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Abstract

The paper gives an overview of mathematical models and methods used in financial risk
management; the main area of application is credit risk. A brief introduction explains the
mathematical issues arising in the risk management of a portfolio of loans. The paper con-
tinues with a formal overview of credit risk management models and discusses axiomatic
approaches to risk measurement. We close with a section on dynamic credit risk models
used in the pricing of credit derivatives. Mathematical techniques used stem from probability
theory, statistics, convex analysis and stochastic process theory.
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1 Introduction

1.1 Financial Risk Management

Broadly speaking, risk management can be defined as a discipline for “Living with the possibility
that future events may cause adverse effects” (Kloman 1999). In the context of risk management
in financial institutions such as banks or insurance companies these adverse effects usually cor-
respond to large losses on a portfolio of assets. Specific examples include: losses on a portfolio
of market-traded securities such as stocks and bonds due to falling market prices (a so-called
market risk event); losses on a pool of bonds or loans, caused by the default of some issuers or
borrowers (credit risk); losses on a portfolio of insurance contracts due to the occurrence of large
claims (insurance- or underwriting risk). An additional risk category is operational risk, which
includes losses resulting from inadequate or failed internal processes, fraud or litigation.

In financial markets, there is in general no so-called “free lunch” or, in other words, no profit
without risk. This is the reason why financial institutions actively take on risks. The role of
financial risk management is to measure and manage these risks. Hence risk management can
be seen as a core competence of an insurance company or a bank: by using its expertise and
its capital, a financial institution can take on risks and manage them by various techniques
such as diversification, hedging, or repackaging risks and transferring them back to markets,
etc. While risk management has thus always been an integral part of the banking and insurance
business, recent years have witnessed a large increase in the use of quantitative and mathematical
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techniques. Even more, regulators and supervisory authorities nowadays even require banks to
use quantitative models as part of their risk management process.

Given the random nature of future events on financial markets, the field of stochastics (prob-
ability theory, statistics and the theory of stochastic processes) obviously plays an important
role in quantitative risk management. In addition, techniques from convex analysis and opti-
mization and numerical methods are frequently being used. In fact, part of the challenge in
quantitative risk management stems from the fact that techniques from several existing quanti-
tative disciplines are drawn together. The ideal skill-set of a quantitative risk manager includes
concepts and techniques from such fields as mathematical finance and stochastic process theory,
statistics, actuarial mathematics, econometrics and financial economics, combined of course with
non-mathematical skills such as a sound understanding of financial markets and the ability to
interact with colleagues with diverse training and background.

In this paper we give an introduction to some of the mathematical aspects of financial risk
management. We have chosen the problem of measuring and managing the risks associated with a
portfolio of bonds or loans as vehicle for our discussion. This choice is motivated by our common
research interests; moreover, quantitative credit risk models are currently a hot topic in academia
and industry.

1.2 Risk Management for a Loan Portfolio

The loss distribution. Consider a portfolio of loans to m different counterparties, indexed by
i ∈ {1, . . . ,m}. The standard way for measuring the risk in this portfolio is to look at the change
in the portfolio-value over a fixed time horizon T such as one year (current time is t = 0). We
start with a single loan with given exposure (size) ei and maturity date (repayment date) bigger
than T . The main risk is default risk, i.e. the risk that the borrower cannot repay the loan in
full. Denote by τi > 0 the random default time of borrower i and introduce the Bernoulli random
variable

Yi = 1{τi≤T} :=

{
1, if τi ≤ T ,

0, else .
(1)

Assume that in case of default the borrower pays the lender the amount (1 − δi)ei, δi ∈ (0, 1]
being the proportion of the exposure which is lost in default (the so-called relative loss given
default). Abstracting from interest-rate payments the potential loss generated by loan i over the
period (0, T ] is then given by Li = δieiYi. Denote by

p̄i := P(Yi = 1) = P(τi ≤ T ) (2)

the default probability of counterparty i; p̄i is by definition the probability that loan i causes a
loss and plays therefore an important role in measuring the default risk of the loan.

The loss of the whole portfolio of m firms is then given by L =
∑m

i=1 eiδiYi. In realistic
applications m can be quite large: loan portfolios of major commercial banks contain several
million loans. The portfolio loss distribution is then determined by FL(l) = P(L ≤ l). Note that
FL depends on the multivariate distribution of the random vector (Y1, . . . , Ym) and not just on
the individual default probabilities p̄i, 1 ≤ i ≤ m. In order to determine FL we hence need a
proper mathematical model for the joint distribution of (Y1, . . . , Ym); this issue is taken up in
Section 2.2.

Dependence between defaults can have a large impact on the form of FL and in particular on
its right tail (the probability of large losses). This is illustrated in Figure 1, where we compare
the loss distribution for a portfolio of 1000 firms that default independently (portfolio 1) with
a more realistic portfolio of the same size where defaults are dependent (portfolio 2). In port-
folio 2 defaults are weakly dependent in the sense that the correlation between default events
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(corr(Yi, Yj), i 6= j) is approximately 0.5 %. In both cases the default probability is p̄i ≡ 1 % so
that on average we expect 10 defaults. We clearly see from Figure 1 that the loss distribution
of portfolio 2 is skewed and that its right tail is substantially heavier than the right tail of the
loss distribution of portfolio 1, illustrating the drastic impact of dependent defaults on credit
loss distributions. There are in fact sound economic reasons for expecting dependence between
defaults. To begin with, the financial health of a firm varies with randomly fluctuating macroeco-
nomic factors such as changes in economic growth. Since different firms are affected by common
macroeconomic factors, there is dependence between their defaults. Moreover, dependence be-
tween defaults is caused by direct economic links between firms such as a strong borrower-lender
relationship or a small supplier for a larger production firm.
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Figure 1. Comparison of the loss distribution of a homogeneous portfolio of 1000 loans with a default
probability of 1% assuming (i) independent defaults and (ii) a default correlation of 0.5 %. We clearly
see that the dependence between default generates a loss distribution with a heavier right tail.

Risk Measurement. In practice, risk measures expressing the risk of a portfolio on a quanti-
tative scale are needed for a variety of purposes. To begin with, financial institutions hold risk
capital as buffer against unexpected losses in their portfolios. Regulators concerned with the sol-
vency of financial institutions also have specific requirements on risk capital: under the current
regulatory framework the amount of risk capital needed is related to the riskiness of the portfolio
as measured via the risk measure Value-at-Risk (see (3) below for a definition). Moreover, risk
measures are used by the management of a financial institution as a tool for limiting the amount
of risk a subunit within the institution - such as a trading group - may take, and the profitability
of a subunit is measured relative to the riskiness (appropriately measured) of its position.

Fix some risk management horizon T and denote by the random variable L the loss of a
given portfolio over that horizon. Most modern risk measures are statistics of the distribution
of L; such risk measures are frequently called law-invariant risk measures (Kusuoka 2001). The
most popular law-invariant risk measure is Value-at-Risk (VaR). Given some confidence level
α ∈ (0, 1), say, α = 0.99, the VaR of the portfolio at the confidence level α is defined by

VaRα(L) := inf{l ∈ R : P(L ≤ l) ≥ α}, (3)

i.e. in statistical terms VaRα(L) is simply the α-quantile of L. If L is integrable, an alternative
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law-invariant risk measure is Expected Shortfall or Average Value at Risk given by

ESα =
1

1− α

∫ 1

α
VaRu(L)du . (4)

Instead of fixing a particular confidence level α, in (4) one averages VaR over all levels u ≥ α
and thus “looks further into the tail” of the loss distribution; in particular ESα ≥ VaRα.

Of course, from a theoretical point of view it is not very satisfactory to introduce risk measures
such as VaR or expected shortfall in a more or less ad hoc way. In Section 3 we therefore
discuss axiomatic approaches to risk measurement and the related issue of risk-based performance
measurement.

Securitization, credit derivatives, and dynamic credit risk models. Recent years have
witnessed a rapid growth on the market for credit derivatives. These securities are primarily
used for the management and the trading of credit risk. Credit derivatives have become popular,
because they help financial firms to manage the credit risk on their books by selling parts of it
to the wider financial sector. The payoff of most credit derivatives depends on the exact timing
of defaults, so that dynamic (continuous-time) credit risk model are needed to study pricing
and hedging of these products. The mathematical tools for analyzing credit derivatives hence
stem from the field of stochastic process theory, in particular martingale theory and stochastic
calculus. We discuss some of the current developments in Section 4.

