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1 Introduction

Although the mathematical theory of Lévy processes in general originated in
the first half of the last century, its use in finance started only in the last
decade of that century. Since Brownian motion, itself a Lévy process, is so
well understood and also since a broad community is familiar with diffusion
techniques, it is not surprising that this technology became the basis for the
classical models in finance. On the other side it is known for a long time, that
the normal distribution which generates the Brownian motion and which is
reproduced on any time horizon by this process, is only a poor approximation
of the empirical return distributions observed in financial data. Of course,
diffusion processes with random coefficients produce distributions different
from the normal one, but the outcoming distribution on a given time horizon
is not even known in general. It can only be determined approximately and
visualized by Monte Carlo simulation. This remark holds for most of the

2 The second author has been partially supported by a grant from the Deutsche
Forschungsgemeinschaft (DFG).
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extensions of the classical geometric Brownian motion model such as models
with stochastic volatility or stochastic interest rates.

In [21] and [20] a genuine Lévy model for the pricing of derivatives was
introduced by Madan and Seneta and Madan and Milne. Based on the three
parameter variance gamma (V.G.) process as driving process they derived a
pricing formula for standard call options. This approach was extended and
refined in a series of papers by Madan and coauthors. We only mention the
extension to the four parameter CGMY-model in [4], which added more flex-
ibility to the initial V.G. model. Based on an extensive empirical study of
stock price data, in an independent line of research, Eberlein and Keller in-
troduced the hyperbolic Lévy model in [7]. Both processes, the V.G. as well
as the hyperbolic Lévy process, are purely discontinuous and, therefore, in a
sense opposite to the Brownian motion. Starting from empirical results the
basic concern in [7] was to develop a model which produces distributions that
fit the observed empirical return distributions as close as possible. This led to
exponential Lévy models

St = S0 exp(Lt) (t ≥ 0) (1)

to describe stock prices or indices. The log returns, log St − log St−1, derived
from model (1) are the increments of length 1 of the driving Lévy process L.
Therefore, by feeding in the Lévy process L which is generated by an (infinitely
divisible) empirical return distribution, at least on the time horizon 1 this
model reproduces exactly the distribution which one sees in the data. This
is not the case if one starts with a model for prices given by the stochastic
differential equation

dSt = St− dL̃t (2)

or equivalently by the stochastic exponential

St = E(L̃)t (3)

of a Lévy process L̃ = (L̃t)t≥0.
A model based on normal inverse Gaussian (NIG) distributions was added

by Barndorff-Nielsen in [2]. Normal inverse Gaussian Lévy processes have nice
analytic properties. As the class of hyperbolic distributions, NIG distributions
constitute a subclass of the class of generalized hyperbolic distributions. The
stock price model based on this 5-parameter class was developed in [13] and
[5]. V.G. distributions turned out to be another subclass. A further interesting
class of Lévy models based on Meixner processes was introduced by Schoutens
(see [23, 24]).

Calibration of the exponential Lévy model (1) at least with respect to
the real-world (or historical) measure is conceptually straightforward since –
as pointed out above – the return distribution is the one which generates the
driving Lévy process. See [7] for calibration results in the case of the hyperbolic
model. In this paper we study calibration of Lévy interest rate models. The
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corresponding theory has been developed in a series of papers starting with
[14] and continuing with [11], [6], [12], [8], [18], [10]. During the extensions of
the initial model it turned out that the natural driving processes for interest
rate models are time-inhomogeneous Lévy processes. They are described in
the next section. Section 3 is a brief review of the three basic approaches: the
Lévy forward rate model (HJM-type model), the Lévy forward process model
and the Lévy Libor model.

In each of these approaches a different quantity is modeled: the instanta-
neous forward rate f(t, T ), the forward process F (t, T, U) corresponding to
time points T and U , and the δ-(forward) Libor rate L(t, T ). The relation
between the latter quantities is obvious, since 1+δL(t, T ) = F (t, T, T+δ). Al-
though L(t, T ) and F (t, T, T+δ) differ only by an additive and multiplicative
constant, the two specifications lead to models that behave quite differently.
The reason is that the changes of the driving process have a different impact
on the forward Libor rates. In the Lévy Libor model, forward Libor rates
change by an amount that is relative to their current level while the change in
the Lévy forward process model does not depend on the actual level. Let us
note that by construction the forward process model is easier to handle and
implement. On the other side, this model – as the classical HJM and therefore
also the Lévy forward rate model – produces negative rates with some (small)
probability. Negative rates are excluded in the Lévy Libor model.

It is shown in section 4 that there is also a close relation to the forward
rate model. We prove that the forward process model can be seen as a special
case of the forward rate model. In section 5 we describe how the Lévy forward
rate model can be calibrated with respect to the real-world measure as well as
with respect to the risk-neutral martingale measure. Some explicit calibration
results for driving generalized hyperbolic Lévy processes are given.

In section 6 calibration of the Lévy forward process and the Lévy Libor
model is discussed. Again generalized hyperbolic Lévy processes, in particular
NIG processes, are considered in the explicit results. We would like to thank
N. Koval for providing some of the figures in this section.

2 The driving process

Let (Ω,F , F, P) be a complete stochastic basis, where F = (Ft)t∈[0,T∗], the
filtration, satisfies the usual conditions, T ∗ ∈ R+ is a finite time horizon and
F = FT∗ . The driving process L = (Lt)t∈[0,T∗] is a time-inhomogeneous Lévy

process, i.e. an adapted process with independent increments and absolutely

continuous characteristics, which is abbreviated by PIIAC in [16]. We can
assume that the paths of the process are right continuous with left-hand limits.
We also assume that the process starts in 0. The law of Lt is given by its
characteristic function
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E[ei〈u,Lt〉] = exp

∫ t

0

[
i〈u, bs〉 −

1

2
〈u, csu〉 (4)

+

∫

Rd

(
ei〈u,x〉 − 1 − i〈u, x〉1l{|x|≤1}

)
Fs(dx)

]
ds.

