A mathematical model for the quorum sensing system in Sinorhizobium meliloti

Peter Pfaffelhuber
University of Freiburg

Joint work with Peter Czuppon, Matthew McIntosh, Anke Becker

June 29th, 2012
Quorum sensing in bacteria

- For bacteria, it is important to sense the environment
- Quorum sensing/Diffusion sensing/Efficiency sensing
- Here: Sin-system of *S. meliloti*, nitrogen-fixing soil bacterium, found in the root nodules of leguminous plants

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The molecular basis of the Sin system
A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The positive feedback

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The negative feedback

Medium

Cell

\[\text{ExpR} \rightarrow \text{AHL} \rightarrow \text{ExpR} \]

\[\text{SinR} \rightarrow \emptyset \]

\[\text{SinI} \rightarrow \emptyset \]

\[\text{AHL} \rightarrow \emptyset \]

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The molecular basis of the Sin system

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The full dynamical system

\[
\text{SinR: } \frac{dR}{dt} = \alpha_1 \frac{1}{\beta_3 C + 1} - \gamma_1 R
\]

\[
\text{SinI: } \frac{dI}{dt} = \alpha_2 \frac{\beta_1 R}{\beta_1 R + 1} \left(1 + \alpha_5 \frac{\beta_2 C}{\beta_2 C + 1}\right) - \gamma_2 I
\]

AHL inside cell: \[
\frac{dA_i}{dt} = \alpha_3 I - \delta_1 A_i + \delta_2 A_o - \alpha_4 A_i (\bar{E} - C) - \gamma_3 A_i + \gamma_4 C
\]

AHL outside cells: \[
\frac{dA_o}{dt} = B (\delta_1 A_i - \delta_2 A_o) - \gamma_3 A_o
\]

:= number of cells

Complex ExpR/AHL: \[
\frac{dC}{dt} = \alpha_4 A_i (\bar{E} - C) - \gamma_4 C
\]

:= ExpR + ExpR/AHL constant

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The initial phase (no QS); B small

\[\text{SinR: } \frac{dR}{dt} = \alpha_1 - \gamma_1 R \]

\[\text{SinI: } \frac{dI}{dt} = \alpha_2 - \gamma_2 I \]

\[\text{AHL inside cell: } \frac{dA_i}{dt} = \alpha_3 I - \delta_1 A_i \]

\[\text{AHL outside cells: } \frac{dA_o}{dt} = B \delta_1 A_i - \gamma_3 A_o \]

\[\text{Complex ExpR/AHL: } \frac{dC}{dt} = 0 \]

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The positive feedback; B moderate

\[
\text{SinR: } \quad \frac{dR}{dt} = \alpha_1 - \gamma_1 R
\]

\[
\text{SinI: } \quad \frac{dI}{dt} = \alpha_2 \left(1 + \alpha_5 \frac{\beta_2 C}{\beta_2 C + 1} \right) - \gamma_2 I
\]

\[
\text{AHL inside cell: } \quad \frac{dA_i}{dt} = \alpha_3 I - \delta_1 A_i + \delta_2 A_o
\]

\[
\text{AHL outside cells: } \quad \frac{dA_o}{dt} = B \left(\delta_1 A_i - \delta_2 A_o \right) - \gamma_3 A_o
\]

\[
\text{Complex ExpR/AHL: } \quad \frac{dC}{dt} = \alpha_4 A_i \left(\tilde{E} - C \right) - \gamma_4 C
\]

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
The negative feedback; B large

\[
\begin{align*}
\text{SinR: } & \quad \frac{dR}{dt} = -\gamma_1 R \\
\text{SinI: } & \quad \frac{dI}{dt} = -\gamma_2 I \\
\text{AHL inside cell: } & \quad \frac{dA_i}{dt} = -\delta_1 A_i + \delta_2 A_o \\
\text{AHL outside cells: } & \quad \frac{dA_o}{dt} = B \left(\delta_1 A_i - \delta_2 A_o \right) - \gamma_3 A_o \\
\text{Complex ExpR/AHL: } & \quad \frac{dC}{dt} = \alpha_4 A_i \left(\underbrace{\overline{E}}_{\text{ExpR+ExpR/AHL constant}} - C \right) - \gamma_4 C
\end{align*}
\]
Introduction

The mathematical system

Data and simulations

Comparison

Outlook

Summary of analysis

- System has both, positive and negative feedback
- Quorum sensing means that autoinducers from other bacteria enter a cell
- Within cell, chemical system is not bi-stable
- Degradation rates of SinR and SinI high \rightarrow fast reactions of the system to environment changes are possible
- System highly sensitive to amount of available ExpR (ExpR low: no negative feedback possible)

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
Data

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
Simulation results

SinR and SinI are sensitive to expression of ExpR

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
Simulation results

AHL inside and outside of cells show the same behavior

A mathematical model for the quorum sensing system in Sinorhizobium meliloti
Comparison with model from Müller et al (2006)

- QS Model e.g. for *Vibrio fischeri*
Comparison with model from Müller et al (2006)

- Only positive feedback modeled by

AHL inside cell: \[
\frac{dA_i}{dt} = \alpha + \beta \frac{A_i^n}{A_i^n + x_*} - \delta_1 A_i + \delta_2 A_o
\]

AHL outside cells: \[
\frac{dA_o}{dt} = \delta_1 A_i - \delta_2 A_o - \gamma_3 A_o
\]

- Bi-stable system, but no dependence on number of cells \(B \)!
Outlook

- Stochastic aspects to fluctuations in number of ExpR
- Downstream mechanisms: EPS production, ...
- Heterogeneity in bacterial population