Further reading. A short survey paper cannot do justice to all aspects of the vast and growing
field of quantitative risk management. For further reading we refer to the books McNeil, Frey
& Embrechts (2005) (for quantitative risk management in general), Bluhm, Overbeck & Wagner
(2002) (for an introduction with strong focus on credit risk) or Crouhy, Galai & Mark (2001) (for
institutional aspects of risk management); further references are provided in the text.

2 Credit Risk Management Models

In this section we discuss models for credit risk management. These models are typically static,
meaning that the focus is the loss distribution over a fixed time period [0, T ] rather than the
evolution of risk in time. This makes the mathematics underlying the models relatively simple
(the key tools are random variables instead of stochastic processes) and permits us to discuss
some key ideas in credit risk modelling in a non-technical setting. Note however, that the imple-
mentation of even these simple models poses substantial practical challenges: current approaches
for parameter estimation and model validation are far from satisfactory. To a large extent this
is due to the difficult data situation: credit loss data are collected on an annual or semi-annual
basis so that a loss history for a loan portfolio ranging over 20 years contains at most 40 serially
independent observations.

We begin with the issue of determining default probabilities for individual firms; portfolio
models and related statistical questions are discussed in Sections 2.2 and 2.3.

2.1 Default probabilities

State variables. In order to determine the default probability p̄i of a given firm i one typically
introduces a state variable Xi measuring its credit quality. The link between state variable and
default probability is then modelled by some function p : R → [0, 1] so that p̄i = p(Xi). This
modelling suggests the following simple moment estimator for p(·): assume that there are N
years of default data for a given portfolio available; denote by mt(x) the number of firms in year
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t with Xi (roughly) equal to x and by Mt(x) the number of those firms which have defaulted in
year t. Then a simple estimator for p(·) is given by

p̂(x) =
1
N

N∑
t=1

Mt(x)
mt(x)

. (5)

More sophisticated estimators can be developed in the context of a formal model for the joint
distribution of default events in the portfolio; see Section 2.3 below.

Credit ratings. A popular state variable used in the so-called credit-migration models is the
credit rating of a firm. Credit ratings for major companies or sovereigns are provided by rating
agencies such as Moody’s, Standard & Poor’s (S&P) or Fitch. In the S&P rating system there
are seven rating categories (AAA, AA, A, BBB, BB, B, CCC) with AAA being the highest
and CCC the lowest rating of companies which have not defaulted; moreover, there is a default
state. Moody’s uses seven pre-default rating categories labelled Aaa, Aa, A, Baa, Ba, B, C,
a finer alpha-numeric system is also in use. The rating system used by Fitch is similar to the
S&P system. Rating agencies also provide so-called rating transition matrices; an example from
Standard & Poor’s is presented in Table 1. These matrices are determined from historical rating
information; they give an estimate of the probability that a firm migrates from a given rating
category to another category within a given year.

Initial Rating at year-end ( transition probabilities in % )

rating AAA AA A BBB BB B CCC Default

AAA 90.81 8.33 0.68 0.06 0.12 0.00 0.00 0.00
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0.00
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06
BBB 0.02 0.33 5.95 86.93 5.30 1.17 1.12 0.18
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06
B 0.00 0.11 0.24 0.43 6.48 83.46 4.07 5.20
CCC 0.22 0.00 0.22 1.30 2.38 11.24 64.86 19.79

Table 1. Probabilities of migrating from one rating quality to another within 1 year expressed in %.
Source: Standard & Poor’s CreditWeek (15th April 1996).

In the simplest form of credit migration models it is assumed that the current credit rating
of a firm completely determines the distribution of its future rating, or, in mathematical terms,
that rating transitions follow a Markov chain. Under this assumption default probabilities can be
read off from an estimated transition matrix. For instance, using the transition matrix presented
in Table 1, the one-year default probability of a company whose current S&P credit rating is A is
estimated to be 0.06 %, whereas the default probability of a CCC-rated company is estimated to
be almost 20%. While the Markovianity of rating transitions is convenient for financial modelling
(see for instance (Jarrow, Lando & Turnbull 1997)), there is some doubt if the assumption can
be maintained empirically; a good empirical study based on techniques from survival analysis
is Lando & Skodeberg (2002). This tradeoff between tractability and realism is typical for the
application of mathematical models in finance in general.

Firm-value models. Alternative state variables can be based on the firm-value interpretation
of default. In this approach the asset-value of firm i is modelled as a nonnegative stochastic
process (Vt,i)t≥0; liabilities are represented by some (deterministic) threshold Di. In the simplest
case the asset-value process is modelled as geometric Brownian motion so that lnVT,i is normally

5



distributed. In line with economic intuition, it is assumed that default occurs if the asset value of
the firm is to low to cover its liabilities. The precise modelling varies: in the simple Merton (1974)
model the default indicator of firm i is defined by Yi := 1{VT,i≤Di}, i.e. one checks the solvency
of the firm only at the risk management horizon T . Somewhat closer to reality are perhaps the
so-called first-passage time models (Black & Cox (1976), Longstaff & Schwartz (1995)), where

τi := inf{t ≥ 0 : Vt,i ≤ Di} . (6)

The name stems from the fact that in probability theory τi is known as first-passage time of the
process (Vt,i) at the threshold Di. There are by now many extensions of the simple model (6)
such as unknown default thresholds or general jump-diffusion models for the asset value process;
a good overview is given in Lando (2004).

A natural state-variable in this context is the so-called distance to default which is used in
the popular KMV approach to modelling default probabilities; see for instance Crosbie & Bohn
(2002). In this approach one puts

Xi :=
V0,i −Di

σiV0,i
, (7)

where the volatility σi is defined to be the standard deviation of the logarithmic return lnV1,i −
lnV0,i. The definition (7) can be motivated in the context of the Merton (1974)-model. In that
model (V1,i − V0,i)/V0,i is approximately N(0, σ2) distributed, so that (in practitioner language)
“Xi gives the number of standard deviations the asset value is away from the default threshold”.
For more details on the KMV model we refer to McNeil et al. (2005), Section 8.2, or Bluhm et al.
(2002), Sections 2 and 3.

2.2 Credit Portfolio Models

Now we return to the problem of modelling the joint distribution of the default indicator vector
Y = (Y1, . . . , Ym). There are two types of portfolio credit risk models, threshold models and
mixture models.

Threshold models. These models can be viewed as multivariate extensions of the firm value
models discussed in the previous subsection. Their defining attribute is the idea that default
occurs for a company i when some critical variable Xi (such as the logarithmic asset value
lnVT,i) lies below some deterministic threshold di (such as logarithmic liabilities lnDi) at the
end of the time period [0, T ], i.e. we have Yi = 1{Xi≤di}, 1 ≤ i ≤ m. In this model class default
dependence is caused by dependence of the components of the random vectorX := (X1, . . . , Xm).
In abstract terms the latter can be represented by the copula of X. This mathematical concept is
of relevance for the analysis and the modelling of dependent risk factors in general (Embrechts,
McNeil & Straumann 2001) and therefore merits a brief digression.

Assume for simplicity that the marginal distributions Fi(x) = P(Xi ≤ x) are continuous and
strictly increasing. In that case the copula C of X can be defined as the distribution function of
the random vector U := (F1(X1), . . . , Fm(Xm)). Note that U has uniform marginal distributions:

P(Ui ≤ u) = P
(
Xi ≤ F−1

i (u)
)

= Fi(F−1
i (u)) = u, u ∈ [0, 1].

C is by definition independent under strictly increasing transformations of the individual com-
ponents of X and thus represents the dependence structure of this random vector. Moreover we
have the following relation between the distribution function F of X and its copula C, known as
identity of Sklar:

F (x1, . . . , xm) := P(X1 ≤ x1, . . . , Xm ≤ xm) = P(U1 ≤ F1(x1), . . . , Um ≤ Fm(xm))
= C(F1(x1), . . . , Fm(xm)) ,

(8)
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see McNeil et al. (2005), Section 5.1 for details and extensions. Relation (8) illustrates nicely how
multivariate distributions are formed by coupling together marginal distributions and copulas.
An example which is frequently being used is the so-called Gauss copula CGa

P defined as copula
of a multivariate normally distributed random vector with correlation matrix P .

In threshold models for portfolio credit risk the copula of the critical-variable vectorX governs
the distribution of the default indicator vector Y in the following sense: given two models with
critical variables X and X̃ and threshold vectors d and d̃. Then the corresponding default
indicators Y and Ỹ have the same distribution if P(Xi ≤ di) = P(X̃i ≤ d̃i) for all i (identical
default probabilities) and if moreover X and X̃ have the same copula; see Section 8.3 of McNeil
et al. (2005).