Here, bs ∈ R
d, cs is a symmetric nonnegative-definite d×d-matrix, and Fs is

a Lévy measure, i.e. a measure on R
d that integrates (|x|2 ∧ 1) and satisfies

Fs({0}) = 0. By 〈·, ·〉 we denote the Euclidian scalar product on R
d, and | · |

is the corresponding norm. We shall assume that

∫ T∗

0

(
|bs| + ‖cs‖ +

∫

Rd

(|x|2 ∧ 1)Fs(dx)

)
ds < ∞ (5)

where ‖ · ‖ denotes any norm on the d×d-matrices. The triplet (b, c, F ) =
(bs, cs, Fs)s∈[0,T∗] represents the local characteristics of the process L. We
shall impose a further moment assumption.

Assumption EM: There are constants M , ε > 0, such that for every u ∈
[−(1 + ε)M, (1 + ε)M ]d

∫ T∗

0

∫

{|x|>1}

exp〈u, x〉Fs(dx) ds < ∞. (6)

EM is a very natural assumption. It is equivalent to E[exp〈u, Lt〉] < ∞
for all t ∈ [0, T ∗] and all u as above. In the interest rate models which we
will consider, the underlying processes are always exponentials of stochastic
integrals with respect to the driving processes L. In order to allow pricing
of derivatives these underlying processes have to be martingales under the
risk-neutral measure and, therefore, a priori have to have finite expectations,
which is exactly assumption EM.

In particular under EM the variable Lt itself has finite expectation and
consequently we do not need a truncation function. The representation (4)
simplifies to

E[ei〈u,Lt〉] = exp

∫ t

0

[
i〈u, bs〉 −

1

2
〈u, csu〉 (4′)

+

∫

Rd

(
ei〈u,x〉 − 1 − i〈u, x〉

)
Fs(dx)

]
ds.

where the characteristic bs is now different from the one in (4). We will always
use the local characteristics (b, c, F ) derived from (4′).

Another consequence of assumption EM is that L is a special semimartin-

gale and thus its canonical representation has the simple form

Lt =

∫ t

0

bs ds +

∫ t

0

√
cs dWs +

∫ t

0

∫

Rd

x(µL − ν)(ds, dx) (7)
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where W is a standard d-dimensional Brownian motion,
√

cs is a measurable
version of the square root of cs and µL is the random measure of jumps of L
with compensator ν(ds, dx) = Fs(dx) ds.

Assumption EM, which will be assumed throughout the following chapters,
holds for all processes we are interested in, in particular for processes generated
by generalized hyperbolic distributions. It excludes processes generated by
stable distributions in general, but these processes are a priori not appropriate
for developing a martingale theory to price derivative products.

We denote by θs the cumulant associated with a process L as given in (7)
with local characteristics (bs, cs, Fs), i.e,

θs(z) = 〈z, bs〉 +
1

2
〈z, csz〉 +

∫

Rd

(e〈z,x〉 − 1 − 〈z, x〉)Fs(dx). (8)

3 Lévy term structure models

We give a short review of the three basic interest rate models which are driven
by time-inhomogeneous Lévy processes. Although the focus is on different
rates in these three approaches, the models are closely related. All three of
them are appropriate to price the standard interest rate derivatives.

3.1 The Lévy forward rate model

Modeling the dynamics of instantaneous forward rates is the starting point
in the Heath–Jarrow–Morton approach ([15]). The forward rate model driven
by Lévy processes was introduced in [14] and developed further in [11], where
in particular a risk-neutral version was identified. The model was extended
to driving time-inhomogeneous Lévy processes in [6] and [8]. In the former
reference a complete classification of all equivalent martingale measures was
achieved. As an unexpected consequence of this analysis, it turned out that
under the standard assumption of deterministic coefficients for 1-dimensional
driving processes there is a single martingale measure and thus – as in the
Black–Scholes option pricing theory – there is a unique way to price interest
rate derivatives. Explicit pricing formulae for caps, floors, swaptions, and other
derivatives as well as efficient algorithms to evaluate these formulae are given
in [8] and [9].

Denote by B(t, T ) the price at time t of a zero coupon bond with maturity
T . Obviously B(T, T ) = 1 for any maturity date T ∈ [0, T ∗]. Since zero
coupon bond prices can be deduced from instantaneous forward rates f(t, T )

via B(t, T ) = exp
(
−

∫ T

t f(t, u) du
)

and vice versa, the term structure can be
modeled by specifying either of them. Here we specify the forward rates. Its
dynamics is given for any T ∈ [0, T ∗] by

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T ) ds −
∫ t

0

σ(s, T ) dLs (9)
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where L = (Lt)t∈[0,T∗] is a PIIAC with local characteristics (b, c, F ). For de-
tails concerning assumptions on the coefficients α(t, T ) and σ(s, T ) we refer to
[6] and [8]. The simplest case and at the same time the most important one for
the implementation of the model is the case where α and σ are deterministic
functions. Defining

A(s, T ) :=

∫ T

s∧T

α(s, u) du and Σ(s, T ) =

∫ T

s∧T

σ(s, u) du (10)

one can derive the corresponding zero coupon bond prices in the form

B(t, T ) = B(0, T ) exp

( ∫ t

0

(r(s) − A(s, T )) ds +

∫ t

0

Σ(s, T ) dLs

)
(11)

where r(s) := f(s, s) denotes the short rate. Choosing T = t in (11) the

risk-free savings account Bt = exp
( ∫ t

0 r(s) ds
)

can be written as

Bt =
1

B(0, t)
exp

( ∫ t

0

A(s, t) ds −
∫ t

0

Σ(s, t) dLs

)
. (12)

Now assume that Σ(s, T ) is deterministic and

0 ≤ σi(s, T ) ≤ M (1 ∈ {1, . . . , d}) (13)

where M is the constant from assumption EM. From (11) one sees immediately
that discounted bond prices B(t, T )/Bt are martingales for all T ∈ [0, T ∗] if
we choose

A(s, T ) := θs(Σ(s, T )), (14)

since
∫ t

0 θs(Σ(s, T )) ds is the exponential compensator of
∫ t

0 Σ(s, T ) dLs. Thus
we are in an arbitrage-free market. Another useful representation of zero
coupon bond prices which follows from (11) and (12) is

B(t, T ) =
B(0, T )

B(0, t)
exp

(
−

∫ t

0

A(s, t, T ) ds +

∫ t

0

Σ(s, t, T ) dLs

)
(15)

where we used the abbreviations

A(s, t, T ) := A(s, T ) − A(s, t) and Σ(s, t, T ) = Σ(s, T )− Σ(s, t). (16)

3.2 The Lévy forward process model

This model was introduced in [12]. The advantage of this approach is that
the driving process remains a time-inhomogeneous Lévy process during the
backward induction which is done to get the rates in uniform form. Thus one
can avoid any approximation and the model is easy to implement.
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Let 0 = T0 < T1 < · · · < TN < TN+1 = T ∗ denote a discrete tenor
structure and set δk = Tk+1 − Tk. For zero coupon bond prices B(t, Tk) and
B(t, Tk+1) the forward process is defined by

F (t, Tk, Tk+1) =
B(t, Tk)

B(t, Tk+1)
. (17)

Therefore, modeling forward processes means specifying the dynamics of ratios
of successive bond prices.

