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Abstract

Models driven by Ĺevy processes are attractive since they allow for better statistical fitting
compared to classical diffusion models. We derive the dynamics of the forward swap rate
process in a semimartingale setting and introduce a Lévy swap market model. In order to
guarantee positive rates, we model the swap rates as ordinary exponentials. We start with
the most distant rate which is driven by a non-homogeneous Lévy process. Via backward
induction we construct the remaining swap rates such that they become martingales under the
corresponding forward swap measures. Finally we show how swaptions can be priced using
bilateral Laplace transforms.

1 Introduction

The market models of interest rate dynamics have become increasingly popular among practitioners.
These models directly specify the arbitrage-free dynamics of a set of forward Libor or swap rates.
The models for forward swap rates in a pure diffusion (Brownian motion) setting were developed
by Jamshidian (1997), Musiela and Rutkowski (1997b) and Rutkowski (1999, 2001). More recent
approaches to interest rate models involve jump-diffusions and more generally, models driven by
Lévy processes. The latter are becoming increasingly popular in finance since they allow for better
statistical fitting compared to classical diffusion models (see Eberlein (2001), Eberlein and Kluge
(2006), Eberlein and Koval (2005)). Processes that include jumps have already been used in several
papers describing the modelling of various interest rates. In the context of instantaneous, con-
tinuously compounded interest rates, Björk, Kabanov and Runggaldier (1997) extend the classical
Heath, Jarrow and Morton (1992) (henceforth HJM) framework to the case of diffusion-multivariate
point processes, and Björk, Di Masi, Kabanov and Runggaldier (1997) to general semimartingales.
Glasserman and Kou (2003) characterized the arbitrage-free dynamics of interest rates when the
term structure is modelled through forward Libor rates or forward swap rates, in the presence of
both jumps and a diffusion process. They consider the case when the jumps are modelled through a
finite number of marked point processes, in which case the purely discontinuous part is of bounded
variation. More explicitly, they place themselves in the generalized HJM framework of Björk,
Kabanov and Runggaldier (1997) and show that the simple forward rates can be embedded in an
arbitrage-free model of instantaneous forward rates. Eberlein andÖzkan (2005) push the forward
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Libor rate approach further into a setting of more general jump processes. Apart from the HJM
framework of Bj̈ork, Di Masi, Kabanov and Runggaldier (1997), they consider the Lévy setting
of Eberlein and Raible (1999) and construct the discrete tenor Lévy Libor model directly through
backward induction, whence extending the approach of Musiela and Rutkowski (1997a, 1997b)
from the case of pure diffusions to the Lévy setting. Eberlein and Kluge (2006) price swaptions in
the HJM framework using non-homogeneous Lévy processes.

In this paper, we will develop a market model of the forward swap rates by allowing the driving
process to be a Ĺevy process. In that sense we generalize the corresponding result in Glasserman
and Kou (2003). However, our approach differs in a crucial way from that of Glasserman and Kou
(2003) in that we do not start by showing that the forward swap rate model can be embedded in the
framework of instantaneous forward rates of Björk, Di Masi, Kabanov and Runggaldier (1997) or
Eberlein and Raible (1999). In fact, as pointed out in Hunt and Kennedy (2000), the extra burden
of proving that the models fall within the HJM class is unnecessary. Instead, we use a numéraire-
based approach and do not explicitly specify the dynamics of the instantaneous forward rates or the
bond prices. The outline of such a modelling approach in a pure diffusion setting can be found in
Pelsser (2000), and in Hunt and Kennedy (2000). Furthermore, we extend the backward induction
method of Rutkowski (1999, 2001) to the case where the forward swap rates are driven by a non-
homogeneous Ĺevy process.

This paper is organized as follows. In Section 2 we consider the so-called regular and reverse
swap market models. We extend the approach given in Hunt and Kennedy (2000), and in Pelsser
(2000), from the pure diffusion setting to a more general semimartingale setting and derive the
condition for those models to be arbitrage-free. In Section 3 we develop the model for forward
swap rates. This setting is appropriate for practical implementations. We discuss the pricing of
plain vanilla swaptions in Section 4 by using Laplace transforms.

Finally we mention that background material about Lévy processes can be found in the text-
books of Applebaum (2004), Bertoin (1996) and Sato (1999), and in a general semimartingale set-
ting in Jacod and Shiryaev (1987). A good reference for applications of Lévy processes is Schoutens
(2003).

2 Swap market models under a single measure

In this section we set up a market model for forward swap rates by specifying the arbitrage-free
dynamics of the rates under a single measure. This is a useful approach if we want to determine
the price of more sophisticated derivatives. Assume we are given a collection of dates (called tenor
structure)0 < T0 < T1 < . . . < TN , and associated to each tenor dateTi is a zero-coupon bond
that matures at this date. We denote the price at timet of such a bond byB(t, Ti).

We extend the approach given in Hunt and Kennedy (2000), and in Pelsser (2000), in order
to find the arbitrage-free dynamics for the forward swap rates under theTN -forward measurePN

(also called terminal measure2), and under theT0-forward measureP0. As mentioned in Section 1
this approach is nuḿeraire-based. We start by specifying the dynamics for the forward swap rates
and then determine the necessary relationship for any corresponding term structure model to be
arbitrage-free.

Note that in this section we do not explicitly assume that the driving process is a Lévy process.
However, the latter can be embedded in the given setting.

We assume in the sequel that we are given a complete probability space(Ω,F , P) equipped
with a filtration (Ft)t≥0, such that the filtered probability space(Ω,F , P, (Ft)t≥0) satisfies the

2This is the measure associated to the numéraireB(t, TN ).
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usual conditions, cf. Jacod and Shiryaev (1987).

2.1 Regular swap market model

We assume that the tenor structure0 < T0 < T1 < . . . < TN is given, andδi = Ti − Ti−1

for i = 1, . . . , N , whereTN is a fixed time horizon.δi is the fraction of a year corresponding to
the period fromTi−1 to Ti. It represents the length of theith accrual period (typically a month, a
quarter, or a year). We consider a family of forward swap ratesSi(t) := S(t, Ti, TN ), t ∈ [0, Ti),
which have the same maturity dateTN for all i = 0, . . . , N − 1. Given a family of zero-coupon
bond prices(B(t, Tj))0≤t≤Tj

for j = 0, . . . , N which are assumed to be positive semimartingales,
but whose dynamics does not have to be specified any further, the accrual factor for any individual
swap rate from such a family is given by

Ci,N (t) :=
N∑

j=i+1

δjB(t, Tj), (1)

and the forward swap rate is defined as

Si(t) =
B(t, Ti)−B(t, TN )

Ci,N (t)
, (2)

(see e.g. Brigo and Mercurio (2001) and Pelsser (2000) for more details). Musiela and Rutkowski
(1997b) define a probability measurẽPi = P̃Ti , which is equivalent to the historical probability
measureP, to be the forward swap measure associated with the datesTi andTN . Under this measure
the relative bond prices B(t,Tl)

δiB(t,Ti)+···+δNB(t,TN ) , (t ∈ [0, Tl ∧ Ti]), are local martingales underP̃i for
everyl = 0, . . . , N .

