (,U, V)(dt, d$)

~ ~ loc —~ ~ -~
under a new measut®, P < P, whereW; is a P-Brownian motiondW; = dW; — Yi_hi(t) dt,
andv(dt, dr) is theP-compensator of: given by

v(dt,dz) = (14 Yi_ho(t,x)) v(dt, dz).

The density process is given %3 =E&(M), where

Mt:/otY;hl(s)dWs+/0t/RYshg(s,x)(u—u)(ds,dx).

Proof. We use the following short-hand notation in order to improve the readability= ¢, (¢),
hi = hi(t), g2 := g2(t,x) andhge := ha(t,z). By applying Ib’s formula for semimartingales
(Jacod and Shiryaev (1987), 1.4.57), we obtain

Gy 1 Gy
d = dG; — ———_dH,
<1+Ht> 1+H,_ " (+H_)2 "
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1 gihi 2G_h3 gihi )
o (- dt — dt
2 < (1+ H)? (1+ H)? (1+ H-)?
Gi— + g2 G- g2 Gi—_ho
+ - - - dt,d
/]R<1+Ht—+h2 1+, [1+Ht_ atm ) )rddn)

N glhl + thh% di
A+ B A+ H)

g1 Gt—hl
+ - aw;
<1+Ht_ (1+Ht_)2> ¢

+/Rl+9j{_(u—v)(dt,da:)—/R%(u—y)(dt,dz)

Gi— + g2 G- 92 Gi—ho
+ - - — dt,dz).
/R <1+Ht+h2 1+ H [1+Ht (14 H;)? ue z)

(58)

The continuous part of (58) can be dealt with exactly the same way as in Lemma 2.3 in Rutkowski
(2001), yielding

g1ha Gi-hi 91 Gi—h
< G+ avmy) " v n. T arme) ™

= (Y2 Goh? =Y gih) dt + (Yiegr — YA Gi—hy) dW;

— Y (1(t) = Vi Geoha (1)) (dW; — Yoo ha (1) dt) . (59)

For the terms related to the jumpsdf &L~ ) in (58), we obtain
1+Hy

/R (1 +g§{t, - (1%[{}:2)2) (1 —v)(dt,dz)

G T 92 Gy g2 Gi_ho
N a - —v)(dt,d
+/I\Q<]‘+Ht—+h2 1+Ht_ |:1+Ht— (1+Ht_)2:|)(lu V)( ) .T)

Gi— + g2 G- [ g2 Gi—_hy } )
+ - - - dt,d
/]R <1+Ht—+h2 1+ Heo 1+H, (1+H_)? v(dt, dz)

= Gt—+g2 Gt_
_/R (1+Ht + hg B 1+Ht> (M_V>(dt,dx)

Gy Gyi_ Gi_h
+/< t—-+92 Gy _[ 92 Gy 22:|>V(dt,dx).
rR\1+Hi_+hy 1+H;_ 1+H,- (1+H)
In view of Girsanov’s theorem we can write this as

Gt—+92 Gt_ _
/IR <1 + H;_ + ho o 1+Ht> (n—v)(dt,dx)

th + g2 Gt, _
- Y (¢
+/R<1+Ht+h2 1+Ht) (t,z)v(dt,dz)

Gi—ho g2
+/]R ((1 +H)? 1 +Ht_) v(dt, dz), (60)
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: . ~ 1
wherev(dt, dx) is a compensator gf. under some probability measufe < P. From the last
equation it is evident that fof% to be a local martingale we must have

Gy + 92 G- >
— Y (¢ dt,d
[ (e - e ) Tt

Gt ha 92 B
_|_/R <(1 H)? 1 +Ht> v(dt,dx) = 0. (61)

From this we can determine the functibift, z) needed for the Girsanov change of measure:

~ 1+ Hi— + hs
Y(t,z)=—————= 62
The density process follows from Jacod and Shiryaev (1987, Theorem 111.5.19). d
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