Let LT∗

be a time-inhomogeneous Lévy process on a complete stochastic
basis (Ω,FT∗ , F, PT∗). The probability measure PT∗ can be interpreted as the
forward measure associated with the settlement date T ∗. The moment con-
dition EM is assumed as before. The local characteristics of LT∗

are denoted
by (bT∗

, c, F T∗

). Two parameters, c and F T∗

, are free parameters whereas the
drift characteristic bT∗

will be chosen to guarantee that the forward process
is a martingale. Since we proceed by backward induction, let us use the no-
tation T ∗

i := TN+1−i and δ∗i = δN+1−i for i ∈ {0, . . . , N + 1}. The following
ingredients are needed:

(FP.1) For any maturity Ti there is a bounded, continuous, deterministic
function λ(·, Ti) : [0, T ∗] → R

d which represents the volatility of the
forward process F (·, Ti, Ti+1). We require for all k ∈ {1, . . . , N}

∣∣∣
k∑

i=1

λj(s, Ti)
∣∣∣ ≤ M (s ∈ [0, T ∗], j ∈ {1, . . . , d}) (18)

where M ist the constant in assumption EM and λ(s, Ti) = 0 for
s > Ti.

(FP.2) The initial term structure of zero coupon bond prices B(0, Ti), 1 ≤
i ≤ N + 1, is strictly positive. Consequently the initial values of the
forward processes are given by

F (0, Ti, Ti+1) =
B(0, Ti)

B(0, Ti+1)
. (19)

We begin to construct the forward process with the longest maturity and
postulate

F (t, T ∗
1 , T ∗) = F (0, T ∗

1 , T ∗) exp

( ∫ t

0

λ(s, T ∗
1 ) dLT∗

s

)
. (20)

Now we choose bT∗

such that F (·, T ∗
1 , T ∗) becomes a PT∗-martingale. This is

achieved via the following equation

∫ t

0

〈λ(s, T ∗
1 ), bT∗

s 〉 ds = −1

2

∫ t

0

〈λ(s, T ∗
1 ), csλ(s, T ∗

1 )〉 ds (21)

−
∫ t

0

∫

Rd

(
e〈λ(s,T∗

1 ),x〉 − 1 − 〈λ(s, T ∗
1 ), x〉

)
νT∗

(ds, dx),
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where νT∗

(ds, dx) = F T∗

s (dx) ds is the PT∗-compensator of the random mea-
sure of jumps µL given by the process LT∗

. Using Lemma 2.6 in [17] one can
express the ordinary exponential (20) as a stochastic exponential, namely

F (t, T ∗
1 , T ∗) = F (0, T ∗

1 , T ∗)Et(H(·, T ∗
1 ))

where

H(t, T ∗
1 ) =

∫ t

0

√
csλ(s, T ∗

1 ) dW T∗

s

+

∫ t

0

∫

Rd

(
e〈λ(s,T∗

1 ),x〉 − 1
)
(µL − νT∗

)(ds, dx). (22)

Since F (·, T ∗
1 , T ∗) is a martingale we can define the forward martingale mea-

sure associated with the date T ∗
1 by setting

dPT∗

1

dPT∗

=
F (T ∗

1 , T ∗
1 , T ∗)

F (0, T ∗
1 , T ∗)

= ET∗

1
(H(·, T ∗

1 )). (23)

Using Girsanov’s Theorem for semimartingales (see [16, Theorem III.3.24])
we can identify from (22) the predictable processes β and Y which describe
the measure change, namely

β(s) = λ(s, T ∗
1 ) and Y (s, x) = exp〈λ(s, T ∗

1 ), x〉

Consequently W
T∗

1

t := W T∗

t −
∫ t

0

√
csλ(s, T ∗

1 ) ds is a standard Brownian mo-

tion under PT∗

1
and νT∗

1 (dt, dx) := exp〈λ(s, T ∗
1 ), x〉νT∗

(dt, dx) is the PT∗

1
-

compensator of µL.
Now we construct the forward process F (·, T ∗

2 , T ∗
1 ) by postulating

F (t, T ∗
2 , T ∗

1 ) = F (0, T ∗
2 , T ∗

1 ) exp

( ∫ t

0

λ(s, T ∗
2 ) dL

T∗

1
s

)
,

where

L
T∗

1

t =

∫ t

0

b
T∗

1
s ds +

∫ t

0

√
cs dW

T∗

1
s +

∫ t

0

∫

Rd

x(µL − νT∗

1 )(ds, dx).

The drift characteristic bT∗

1 can be chosen in an analoguous way as in (21) and
we define the next measure change from the resulting equation. Proceeding
this way we get all forward processes in the form

F (t, T ∗
i , T ∗

i−1) = F (0, T ∗
i , T ∗

i−1) exp

(∫ t

0

λ(s, T ∗
i ) dL

T∗

i−1

s

)
(24)

with

L
T∗

i−1

t =

∫ t

0

b
T∗

i−1

s ds +

∫ t

0

√
cs dW

T∗

i−1

s +

∫ t

0

∫

Rd

x(µL − νT∗

i−1)(ds, dx). (25)
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W T∗

i−1 is here a PT∗

i−1
-standard Brownian motion and νT∗

i−1 is the PT∗

i−1
-com-

pensator of µL given by

νT∗

i−1(dt, dx) = exp

( i−1∑

j=1

〈λ(t, T ∗
j ), x〉

)
F T∗

t (dx) dt. (26)

The drift characteristic bT∗

i−1 satisfies
∫ t

0

〈λ(s, T ∗
i ), b

T∗

i−1

s 〉 ds = −1

2

∫ t

0

〈λ(s, T ∗
i ), csλ(s, T ∗

i )〉 ds (27)

−
∫ t

0

∫

Rd

(
e〈λ(s,T∗

i ),x〉 − 1 − 〈λ(s, T ∗
i ), x〉

)
νT∗

i−1(ds, dx).