By choosing the bond with the largest maturityTN to be a nuḿeraire, the discounted accrual
factor (w.r.t. that nuḿeraire) reads

P i
t :=

N∑
j=i+1

δjB(t, Tj)
B(t, TN )

=
Ci,N (t)
B(t, TN )

, (3)

which should become a local martingale under the forward measurePN . We also define for0 ≤
i ≤ N − 1 the following product

Ψi
t :=

i∏
j=0

(1 + δj+1Sj+1(t)) . (4)

We follow the convention that empty sums and products are zero and one, respectively. Note that
PN

t ≡ SN (t) ≡ 0.
We can rewrite (3) as follows by using (2),

Ci,N (t)
B(t, TN )

=
δi+1B(t, Ti+1) + (δi+2B(t, Ti+2) + · · ·+ δNB(t, TN ))

B(t, TN )

= δi+1 + δi+1

(
B(t, Ti+1)−B(t, TN )

Ci+1,N (t)
·
Ci+1,N (t)
B(t, TN )

)
+

Ci+1,N (t)
B(t, TN )

= δi+1 + (1 + δi+1Si+1(t))
Ci+1,N (t)
B(t, TN )

.
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By substituting theP i
t from (3) into the above equation, we obtain fori = 0, . . . , N−1 the recursive

relation
P i

t = δi+1 + (1 + δi+1Si+1(t)) · P i+1
t . (5)

Multiplying both sides of the equation (5) byΨi−1
t we obtain

Ψi−1
t P i

t = δi+1Ψi−1
t + Ψi

tP
i+1
t .

By backward induction, down fromi = N − 1, it follows that

P i
t =

∑N−1
j=i δj+1Ψ

j−1
t

Ψi−1
t

=
N−1∑
j=i

δj+1

j∏
k=i+1

(1 + δkSk(t)). (6)

Remark 2.1 TheP i
t in (6) corresponds to the notationsii(t) in Jamshidian (1997). More generally,

Jamshidian (1997) defines a sum

sij(t) =
N−1∑
k=j

δk+1

k∏
l=i+1

(1 + δlSl(t)),

which is equivalent toΨ
j−1
t

Ψi−1
t

P j
t .

Our aim is to develop an arbitrage-free model for the term structure of interest rates specified
through forward swap ratesSi(·). The next theorem states the swap rate model under the termi-
nal measurePN . This theorem slightly generalizes Theorem 5.1 in Glasserman and Kou (2003)
and is an extension of the approach in Hunt and Kennedy (2000, Section 18.3) from the Gaussian
driving process to a more general setting of jump processes.

Theorem 2.1 For eachi = 0, . . . , N − 1, let θi(·) be a boundedRd-valued function andGi :
R+ × Rr → (−1,∞) be a deterministic function inGloc(µ) 3. Let WN be a standard Brownian
motion inRd with respect toPN , andµ the random measure of jumps of a semimartingale with the
continuous compensatorνN (dt, dx) = λN (t, dx)dt. The dynamics ofSi(·), i = 0, . . . , N − 1, is
assumed to satisfy

dSi(t)
Si(t−)

= αi(t)dt + θi(t)dWN
t +

∫
Rr

Gi(t, x)(µ− νN )(dt, dx). (7)

Then this model is arbitrage-free if

αi(t) = −
N−1∑

j=i+1

δj
∑N−1

k=j δk+1
∏k

l=i+1(1 + δlSl(t−))Sj(t−)θj(t)θi(t)∑N−1
k=i δk+1

∏k
l=i+1(1 + δlSl(t−)) · (1 + δjSj(t−))

+
∫

Rr

Gi(t, x)

[
1−

∑N−1
j=i δj+1

∏j
k=i+1

(
1 + δkSk(t−)(1 + Gk(t, x))

)∑N−1
j=i δj+1

∏j
k=i+1(1 + δkSk(t−))

]
λN (t, dx). (8)

Proof. As we want the model (7) to be arbitrage-free, each of theP i
t , i = 0, . . . , N − 1, defined in

(3), has to become a local martingale under the measurePN . This imposes a relationship between
the finite variation term and the coefficients of the Gaussian and the discontinuous terms in (7),

3For definition of this set we refer to Jacod and Shiryaev (1987, II.1.27)
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which we now derive.
Applying Itô’s formula (in its product rule’s version) to (5) leads to

dP i
t = (1 + δi+1Si+1(t−)) dP i+1

t + δi+1P
i+1
t− dSi+1(t) + δi+1d

[
Si+1, P

i+1
]
t
. (9)

The quadratic covariation term on the right-hand side of (9) is according to Jacod and Shiryaev
(1987, Definition I.4.53)[

Si+1, P
i+1
]
t
= 〈Sc

i+1, P
i+1, c〉t +

∑
0≤s≤t

∆Si+1(s)∆P i+1
s , (10)

where∆Si+1(t) and∆P i+1
t denote the jumps ofSi+1(t) andP i+1

t , respectively. Recall that the
superscriptc indicates that we consider the the continuous martingale part.
These jumps at timet follow from (7) and (6) by definition:

∆Si+1(t) =
∫

Rr

Si+1(t−)Gi+1(t, x)µ({t}, dx),

and

∆P i+1
t =

∫
Rr

 N−1∑
j=i+1

δj+1

j∏
k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)

−
N−1∑

j=i+1

δj+1

j∏
k=i+2

(1 + δkSk(t−))

µ({t}, dx).

We can now express (9) more explicitly as

dP i
t =(1 + δi+1Si+1(t−)) dP i+1

t + δi+1P
i+1
t− dSi+1(t) + δi+1d〈Sc

i+1, P
i+1, c〉t

+ δi+1Si+1(t−)
∫

Rr

Gi+1(t, x)×

×

 N−1∑
j=i+1

δj+1

j∏
k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)
− P i+1

t−

µ(dt, dx)

= (1 + δi+1Si+1(t−)) dP i+1
t + δi+1P

i+1
t− dSi+1(t) + δi+1d〈Sc

i+1, P
i+1, c〉t

+ δi+1Si+1(t−)
∫

Rr

Gi+1(t, x)×

×

 N−1∑
j=i+1

δj+1

j∏
k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)
− P i+1

t−

 (µ− νN )(dt, dx)

+ δi+1Si+1(t−)
∫

Rr

Gi+1(t, x)×

×

 N−1∑
j=i+1

δj+1

j∏
k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)
− P i+1

t−

 νN (dt, dx). (11)

Recall thatP i
t has to become a local martingale under the measurePN . Eliminating the finite

variation terms – which will be set to equal zero – in the SDE (11) yields when taking (7) into
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account

dP i
t =(1 + δi+1Si+1(t−)) dP i+1

t + P i+1
t− δi+1Si+1(t−)θi+1(t)dWN

t

+ δi+1P
i+1
t− Si+1(t−)

∫
Rr

Gi+1(t, x)(µ− νN )(dt, dx)

+ δi+1Si+1(t−)
∫

Rr

Gi+1(t, x)×

×

 N−1∑
j=i+1

δj+1

j∏
k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)
− P i+1

t−

 (µ− νN )(dt, dx) (12)

Multiplying both sides of the equation (12) byΨi−1
t− we get

Ψi−1
t− dP i

t

= Ψi
t−dP i+1

t + Ψi
t−P i+1

t−

(
δi+1Si+1(t−)

1 + δi+1Si+1(t−)

)
θi+1(t)dWN

t

+ Ψi
t−P i+1

t−

(
δi+1Si+1(t−)

1 + δi+1Si+1(t−)

)∫
Rr

Gi+1(t, x)(µ− νN )(dt, dx)

+ Ψi
t−

(
δi+1Si+1(t−)

1 + δi+1Si+1(t−)

)∫
Rr

Gi+1(t, x)×

×

 N−1∑
j=i+1

δj+1

j∏
k=i+2

(1 + δkSk(t−)
(
1 + Gk(t, x))

)
− P i+1

t−

 (µ− νN )(dt, dx). (13)

In order to obtain a non-recursive expression fordP i
t we proceed by backward induction, down

from i = N − 1. For clarity, we consider a few steps of this induction procedure.

(1) In case wheni = N − 1, ΨN−2
t− dPN−1

t = 0 sincePN
t = 0 andSN = 0.