Credit portfolio models used in industry such as the popular KMV model (Kealhofer &
Bohn 2001) typically use multivariate normal distributions with factor structure for the vector
X (so-called Gauss-copula models). Formally, one puts

Xi =
√
Ri

l∑
j=1

αijΨj +
√

1−Ri εi, 1 ≤ i ≤ m; (9)

Here Ψ = (Ψ1, . . . ,Ψl) is an l-dimensional Gaussian random vector with E(Ψi) = 0 and var(Ψi) =
1 representing country- and industry factors (so-called systematic factors); ε = (ε1, . . . , εm) is a
vector with independent standard-normally distributed components representing firm-specific
(idiosyncratic) risk; Ψ and ε are independent; 0 ≤ Ri ≤ 1 measures the part of the variance
of Xi which is due to fluctuations of the systematic factors; the relative weights of the different
factors are given by α = (αi,1, . . . , αi,l) with

∑l
j=1 αij = 1 for all i. From a practical point of view

the factor structure is mainly introduced in order to reduce the dimensionality of the problem,
so that in applications l is usually much smaller than m.

Bernoulli mixture models. In a mixture model the default risk of an obligor is assumed to
depend on a set of common economic factors, such as macroeconomic variables, which are also
modelled stochastically; given a realization of the factors, defaults of individual firms are assumed
to be independent. Dependence between defaults thus stems from the dependence of individual
default probabilities on the set of common factors. We start our analysis with a general definition.

Definition 2.1 (Bernoulli mixture model). Given some random vector Ψ = (Ψ1, . . . ,Ψl)′,
the random vector Y = (Y1, . . . , Ym)′ follows a Bernoulli mixture model with factor vector Ψ, if
there are functions pi : Rl → [0, 1], 1 ≤ i ≤ m, such that conditional on Ψ the default indicator
Y is a vector of independent Bernoulli random variables with P(Yi = 1|Ψ = ψ) = pi(ψ).

For y = (y1, . . . , ym)′ in {0, 1}m we thus have that

P(Y = y | Ψ = ψ) =
m∏
i=1

pi(ψ)yi(1− pi(ψ))1−yi , (10)

and the unconditional distribution of the default indicator vector Y is obtained by integrating
over the distribution of the factor vector Ψ. In particular, the default probability of company i
is given by p̄i = P(Yi = 1) = E(pi(Ψ)).

One-factor models. In many practical situations it is useful to consider a one-dimensional
mixing variable Ψ and hence a one-factor model: one-factor models may be fitted statistically to
default data without great difficulty (see Section 2.3 below); moreover, their behaviour for large
portfolios is also particularly easy to understand, see for instance Section 8.4.3 of McNeil et al.
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(2005). A simple one-factor model for a portfolio consisting of different homogeneous groups
indexed by r ∈ {1, . . . , k} (representing for instance rating classes) would be to assume that

pi(Ψ) = h(µr(i) + σΨ) . (11)

Here h : R → (0, 1) is a strictly increasing link function, such as h(x) = Φ(x), Φ the standard
normal distribution function, or h(x) = (1 + exp(−x))−1 (the logistic distribution function); r(i)
gives the group membership of firm i; µr is a group-specific intercept term; σ > 0 is a scaling
parameter and Ψ is standard normally distributed. Such a specification is commonly used in the
class of generalized linear mixed models in statistics.

Inserting this specification in (10) we can find the conditional distribution of the default
indicator vector. Suppose that there are mr obligors in rating category r and write Mr for the
number of defaults. The conditional distribution of the vector M = (M1, . . . ,Mk)′ is then given
by

P(M = l | Ψ = ψ) =
k∏
r=1

(
mr

lr

)
(h(µr + σψ))lr (1− h(µr + σψ))mr−lr , (12)

where l = (l1, . . . , lk)′.

Mapping of models. The threshold model (9) can be reformulated as a mixture model, cf.
Bluhm et al. (2002), Section 2. This is a useful insight for a number of reasons. To begin with,
Bernoulli mixture models are easy to simulate in Monte Carlo risk studies. Moreover, the mixture
model format and the threshold model format give rise to different model-calibration strategies
based on different types of data, so that a link between the model types is useful in view of the
data problems arising in the statistical analysis of credit risk models.

Consider now a vector X of critical variables as in (9), default thresholds d1, . . . , dm and let
Yi = 1{Xi≤di}. We have, using the independence of Ψ and ε and the fact that εi ∼ N(0, 1),

P(Xi ≤ di | Ψ = ψ) = P
(
εi ≤

di −
√
Ri
∑l

j=1 αijΨj√
1−Ri

| Ψ = ψ
)

= Φ
(di −√Ri∑l

j=1 αijψj√
1−Ri

)
=: pi(ψ) ; (13)

moreover, the independence of εi and εj , i 6= j, immediately implies that Yi and Yj are condi-
tionally independent given the realisation of Ψ. Note that since Xi ∼ N(0, 1), the model can be
calibrated to a set of unconditional default probabilities p̄i, 1 ≤ i ≤ m, if we let di = Φ−1(p̄i).

The above argument can be generalized to various other critical variable models with factor
structure; see for instance Section 8.4.4 of McNeil et al. (2005).

2.3 Parameter estimation in credit portfolio models

Parameter estimation is an important issue in credit risk management. In threshold models one
needs to determine the parameters of the factor representation (9). For this stock returns are
typically used as proxy for the asset returns of a company; the factor model is then estimated
by a mix of formal factor analysis and an ad-hoc assignment of factor weights based on eco-
nomic arguments; see Kealhofer & Bohn (2001) for an example of this line of reasoning. In
this section we describe alternative approaches which are based on the Bernoulli mixture format
and historical default data. More specifically, we discuss the estimation of model parameters in
the one-factor Bernoulli mixture model (11). Admittedly, model (11) is quite simplistic. How-
ever, given the present data situation, parameter estimation in Bernoulli mixture models based
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solely on historical default information is only feasible for models with a low-dimensional factor
structure.

We consider repeated cross-sectional data, i.e. observations of the default or non-default of
groups of monitored companies in a number of time periods. This kind of data is readily available
from rating agencies. Suppose as before that we have observations over N years and denote by
mt,r the number of firms in year t and group r in our sample; M̂t,r denotes the number of
these firms which have actually defaulted and M̂t := (M̂t,1, . . . , M̂t,k)′. In this simple model
one neglects dependence of defaults over time (serial dependence) and assumes that the factor
variables (Ψt)Nt=1 for the different years are independent and standard normally distributed;
moreover, in line with the mixture model formulation, we assume that defaults of individual
firms are conditionally independent given (Ψt)Nt=1. Using (12) and the independence of (Ψt)Nt=1,
we obtain the following form of the likelihood of the model parameters µ := (µ1, . . . , µk)′ and σ
given the observed data M̂1, . . . , M̂N :

L(µ, σ | M̂1, . . . , M̂N ) =
1

(2π)N/2

N∏
t=1

∫
R

P
(
M = M̂t | Ψ = ψ,µ, σ

)
e−ψ

2/2dψ . (14)

The integrals in (14) are easily evaluated numerically, so that the model can be fitted using
maximum likelihood estimation (MLE); see Frey & McNeil (2003) for details. Similar estimations
based on moment matching techniques can be found in Bluhm et al. (2002), Section 2.7.

Since the factor Ψt is often interpreted as some measure of the state of the economy in year
t, and since moreover business cycles tend to last over several years, it makes sense to assume
some serial dependence of the time series (Ψt)Nt=1 of factor variables. The simplest model would
be a Markovian structure where the distribution of Ψt depends on the realization of Ψt−1. With
this extension the model becomes a so-called hidden Markov model (Elliott & Moore 1995). For
instance, McNeil & Wendin (2005) consider a model where (Ψt)Nt=1 follows a so-called AR-1
process with dynamics

Ψt = αΨt−1 + εt ,

for −1 < α < 1 and an iid sequence (εt)Nt=1 of noise variables. Under this model assumption, the
random variables (Ψt)Nt=1 are not independent and the likelihood has a more complicated form,
so that MLE is no longer feasible. McNeil & Wendin (2005) propose to use Bayesian approaches
instead; as shown in their paper, Markov-Chain Monte Carlo (MCMC) methods (see for instance
Robert & Casella (1999)) can be used to sample from the posterior distribution of the unknown
model parameters.