All driving processes LT∗

i remain time-inhomogeneous Lévy processes under
the corresponding forward measures, since they differ only by deterministic
drift terms.

3.3 The Lévy Libor model

This approach has been described in full detail in [12], therefore, we just
list some of the properties. As in section 3.2 the model is constructed by
backward induction along the discrete tenor structure and is driven by a
time-inhomogeneous Lévy process LT∗

which is given on a complete stochastic
basis (Ω,FT∗ , F, PT∗). As in the Lévy forward process model, PT∗ should be
regarded as the forward measure associated with the settlement day T ∗. LT∗

is required to satisfy assumption EM and can be written in the form

LT∗

t =

∫ t

0

bT∗

s ds +

∫ t

0

√
cs dW T∗

s +

∫ t

0

∫

Rd

x(µL − νT∗

)(ds, dx) (28)

where νT∗

(dt, dx) = F T∗

s (dx) dt is the compensator of µL. The ingredients
needed for the model are:

(LR.1) For any maturity Ti there is a bounded, continuous, deterministic
function λ(·, Ti) : [0, T ∗] → R

d which represents the volatility of the
forward Libor rate process L(·, Ti). In addition

N∑

i=1

|λj(s, Ti)| ≤ M (s ∈ [0, T ∗], j ∈ {1, . . . , d})

where M is the constant from assumption EM and λ(s, Ti) = 0 for
s > Ti.

(LR.2) The initial term structure B(0, Ti), 1 ≤ i ≤ N + 1, is strictly positive
and strictly decreasing (in i). Consequently the initial term structure
L(0, Ti) of forward Libor rates is given by

L(0, Ti) =
1

δi

(
B(0, Ti)

B(0, Ti+1)
− 1

)
> 0.
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Now we can start the induction by postulating that

L(t, T ∗
1 ) = L(0, T ∗

1 ) exp

( ∫ t

0

λ(s, T ∗
1 ) dLT∗

s

)
. (29)

The drift characteristic bT∗

is chosen as in (21) to make this process a mar-
tingale. Writing (29) as a stochastic exponential and exploiting the relation
F (t, T ∗

1 , T ∗) = 1 + δ∗1L(t, T ∗
1 ) one gets the dynamics in terms of the forward

process F (·, T ∗
1 , T ∗). From this the measure change can be done as in section

3.2. As a result of the backward induction one gets for each tenor time point
the forward Libor rates in the form

L(t, T ∗
j ) = L(0, T ∗

j ) exp

( ∫ t

0

λ(s, T ∗
j ) dL

T∗

j−1

s

)
(30)

under the corresponding forward martingale measure PT∗

j−1
. The successive

forward measures are related by the following equation

dPT∗

j

dPT∗

j−1

=
1 + δjL(T ∗

j , T ∗
j )

1 + δjL(0, T ∗
j )

. (31)

The driving process LT∗

j−1 in (30) has the canonical representation

L
T∗

j−1

t =

∫ t

0

b
T∗

j−1

s ds +

∫ t

0

√
cs dW

T∗

j−1

s +

∫ t

0

∫

Rd

x(µL − νT∗

j−1 )(ds, dx). (32)

W T∗

j−1 is a PT∗

j−1
-Brownian motion via

W
T∗

j−1

t = W
T∗

j−2

t −
∫ t

0

√
csα(s, T ∗

j−1, T
∗
j−2) ds

where

α(t, T ∗
k , T ∗

k−1) =
δ∗kL(t−, T ∗

k )

1 + δ∗kL(t−, T ∗
k )

λ(t, T ∗
k ). (33)

Similarly νT∗

j−1 is the PT∗

j−1
-compensator of µL which is related to the PT∗

j−2
-

compensator via

νT∗

j−1(ds, dx) = β(s, x, T ∗
j−1, T

∗
j−2)ν

T∗

j−2 (ds, dx)

where

β(t, x, T ∗
k , T ∗

k−1) =
δ∗kL(t−, T ∗

k )

1 + δ∗kL(t−, T ∗
k )

(
e〈λ(t,T∗

k ),x〉 − 1
)

+ 1. (34)

The backward induction guarantees that zero coupon bond prices B(·, Tj)
discounted by B(·, Tk) i.e. ratios B(·, Tj)/B(·, Tk) are PTk

-martingales for all
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j, k ∈ {1, . . . , N + 1}, and thus we have an arbitrage-free market. This fol-
lows directly for successive tenor time points from the relation 1+ δL(t, Tj) =
B(t, Tj)/B(t, Tj+1) since L(t, Tj) is by construction a PTj+1

-martingale. Ex-
panding ratios with arbitrary tenor time points Tj and Tk into products of
ratios with successive time points one gets the result from this special case. To
see this, one has to use Proposition 3.8 in [16, p. 168], which is a fundamental
result for the analysis of all interest rate models where forward martingale
measures are used.

Note that the driving processes L
T∗

j−1

t which are derived during the back-
ward induction are no longer time-inhomogeneous Lévy processes. This is clear
from (34) since due to the random term β(s, x, T ∗

j−1, T
∗
j−2), the compensator

νT∗

j−1 is no longer deterministic. One can force the process β(·, x, T ∗
j−1, T

∗
j−2)

to become deterministic by replacing L(t−, T ∗
k )/(1+δ∗kL(t−, T ∗

k )) by its start-
ing value L(0, T ∗

k )/(1 + δ∗kL(0, T ∗
k )) in (34). This approximation is convenient

for the implementation of the model, since then all driving processes are time-
inhomogeneous Lévy processes. Since the process Y (·, x), which is used in the
change from one compensator to the next in the forward process approach,
is non-random, one can implement the model from section 3.2 without any
approximation.