(2) If i = N − 2 we obtain

ΨN−3
t− dPN−2

t

= ΨN−2
t− dPN−1

t + ΨN−2
t− PN−1

t−

(
δN−1SN−1(t−)

1 + δN−1SN−1(t−)

)
θN−1(t)dWN

t

+ ΨN−2
t− PN−1

t−

(
δN−1SN−1(t−)

1 + δN−1SN−1(t−)

)∫
Rr

GN−1(t, x)(µ− νN )(dt, dx)

+ ΨN−2
t−

(
δN−1SN−1(t−)

1 + δN−1SN−1(t−)

)∫
Rr

GN−1(t, x)×

×

 N−1∑
j=N−1

δj+1

j∏
k=N

(
1 + δkSk(t−)(1 + Gk(t, x))

)
− PN−1

t−

 (µ− νN )(dt, dx),

whereΨN−2
t− dPN−1

t = 0 from the previous step (1). This yields

ΨN−3
t− dPN−2

t = ΨN−2
t− PN−1

t−

(
δN−1SN−1(t−)

1 + δN−1SN−1(t−)

)
θN−1(t)dWN

t
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+ ΨN−2
t−

(
δN−1SN−1(t−)

1 + δN−1SN−1(t−)

)∫
Rr

GN−1(t, x)×

×

 N−1∑
j=N−1

δj+1

j∏
k=N

(
1 + δkSk(t−)(1 + Gk(t, x))

) (µ− νN )(dt, dx),

For the more detailed description of this induction procedure we refer to Liinev (2004).

For a generali, i = 0, . . . , N − 1, it therefore follows that

Ψi−1
t− dP i

t =
N−1∑

j=i+1

Ψj−1
t− P j

t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)dWN

t

+
N−1∑

j=i+1

Ψj−1
t−

(
δjSj(t−)

1 + δjSj(t−)

)∫
Rr

Gj(t, x)×

×

N−1∑
l=j

δl+1

l∏
k=j+1

(
1 + δkSk(t−)(1 + Gk(t, x))

) (µ− νN )(dt, dx),

and thus

dP i
t = P i

t−

N−1∑
j=i+1

Ψj−1
t− P j

t−

Ψi−1
t− P i

t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)dWN

t

+ P i
t−

N−1∑
j=i+1

Ψj−1
t−

Ψi−1
t− P i

t−

(
δjSj(t−)

1 + δjSj(t−)

)
×

×
∫

Rr

Gj(t, x)

N−1∑
l=j

δl+1

l∏
k=j+1

(
1 + δkSk(t−)(1 + Gk(t, x))

) (µ− νN )(dt, dx),

(14)

which indeed represents a local martingale. Now we can investigate the finite variation terms in (9)
and (11):

δi+1P
i+1
t− αi+1(t)Si+1(t−)dt + δi+1d〈Sc

i+1, P
i+1, c〉t + δi+1Si+1(t−)×

×
∫

Rr

Gi+1(t, x)

 N−1∑
j=i+1

δj+1

j∏
k=i+2

(
1 + δkSk(t−)(1 + Gk(t, x))

)
− P i+1

t−

 νN (dt, dx) = 0,

(15)

where from (7) and (14)

d〈Sc
i+1, P

i+1, c〉t = Si+1(t−)θi+1(t)P i+1
t−

N−1∑
j=i+2

Ψj−1
t− P j

t−

Ψi
t−P i+1

t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)dt. (16)

Combining (15) and (16) we can easily find that the drift term in (7) is fori = 0, . . . , N − 1 given
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by

αi(t) = −
N−1∑

j=i+1

Ψj−1
t− P j

t−

Ψi−1
t− P i

t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)θi(t)

−
∫

Rr

Gi(t, x)

[∑N−1
j=i δj+1

∏j
k=i+1

(
1 + δkSk(t−)(1 + Gk(t, x))

)
P i

t−
− 1

]
λN (t, dx). (17)

By taking into account the definition (4) and relation (6), we can express the right-hand side of (17)
through forward swap rates and their volatilities, yielding (8).

�

2.2 Reverse swap market models

In this section we consider another type of forward swap rate model for so-called reverse swap
markets. In the pure diffusion setting this model is developed in Hunt and Kennedy (2000), and
Pelsser (2000). We show here that it is indeed possible to extend this model to a semimartingale
setting. Hunt and Kennedy (2000) argue that the model in Section 2.1 is suitable for path-dependent
products such as barrier swaptions where the pricing is done with respect to the collection of swap
rates which are reset on different dates but have a common maturity date. In this section we consider
the reverse situation where the family of swap rates to be modelled, has a common start date and
different maturities. These are the swap rates which underlie for example spread options. Deriving
the arbitrage-free dynamics for the forward swap rates in this case is analogous to the proof of
Theorem 2.1 in Section 2.1. Therefore we do not go into details, but rather present the main steps
for developing the relevant dynamics.

We consider again the tenor structure0 < T0 < T1 < · · · < TN , and a series of swaps starting
on dateT := T0 having maturity datesT1, . . . , TN , which now differ from those of Section 2.1. We
define fori = 1, . . . , N

Ci,N (t) :=
i∑

j=1

δjB(t, Tj),

Si(t) := Si(t, T, Ti) =
B(t, T )−B(t, Ti)

Ci,N (t)
, (18)

P i
t :=

i∑
j=1

δjB(t, Tj)
B(t, T )

(19)

and

Πi
t :=

i∏
j=1

(1 + δjSj(t)) .

Notice thatP i
t in (19) should become a local martingale under the forward measurePT . Analogous

to (5), it follows from (18) and (19) that, fori = 1, . . . , N

(1 + δiSi(t))P i
t = δi + P i−1

t , (20)
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and, by multiplying both sides withΠi−1
t ,

Πi
tP

i
t = δiΠi−1

t + Πi−1
t P i−1

t ,

whereP 0
t ≡ 0 andΠ0

t ≡ 1. Using induction starting ati = 1, it follows that

P i
t =

∑i
j=1 δjΠ

j−1
t

Πi
t

=
i∑

j=1

δj∏i
k=j(1 + δkSk(t))

. (21)

The model we want to study has a form similar to that of (7), which means that under the measure
PT the forward swap ratesSi, i = 1, . . . , N have the dynamics specified as in (22).

Theorem 2.2 Assume that for eachi = 1, . . . , N , θi(·) is a boundedRd-valued function andGi :
R+×Rr → (−1,∞) is a deterministic function inGloc(µ). LetW T be a standard Brownian motion
in Rd with respect to the measurePT and letνT (dt, dx) = λT (t, dx)dt be thePT -compensator of
µ. Then the model

dSi(t)
Si(t−)

= αi(t)dt + θi(t)dW T
t +

∫
Rr

Gi(t, x)(µ− νT )(dt, dx), (22)

is arbitrage-free if

αi(t) =
i∑

j=1

Πj
t−P j

t−
Πi

t−P i
t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)θi(t)

−
∫

Rr

Gi(t, x)
P i

t−

 i∑
j=1

δj∏i
k=j

(
1 + δkSk(t−)(1 + Gk(t, x))

) − P i
t−

λT (t, dx). (23)

Proof. As we want the model (22) to be arbitrage-free, each of theP i
t , i = 1, . . . , N , has to be a

local martingale under the measurePT . Applying Itô’s product rule to (20) yields

dP i−1
t = (1 + δiSi(t−)) dP i

t + δiP
i
t−dSi(t) + δid

[
Si, P

i
]
t
. (24)

By eliminating the finite variation terms in (24) we obtain

dP i−1
t =(1 + δiSi(t−)) dP i

t + P i
t−δiSi(t−)θi(t)dW T

t

+ δiP
i
t−Si(t−)

∫
Rr

Gi(t, x)(µ− νT )(dt, dx) + δiSi(t−)
∫

Rr

Gi(t, x)×

×

 i∑
j=1

δj∏i
k=j

(
1 + δkSk(t−)(1 + Gk(t, x))

) − P i
t−

 (µ− νT )(dt, dx)

= (1 + δiSi(t−)) dP i
t + P i

t−δiSi(t−)θi(t)dW T
t + δiSi(t−)

∫
Rr

Gi(t, x)×

×

 i∑
j=1

δj∏i
k=j

(
1 + δkSk(t−)(1 + Gk(t, x))

)
 (µ− νT )(dt, dx). (25)

9



Multiplying (25) byΠi−1
t− we obtain by induction

dP i
t =− P i

t−

i∑
j=1

Πj
t−P j

t−
Πi

t−P i
t−

(
δjSj(t−)

1 + δjSj(t−)

)
θj(t)dW T

t

− P i
t−

i∑
j=1

Πj
t−

Πi
t−P i

t−

(
δjSj(t−)

1 + δjSj(t−)

)
×

×
∫

Rr

Gj(t, x)

[
j∑

l=1

δj∏j
k=l

(
1 + δlSk(t−)(1 + Gk(t, x))

)] (µ− νT )(dt, dx).