3 Risk measures and capital allocation

3.1 Standard techniques for calculating and allocating risk capital

The development of the theoretical relationship between risk and expected return is built on
two economic theories: portfolio theory and capital market theory (Markowitz (1952), Sharpe
(1964), Lintner (1965)). Portfolio theory deals with the selection of portfolios that maximize
expected returns consistent with individually acceptable levels of risk whereas capital market
theory focuses on the relationship between security returns and risk. These theories also provide
a natural framework for measuring profitability. The profitability analysis is commonly carried
out by expressing the risk-return relationship as simple rational functions of risk- and return-
components. The two basic variants of these so-called risk adjusted ratios are known as RORAC
or RAROC, respectively; see Matten (2000) for details.

Techniques for measuring risk are a prerequisite for profitability analysis. In a bank, risk
is usually quantified in terms of risk capital (or Economic Capital). The reason for the close
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connection between risk and capital is the fact that the main purpose of the bank’s capital is to
protect the bank against extreme losses, i.e. capital which is invested in save and liquid assets
should ensure solvency of the bank even in adverse economic scenarios. Hence, the actual capital
requirements of a bank are determined by its risk profile.

From a bank’s perspective, the investment of capital in riskless assets is not very attractive,
since the return the bank can earn by investing in these assets is usually much lower than the
return required by the shareholders of the bank. Therefore, in line with portfolio theory, risk
is one of the components in the profitability analysis of the bank’s business areas, portfolios
and transactions. This task requires an allocation algorithm that splits the risk capital k of a
portfolio X with subportfolios X1, . . . , Xm into the sub-portfolio contributions k1, . . . , km with
k = k1 + . . .+km. The objective of this section is to review the main concepts for measuring and
allocating risk capital.

In the classical portfolio theory, e.g. in the Capital Asset Pricing Model, the risk of a port-
folio is measured by the variance (or volatility) of the portfolio distribution and risk capital is
distributed proportional to covariances.1 Techniques based on second moments are the natural
choice for normally distributed portfolios. Loss distributions of credit portfolios, however, are
asymmetric and heavy tailed. For these distributions second moments do not provide useful tail
information and are therefore not suitable for measuring or allocating risk.

The current standard in credit portfolio modelling is to define the risk capital in terms of a
quantile of the portfolio loss distribution, in financial lingo the Value-at-Risk (VaR) VaRα(X)
of the loss X of the portfolio at a specified confidence level α (see (3)). VaR has an intuitive
economic interpretation, i.e. it specifies the capital needed to absorb losses with probability α,
and has even achieved the high status of being written into industry regulations. However, VaR
also has an obvious limitation as a risk measure: in general it is not subadditive. Subadditivity
means that for two losses X and Y

VaR(X + Y ) ≤ VaR(X) + VaR(Y ). (15)

VaR is known to be subadditive for elliptically distributed random vectors (X,Y ) (McNeil et
al. 2005), and thus for this special case encourages diversification. For typical credit portfolios
the assumption of an elliptical distribution cannot be maintained. Consequently diversification,
which is commonly considered as a way to reduce risk, may increase Value-at-Risk. A specific
example can be found in Section 6.1 of McNeil et al. (2005).

3.2 Coherent and convex risk measures

In recent years, the development of more appropriate risk measures has been one of the main
topics in quantitative risk management. The starting point is the seminal paper Artzner et al.
(1999). In this paper, an axiomatic approach to the quantification of risk is presented and a set
of four axioms is proposed.

Definition 3.1 (Coherent risk measures). Let (Ω,A,P) be a probability space, L∞ the space
of all (almost surely) bounded random variables on Ω and V a subspace of the vector space L∞.
We will identify each portfolio X with its loss function, i.e. X is an element of V and X(ω)
specifies the loss of X at a future date in state ω ∈ Ω. A risk measure ρ is a function from V to
R. It is called coherent if it is

monotonic: X ≤ Y ⇒ ρ(X) ≤ ρ(Y ) ∀X,Y ∈ V,
translation invariant: ρ(X + a) = ρ(X) + a ∀a ∈ R, X ∈ V,
positively homogeneous: ρ(aX) = a · ρ(X) ∀a ≥ 0, X ∈ V,
subadditive: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) ∀X,Y ∈ V.

1The precise definition of this allocation scheme, called volatility allocation, is given in Section 3.6.
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It seems to be accepted in the finance industry that the concept of a coherent risk measure
provides a useful characterization of risk measures under fairly general conditions (see Artzner
et al. (1997) for the motivation behind the choice of these axioms). A serious criticism to the
necessity of the subadditivity and positive homogeneity can, however, be raised if liquidity risk is
taken into account. This is the risk that the market cannot easily absorb the sell-off of large asset
positions. In this situation, doubling the size of a position might more than double its risk. To
take into account possible liquidity-driven violations to subadditivity and positive homogeneity,
the concept of convex risk measures has been independently introduced in Heath & Ku (2004),
Föllmer & Schied (2002) and Frittelli & Gianin (2002) by replacing the axioms on subadditivity
and positive homogeneity by the weaker requirement of convexity.

Definition 3.2 (Convex risk measures). A translation invariant and monotonic risk measure
ρ : V → R is called convex if it has the property

convex: ρ(aX + (1− a)Y ) ≤ aρ(X) + (1− a)ρ(Y ) ∀X,Y ∈ V, a ∈ [0, 1].

The debate on coherent versus convex risk measures is subject of current research and will not
be covered in this survey article. We believe that coherent risk measures provide an appropriate
axiomatic framework for most practical applications and will therefore focus on this concept.
For the theory of convex risk measures we refer to the excellent exposition in Föllmer & Schied
(2004).

Two other important areas of active research are not covered in this article: the theory of
dynamic risk measures and the connection between risk measures, utility theory and portfolio
choice. We refer the reader to the recent articles Cheridito et al. (2006) and Pirvu & Zitkovic
(2006) and the literature surveys provided therein.

3.3 Representation theorems for coherent risk measures

A general technique for specifying coherent risk measures is given in Artzner et al. (1999).

Proposition 3.3. Let Q be a set of absolutely continuous probability measures with respect to P.
The function

ρQ(X) := sup{EQ(X) | Q ∈ Q} (16)

defines a coherent risk measure on L∞.

Does every coherent risk measure have a representation of the form (16)? Artzner et al. (1999)
have shown that this is indeed the case if the underlying probability space Ω is finite. For infinite
Ω the situation is more complicated. It is shown in Theorem 2.3 in Delbaen (2002) that the
representation of general coherent risk measures has to be based on the more general class of
finitely additive probabilities. In order to represent a coherent risk measure ρ by standard, i.e. σ-
additive, probability measures the coherent risk measure ρ has to satisfy an additional condition,
the so-called Fatou property.

Definition 3.4 (Fatou property and monotonic convergence). Given a function ρ : L∞ →
R. Then ρ satisfies the Fatou property, if ρ(X) ≤ lim infn→∞ ρ(Xn) for any uniformly bounded
sequence (Xn)n≥1 converging to X in probability; ρ satisfies the monotonic convergence property,
if ρ(Xn) ↓ 0 for any sequence 0 ≤ Xn ≤ 1 such that Xn ↓ 0.

For coherent risk measures the monotonic convergence property implies the Fatou property.
Furthermore, the Fatou property (the monotonic convergence property) of ρ is equivalent to
continuity of ρ from below (from above), see Föllmer & Schied (2004).
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Theorem 3.5 (Representation of coherent risk measures). Let ρ be a coherent risk mea-
sure. Then we have

1. ρ satisfies the Fatou property if and only if there exists an L1(P)-closed, convex set Q of
absolutely continuous probability measures on Ω with

ρ(Y ) = sup{EQ(Y ) | Q ∈ Q}. (17)

2. Assume that ρ can be represented in the form (17). Then ρ satisfies the monotonic conver-
gence property if and only if for every Y ∈ L∞ there is a QY ∈ Q such that ρ(Y ) is exactly
EQY

(Y ), i.e. ρ(Y ) is not only a supremum but also a maximum.

The proof of the first part of the theorem given in Delbaen (2000, 2002) is mainly based on
two theorems in functional analysis, the bipolar theorem and the Krein-Šmulian theorem. The
proof of the second part uses James’ characterization of weakly compact sets (Diestel 1975).
The connection to dual representations of Fenchel-Legendre type is outlined in Föllmer & Schied
(2004), see also Delbaen (2000, 2002) and Frittelli & Gianin (2002).