4 Embedding of the forward process model

In this section we show that the Lévy forward process model can be seen as a
special case of the Lévy forward rate model. We will choose the parameters of
the latter in such a way that we get the forward process specification as shown
in (24)–(27). In the martingale case, which is defined by (14), according to
(15) zero coupon bond prices can be represented in the form

B(t, T ) =
B(0, T )

B(0, t)
exp

( ∫ t

0

(
θ̃s(Σ(s, t))− θ̃s(Σ(s, T ))

)
ds+

∫ t

0

Σ(s, t, T ) dL̃s

)
,

(35)

where L̃ is a time-inhomogeneous Lévy process with characteristics (b̃, c̃, F̃ )

under the (spot martingale) measure P. L̃ satisfies assumption EM and θ̃s

denotes the cumulant associated with the triplet (b̃s, c̃s, F̃s). Recall that

Σ(s, T ) =
∫ T

s∧T σ(s, u) du.
The forward martingale measure PT∗

i
associated with the settlement date

T ∗
i is related to the spot martingale measure P via the Radon–Nikodym deriva-

tive
dPT∗

i

dP
=

1

BT∗

i
B(0, T ∗

i )
P-a.s.

Choosing T = t = T ∗
i in (11) one gets immediately the representation

dPT∗

i

dP
= exp

(
−

∫ T∗

i

0

θ̃s(Σ(s, T ∗
i )) ds +

∫ T∗

i

0

Σ(s, T ∗
i ) dL̃s

)
. (36)
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Since σ and, therefore, Σ are deterministic functions, L̃ is also a time-
inhomogeneous Lévy process with respect to PT∗

i
and its PT∗

i
-characteristics

(̃bT∗

i , c̃T∗

i , F̃ T∗

i ) are given by

b̃
T∗

i
s = b̃s + c̃sΣ(s, T ∗

i ) +

∫

Rd

(
e〈Σ(s,T∗

i ),x〉 − 1
)

x F̃s(dx),

c̃
T∗

i
s = c̃s, (37)

F̃
T∗

i
s (dx) = e〈Σ(s,T∗

i ),x〉F̃s(dx).

Since L̃ is also a PT∗

i
-special semimartingale, it can be written in its PT∗

i
-

canonical representation as

L̃t =

∫ t

0

b̃
T∗

i
s ds +

∫ t

0

√
c̃s dW

T∗

i
s +

∫ t

0

∫

Rd

x(µ
eL − ν̃ T∗

i )(ds, dx), (38)

where W T∗

i is a PT∗

i
-standard Brownian motion and where ν̃ T∗

i (ds, dx) :=

F̃
T∗

i
s (dx) ds is the PT∗

i
-compensator of µ

eL, the random measure associated

with the jumps of the process L̃.
Using this representation in (35) we derive the forward process

F (t, T ∗
i+1, T

∗
i ) =

B(t, T ∗
i+1)

B(t, T ∗
i )

=
B(0, T ∗

i+1)

B(0, T ∗
i )

exp

( ∫ t

0

(
θ̃s(Σ(s, T ∗

i )) − θ̃s(Σ(s, T ∗
i+1))

)
ds

+

∫ t

0

Σ(s, T ∗
i , T ∗

i+1) dL̃s

)

= F (0, T ∗
i+1, T

∗
i ) exp

(
I1
t + I2

t +

∫ t

0

√
c̃sΣ(s, T ∗

i , T ∗
i+1) dW

T∗

i
s

+

∫ t

0

∫

Rd

〈Σ(s, T ∗
i , T ∗

i+1), x〉
(
µ

eL − ν̃ T∗

i

)
(ds, dx)

)
.

Here

I1
t :=

∫ t

0

(
θ̃s(Σ(s, T ∗

i )) − θ̃s(Σ(s, T ∗
i+1))

)
ds

=

∫ t

0

[
− 〈Σ(s, T ∗

i , T ∗
i+1), b̃s〉

+
1

2
〈Σ(s, T ∗

i ), c̃sΣ(s, T ∗
i )〉 − 1

2
〈Σ(s, T ∗

i+1), c̃sΣ(s, T ∗
i+1)〉

+

∫

Rd

(
e〈Σ(s,T∗

i ),x〉− e〈Σ(s,T∗

i+1),x〉+〈Σ(s, T ∗
i , T ∗

i+1), x〉
)
F̃s(dx)

]
ds
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and making use of the first equation in (37)

I2
t :=

∫ t

0

〈Σ(s, T ∗
i , T ∗

i+1), b̃
T∗

i
s 〉 ds

=

∫ t

0

[
〈Σ(s, T ∗

i , T ∗
i+1), b̃s〉 + 〈Σ(s, T ∗

i , T ∗
i+1), c̃sΣ(s, T ∗

i )〉

+

∫

Rd

〈Σ(s, T ∗
i , T ∗

i+1), x〉
(
e〈Σ(s,T∗

i ),x〉 − 1
)
F̃s(dx)

]
ds.

Summing up I1 and I2 yields

I1
t + I2

t = −1

2

∫ t

0

〈Σ(s, T ∗
i , T ∗

i+1), c̃sΣ(s, T ∗
i , T ∗

i+1)〉 ds

−
∫ t

0

∫

Rd

(
e〈Σ(s,T∗

i ,T∗

i+1),x〉 − 1 − 〈Σ(s, T ∗
i , T ∗

i+1), x〉
)
F̃

T∗

i
s (dx) ds.

Hence, the forward process is given by

F (t, T ∗
i+1, T

∗
i )

= F (0, T ∗
i+1, T

∗
i ) exp

(
− 1

2

∫ t

0

〈Σ(s, T ∗
i , T ∗

i+1), c̃sΣ(s, T ∗
i , T ∗

i+1)〉 ds

−
∫ t

0

∫

Rd

(
e〈Σ(s,T∗

i ,T∗

i+1),x〉 − 1− 〈Σ(s, T ∗
i , T ∗

i+1), x〉
)
F̃

T∗

i
s (dx) ds

+

∫ t

0

√
c̃sΣ(s, T ∗

i , T ∗
i+1) dW

T∗

i
s

+

∫ t

0

∫

Rd

〈Σ(s, T ∗
i , T ∗

i+1), x〉
(
µ

eL − ν̃ T∗

i

)
(ds, dx)

)
.

Now we shall specify the model parameters, that is the volatility σ and the
characteristics (b̃, c̃, F̃ ) of L̃, in such a way that the forward process dynamics
match the dynamics given in (24)–(27). First, we choose

Σ(s, T ∗
i , T ∗

i+1) = λ(s, T ∗
i+1).