In order the model (22) to be arbitrage-free, we have to set the finite variation terms in (24) equal to
0 which yields

δiP
i
t−αi(t)Si(t−)dt + δid〈Sc

i , P
i, c〉t+

+ δiSi(t−)
∫

Rr

Gi(t, x)

 i∑
j=1

δj∏i
k=j

(
1 + δkSk(t−)(1 + Gk(t, x))

) − P i
t−

 νT (dt, dx) = 0,

from where the condition (23) follows.
�

3 The Lévy swap rate model

In Section 2 we discussed a general semimartingale framework for swap rates under the terminal
measure. In this section we model the swap rates under the corresponding forward swap measures.
In this sense we extend the backward modelling approach of Rutkowski (1999, 2001) where the
swap rates are driven by a Wiener process under each forward swap measure. We consider again the
family of forward swap ratesS(t, Ti) := S(t, Ti, TN ) for i = 0, . . . , N − 1, which have the same
expiry date, but differ in length of the underlying swap agreement. The essence of this approach
is that by fixingTN , one constructs the model backwards in terms of maturities (thus starting from
the largest maturity), specifying at each step the change of measure such that the following swap
rate process is a local martingale. This type of backward modelling was also used by Eberlein and
Özkan (2005) in the context of the forward Lévy Libor model.

We assume that the discrete tenor structure0 < T0 < T1 < . . . < TN is given, andδi =
Ti − Ti−1 for i = 1, . . . , N . Since we will proceed by backward induction we setT ∗

i = TN−i

and, in particular,T ∗ := T ∗
0 = TN . Thus, we consider a “reversed” tenor structure0 < T ∗

N <
T ∗

N−1 < . . . < T ∗
1 < T ∗

0 = TN . For the explicit construction of the forward swap rates we make
the following assumptions:

Assumption 3.1
For any maturity Ti, i = 0, . . . , N−1, there exists a bounded and continuous deterministic function
γ(·, Ti) ≥ 0, which represents the volatility of the forward swap rate process S(., Ti). The bound
for the volatilities will be specified later.

Assumption 3.2
We assume that the initial term structure of interest rates, specified by bond prices B(0, Ti), i =

10



0, . . . , N , is given and that B(0, Ti) are strictly decreasing in the second variable, i.e. B(0, Ti) >
B(0, Ti+1), i = 0, . . . , N−1. Consequently, the initial term structure S(0, Ti, TN ) of forward swap
rates is given by

S(0, Ti, TN ) =
B(0, Ti)−B(0, TN )

Ci,N (0)
.

We assume a complete stochastic basis(Ω,FT ∗ , PT ∗ , (Ft)0<t≤T ∗) to be given. Suppose again that
a family of bond pricesB(t, Tm), m = 1, . . . , N , is given. For anym = 1, . . . , N − 1 the accrual
factor (1) can be rewritten as

CN−m,N (t) =
N∑

l=N−m+1

δlB(t, Tl) =
m−1∑
k=0

δN−kB(t, T ∗
k ), (t ∈ [0, TN−m+1]) . (26)

We also define the relative bond prices for a fixedi = 0, . . . , N , and for everyk = 0, . . . , N , by

ZN−i+1(t, Tk) :=
B(t, Tk)
Ci−1,N (t)

=
B(t, Tk)

δiB(t, Ti) + · · ·+ δNB(t, TN )
, (27)

which can be rewritten in terms of backward dates as

Zm(t, T ∗
k ) =

B(t, T ∗
k )

CN−m,N (t)
=

B(t, T ∗
k )

δN−m+1B(t, T ∗
m−1) + . . . + δNB(t, T ∗)

, t ∈ [0, T ∗
k ∧ T ∗

m−1],

(28)

for any fixedm ∈ {1, . . . , N}. For all t ∈ [0, T ∗
m] the forward swap rate for dateT ∗

m equals

S(t, T ∗
m) =

B(t, T ∗
m)−B(t, T ∗)

δN−m+1B(t, T ∗
m−1) + . . . + δNB(t, T ∗)

= Zm(t, T ∗
m)− Zm(t, T ∗). (29)

Remark 3.1 Since obviouslyCN−1,N (t) = δNB(t, TN ) = δNB(t, T ∗), it is evident that

Z1(t, T ∗
k ) =

B(t, T ∗
k )

CN−1,N (t)
=

B(t, T ∗
k )

δNB(t, T ∗)
=

1
δN

FB(t, T ∗
k , T ∗), (30)

whereFB(t, T ∗
k , T ∗) stands for the forward process corresponding to the time pointsT ∗

k andT ∗.
The related forward martingale measure is assumed to bePT ∗ as given above.

We postulate that the forward swap measure for the dateT ∗, which we now denote bỹPT ∗ , coincides
with PT ∗ . Note that in order to stress the fact that we are dealing with the forward swap measure
and to avoid any confusion with a forward measure, we add the tilde.

We proceed with the backward construction of forward swap measures. We start by defining the
forward swap rate for the dateT ∗

1 by postulating thatS(·, T ∗
1 ) is given by

S(t, T ∗
1 ) = S(0, T ∗

1 )exp
(∫ t

0
γ(s, T ∗

1 )dL̃T ∗
s

)
, (31)

where

L̃T ∗
t =

∫ t

0
bsds +

∫ t

0

√
csW̃

T ∗
s +

∫ t

0

∫
R

x
(
µL − ν̃T ∗,L

)
(ds, dx) (32)
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is a non-homogeneous Lévy process under̃PT ∗ , i.e. W̃ T ∗
is a standard Brownian motion,cs is

positive such that
∫ T ∗

0 (| bs | +cs) ds < ∞, µL is the random measure of jumps of the process,

andν̃T ∗,L(ds, dx) = Fs(dx)ds is theP̃T ∗-compensator ofµL. We assume that the Lévy measures
Fs, which are measures onR with Fs ({0}) = 0 and

∫ T ∗

0

∫
R
(
x2 ∧ 1

)
Fs(dx)ds < ∞, satisfy the

following additional integrability condition∫ T ∗

0

∫
|x|>1

exp(ux)Fs(dx)ds < ∞,

for | u |≤ (1 + ε)M , whereM, ε are positive constants such that
∑n

i=1 γ(·, T ∗
i ) ≤ M . For the

sake of notation we consider a 1-dimensional driving process(L̃T ∗
t ) only. The extension to a higher

dimensional process is straightforward.
The swap rate processS(t, T ∗

1 ) has to be a martingale underP̃T ∗ . This is achieved through the
specification of(bs). Therefore, we choose the drift characteristics(bs) such that∫ t

0
γ(s, T ∗

1 )bsds =−
(∫ t

0

∫
R

(
eγ(s,T ∗

1 )x − 1− γ(s, T ∗
1 )x
)

ν̃T ∗,L(ds, dx)

+
1
2

∫ t

0
csγ

2(s, T ∗
1 )ds

)
. (33)

With this specificationS(t, T ∗
1 ) can be written as a stochastic exponential

S(t, T ∗
1 ) = S(0, T ∗

1 )Et (V (·, T ∗
1 )) where

V (t, T ∗
1 ) =

∫ t

0
γ(s, T ∗

1 )
√

csdW̃ T ∗
s

+
∫ t

0

∫
R

(
eγ(s,T ∗

1 )x − 1
)(

µL − ν̃T ∗,L
)

(ds, dx).