3.4 Expected shortfall

The most popular class of coherent risk measures is Expected Shortfall (see, for instance, Rock-
afellar & Uryasev ( 2000, 2001); Acerbi & Tasche (2002)). For an integrable random variable Y
the Expected Shortfall at level α, denoted by ESα, is the risk measure defined by

ESα(Y ) := (1− α)−1
∫ 1

α
VaRu(Y )du.

It is easy to show that

ESα(Y ) = (1− α)−1{E(Y 1{Y >VaRα(Y )}) + VaRα(Y ) ·
(
P(Y ≤ VaRα(Y ))− α

)}
(18)

is an equivalent characterization of Expected Shortfall. Furthermore, ESα is coherent (Acerbi &
Tasche (2002)) and satisfies the monotonic convergence property. Hence, by Theorem 3.5, there
exists a set Q of probability measures with

ESα(Y ) = max{EQ(Y ) | Q ∈ Q}. (19)

This set consists of all absolutely continuous probability measures Q whose density dQ/dP is
P-a.s. bounded by 1/(1 − α) (see, for example, Delbaen (2000)). Furthermore, it follows from
(18) that for every Y ∈ L∞ the maximum in (19) is attained by the probability measure QY

given in terms of its density by

dQY

dP
:=

1{Y >VaRα(Y )} + βY 1{Y=VaRα(Y )}

1− α
, with (20)

βY :=
P(Y ≤ VaRα(Y ))− α

P(Y = VaRα(Y ))
if P(Y = VaRα(Y )) > 0. (21)

3.5 Spectral measures of risk

A particularly interesting subclass of coherent risk measures has been introduced in Kusuoka
(2001), Acerbi (2002, 2004) and Tasche (2002). Spectral measures of risk can be defined by
adding two axioms to the set of coherency axioms: law invariance and comonotonic additivity.
Spectral risk measures are generalizations of Expected Shortfall. In fact, they can be defined as
the convex hull of the Expected Shortfall measures. A third characterization provides a direct link
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to risk aversion: spectral risk measures can be represented as integrals specified by appropriate
risk aversion functions σ (see Theorem 3.7).

Recall that two real valued random variables X and Y are said to be comonotonic if there
exist a real valued random variable Z and two non-decreasing functions f, g : R → R such that
X = f(Z) and Y = g(Z). A risk measure ρ will be called law-invariant if ρ(X) depends only on
the distribution of X. Note that VaR and Expected Shortfall are law-invariant. Furthermore, it
has been recently shown in Jouini et al. (2006) that law-invariant convex risk measures have the
Fatou property.

Definition 3.6 (Spectral risk measures). A coherent risk measure ρ is called a spectral risk
measure if it is law-invariant and comonotonic additive, meaning that ρ(X + Y ) = ρ(X) + ρ(Y )
for all comonotonic X,Y ∈ V .

Law invariance of a risk measure ρ is an essential property for practical applications: note
that a risk measure can only be estimated from empirical loss data if it is law-invariant. Two
comonotonic portfolios X,Y ∈ V provide no diversification at all when added together. It is
therefore a natural requirement that ρ(X + Y ) should equal the sum of ρ(X) and ρ(Y ). If a
risk measure is subadditive and comonotonic additive the upper bound ρ(X) + ρ(Y ) placed on
ρ(X + Y ) by subadditivity is sharp as it can be actually attained in the case of comonotonic
variables.

For a proof of the following theorem we refer to Kusuoka (2001), Acerbi (2002) and Tasche
(2002). Generalizations can be found in Föllmer & Schied (2004) and Weber (2004).

Theorem 3.7 (Characterization of spectral risk measures). Let (Ω,A,P) be a probability
space with non-atomic P, i.e. there exists a random variable that is uniformly distributed on
(0,1). Then the following three conditions are equivalent for a risk measure ρ.

1. ρ is a spectral measure of risk.

2. ρ is in the convex hull of the Expected Shortfall measures.

3. ρ can be represented in the form

ρ(X) = p

∫ 1

0
VaRu(X)σ(u)du+ (1− p)VaR1(X)

where p ∈ [0, 1] and σ is a non-decreasing density on [0, 1], i.e. σ ≥ 0 on [0, 1],
∫ 1
0 σ(u)du =

1, and σ(u1) ≤ σ(u2) for 0 ≤ u1 ≤ u2 ≤ 1.

3.6 Capital Allocation

We now turn to the allocation of risk capital either to subportfolios or to business units. More
formally, assume that a risk measure ρ has been fixed and let X be a portfolio which consists of
subportfolios X1, . . . , Xm, i.e. X = X1 + . . .+Xm. The objective is to distribute the risk capital
k := ρ(X) of the portfolio X to its subportfolios, i.e. to compute risk contributions k1, . . . , km of
X1, . . . , Xm with k = k1 + . . .+ km.

Allocation techniques for risk capital are a prerequisite for portfolio management and per-
formance measurement. In recent years, theoretical and practical aspects of different allocation
schemes have been analyzed in a number of papers; see for instance Tasche (1999, 2002), Over-
beck (2000), Delbaen (2000), Denault (2001), Hallerbach (2003). An allocation scheme proposed
by several authors is the allocation by the gradient or Euler principle:2 the capital allocated to

2Recall Euler’s well-known rule that states that if f : S → R is positively homogeneous and differentiable at
x ∈ S ⊆ Rn, we have f(x) =

∑n
i=1 xi

∂f
∂xi

(x).
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the subportfolio Xi of X is the derivative of the associated risk measure ρ at X in the direction
of Xi (see (24) for a precise formalization). Tasche (1999) argues that allocation based on the
Euler principle provides the right signals for performance measurement. Another justification for
the Euler principle is given in Denault (2001) using cooperative game theory and the notion of
“fairness”. He shows that the Euler principle is the only fair allocation principle for a coherent
risk measure. In the following we will review a simple axiomatization of capital allocation in
Kalkbrener (2005). The main axioms are the property that the entire risk capital of a portfolio
is allocated to its subportfolios and a diversification property that is closely linked to the subad-
ditivity of the underlying risk measure. It turns out that in this framework the Euler principle
is an immediate consequence of the proposed axioms.

The axiomatization is based on the assumption that the capital allocated to subportfolio Xi

only depends on Xi and X but not on the decomposition of the remainder X −Xi =
∑

j 6=iXj

of the portfolio. Hence, a capital allocation can be considered as a function Λ from V × V to R.
Its interpretation is, that Λ(X,Y ) represents the capital allocated to the portfolio X considered
as a subportfolio of portfolio Y .

Definition 3.8 (Axiomatization of capital allocation). A function Λ: V × V → R is called
a capital allocation with respect to a risk measure ρ if it satisfies the condition Λ(X,X) = ρ(X)
for all X ∈ V , i.e. if the capital allocated to X (considered as stand-alone portfolio) is the risk
capital ρ(X) of X.
The following requirements for a capital allocation Λ are proposed.

1. Linearity. For a given overall portfolio Z the capital allocated to a union of subportfolios
is equal to the sum of the capital amounts allocated to the individual subportfolios. In
particular, the risk capital of a portfolio equals the sum of the risk capital of its subportfolios.
More formally, Λ is called linear if

∀a, b ∈ R, X, Y, Z ∈ V Λ(aX + bY, Z) = aΛ(X,Z) + bΛ(Y, Z).

2. Diversification. The capital allocated to a subportfolio X of a larger portfolio Y never
exceeds the risk capital of X considered as a stand-alone portfolio: Λ is called diversifying
if

∀X,Y ∈ V Λ(X,Y ) ≤ Λ(X,X).

3. Continuity. A small increase in a position does only have a small effect on the risk capital
allocated to that position: Λ is called continuous at Y ∈ V if

∀X ∈ V lim
ε→0

Λ(X,Y + εX) = Λ(X,Y ).

Risk measures and capital allocation rules are closely related. First, given a capital alloca-
tion Λ the corresponding risk measure ρ is obviously given by the values of Λ on the diagonal,
i.e. ρ(X) = Λ(X,X). Conversely, for a positively homogeneous and subadditive risk measure ρ a
corresponding capital allocation Λρ can be constructed as follows: let V ∗ be the set of real linear
functionals on V and for a given risk measure ρ consider the following subset

Hρ := {h ∈ V ∗ | h(X) ≤ ρ(X) for all X ∈ V }.

It is an easy consequence of the Hahn-Banach Theorem that for a positively homogeneous and
subadditive risk measure ρ

ρ(X) = max{h(X) | h ∈ Hρ} (22)
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for all X ∈ V . Hence for every Y ∈ V there exists an hρY ∈ Hρ with hρY (Y ) = ρ(Y ). This allows
to define a capital allocation Λρ by

Λρ(X,Y ) := hρY (X). (23)

The set Hρ can be interpreted as a collection of (generalized) scenarios: the capital allocated to
a subportfolio X of portfolio Y is simply the loss of X under scenario hρY .