This can be reached by setting

σ(s, u) := −
N∑

i=0

1

δ∗i+1

λ(s, T ∗
i+1)1l[T∗

i+1
,T∗

i
)(u)

since

Σ(s, T ∗
i , T ∗

i+1) = −
∫ T∗

i

T∗

i+1

σ(s, u) du = λ(s, T ∗
i+1).

Of course there are many other possibilities to specify σ. It could also be
chosen to be continuous or smooth in the second variable.
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Next, we specify the triplet (b̃, c̃, F̃ ). b̃s can be chosen arbitrary. We set
c̃s = cs and

F̃s(dx) = exp〈−Σ(s, T ∗), x〉F T∗

s (dx), (39)

where F T∗

is the third characteristic of the driving process LT∗

in the Lévy
forward process model. Then using the third equation in (37)

F̃
T∗

i
s (dx) = exp〈Σ(s, T ∗

i ) − Σ(s, T ∗), x〉F T∗

s (dx)

= exp

( i∑

j=1

〈Σ(s, T ∗
j ) − Σ(s, T ∗

j−1), x〉
)

F T∗

s (dx)

= exp

( i∑

j=1

〈λ(s, T ∗
j ), x〉

)
F T∗

s (dx)

and we arrive at the forward process

F (t, T ∗
i+1, T

∗
i ) = F (0, T ∗

i+1, T
∗
i ) exp

( ∫ t

0

λ(s, T ∗
i+1) dL̃

T∗

i
s

)
,

where

L̃
T∗

i

t =

∫ t

0

b
T∗

i
s ds +

∫ t

0

√
cs dW

T∗

i
s +

∫ t

0

∫

Rd

x(µ
eL − ν̃ T∗

i )(ds, dx).

The PT∗

i
-compensator ν̃ T∗

i of µ
eL is given by

ν̃ T∗

i (dt, dx) = exp
( i∑

j=1

〈λ(t, T ∗
j ), x〉

)
F T∗

t (dx) dt

and finally (b
T∗

i
s ) satisfies

∫ t

0

〈λ(s, T ∗
i+1), b

T∗

i
s 〉 ds

= −1

2

∫ t

0

〈λ(s, T ∗
i+1), c̃sλ(s, T ∗

i+1)〉 ds

−
∫ t

0

∫

Rd

(
e〈λ(s,T∗

i+1),x〉 − 1 − 〈λ(s, T ∗
i+1), x〉

)
ν̃ T∗

i (ds, dx).

Remark 1. This embedding works only for driving processes that are time-
inhomogeneous Lévy processes. If both models are driven by a process with
stationary increments, that is F T∗

s and F̃s do not depend on s, in general we
cannot embed the forward process model in the forward rate model.
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5 Calibration of the Lévy forward rate model

5.1 The real-world measure

In this section we consider the Lévy forward rate model with a time-
homogeneous driving process L, i.e. L has stationary increments. The goal is
to estimate the parameters of the driving process under the real-world mea-
sure. For this purpose we use market data of discount factors (zero coupon
bond prices) for one year up to ten years, quoted between September 17, 1999,
and September 17, 2001, i.e. for 522 trading days.

The parameter estimation in the forward rate model is substantially more
difficult than in a stock price model. The reason is that we have a number
of different assets, namely ten bonds in the case of our data set (in theory of
course an infinite number), but only one driving process. Therefore, we have
to find a way to extract the parameters of the driving process from the log

returns of all ten bond prices.
Let us start by considering the logarithm of the ratio between the bond

price and its forward price on the day before, i.e.

LR(t, T ) := log
B(t + 1, t + T )

B(t, t + 1, t + T )
.

Here, B(t, t + 1, t + T ) is the forward price of B(t + 1, t + T ) at time t, i.e.

B(t, t + 1, t + T ) :=
B(t, t + T )

B(t, t + 1)
.

We call LR the daily log return. Using (15) we get

LR(t, T ) = log B(t + 1, t + T ) − log B(t, t + T ) + log B(t, t + 1)

= −
∫ t+1

t

A(s, t + 1, t + T ) ds +

∫ t+1

t

Σ(s, t + 1, t + T ) dLs. (40)

In what follows, we consider for simplicity the Ho–Lee volatility structure, i.e.
Σ(s, T ) = σ̂(T−s) for a constant σ̂, which we set equal to one without loss of
generality. Similar arguments can be carried out for other stationary volatility
structures, as e.g. the Vasiček volatility function. By stationary we mean that
Σ(s, T ) depends only on (T−s). We assume that the drift term also satisfies
some stationarity condition, namely

A(s, T ) = A(0, T−s) for s ≤ t.

In the risk-neutral case given by (14) this stationarity follows from the sta-
tionarity of the volatility function Σ(s, T ). We get

−
∫ t+1

t

A(s, t + 1, t + T ) ds = −
∫ 1

0

A(s, 1, T ) ds =: d(T ) (41)
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independent of t and

∫ t+1

t

Σ(s, t + 1, t + T ) dLs = (T−1)(Lt+1 − Lt).

Consequently,
LR(t, T ) = d(T ) + c(T )Yt+1 (42)

where c(T ) := (T−1) is deterministic and

Yt+1 := Lt+1 − Lt ∼ L1

is Ft+1 measurable and does not depend on T .
To estimate the parameters of the driving process we first determine the

daily log returns, i.e. for k ∈ {0, 1, . . . , 520}, n ∈ {1, . . . , 10}

LR(k, k + (n years)) = log B(k + 1, k + (n years)) + log
B(k, k + 1)

B(k, k + (n years))
.

Unfortunately, we can only get B(k, k +(n years)) directly from our data set.
To determine B(k+1, k+(n years)) and B(k, k+1) we use an idea developed
in [22, Section 5.3] and interpolate the negative of the logarithm of the bond
prices with a cubic spline. We do this procedure separately for each day of the
data set. Figure 1 shows the interpolation for the first day (even for maturities
up to 30 years).
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Fig. 1. Negative logarithms of bond prices on September 17, 1999 and interpolating
cubic spline.