TheP̃T ∗-dynamics of the forward swap rate is then given by

dS(t, T ∗
1 ) = S(t−, T ∗

1 )
(
γ(t, T ∗

1 )
√

ctdW̃ T ∗
t

+
∫

R

(
eγ(t,T ∗

1 )x − 1
)(

µL − ν̃T ∗,L
)

(dt, dx)
)

, (34)

for all t ∈ [0, T ∗
1 ], whereW̃ T ∗

= W T ∗
andν̃T ∗,L = νT ∗,L, with initial condition

S(0, T ∗
1 ) =

B(0, T ∗
1 )−B(0, T ∗)

δNB(0, T ∗)
.

Now we need to specify the processS(·, T ∗
2 ), and the martingale measure for the dateT ∗

1 .
Referring to Remark 3.1 we have thatP̃T ∗ = PT ∗ , and

Z1(·, T ∗
k ) =

1
δN

B(·, T ∗
k )

B(·, T ∗)
=

1
δN

FB(·, T ∗
k , T ∗)

follows a (strictly) positive local martingale underP̃T ∗ . The dynamics ofZ1 can be expressed in a
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general form as

dZ1(t, T ∗
k ) = Z1(t−, T ∗

k )
(

α1(t, T ∗
k ) dW̃ T ∗

t +
∫

R
β1(x, t, T ∗

k )
(
µL − ν̃T ∗,L

)
(dt, dx)

)
(35)

for someα1 andβ1 (index1 refers to the corresponding index inZ1), and for any dateT ∗
k . Consider

now the relative bond priceZ2(·, T ∗
k ),

Z2(t, T ∗
k ) =

B(t, T ∗
k )

δNB(t, T ∗) + δN−1B(t, T ∗
1 )

=
Z1(t, T ∗

k )
δN−1Z1(t, T ∗

1 ) + 1
. (36)

We further use Lemma A.1 from the Appendix. This lemma corresponds to Lemma 2.3 in Rutkowski
(2001), which we generalized to our setting. We modified it slightly to include the measure trans-
form. Based on the dynamics (35), and by applying the lemma to the processesG = Z1(·, T ∗

k ) and
H = δN−1Z1(·, T ∗

1 ), we define the forward swap measure associated with the dateT ∗
1 , by setting

its Radon-Nikodym density as the stochastic exponential at timeT ∗
1 ,

dP̃T ∗
1

dP̃T ∗
= ET ∗

1
(M1),

where

M1
t =

∫ t

0

δN−1Z1(s−, T ∗
1 )α1(s, T ∗

1 )
1 + δN−1Z1(s−, T ∗

1 )
dW̃ T ∗

s

+
∫ t

0

∫
R

(
δN−1Z1(s−, T ∗

1 )β1(x, t, T ∗
1 )

1 + δN−1Z1(s−, T ∗
1 )

)(
µL − ν̃T ∗,L

)
(ds, dx).

Then

W̃
T ∗
1

t = W̃ T ∗
t −

∫ t

0

δN−1Z1(s−, T ∗
1 )α1(s, T ∗

1 )
1 + δN−1Z1(s−, T ∗

1 )
ds

is the forward Brownian motion for the dateT ∗
1 and

ν̃T ∗
1,L =

(
1 +

δN−1Z1(s−, T ∗
1 )β1(x, s, T ∗

1 )
1 + δN−1Z1(s−, T ∗

1 )

)
ν̃T ∗,L

is theP̃T ∗
1
-compensator ofµL. According to Lemma A.1, the processZ2(·, T ∗

k ) is a local martingale

under the new measurẽPT ∗
1
. In order to express the measure change through the swap rates instead

of using the relative bond prices, we use the following relations. First notice that from (29) and (30)
we obtain that

Z1(t, T ∗
1 ) =

B(t, T ∗
1 )

δNB(t, T ∗)
= S(t, T ∗

1 ) + Z1(t, T ∗) = S(t, T ∗
1 ) + δ−1

N . (37)

Differentiating both sides of the last equality and invoking (34) and (35), we obtain

Z1(t−, T ∗
1 )α1(t, T ∗

1 ) dW̃ T ∗
t + Z1(t−, T ∗

1 )
∫

R
β1(x, t, T ∗

1 )
(
µL − ν̃T ∗,L

)
(dt, dx)

= S(t−, T ∗
1 )γ1(t, T ∗

1 )dW̃ T ∗
t + S(t−, T ∗

1 )
∫

R
γ2(x, t, T ∗

1 )(µL − ν̃T ∗,L)(dt, dx), (38)
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where for the shorthand notation, we have setγ1(t, T ∗
1 ) = γ(t, T ∗

1 )
√

ct andγ2(x, t, T ∗
1 ) = eγ(t,T ∗

1 )x−
1. As the Gaussian and the jump part of a semimartingale do not interact (see Jacod and Shiryaev
(1987, II.2.34)), in order for this equality to hold we set

Z1(t−, T ∗
1 )α1(t, T ∗

1 ) = S(t−, T ∗
1 )γ1(t, T ∗

1 )

Z1(t−, T ∗
1 )β1(x, t, T ∗

1 ) = S(t−, T ∗
1 )γ2(x, t, T ∗

1 ).

Consequently,̃W T ∗
1 is explicitly given by the formula

W̃
T ∗
1

t = W̃ T ∗
t −

∫ t

0

δN−1S(s−, T ∗
1 )γ1(s, T ∗

1 )
1 + δN−1δ

−1
N + δN−1S(s−, T ∗

1 )
ds,

and thẽPT ∗
1
-compensator ofµL by

ν̃T ∗
1,L =

(
1 +

δN−1S(s−, T ∗
1 )γ2(x, s, T ∗

1 )
1 + δN−1δ

−1
N + δN−1S(s−, T ∗

1 )

)
ν̃T ∗,L.

Now we can define the next forward swap rateS(t, T ∗
2 ) by postulating that under̃PT ∗

1

S(t, T ∗
2 ) = S(0, T ∗

2 )exp
(∫ t

0
γ(s, T ∗

2 )dL̃
T ∗
1

s

)
, (39)

where

L̃
T ∗
1

t =
∫ t

0
b
T ∗
1

s ds +
∫ t

0

√
csW̃

T ∗
1

s +
∫ t

0

∫
R

x
(
µL − ν̃T ∗

1,L
)

(ds, dx). (40)

In order to makeS(t, T ∗
2 ) a P̃T ∗

1
-martingale we choose the drift term(bT ∗

1
s ) such that∫ t

0
γ(s, T ∗

2 )bT ∗
1

s ds =−
(∫ t

0

∫
R

(
eγ(s,T ∗

2 )x − 1− γ(s, T ∗
2 )x
)

ν̃T ∗
1,L(ds, dx)

+
1
2

∫ t

0
csγ

2(s, T ∗
2 )ds

)
. (41)

With this specification of the drift term,S(t, T ∗
2 ) can be written as a stochastic exponentialS(t, T ∗

2 ) =
S(0, T ∗

2 )Et (V (·, T ∗
2 )) where

V (t, T ∗
2 ) =

∫ t

0
γ(s, T ∗

2 )
√

csdW̃
T ∗
1

s

+
∫ t

0

∫
R

(
eγ(s,T ∗

2 )x − 1
)(

µL − ν̃T ∗
1,L
)

(ds, dx).

TheP̃T ∗
1
-dynamics of the forward swap rate is then given by

dS(t, T ∗
2 ) = S(t−, T ∗

2 )
(
γ(t, T ∗

2 )
√

ctdW̃
T ∗
1

t

+
∫

R

(
eγ(t,T ∗

2 )x − 1
)(

µL − ν̃T ∗
1,L
)

(dt, dx)
)

(42)
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for all t ∈ [0, T ∗
2 ] with the initial condition

S(0, T ∗
2 ) =

B(0, T ∗
2 )−B(0, T ∗)

δN−1B(0, T ∗
1 ) + δNB(0, T ∗)

.