The following theorem (Theorem 4.2 in Kalkbrener (2005)) states the equivalence between
positively homogeneous, subadditive (but not necessarily monotonic) risk measures and linear,
diversifying capital allocations.

Theorem 3.9 (Existence of capital allocations). Let ρ : V → R.

a) If there exists a linear, diversifying capital allocation Λ with associated risk measure ρ then
ρ is positively homogeneous and subadditive.

b) If ρ is positively homogeneous and subadditive then Λρ is a linear, diversifying capital allo-
cation with associated risk measure ρ.

If a linear, diversifying capital allocation Λ is moreover continuous at a portfolio Y ∈ V it is
uniquely determined by the directional derivative of its associated risk measure, as the next
theorem (Theorem 4.3 in Kalkbrener (2005)) shows.

Theorem 3.10. Let ρ be a positively homogeneous and sub-additive risk measure and Y ∈ V .
Then the following three conditions are equivalent:

a) Λρ is continuous at Y , i.e. for all X ∈ V limε→0 Λρ(X,Y + εX) = Λρ(X,Y ).

b) The directional derivative

lim
ε→0

ρ(Y + εX)− ρ(Y )
ε

(24)

exists for every X ∈ V .

c) There exists a unique h ∈ Hρ with h(Y ) = ρ(Y ).

If these conditions are satisfied then Λρ(X,Y ) equals (24) for all X ∈ V , i.e. Λρ is given by the
Euler principle.

Theorem 3.9 implies that in the general case, in particular for credit portfolios, there do not
exist linear diversifying capital allocations for VaR since VaR is not subadditive. However, under
regularity conditions (see, for example, Tasche (1999)), the directional derivative (24) exists for
VaRα and equals

E(X|Y = VaRα(Y )). (25)

The volatility (or covariance) allocation, on the other hand, is linear and diversifying, as it is
derived from the risk measure Standard Deviation using (23). More precisely, let c be a non-
negative real number and define the risk measure ρStdc and the capital allocation ΛStdc by

ρStdc (X) := c · Std(X) + E(X), (26)

ΛStdc (X,Y ) :=

{
c · Cov(X,Y )/Std(Y ) + E(X) if Std(Y ) > 0,
E(X) if Std(Y ) = 0.

(27)

Then the risk measure ρStdc is translation invariant, positively homogeneous and subadditive but
not monotonic for c > 0. ΛStdc is a linear, diversifying capital allocation with respect to ρStdc . If
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Std(Y ) > 0 then ΛStdc is continuous at Y and equals the directional derivative (24) by Theorem
3.10.

Expected Shortfall ES is a coherent risk measure and therefore positively homogeneous and
subadditive. Hence, application of (23) to Expected Shortfall yields a linear, diversifying capital
allocation with associated risk measure ES. The scenario function hES

Y (X) for this risk measure
is given by EQY

(X), where the probability measure QY is specified in (20). In summary,

ΛESα (X,Y ) := EQY
(X) =

(∫
X · 1{Y >VaRα(Y )}dP + βY

∫
X · 1{Y=VaRα(Y )}dP

)
/(1− α)

is a linear, diversifying capital allocation with respect to ESα. If

P(Y > VaRα(Y )) = 1− α or P(Y ≥ VaRα(Y )) = 1− α (28)

then ΛESα is continuous at Y and equals the directional derivative (24). In particular, (28) holds
if P(Y = VaRα(Y )) = 0; in that case ΛESα (X,Y ) takes the particularly intuitive form

ΛESα (X,Y ) = E (X | Y > VaRα(Y )) .

The extension to spectral risk measures can be found in Overbeck (2004).

3.7 Case study: capital allocation in an investment banking portfolio

We will now analyze the practical consequences of different allocation schemes when applied to
a realistic credit portfolio. The case study is based on a sample investment banking portfolio
consisting of m = 25000 loans with an inhomogeneous exposure and default probability distri-
bution. The average exposure size is 0.004% of the total exposure and the standard deviation of
the exposure size is 0.026%. The portfolio expected loss is 0.72% and the unexpected loss, i.e.
the standard deviation, is 0.87%. Default probabilities p̄1, . . . , p̄m of all companies are obtained
from Deutsche Bank’s rating system and vary between 0.02% and 27%. Default correlations are
specified by a Bernoulli mixture model: for company i, the conditional default pi has the form

pi(ψ) := Φ

(
Φ−1(p̄i)−

√
Ri
∑96

j=1 αijψj√
1−Ri

)
. (29)

where the 96 systematic factors Ψ = (Ψ1, . . . ,Ψ96) follow a multi-dimensional normal distribution
and represent different countries and industries; see (9) and (13).

The portfolio loss distribution L specified by this model does not have an analytic form. Monte
Carlo simulation is therefore used for the calculation and allocation of risk capital. For this class
of models, however, the Monte Carlo estimation of tail-focused risk measures like Value-at-Risk
or Expected Shortfall is a demanding computational problem due to high statistical fluctuations.
This stability problem is even more pronounced for Expected Shortfall contributions of individual
transactions. Importance sampling is a variance reduction technique that has been successfully
applied in credit portfolio models of this type. We refer to Glasserman &Li (2005), Kalkbrener
et al. (2004) and Egloff et al. (2005) for details.

For the test portfolio we have calculated the risk measures VaR0.9998(L), ES0.999(L) and
ES0.99(L). The VaR0.9998(L) is the risk measure used at Deutsche Bank for calculating Economic
Capital, i.e. the capital requirement for absorbing unexpected losses over a one-year period with
a high degree of certainty. The confidence level of 99.98% is derived from Deutsche Bank’s target
rating of AA+, which is associated with an annual default rate of 0.02%. The ES0.999(L) has
been chosen since it leads to a comparable amount of risk capital, while being based on a coherent
risk measure. The ES0.99(L) was calculated to study the impact of the confidence level α on the
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properties of the Expected Shortfall measure. The application of these risk measures results in
the following capital requirements (in percent of portfolio exposure):

VaR0.9998(L) = 10.50%, ES0.999(L) = 9.43%, ES0.99(L) = 5.68%.

In the next step the portfolio capital is distributed to the individual loans using different capital
allocation algorithms. In credit portfolio models of the form (29) the application of the Euler
principle to VaRα leads to risk contributions for individual loans that are either 0 or the full
exposure of the loan. This digital behaviour of the contribution (25) is due to the fact that
{L = VaRα(L)} is usually represented by a single combination of defaults and non-defaults of
the m loans. We therefore do not distribute VaR0.9998(L) via the directional derivative (25) but
follow the industry standard and use volatility contributions (27) instead. The ES0.999(L) and
ES0.99(L) are allocated using Expected Shortfall contributions.

Figure 2 displays the 50 loans with the highest capital charge under Expected Shortfall
allocation based on the 99.9% quantile. The relation of portfolio capital

VaR0.9998(L) > ES0.999(L) > ES0.99(L)

also holds for each of these loans. However, the order of the capital consumption changes and
the absolute differences in capital are significant: the highest capital consumption for Expected
Shortfall is 93% of the exposure compared to almost 200% for covariances. In particular, under
the covariance allocation the capital charge exceeds the overall exposure (the maximum possible
loss) for almost all loans in this sub-sample. This demonstrates that the shortcomings of the
covariance allocation, i.e. the fact that the underlying risk measure is not monotonic, are not
purely theoretical but have implications for realistic credit portfolios.

Figure 2. Comparison between Expected Shortfall and covariance capital allocation for loans with
highest capital charges.

In contrast, Expected Shortfall contributions are usually higher than volatility contributions
for investment-grade loans, i.e. for loans with a rating of BBB or above; see Kalkbrener et al.
(2004) for details. This result illustrates that unrealistically high capital charges for poorly rated
loans are avoided under Expected Shortfall allocation by distributing a higher proportion of the
portfolio capital to highly rated loans.
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Expected shortfall contributions behave also very reasonably with respect to the second main
risk driver in credit portfolios, namely concentration risk. This risk is caused by default correla-
tions and name concentration. Expected Shortfall contributions measure the average contribution
of individual loans to portfolio losses above a specified α-quantile. For a high α these losses are
mainly driven by default correlations and name concentration and Expected Shortfall alloca-
tion therefore is - almost by definition - very sensitive to concentration risk. It is therefore not
surprising that Expected Shortfall usually penalizes concentration risks more strongly than the
covariance method. For instance, the 99.9% Expected Shortfall contribution at R = 60% is three
times higher than at R = 30% for a typical AA+ rated loan in our portfolio whereas the volatil-
ity contribution of this loan not even doubles.3 Overall, this case study strongly supports the
view that Expected Shortfall contributions provide a reasonable methodology for allocating risk
capital for credit portfolios.