Since E[L1] = 0, we know that

LR(t, T ) − E[LR(t, T )] = (T−1)Yt+1, (43)
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i.e. the centered log returns are affine linear in T . Moreover, Y1, Y2, . . . Y521

are independent and equal to L1 in distribution. The corresponding samples
y1, y2, . . . , y521 could be calculated for a fixed n ∈ {1, 2, . . . , 10} via

yk+1 :=
LR(k, k + (n years)) − x̄n

(n years) − 1
with (44)

x̄n :=
1

521

520∑

k=0

LR(k, k + (n years)). (45)

However, since the centered empirical log returns LR(k, k + (n years)) − x̄n

are not exactly affine linear in n (compare Figure 2), the yk+1 in (44) would
then depend on n. Remember that the distribution of L1 in the Lévy forward
rate model does not depend on the time to maturity of the bonds. Therefore,
we take a different approach and use the points

((1 year)−1, LR(k, k+(1 year))−x̄1), . . . , ((10 years)−1, LR(k, k+(10 years))−x̄10)

for a linear regression through the origin. The gradient of the straight line
yields the value for yk+1. Figure 2 shows the centered empirical log returns and
the regression line for the first day of the data set. Repeating this procedure for
each day provides us with the samples y1, y2, . . . , y521 which can now be used
to estimate the parameters of L1 by using maximum likelihood estimation.
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Fig. 2. Centered empirical log returns and regression line for the first day of the
data set.

The parametric class of distributions we use here are generalized hyper-
bolic distributions (see e.g. [5]) or subclasses such as hyperbolic [7] or normal
inverse Gaussian (NIG) distributions [2]. The resulting densities for our data
set are shown in Figure 3. Figure 4 shows the same densities on a log-scale,
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Table 1. Estimated parameters of the distribution L1 under the measure P.

α β δ µ λ Method

1474224 -34659 1.1892e-12 7.5642e-08 2.37028 Max-Likelihood (GH)

590033 -14 1.3783e-06 3.2426e-11 -0.5 Max-Likelihood (NIG)

1195475 -114855 2.5614e-06 2.4723e-07 -0.5 Moments (NIG)

which allows to see the fit in the tails. The estimated distribution parameters
corresponding to the densities in Figure 3 are given in Table 1.

One of the densities in Figures 3 and 4 was estimated using the method
of moments. This is a somewhat simpler approach where one exploits the
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relation between moments of order i and the i-th cumulant (see [1, 26.1.13
and 26.1.14]). Since for generalized hyperbolic distributions the cumulants are
explicitly known, one can express the moments (up to order 4) as functions of
the distribution parameters λ, α, β, δ, and µ. Applying the usual estimators
for moments one gets the parameters.

5.2 The risk-neutral measure

There are very liquid markets for the basic interest rate derivatives such as
caps, floors, and swaptions. Therefore, market prices for these instruments
– typically quoted in terms of their (implied) volatilities with respect to the
standard Gaussian model – contain a maximum of information. A cap is a
series of call options on subsequent variable interest rates, namely Libor rates.
Each option is called a caplet. It is easy to see that the payoff of a caplet can
be expressed as the payoff of a put option on a zero coupon bond. In the
same way a floor is a series of floorlets and each floorlet is equivalent to a call
option on a bond. Thus to price a floorlet one has to price a call on a bond.
According to the general no-arbitrage valuation theory the time-0-value of a
call with strike K and maturity t on a bond with maturity T is

C0(t, T, K) := E

[
1

Bt
(B(t, T ) − K)+

]
, (46)

where the expectation is taken with respect to the risk-neutral measure (spot
martingale measure). Since one would need the joint distribution of Bt and
B(t, T ) to evaluate this expectation, it is more efficient to express this expec-
tation with respect to the forward measure associated with time t. One then
gets

C0(t, T, K) = B(0, t)EPt
[(B(t, T ) − K)+]. (47)

Once one has numerically efficient algorithms to compute these expectations,
one can calibrate the model by minimizing the differences between model
prices and market quotes simultaneously across all available option maturities
and strikes. This has been described in detail in [8].

Let us mention that in the stationary case one can derive risk-neutral
parameters from the real-world parameters which we estimated in 5.1. Because
of the martingale drift condition (14) we get from (41)

d(T ) =

∫ 1

0

(A(s, 1) − A(s, T )) ds =

∫ 1

0

(θ(Σ(σ, 1)) − θ(Σ(s, T ))) ds (48)

where θ is the logarithm of the moment generating function of L(L1) under
the risk-neutral measure. By stationarity L(Yn+1) = L(L1) and E[L1] = 0,
therefore, (42) implies

E[LR(t, T )] = d(T ). (49)
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The arithmetic mean of the empirical log returns (45) is an estimator for the
expectation on the left side. By a minimization procedure one can now extract
the distribution parameters of L(L1), which are implicit on the right hand side
of (48) from this equation.

In the case of generalized hyperbolic Lévy processes as driving processes
it is known from [22] that the parameters µ and δ do not change when one
switches from the real-world to the risk-neutral distribution. Therefore, one
has only to extract the remaining parameters λ, α, β via minimization of the
distance between average log returns and the integral on the right side in (48).

It is clear that due to the highly liquid market in interest rate derivatives
the direct fit to market quotes as described at the beginning of this section
provides more reliable calibration results than the derivation from real-world
parameters. It will, therefore, be preferred by practitioners.

6 Calibration of forward process and Libor models

Recall that a cap is a sequence of call options on subsequent Libor rates. Each
single option is called a caplet. Let a discrete tenor structure 0 = T0 < T1 <
· · · < Tn+1 = T ∗ be given as before. The time-Tj payoff of a caplet which is
settled in arrears is

Nδj−1(L(Tj−1, Tj−1) − K)+ (50)

where K is the strike and N the notional amount which we assume to be 1.
The corresponding payoff of a floorlet settled in arrears is

Nδj−1(K − L(Tj−1, Tj−1))
+. (51)

The time-t price of the cap is then

Ct(K) =

N+1∑

j=1

B(t, Tj)EPTj

[
δj−1(L(Tj−1, Tj−1) − K)+|Ft

]
(52)

Given this formula, the Libor model is the natural approach to price caps
since then the Libor rates L(Tj−1, Tj−1) are given in the simple form (30)
with respect to the forward martingale measure PTj

.
Numerically efficient ways based on bilateral Laplace transforms to eval-

uate the expectations in (52) are described in [12]. For numerical purposes
the non-deterministic compensators which arise during the backward induc-
tion in the Lévy Libor model can be approximated by deterministic ones.
Concretely, the stochastic ratios δjL(s−, Tj)/(1+ δjL(s−, Tj) are replaced by
their deterministic initial values δjL(0, Tj)/(1 + δjL(0, Tj)). An alternative
approximation method which is numerically much faster, is described in [18,
Section 3.2.1].