As the next inductive step, we need to specify the processS(t, T ∗
3 ) and the martingale measure for

the dateT ∗
2 . From the previous step we know that the processZ2(·, T ∗

k ) follows a (strictly) positive
local martingale under̃PT ∗

1
. In general, the dynamics ofZ2 can then be expressed as

dZ2(t, T ∗
k ) = Z2(t−, T ∗

k )
(

α2(t, T ∗
k ) dW̃

T ∗
1

t +
∫

R
β2(x, t, T ∗

k )
(
µL − ν̃T ∗

1,L
)

(dt, dx)
)

(43)

for someα2 andβ2 (index2 now refers to the corresponding index inZ2), and for any dateT ∗
k . At

this step we consider the relative bond pricesZ3(·, T ∗
k ),

Z3(t, T ∗
k ) =

B(t, T ∗
k )

δN−2B(t, T ∗
2 ) + δN−1B(t, T ∗

1 ) + δNB(t, T ∗)
=

Z2(t, T ∗
k )

1 + δN−2Z2(t, T ∗
2 )

. (44)

Applying Lemma A.1 to processesG = Z2(·, T ∗
k ) andH = δN−2Z2(·, T ∗

2 ), we define the forward
swap measure associated with dateT ∗

2 , by setting its Radon-Nikodym density as the stochastic
exponential at timeT ∗

2 ,

dP̃T ∗
2

dP̃T ∗
1

= ET ∗
2
(M2),

where

M2
t =

∫ t

0

δN−2Z2(s−, T ∗
2 )α2(s, T ∗

2 )
1 + δN−2Z2(s−, T ∗

2 )
dW̃

T ∗
1

s

+
∫ t

0

∫
R

(
δN−2Z2(s−, T ∗

2 )β2(x, s, T ∗
2 )

1 + δN−2Z2(s−, T ∗
2 )

)(
µL − ν̃T ∗

1,L
)

(ds, dx).

Then

W̃
T ∗
2

t = W̃
T ∗
1

t −
∫ t

0

δN−2Z2(s−, T ∗
2 )α2(s, T ∗

2 )
1 + δN−2Z2(s−, T ∗

2 )
ds (t ∈ [0, T ∗

2 ])

is the forward Brownian motion for the dateT ∗
2 and

ν̃T ∗
2,L =

(
1 +

δN−2Z2(s−, T ∗
2 )β2(x, s, T ∗

2 )
1 + δN−2Z2(s−, T ∗

2 )

)
ν̃T ∗

1,L.

is theP̃T ∗
2
-compensator ofµL. According to Lemma A.1, the processZ3(·, T ∗

k ) is a local martingale

under the new measurẽPT ∗
2
. In order to express the measure change through the swap rates instead
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of using the relative bond prices, notice that

Z2(t, T ∗
2 )

(28)
=

B(t, T ∗
2 )

δN−1B(t, T ∗
1 ) + δNB(t, T ∗)

(29)
= S(t, T ∗

2 ) + Z2(t, T ∗)
(36)
(37)= S(t, T ∗

2 ) +
Z1(t, T ∗)

1 + δN−1Z1(t, T ∗) + δN−1S(t, T ∗
1 )

,

where the processZ1(·, T ∗) is already known from the previous step, cfr. (37). Differentiating the
last equality we can thus find the coefficients of the Gaussian and the discontinuous terms of the
processZ2(·, T ∗), and consequently definẽPT ∗

2
.

Extension to the general case is straightforward. Consider the induction step with respect tom.
Suppose that we have already defined the forward swap ratesS(t, T ∗

1 ), . . . , S(t, T ∗
m), and specified

the forward swap measurẽPT ∗
m−1

. At this step we would like to determine the forward swap measure

P̃T ∗
m

, and the forward swap rateS(·, T ∗
m+1). We consider the relative bond prices

Zm+1(t, T ∗
k ) =

B(t, T ∗
k )

CN−(m+1),N (t)
=

B(t, T ∗
k )

δN−mB(t, T ∗
m) + · · ·+ δNB(t, T ∗)

=
Zm(t, T ∗

k )
1 + δN−mZm(t, T ∗

m)
.

Applying Lemma A.1 to processesG = Zm(·, T ∗
k ) andH = δN−mZm(·, T ∗

m), it is clear that we can
define the forward swap measure associated with dateT ∗

m, by setting its Radon-Nikodym density as

dP̃T ∗
m

dP̃T ∗
m−1

= ET ∗
m

(Mm), (45)

where

Mm
t =

∫ t

0

δN−mZm(s−, T ∗
m)αm(s, T ∗

m)
1 + δN−mZm(s−, T ∗

m)
dW̃

T ∗
m−1

s

+
∫ t

0

∫
R

(
δN−mZm(s−, T ∗

m)βm(x, s, T ∗
m)

1 + δN−mZm(s−, T ∗
m)

)(
µL − ν̃T ∗

m−1,L
)

(ds, dx). (46)

Then

W̃
T ∗

m
t = W̃

T ∗
m−1

t −
∫ t

0

δN−mZm(s−, T ∗
m)αm(s, T ∗

m)
1 + δN−mZm(s−, T ∗

m)
ds (t ∈ [0, T ∗

m])

is the forward Brownian motion for the dateT ∗
m and

ν̃T ∗
m,L =

(
1 +

δN−mZm(s−, T ∗
m)βm(x, s, T ∗

m)
1 + δN−mZm(s−, T ∗

m)

)
ν̃T ∗

m−1,L

is theP̃T ∗
m

-compensator ofµL. Therefore it suffices to analyze the process

Zm(t, T ∗
m) =

B(t, T ∗
m)

δN−m+1B(t, T ∗
m−1) + · · ·+ δNB(t, T ∗)

= S(t, T ∗
m) + Zm(t, T ∗),
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where

Zm(t, T ∗) =
Zm−1(t, T ∗)

1 + δN−m+1Zm−1(t, T ∗) + δN−m+1S(t, T ∗
m−1)

.

The processZm−1(·, T ∗) is known from the preceding step and is a function of the forward swap
ratesS(t, T ∗

1 ), . . . , S(t, T ∗
m−1). Consequently, we can expressZm(·, T ∗) using the terms

S(t, T ∗
1 ), . . . , S(t, T ∗

m−1) and their volatilities. Having found the probability measureP̃T ∗
m

, we
introduce the forward swap rateS(t, T ∗

m+1),

S(t, T ∗
m+1) = S(0, T ∗

m+1)exp
(∫ t

0
γ(s, T ∗

m+1)dL̃T ∗
m

s

)
,

and so forth.

The precise form of
dP̃T∗m

dP̃T∗m−1

≡ dP̃Ti

dP̃Ti+1

in (45)-(46) is easy to find by using the following rea-

soning. Recall that̃Pi is the probability measure associated to the numéraireCi−1,N andPN is the
probability measure associated to the numéraireB(·, TN ). According to the change of nuḿeraire
theorem (see Geman, El Karoui and Rochet (1995)) we set

ρi
t :=

dP̃i

dPN
|Ft =

Ci−1,N (t)
B(t, TN )

· B(0, TN )
Ci−1,N (0)

=
P i−1

t

P i−1
0

.

In view of Girsanov’s theorem and equation (14) we can deduce the Radon-Nikodym derivativeρi
t

as a stochastic exponential given by

dP̃i

dPN
|Ft = Et

(∫ .

0
ϕi

tdWN
t +

∫ .