4 Dynamic Credit Risk Models and Credit Derivatives

4.1 Overview

Credit derivatives. The volume in trading credit derivatives at the exchanges and directly
between individual parties has increased enormously since the first of these products were intro-
duced roughly fifteen years ago. The reason for this success is to a large extent due to the fact
that they allow to transfer credit risk to a larger community of investors. Traditionally the risk
arising from a loan contract could not be transferred and remained in the books of the lending
institution until maturity. With credit derivatives the risk profile of a given portfolio of credits
can be shaped according to specified limits. Concentrations of risk caused by geographic or in-
dustry sector factors can be removed. Also by selling a whole credit portfolio via a collateralized
debt obligation (CDO) or a collateralized loan obligation (CLO), a financial institution can free
part of its capital which can then be used for new business opportunities. Thus credit derivatives
allow banks to use their capital more efficiently by acting more as a broker of risk than a taker
of risk. Some important credit derivatives are introduced below; for further information we refer
for instance to Schönbucher (2003) or Bluhm & Overbeck (2006).

Dynamic credit risk models. To analyse credit derivatives, static models which consider
only a fixed future time horizon are no longer appropriate: the pay-off of most credit derivatives
depends on the timing of credit events such as default or downgrading of a company; furthermore
markets for certain credit products have become so liquid that investors can trade credit risk in a
dynamic fashion. For these reasons dynamic (continuous time) models based on (sophisticated)
tools from stochastic calculus are needed.

Dynamic credit risk models can be classified into firm-value models, as discussed briefly in
Section 2.1, and reduced-form models: in this model class the precise mechanism leading to
default is left unspecified; instead the default time of a firm is modelled as a nonnegative random
variable, whose distribution typically depends on economic covariables. The approach is similar
to the modelling philosophy underlying the Bernoulli mixture models introduced in Section 2.2.
Reduced-form models are popular in practice, since they lead to tractable formulas for prices of
credit derivatives. In particular, it is often possible to apply the well-developed pricing machinery
for default-free term structure models to the analysis of defaultable securities; see for instance
Lando (1998) or Duffie & Singleton (1999). Duffie & Lando (2001) provide a link between firm-
value models and reduced-form models assuming that an investor has incomplete information;
see also Blanchet-Scalliet & Jeanblanc (2004) or Frey & Runggaldier (2006) for a discussion

3The R-parameter is the coupling of the loan to the systematic factors and therefore quantifies the correlation
of the loan with the rest of the portfolio.
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from a more theoretical viewpoint. For textbook treatments of dynamic credit risk models we
refer to Bielecki & Rutkowski (2002), Bluhm et al. (2002), Duffie & Singleton (2003), Lando
(2004), Schönbucher (2003) and Chapter 9 of McNeil et al. (2005). Currently a lot of research is
devoted to the development of dynamic credit portfolio models. For reasons of space we cannot
discuss this exciting field. An overview is given in Section 9.6 of McNeil et al. (2005), but
the best way to get an impression of the current developments is to visit the excellent web-site
www.default-risk.com.

Martingale modelling and credit spreads. The existence of a liquid market for credit
products requires a specific modelling approach: pricing models for credit derivatives are set up
under an equivalent martingale measure - an artificial probability measure turning discounted
security prices into martingales (fair bets) - and model parameters are determined by equating
model prices to prices actually observed on the market (model calibration). In this way it is
ensured that the model does not permit any arbitrage (riskless profit) opportunities. Absence of
arbitrage also immediately leads to the existence of credit spreads: the risk that a lender might
loose part or all of his money due to default of a counterparty during the lifetime of a credit
contract has to be compensated by an interest rate which is higher than the risk-free rate (the
interest rate earned by default-free bonds). The difference between the risk-free rate and the rate
one has to pay for a bond or loan subject to default risk is termed spread.

4.2 The Defaultable Lévy Libor Model

Among the many possible ways to quantify the dynamic evolution of credit spreads we outline in
the following an approach which allows to capture the joint dynamics of risk-free interest rates
and credit spreads; for details we refer to the original article Eberlein, Kluge & Schönbucher
(2006). A number of instruments depend on both quantities so that modelling interest rates
and credit spreads separately might lead to inconsistencies. Instead of describing the dynamics
by a diffusion with continuous trajectories we will consider more powerful driving processes,
namely time-inhomogeneous Lévy processes, also called processes with independent increments
and absolutely continuous characteristics (PIIAC) (see Jacod & Shiryaev (2003)). This class of
processes is rather flexible and in the context of credit risk even more appropriate than in equity
models since credit risk-related information often arrives in such a way that it causes jumps in the
underlying quantities: take for example the adjustment of the rating of a firm by one of the leading
agencies. Models driven by Lévy processes capture such an abrupt movement more realistically
than Brownian motion driven models which have continuous paths. In implementations typically
generalized hyperbolic Lévy processes (see Eberlein (2001)) or any of its subclasses like hyperbolic
or normal inverse Gaussian processes are used.

Let us consider a fixed time horizon T ∗ and a discrete tenor structure T0 < T1 < · · · <
Tn = T ∗. Tk denotes the time points where certain periodic payments have to be made. As an
example take quarterly or semiannual interest payments for a loan or a coupon-bearing bond over
a period of 10 years. As underlying interest rate we consider the δ-forward Libor rates L(t, T ).
The acronym Libor stands for London Interbank Offered Rate. L(t, Tk) is the annualized interest
rate which applies for a period of length δk = Tk+1 − Tk starting at time point Tk as of time t.
δk is typically 3 or 6 months. Formally L(t, Tk) is defined by

L(t, Tk) =
1
δk

(
B(t, Tk)
B(t, Tk+1)

− 1
)

(30)

where B(t, Tk) denotes the price at time t of a zero coupon bond with maturity Tk. Zero coupon
bond prices are also called discount factors since they represent the amount which due to interest
earned increases to the face value 1 until maturity Tk, thus B(Tk, Tk) = 1. Actually the Libor

19



rate is not a risk-free rate since by definition it is the rate at which large internationally operating
banks lend money to other large internationally operating banks. There is a very small default
risk involved and consequently the Libor rate is slightly above the treasury rate. Since it is
readily available it is convenient to take the Libor rate as the base rate. The corresponding rate
for a contract which has a nonnegligible probability to default is the defaultable forward Libor
rate L(t, Tk). Both rates are related by the equation

L(t, Tk) = L(t, Tk) + S(t, Tk) (31)

where S(t, Tk) is the (positive) spread. Since S(t, Tk) turns out not to be the quantity which will
show up in valuation formulae for credit derivatives we will model instead the forward default
intensities H(t, Tk) given by

H(t, Tk) =
S(t, Tk)

1 + δkL(t, Tk)
. (32)

The term δkL(t, Tk) is small compared to 1, therefore, numerically H(t, Tk) and S(t, Tk) are quite
close.

We start by specifying the dynamics of the most distant Libor rate by setting

L(t, Tn−1) = L(0, Tn−1) exp
(∫ t

0
bL(s, Tn−1) ds+

∫ t

0
λ(s, Tn−1) dLT

∗
s

)
. (33)

The fact that L(·, Tn−1) is modeled as an exponential will guarantee its positivity. λ(·, Tn−1) is a
deterministic volatility structure and LT

∗
= (LT

∗
t ) is a time-inhomogeneous Lévy process which

without loss of generality has the simple canonical representation

LT
∗

t =
∫ t

0

√
cs dW

T ∗
s +

∫ t

0

∫
R
x(µ− νT

∗
)(ds, dx). (34)

The first term is a stochastic integral with respect to a standard Brownian motion W T ∗
and

represents the continuous Gaussian part, whereas the second integral, which is an integral with
respect to the compensated random measure of jumps of LT

∗
, is a purely discontinuous process.

The drift term bL(·, Tn−1) will be chosen in such a way that L(·, Tn−1) becomes a martingale
under the terminal forward measure PT ∗ .4

Via a backward induction for each tenor time point Tk, forward measures PTk
are derived.