Instead of basing the pricing on the Libor model one can use the forward
process approach outlined in Section 3.2. It is then more natural to write the
caplet payoff (50) in the form
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(
1 + δj−1L(Tj−1, Tj−1) − K̃j−1

)+
(53)

where K̃j−1 = 1 + δj−1K. Since 1 + δj−1L(Tj−1, Tj−1) = F (Tj−1, Tj−1, Tj),
the pricing formula is then instead of (52)

Ct(K) =

N+1∑

j=1

B(t, Tj)EPTj

[
(F (Tj−1, Tj−1, Tj) − K̃j−1)

+|Ft

]
. (54)

The implementation of this approach leads to a much faster algorithm
since the backward induction is more direct in the case of the forward process
model. Also, any approximation can be avoided here.

In the implementations we use mildly time-inhomogeneous Lévy processes,
namely those which are piecewise homogeneous Lévy processes. In order to
catch the terms structure of smiles, which one sees in implied volatility surfaces
(see [8, Figure 1]), with sufficient accuracy, typically three Lévy parameter
sets are needed: one Lévy process corresponding to short maturities up to
1 year roughly, a second one for maturities between 1 and 5 years, and a third
Lévy process corresponding to long maturities from 5 to 10 years. Instead of
predetermining the breakpoints where the Lévy parameters change, one can
actually include the choice of the breakpoints in the estimation procedure.
These random breakpoints improve the calibration results further.

According to (FP.1) and (LR.1) a volatility structure has to be chosen
in both models. In [3] a broad spectrum of suitable volatility structures is
discussed, which can be used in the forward process or the Libor model. A
sufficiently flexible structure is given by

λ(t, Tj) = a(Tj − t) exp(−b(Tj − t)) + c (55)

with three parameters a, b, c. Note that we consider 1-dimensional processes
and consequently also scalar volatility functions in all calibrations. Figure 5
shows a variety of shapes produced by formula (55).

Without loss of generality one can set a = 1, since this parameter can
be included in the specification of the Lévy process. To see this take for
example a Lévy process L generated by a normal inverse Gaussian dis-
tribution, i.e. L(L1) = NIG(α, β, δ, µ) and a 6= 1. Define L̃ = aL and

λ̃(t, T ) = λ(t, T )/a then (compare e.g. [5]) L(L̃1) = NIG( α
|a| ,

β
|a| , |a|δ, aµ) and

∫ t

0 λ(s, T ) dLs =
∫ t

0 λ̃(s, T ) dL̃s. Thus the model (λ̃, L̃) is exactly of the same
type with parameter a = 1.

As far as the driving process L is concerned we consider one dimensional
processes generated by generalized hyperbolic distributions GH(λ, α, β, δ, µ)
or subclasses like hyperbolic, where λ = 1, or normal inverse Gaussian distri-
butions, where λ = − 1

2 . The generalized hyperbolic distribution is given by
its characteristic function

ΦGH(u) = eiµu

(
α2 − β2

α2 − (β + iu)2

)λ/2
Kλ(δ

√
α2 − (β + iu)2)

Kλ(δ
√

α2 − β2)
, (56)
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Fig. 5. A variety of shapes for the instantaneous volatility curve produced by (55)
with a = 1, b ∈ [0.1, 2.1], c = 0.1. Source: [19].

where Kλ denotes the modified Bessel function of the third kind with index
λ. For normal inverse Gaussian distributions this simplifies to

ΦNIG(µ) = eiµu exp(δ
√

α2 − β2)

exp(δ
√

α2 − (β + iu)2)
. (57)

The class of generalized hyperbolic distributions is so flexible that one
does not have to consider higher-dimensional driving processes. Note that it
would not be appropriate to classify a model driven by a one-dimensional Lévy
process as a one-factor model, since the driving Lévy process itself is already
a high-dimensional object. The notion of an x-factor model (x = 1, 2, . . . , n)
should be reserved for the world of classical Gaussian models.
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Fig. 6. Data set I. Absolute errors of EUR caplet calibration: Forward process
model. Source: [19].
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To extract the model parameters from market quotes, one considers for
each caplet the (possibly squared) difference between the market and model
price. The objective function which has to be minimized is then the weighted
sum over all strikes and over all caplets along the tenor structure. A possible
choice of weights would be the at the money prices for the respective maturity.
Figure 6 shows how close one gets to the empirical volatility surface on the
basis of the forward process model. The figure shows the absolute difference
between model and market prices expressed in volatilities. For the relevant
part of the moneyness–maturity plane the differences are below 1%. The
large deviations at the short end are of no importance since the one year
caplet prices are of the order of magnitude 10−9 for the strike rates 8, 9 and
10%. The underlying data set consists of cap prices in the Euro market on
February 19, 2002. The differences one gets for the same data set on the basis
of the Lévy Libor model are shown in Figure 7.
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Fig. 7. Data set I. Absolute errors of EUR caplet calibration: Libor rate model.
Source: [19].

Comparing the two calibration results, one sees that the forward process
approach yields a more accurate fit than the Libor approach. In [10] both,
the Lévy Libor as well as the Lévy forward process approach, have been
extended to a multicurrency setting which takes the interplay between interest
rates and foreign exchange rates into account. This model is also driven by
a single time-inhomogeneous Lévy process, namely the process which drives
the most distant forward Libor rate (or forward process) in the domestic
market. Implementation of this sophisticated model was tested for up to three
currencies (EUR, USD, and GBP).
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18. W. Kluge (2005). Time-inhomogeneous Lévy processes in interest rate and credit

risk models. Ph.D. thesis, University of Freiburg, Germany.
19. N. Koval (2005). Time-inhomogeneous Lévy processes in cross-currency market
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Calibration of Lévy Term Structure Models 25

23. W. Schoutens (2001). Meixner processes in finance. Report 2001-002, EURAN-
DOM, Eindhoven.
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