0

∫
R

(
Y i(t, x)− 1

) (
µL − νN

)
(dt, dx)

)
=: Et

(
Xi
)

where

ϕi
t =

N−1∑
j=i

Ψj−1
t− P j

t−

Ψi−2
t− P i−1

t−

(
δjSj(t−)

1 + δjSj(t−)

)
γ1(t, Tj) (47)

and

Y i(t, x)− 1 =
N−1∑
j=i

Ψj−1
t−

Ψi−2
t− P i−1

t−

(
δjSj(t−)

1 + δjSj(t−)

)
γ2(x, t, Tj)×

×

N−1∑
l=j

δl+1

l∏
k=j+1

(
1 + δkSk(t−)(1 + γ2(x, t, Tk))

) . (48)

We proceed by writing

dP̃i

dP̃k

=
dP̃i

dPN

dPN

dP̃k

=
dP̃i

dPN

1
dP̃k
dPN

= E(Xi)
1

E(Xk)
.

By applying Lemmas 2.4 and 2.6 from Kallsen and Shiryaev (2002) and taking into account that
E(U)E(V ) = E(U + V + [U, V ]) for any two semimartingalesU andV , we finally obtain the
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connection between any two forward swap measuresP̃i andP̃k:

dP̃i

dP̃k

=E(Z), (49)

with

Zt =
∫ t

0

N−1∑
j=i

ξj
s−γ1(s, Tj)
Ψi−2

s− P i−1
s−

−
N−1∑
j=k

ξj
s−γ1(s, Tj)

Ψk−2
s− P k−1

s−

 dW̃ k
s

+
∫ t

0

∫
R


∑N−1

j=i
ζj(s,x)

Ψi−2
s− P i−1

s−
+ 1∑N−1

j=k
ζj(s,x)

Ψk−2
s− P k−1

s−
+ 1

− 1

 (µL − ν̃k,L)(ds, dx) (50)

whereξj
s− = Ψj−1

s− P j
s−

(
δjSj(s−)

1+δjSj(s−)

)
,

ζj(s, x) = Ψj−1
s−

(
δjSj(s−)

1 + δjSj(s−)

)
γ2(x, s, Tj)

N−1∑
l=j

δl+1

l∏
v=j+1

(
1 + δvSv(s−)(1 + γ2(x, s, Tv))

) ,

W̃ k is the standard Brownian motion with respect to the forward swap measureP̃k and ν̃k,L is
the P̃k-compensator ofµL. By using (49)-(50) we easily obtain the connection between the two
consecutive forward swap measuresP̃i andP̃i+1. Notice that the process driving the most distant
forward swap rateS(t, TN−1, TN ) is a non-homogeneous Lévy process. This is however not true for
the process drivingS(t, Ti, TN ), i < N − 1, constructed during the backward induction, since the
associated compensatorsν̃Ti+1,L contain random terms. It simplifies the numerical implementation
if all driving processes are non-homogeneous Lévy processes. This can be achieved by introducing
an approximation, where we replace the random terms by their deterministic initial values at time
t = 0.

4 Pricing of swaptions

In this section we consider the pricing of swap rate based options, or swaptions, more precisely we
shall price a swaption where the underlying swap starts at tenor time pointTi and ends at time point
TN . By using general valuation results (see e.g. Musiela and Rutkowski (1997b)), the timet = 0
price of the forward payer swaption is given by

PS0 =
N∑

k=i+1

δkB(0, Tk)E
P̃Ti+1

[
(S(Ti, Ti, TN )−K)+

]
= Ci,N (0)EP̃Ti+1

[
(S(Ti, Ti, TN )−K)+

]
. (51)

Raible (2000) proposed a method for the evaluation of European stock options in a Lévy setting
by using bilateral (or, two-sided) Laplace transforms. The approach is based on the observation
that the pricing formula for European options can be represented as a convolution. Whence one
can use the fact that the bilateral Laplace transform of a convolution is the product of the bilateral
Laplace transforms of the factors (the latter transforms are usually known explicitly). Inversion of
the bilateral Laplace transform then yields the option prices as a function of the current price of the
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underlying asset, and can be accomplished through the Fast Fourier Transform algorithm. See also
the related work of Carr and Madan (1999), and Lee (2004).

Eberlein andÖzkan (2005) showed how caplets can be priced using bilateral Laplace trans-
forms. This method could also be employed for pricing the forward payer swaptions (51) as we
shall shortly explain in the following. We do not give all technical assumptions or details accompa-
nying that approach, instead we refer the reader to Raible (2000).

We concentrate on the purely discontinuous case (c = 0 in (32)) since we will use generalized
hyperbolic Ĺevy processes in the implementations. We consider the forward swap rate in the form
as given in (31):

S(t, Ti, TN ) = S(0, Ti, TN )exp
(∫ t

0
γ(s, Ti)dL̃

Ti+1
s

)
,

where the condition (33) now simplifies to∫ t

0
γ(s, Ti)b

Ti+1
s ds = −

∫ t

0

∫
R

(
eγ(s,Ti)x − 1− γ(s, Ti)x

)
ν̃Ti+1,L(ds, dx).

We define

Xt :=
∫ t

0
γ(s, Ti)dL̃

Ti+1
s

so that

XTi = ln
(

S(Ti, Ti, TN )
S(0, Ti, TN )

)
=
∫ Ti

0
γ(s, Ti)b

Ti+1
s ds +

∫ Ti

0

∫
R

xγ(s, Ti)
(
µL − ν̃Ti+1,L

)
(ds, dx).

By definingw(x,K) := (x−K)+, the payoff of the swaption is given byw(S(Ti, Ti, TN ),K)

and its price at timet = 0 by Ci,N (0)EP̃Ti+1 [w(S(Ti, Ti, TN ),K)]. We consider the modified
payoff w̃(x, K) := w(e−x,K). Let ζi := − lnS(0, Ti, TN ), thenS(Ti, Ti, TN ) = e−ζi+XTi .
Furthermore, denote byV (ζi,K) the time zero price of the swaption, and letL[w̃] be the bilateral
Laplace transform of̃w:

L[w̃](z) =
∫ +∞

−∞
e−zxw̃(x)dx, z = R + iu ∈ C, R, u ∈ R.

The price of the swaption at time zero can be written (apart from the discount factor) as a convolution
of functionsw̃(x) andρ(x), taken at the pointζi:

V (ζi,K) = Ci,N (0)EP̃Ti+1

[
w(e−ζi+XTi ,K)

]
= Ci,N (0)EP̃Ti+1 [w̃(ζi −XTi ,K)]

= Ci,N (0)
∫

R
w̃(ζi − x,K)ρ(x)(dx),

whereρ is the density ofXTi . As mentioned above, the bilateral Laplace transform of a convolution
equals the product of the bilateral Laplace transforms of the factors. Thus, we have that

L[V ](R + iu) = Ci,N (0)L[w̃](R + iu) · L[ρ](R + iu), (u ∈ R) . (52)
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By Theorem B.2 in Raible (2000) the bilateral Laplace integral definingL[V ](z) converges abso-
lutely, andζ 7→ V (ζ, K) is a continuous function. Hence, according to Theorem B.3 in Raible
(2000) we can invert the bilateral Laplace transform to obtain the swaption priceV :

V (ζi,K) =
1

2πi

∫ R+i∞

R−i∞
eζizL[V ](z)dz

=
1
2π

∫ +∞

−∞
eζi(R+iu)L[V ](R + iu)du

=
eζiR

2π
lim

M →∞
N →∞

∫ N

−M
eiuζiL[V ](R + iu)du. (53)

Note the identityL[ρ](R + iu) = χ(iR − u), whereχ(iR − u) := EP̃Ti+1

[
ei(iR−u)XTi

]
is the

extended characteristic function ofXTi . By substituting (52) into (53) we finally obtain the swaption
pricing formula

V (ζi,K) = Ci,N (0)
eζiR

2π
lim

M →∞
N →∞

∫ N

−M
eiuζiL[w̃](R + iu)χ(iR− u)du. (54)

According to Raible (2000) it is sufficient to consider the case where the strike price equals one,
since

V (ζi,K) = KV (ζi + lnK, 1).