Although one could define each forward martingale measure PTk
by giving explicitly its density

relative to the spot martingale measure P – this is the usual martingale measure known from
stock price models – the latter is not used in the context of Libor models. One starts with
a probability measure PT ∗ which is interpreted as the terminal forward measure and proceeds
backwards in time by introducing successively the forward measures PTk

via Radon–Nikodym
derivatives

dPTk

dPTk+1

=
1 + δkL(Tk, Tk)
1 + δkL(0, Tk)

.

Then, for each tenor time point Tk, under PTk+1
the Libor rate L(t, Tk) can be given in the

following uniform form

L(t, Tk) = L(0, Tk) exp
(∫ t

0
bL(s, Tk) ds+

∫ t

0
λ(s, Tk) dL

Tk+1
s

)
(35)

where also the driving processes LTk+1 = (LTk+1

t ) have to be derived from LT
∗
during the backward

induction. To implement this model one uses only mildly time-inhomogeneous Lévy processes,
4PT∗ is the martingale measure corresponding to the numeraire B(t, T ∗), i.e. security prices expressed in units

of B(t, T ∗) are PT∗ -martingales.
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namely piecewise (time-homogeneous) Lévy processes. Typically three Lévy parameter sets –
one for short, one for intermediate, and one for long maturities – are sufficient to calibrate the
model to a volatility surface given by prices of interest rate derivatives such as caps, floors and
swaptions. For some calibration results see Eberlein & Koval (2006), where the Lévy Libor model
has been extended to a multicurrency setting.

The dynamics of the forward default intensities H(·, Tk) cannot be specified directly since
it depends on the specification of the random time point at which a defaultable loan or bond
actually defaults. There is a standard way to construct a random time for the default event. Let
Γ = (Γt) be a hazard process, that is an adapted, right-continuous, increasing process starting
at 0 with lim

t→∞
Γt = ∞. Let η be a uniformly distributed random variable on the interval [0, 1],

independent of the process (Γt)t≥0, possibly defined on an extension of the underlying probability
space. Then

τ = inf{t > 0 | e−Γt ≤ η} (36)

defines a stopping time with respect to the ‘right’ filtration which can be used to indicate default.
By choosing the hazard process Γ appropriately – only its values at the tenor time points Tk matter
– one can now model the forward default intensities H(t, Tk) in such a way that the dynamics is
described in the same simple form (35) as given for the Libor rates, namely

H(t, Tk) = H(0, Tk) exp
(∫ t

0
bH(s, Tk) ds+

∫ t

0

√
csγ(s, Tk) dW

Tk+1
s

+
∫ t

0

∫
R
γ(s, Tk)x(µ− νTk+1)(ds, dx)

)
. (37)

Again this is done by a backward induction along the tenor time points and as in (35) the
specific form as an exponential guarantees that the forward default intensities and thus the
spreads S(t, Tk) are positive.

Based on this joint model for interest and default rates we can now price defaultable instru-
ments and credit derivatives. Let us start with a defaultable coupon bond with n coupons of a
fixed amount c that are promised to be paid at the dates T1, . . . , Tn. In case default happens
during the life time of the bond usually not everything is lost. There is a positive recovery. To
incorporate this fact in the model, suitable recovery rules have to be fixed. The most appropriate
scheme is the recovery of par rule. The assumption is then that if a coupon bond defaults in the
time interval (Tk, Tk+1], the recovery is given by a recovery rate π ∈ [0, 1) times the sum of the
notional amount, which we set equal to 1, and the interest accrued over the period (Tk, Tk+1]. The
resulting amount is paid at time Tk+1. The promised interest payments for subsequent periods
are lost.

Theorem 4.1 (Pricing of defaultable coupon bonds). Under the recovery of par rule the
arbitrage-free price at time T0 = 0 of a defaultable bond with n coupons of amount c is

B(0, c, n) = B(0, Tn) +
n−1∑
k=0

B(0, Tk+1)
(
c+ π(1 + c)δkEPTk+1

[H(Tk, Tk)]
)
, (38)

where B(0, Tk) are the pre-default prices of defaultable zero-coupon bonds with maturities Tk,
which are known at time 0.

Note that the only random variables in this pricing formula are the forward default intensities.
This is the reason why we aimed at describing the dynamics of H(·, Tk) in a relatively simple
form. The expectations are taken with respect to the (restricted) defaultable forward measures
PTk+1

for the dates Tk. These are the appropriate martingale measures in the defaultable world.

21



Their Radon–Nikodym densities with respect to the (default-free) forward measures PTk
are given

by
dPTk

dPTk

=
B(0, Tk)
B(0, Tk)

e−ΓTk =
B(0, Tk)
B(0, Tk)

k−1∏
i=0

1
1 + δiH(Ti, Ti)

. (39)

Recall that B(0, Tk) denotes the time-0 price of a default-free zero-coupon bond with maturity
Tk. A formula similar to (38) can be obtained to price a defaultable floating coupon bond that
pays an interest rate composed of the default-free Libor rate plus a constant spread x. Let us
mention here that the change of measure technique is a key tool in interest rate and credit theory
to obtain valuation formulae which are as simple as possible.

The most popular and heavily traded credit derivatives are credit default swaps. They can
be used to insure defaultable financial instruments against default. In a credit default swap the
protection buyer A pays periodically a fixed fee to the protection seller B until a prespecified
credit event occurs or the final time point of the contract is reached. The credit event can be
the default of a reference bond issued by a party C. The protection seller in turn will make a
payment that covers the losses of A in case the credit event happens. Of course the credit event as
well as the default payment have to be clearly specified. Let us consider a standard default swap
with the maturity Tn where the credit event is defined to be the default of a certain fixed-coupon
bond. According to the recovery scheme explained above, the default payment A will receive at
time Tk+1 if default happend in the period (Tk, Tk+1] is 1 − π(1 + c). The periodic fee s, the
so-called default swap rate, is now determined in such a way that the initial value of the contract
is zero. The time-0 value of the periodic fee payments is s

(∑n
k=1B(0, Tk−1)

)
since each fee

payment of size s which has to be made at time Tk−1 has to be discounted by the corresponding
discount factor B(0, Tk−1). Following the standard pricing principle for a contingent claim, some
nontrivial analysis shows that the initial value of the payment A will receive in case of default is

n∑
k=1

(1− π(1 + c))B(0, Tk)δk−1EPTk
[H(Tk−1, Tk−1)]. (40)

Equating these two sums one gets the default swap rate

s =
1− π(1 + c)
n∑
k=1

B(0, Tk−1)

n∑
k=1

(
B(0, Tk)δk−1EPTk

[H(Tk−1, Tk−1)]
)
. (41)

The formula shows that again expectations of forward default intensities have to be evaluated
under the corresponding defaultable forward measures. Another important class of credit deriva-
tives which can be priced in this model framework are credit default swaptions. The holder of
such an option has the right to enter a credit default swap at some prespecified time and swap
rate. Credit default swaptions are typically extension options which are often imbedded in a
credit default swap.

There is a very liquid market for credit default swaps. Therefore the current swap rates
usually do not have to be determined by formula (41). Instead, credit default swaps are used
as calibration instruments for the term structure of forward default intensities. In other words,
given the currently quoted swap rates, (41) is used to extract the model parameters and then the
so calibrated model can be used to price less liquid instruments for example in the OTC-market.
Other derivatives which can be priced in this modelling framework are total rate of return swaps,
asset swaps, options on defaultable bonds, and credit spread options.

22



References

Acerbi, C. (2002), ‘Spectral measures of risk: a coherent representation of subjective risk aversion’,
J. Banking Finance 26(7), 1505–1518.

Acerbi, C. (2004), Coherent representation of subjective risk-aversion, in G. Szegö, ed., ‘Risk Measures
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‘Measuring Risk in Complex Stochastic Systems’, Berlin.

Overbeck, L. (2004), Spectral Capital Allocation, in A. Dev , eds, ‘Economic Capital, A Practitioner
Guide’, Risk Books, London.

Pirvu, T. & Zitkovic, G. (2006), ‘Maximizing the growth rate under risk constraints’, preprint, Dept. of
Mathematics, University of Texas at Austin.

Robert, C. & Casella, G. (1999), Monte Carlo Statistical Methods, Springer, New York.

Rockafellar, R. T. & Uryasev, S. (2002), ‘Conditional value-at-risk for general loss distributions’, J. Bank-
ing Finance 26, 1443–1471.

Rockafellar, R. & Uryasev, S. (2000), ‘Optimization of conditional Value-at-Risk’, Journal of Risk 2, 21–42.
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