The bilateral Laplace transformL[w̃] for K = 1 is given byL[w̃](z) = (z(z +1))−1, if Rez < −1.
We remark that this approach can be used also for more complicated payoff functions as long as the
payoff depends only onXTi (for examples, we refer to Raible (2000)).

The characteristic function ofXTi has the following form and simplifies in the purely discon-
tinuous case (see Eberlein and Raible (1999)):

χ(u) := EP̃Ti+1
[
eiuXTi

]
= exp

(
iu
∫ Ti

0
γ(s, Ti)b

Ti+1
s ds

+
∫ Ti

0

∫
R

(
eiuγ(s,Ti)x − 1− iuγ(s, Ti)x

)
ν̃Ti+1,L(ds, dx)

)
= exp

(
−iu

∫ Ti

0

∫
R

(
eγ(s,Ti)x − 1− γ(s, Ti)x

)
ν̃Ti+1,L(ds, dx)

+
∫ Ti

0

∫
R

(
eiuγ(s,Ti)x − 1− iuγ(s, Ti)x

)
ν̃Ti+1,L(ds, dx)

)
= exp

(∫ Ti

0

∫
R

(
eiuγ(s,Ti)x − iueγ(s,Ti)x − (1− iu)

)
ν̃Ti+1,L(ds, dx)

)
. (55)

The characteristic function (55) can be determined more precisely once the distribution ofL1 is
specified (generalized hyperbolic or normal inverse Gaussian for instance). See e.g. Schoutens
(2003) for a number of Ĺevy processes and their characteristic functions. Hence, we can calculate
equation (54) numerically in an efficient way.
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5 Concluding remarks

In this paper we derived the dynamics of the forward swap rate process in a semimartingale setting
in explicit form and introduced a Ĺevy swap market model where swap rates are modeled as ordi-
nary exponentials. Starting from the most distant swap rate (which is driven by a non-homogeneous
Lévy process), we constructed the other swap rates such that they become martingales under the
corresponding forward swap measures. We also showed how swaptions can be priced in this frame-
work by using Laplace transform methods. A topic for future research will be to investigate further
swap derivatives in the Ĺevy framework and to test the performance of the model.

A Appendix

In this Appendix we will prove a general result which is applied in Section 3. The lemma corre-
sponds to Lemma 2.3 in Rutkowski (2001), which we generalized to a semimartingale setting. It is
also modified slightly to include the measure transform.

Lemma A.1 Let G, H be real-valued adapted processes under some probability measureP, satis-
fying the following SDEs

dGt = g1(t) dWt +
∫

R
g2(t, x) (µ− ν)(dt, dx) (56)

dHt = h1(t) dWt +
∫

R
h2(t, x) (µ− ν)(dt, dx) (57)

whereWt is P-Brownian motion andν(dt, dx) is the P-compensator of the random measure of
jumpsµ. Let g1, h1 be square-integrableP-a.s. andg2, h2 ∈ Gloc(µ). SupposeHt > −1. Define
Yt := (1 + Ht)−1. Then the processY G has the local martingale dynamics

d(Y G)t = Yt−(g1(t)− Yt−Gt−h1(t))dW̃t

+
∫

R

(
Gt− + g2(t, x)

1 + Ht− + h2(t, x)
− Gt−

1 + Ht−

)
(µ− ν̃)(dt, dx)

under a new measurẽP, P̃
loc
� P, whereW̃t is a P̃-Brownian motion,dW̃t = dWt − Yt−h1(t) dt,

and ν̃(dt, dx) is theP̃-compensator ofµ given by

ν̃(dt, dx) = (1 + Yt−h2(t, x)) ν(dt, dx).

The density process is given bydP̃
dP = E(M), where

Mt =
∫ t

0
Ys−h1(s)dWs +

∫ t

0

∫
R

Ys−h2(s, x)(µ− ν)(ds, dx).

Proof. We use the following short-hand notation in order to improve the readability:g1 := g1(t),
h1 := h1(t), g2 := g2(t, x) andh2 := h2(t, x). By applying It̂o’s formula for semimartingales
(Jacod and Shiryaev (1987), I.4.57), we obtain

d

(
Gt

1 + Ht

)
=

1
1 + Ht−

dGt −
Gt−

(1 + Ht−)2
dHt
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+
1
2

(
− g1h1

(1 + Ht−)2
dt +

2Gt−h2
1

(1 + Ht−)3
dt− g1h1

(1 + Ht−)2
dt

)
+
∫

R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−
−
[

g2

1 + Ht−
− Gt−h2

(1 + Ht−)2

])
µ(dt, dx)

=
(
− g1h1

(1 + Ht−)2
+

Gt−h2
1

(1 + Ht−)3

)
dt

+
(

g1

1 + Ht−
− Gt−h1

(1 + Ht−)2

)
dWt

+
∫

R

g2

1 + Ht−
(µ− ν)(dt, dx)−

∫
R

Gt−h2

(1 + Ht−)2
(µ− ν)(dt, dx)

+
∫

R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−
−
[

g2

1 + Ht−
− Gt−h2

(1 + Ht−)2

])
µ(dt, dx).

(58)

The continuous part of (58) can be dealt with exactly the same way as in Lemma 2.3 in Rutkowski
(2001), yielding(

− g1h1

(1 + Ht−)2
+

Gt−h2
1

(1 + Ht−)3

)
dt +

(
g1

1 + Ht−
− Gt−h1

(1 + Ht−)2

)
dWt

=
(
Y 3

t−Gt−h2
1 − Y 2

t−g1h1

)
dt +

(
Yt−g1 − Y 2

t−Gt−h1

)
dWt

= Yt−(g1(t)− Yt−Gt−h1(t)) (dWt − Yt−h1(t) dt) . (59)

For the terms related to the jumps ofd
(

Gt
1+Ht

)
in (58), we obtain∫

R

(
g2

1 + Ht−
− Gt−h2

(1 + Ht−)2

)
(µ− ν)(dt, dx)

+
∫

R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−
−
[

g2

1 + Ht−
− Gt−h2

(1 + Ht−)2

])
(µ− ν)(dt, dx)

+
∫

R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−
−
[

g2

1 + Ht−
− Gt−h2

(1 + Ht−)2

])
ν(dt, dx)

=
∫

R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−

)
(µ− ν)(dt, dx)

+
∫

R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−
−
[

g2

1 + Ht−
− Gt−h2

(1 + Ht−)2

])
ν(dt, dx).

In view of Girsanov’s theorem we can write this as∫
R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−

)
(µ− ν̃)(dt, dx)

+
∫

R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−

)
Ỹ (t, x)ν(dt, dx)

+
∫

R

(
Gt−h2

(1 + Ht−)2
− g2

1 + Ht−

)
ν(dt, dx), (60)
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where ν̃(dt, dx) is a compensator ofµ under some probability measurẽP
loc
� P. From the last

equation it is evident that forGt
1+Ht

to be a local martingale we must have∫
R

(
Gt− + g2

1 + Ht− + h2
− Gt−

1 + Ht−

)
Ỹ (t, x)ν(dt, dx)

+
∫

R

(
Gt−h2

(1 + Ht−)2
− g2

1 + Ht−

)
ν(dt, dx) = 0. (61)

From this we can determine the functioñY (t, x) needed for the Girsanov change of measure:

Ỹ (t, x) =
1 + Ht− + h2

1 + Ht−
. (62)

The density process follows from Jacod and Shiryaev (1987, Theorem III.5.19). �

Acknowledgements

Jan Liinev is a Fellow of the Fund for Scientific Research, Flanders (Belgium) (FWO-Vlaanderen).
He gratefully acknowledges the financial support provided through the European Community’s Hu-
man Potential Programme under contract HPRN-CT-2000-00100, DYNSTOCH, through the fel-
lowship of the Graduate School, University of Freiburg, and through the GOA/2002/01 grant of
K.U.Leuven.

References
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Eberlein, E. and Kluge, W. (2006). Exact pricing formulae for caps and swaptions in a Lévy term
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